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Abstract. Various types of resolutions of unbounded complexes of sheaves are constructed,
with properties analogous to injectivity, flatness, flabbiness, etc. They are used to remove some
boundedness conditions for the existence of the derived functors of functors such as Hom,
tensor product, sections over an open subset, inverse and direct images, and for the validity
of various formulae involving these derived functors.

This paper is devoted to the study of various classes of complexes of sheaves
and the construction of resolutions of arbitrary complexes of sheaves. It

aims at removing some boundedness conditions for the existence of some
derived functors and the validity of various formulae.

In particular the following results are established.

THEOREM A. Let X, Y, Z be topological spaces, OX, OY, (9z sheaves of
commutative rings on X, Y, Z respectively, and !)(X), 1)( Y), 1)(Z) the

corresponding derived categories of complexes of sheaves. Let also f : X - Y
and g: Y - Z be morphisms of ringed spaces. Then the following hold.
(i) For every open subset U of X and every family of supports (D in X the
derived functor R039303A6(U; -) is well-defined. In particular the hypercohomology
H*03A6(U; A) is well-defined. When computing these functors, the sheaves can be
treated as sheaves of abelian groups, and it is sufficient to look at their

restrictions to the open subset U.

(ii) The functors RHom. , R Xom* and (8)L are well-defined, and for every
d. , B*, L* E 1)(X),
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(iii) The functors R,f* and Lf* are well-defined, they are adjoint, and for
A* E T( Y), B* E D(X) we have

A standard result which the author would have liked to extend to unbounded

complexes is the proper base change formula. Its usual proof relies however
on the notion of soft sheave for which no suitable equivalent has been found
for complexes.

Let now the underlying spaces be locally compact. The functors R0393c and
Rf!, which are shown to be well-defined, can then be expected to have nice
properties, but the results contained in this paper are unfortunately not
sufficient to establish this in general. Care can be taken of the possible
complications due to the structure sheaf, but not of those arising from the
topology of the base space. We are thus led to consider the following
condition on a locally compact space T.

CONDITION (*). If d. is an acyclic complex of c-soft sheaves on T, then in
each degree the kernel of the differential is c-soft.

This condition asserts that resolutions by complexes of c-soft sheaves can be
used to compute the hypercohomology with compact support of unbounded
complexes on T, provided they exist. It is satisfied at least if T is locally
finite-dimensional.

THEOREM B. Let the ringed spaces X, Y and Z be locally compact, and assume
that the morphisms of ringed spaces f: X ~ Y, g: Y - Z and go f are such
that all their fibers satisfy (*). Then the following hold.
(i) The functor Rf! has an adjoint f! , and for A* 

° 

E D(X), B* E D(Y) we have

Moreover R(g of), = Rg! 0 R.f and (g f)! = f! g!.
(ii) For every d. 

* 

E 1)(X) and B*, L* E 1)( Y) there are natural isomorphisms
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(iii) if

is a cartesian diagram of commutative ringed spaces with q flat, then there are
natural isomorphisms of functors

These results are proved in section 6.
The functor Rf is constructed as a right derived functor. The apparent

imbalance in these formulae with the occurence of one left and three right
derived functors associated to a morphism of ringed spaces can be remedied
by considering Rf as a left derived functor. This is described in 6.16.
More generally, let 2I be an abelian category, D the corresponding cate-

gory of 7-graded complexes with differentials of degree + 1 and chain maps
as morphisms. Let also R be the category which has the same objects as D
but homotopy classes of chain maps as morphisms. We say that a morphism
f: A* ~ B* in D or R is a quasi-isomorphism if it induces an isomorphism
H*(A*) ~ H*(B*); we say also in this case that f (or A*) is a left resolution
of B’ , or that f (or J9’ ) is a right resolution of A.. Notice that if A’ = 0 for
i ~ 0 and B’ = 0 for i  0, then f is a right resolution of A’ if and only if
the sequence

is exact.

Let F: R(U) ~ R(B) be a covariant (resp. contravariant) functor. We
assume that F is additive, compatible with the shift of degree and preserves
the exact triangles. This is the case for example if Fis induced by an additive
functor from W to B. Following Deligne [2], the right derived functor of F
is defined at a complex A if A’ has a right (resp. left) resolution X* which
is unfolded for F. That is, every right (resp. left) resolution B’ of X* has itself
a right (resp. left) resolution Y’ such that F induces a quasi-isomorphism
between F(X’ ) and F(Y*) in R(B). Left derived functors are defined in a
similar way. There are some sign conventions which must be observed and
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which become particularly tricky when several variables are involved. All
these questions are thoroughly discussed in [2], which we regard as the
standard reference for derived categories. The results described above follow
from the existence of various classes of resolutions which have properties
analogous to injectivity, flatness, flabbiness, etc, and which are unfolded for
the various functors under consideration.

Let f : P* ~ A’ , g: Q* ~ A’ be two left resolutions of A’ . Suppose that
P is bounded above (i.e., there exists N E N such that P’ = 0 for i  N)
and that each P’ is projective. Then in R there exists a unique morphism
0: P* ~ Q* such that f = g,0. Thus bounded above left resolutions by
complexes of projective objects of 2I are unique in R up to a unique
isomorphism, when they exist. They may therefore be used to define derived
functors. If the boundedness assumption is dropped, this uniqueness property
may fail. The standard example [3] is the complex of free Z/42-modules

It is acyclic, hence can be used as a resolution of the complex 0, which
consists also of free modules. However (1) is not homotopic to 0 since
tensoring (1) by Z/2Z we get the complex

which is not acyclic.
Thus for an unbounded complex A’ , the individual nature of the objects

Al (i E Z) is not necessarily reflected by properties of A’ . It seems therefore
better to look at properties of A* itself.

DEFINITION. A complex A* (in D or R) is K-projective (resp. K-injective) if for
every acyclic complex X ’ , the complex of abelian groups Hom*(A*, X* )
(resp. Hom’ (X’ , A ’ )) is acyclic.

In other words, A’ is K-projective (resp. K-injective) if the functor

Hom’ (A’ , - ) (resp. Hom’ ( - , A’ )) preserves exactness.
A K-projective resolution of a complex A’ is a quasi-isomorphism P* ~ A’ 

with P’ K-projective. A K-injective resolution of A’ is a quasi-isomorphism
A* ~ I* with l’ K-injective. We shall prove in particular:

THEOREM C. Let R be a ring (associative, 1 E R), and let 2I be the category
of all left R-modules. Then every complex in R has a K-projective resolution
and a K-injective resolution.
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THEOREM D. Let O be a sheaf of rings on a topological space X and let 21 be
the category of all sheaves of left O-modules on X. Then every complex in R
has a K-injective resolution.

We shall show also that complexes of sheaves always have left resolutions
which behave well with respect to tensor product.
Some of the results and methods discussed in this paper apply also to

complexes of sheaves on etale sites. The existence of K-injective resolutions
in this setting is discussed in 4.6.

0. Notation and recollections

We fix some notation and review some miscellaneous facts needed in the sequel.

0.1. In addition to D and R, we shall also consider the derived category 1)
of 21 [5, 1.4]. Depending on the needs of the context, we write also D(U), R(U)
and D(U) instead of D, R, D respectively, or also D(X), R(X), D(X) if 21 is
the category 9Jlob(X) of all sheaves of O-modules on a ringed space (X, U).

Recall that by definition D, R and Z have the same objects. In particular
a complex A* ~ R is an object of D.

0.2. Let A’ E D, d its differential. Then A*[1] is the complex defined by
A[1]’ - A’-’ (i E Z), with differential - d.

If f: A* ~ B’ is a chain map, the cone of f is the complex Cf defined by
Cr = A’+’ ~ Bi with differential given by d(a, b) = (- d(a), f (a) + d(b))
(a ~ A1+1, b ~ Bi).

0.3. The category of all abelian groups is denoted Ub.

0.4. Let A’ , B’ E D. The complex Hom’ (A’ , B’ ) E D(Ub) is defined as follows:

and its differential is given by

We have then
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0.5. A short exact sequence

in D is semi-split if it is split in each degree.

0.6. Let OE ~ D be a class of complexes. A left (resp. right) D-resolution of
a complex A’ ~ D is a quasi-isomorphism E* ~ A’ (resp. A* ~ E*) with
E’ ~ D.

0.7. Morphisms in 8l (resp. D) will always be called homomorphisms (resp.
chain maps).

0.8. Direct and inverse systems are always assumed to be filtered.

0.9. Unless otherwise stated, modules are left modules. This applies also to
(9-modules, where O is a sheaf of rings. In paragraphs 5 and 6 all ringed
spaces are assumed to be commutative, so that this specification is irrelevant
there.

If 21 is the category of all sheaves of OX-modules on a ringed space (X, OX),
,W E 21 and Z c X is locally closed, we let d zcx be the extension by zero
of A |z to X. We use a similar notation for complexes of OX-modules. In case
si = Wx, we write OZ~X instead of (OX)Z~X.

0.10. Let A ’ E D. The following criterion will be useful to check in some
cases that A’ is acyclic.

Let OE be a class of objects of 8l such that every object of U can be embedded
in some object of D. Assume that Hom’ (A’ , E) E D(Ub) is acyclic for every
E E OE. Then A’ is acyclic.

0.11. In order to handle certain inverse limits in Ub, we shall need the

following variant of the Mittag-Leffler criterion.
Let I be a well ordered set. We say that an inverse system (Mi)i~I in eb

satisfies (*) if the following hold:
(*1) If i E I has no predecessor, then Mi = iLm,  i M,
(*2) If i ~ I has a predecessor i - 1, then the homomorphism Mi ~ Mi-1

is surjective.

LEMMA. Let I be a well ordered set and let the inverse systems (Ai)i~I, (Bi)iEI’
(Cl)iEl and (Di)iEj in 21b satisfy (*). Let
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be morphisms o.f inverse systems, with g, f, = 0 and hl 0 g, = O.for every i E I,
and let

be the limit of (1). If i E I has a predecessor i - 1, let A;, B;, C; and D’l
be the respective kernels of the homomorphisms Ai ~ Al-1, B, ~ B,-,,
Ç - Ci-l and Di ~ DI-1. Let j E I have the following property. For every
i &#x3E; j which has a predecessor i - 1, the sequence

is exact. Then the natural homomorphism

is an isomorphism.

This follows from Zorn’s lemma and diagram chasing.

REMARK. If in the lemma we can take for j the smallest element of I, then
the conclusion of the lemma is that the sequence

is exact.

1. Elementary properties of K-projective and K-injective complexes

1.1. Recall first

DEFINITION. A complex A’ (in OE or R) is K-projective (resp. K-injective) if
for every acyclic complex S* ~ D, the complex Hom*(A*, S*) (resp.
Hom’ (S’, A*)) is acyclic.

Notice that if an acyclic complex A’ is K-projective or K-injective, then it
is contractible (consider IdA. E Hom°(A’ , A’ )). We shall see in 1.4 (resp. 1.5)
that the K-projective (resp. K-injective) complexes are precisely those which
in the terminology of [6, 1.2.5.4] are "free on the left" (resp. "free on the



128

right"). The definition above, which is due to J. Bernstein, is more con-

venient for the applications in this paper.

1.2. PROPOSITION. Let A’ ~ D be such that A’ = 0 for i =1= 0. Then A’ is

K-projective (resp. K-injective) if and only if AO is a projective (resp. injective)
object of 21.

This is clear.

1.3. PROPOSITION. (i) If two of the vertices of a distinguished triangle of R are
K-projective (resp. K-injective), then so is the third one.

(ii) A’ ~ R is K-projective (resp. K-injective) if and only if A*[1 ] is so.

This is clear.

1.4. PROPOSITION. For every A’ ~ D the following conditions are equivalent.
(a) A’ is K-projective.
(b) For every S’ E R, the natural homomorphism

is an isomorphism.
(c) For every diagram in R

with s a quasi-isomorphism, there exists a unique morphism g: A* ~ X*
such that s 0 g = f in R.

(d) For every quasi-isomorphism u: S* ~ A* in R, there exists a morphism v:
A* ~ S’ such that uov = lA’ in R.

The equivalence of (a) and (b) follows from 0.4(3), the definition of morphisms
in D and a simple cone argument. We have (b) ~ (c) because s gives an
isomorphism in 1), and (c) ~ (d) is obtained by taking Y’ 

* 

= A’ , f = 1A. in
(c). It remains to check (d) ~ (b).
A morphism from A’ to S’ in D is represented by a diagram in R



129

with s a quasi-isomorphism. By (d) there exists a morphism t: A* ~ B* in
R such that sot = 1 A . , and f t represents the same morphism in 1J as (3).
Thus (1) is surjective. Let now g E MorR(A*, S*) map to 0 E MorD(A*, S’ ).
Then there exists a quasi-isomorphism u: C* ~ A* in ft such that g u = 0.
By (d), there exists then v E MorR(A*, C*) such that u 03BD = lA.. Then

g = g 1A. = g u 03BD = 0. Thus (1) is also injective.

REMARK. The conditions (b), (c) and (d) make sense in the more general
setting of localization of categories, c.f. [6, 1.2.5].

Similarly, we have:

1.5. PROPOSITION. For every A’ ~ D the following conditions are equivalent:
(a) A’ is K-injective.
(b) For every S. E R, the natural homomorphism

is an isomorphism.
(c) For every diagram in R

with s a quasi-isomorphism, there exists a unique morphism g: X* ~ A’ 
such that go s = f in R.

(d) For every quasi-isomorphism u: A* ~ S’ in R, there exists a morphism v:
S* ~ A’ such that vou = 1A* in R.

2. Special inverse or direct systems

2.1. DEFINITIONS. Let J ~ D be a class of complexes.
(a) An inverse system (I*n)n~E in D is a J-special inverse system if it satisfies
the following conditions.
(i) E is well ordered.
(ii) If n E E has no predecessor, then In - limmn I*m.
(iii) If n E E has a predecessor n - 1, then the natural chain map I*n ~ I*n-1

is surjective, its kernel Cn belongs to J, and the short exact sequence

is semi-split.
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(b) The class 3 is closed under special inverse limits if every 3-special inverse
system in OE has a limit which is contained in 3, and every complex isomorphic
in OE to a complex in 3 is contained in 3.

2.2. EXAMPLES. (a) Suppose that 3 is closed under special inverse limits and
that A’ ~ J ~ A* [1] E J. Then if u: A* ~ B* is a chain map and A’ , B’ E J,
the cone CJ is also contained in 3. To see this, use the inverse system indexed
by {0, 1, 2} with A- 0 = 0, A; = A-[1], A’ 2 = C*u = lim Ai .
(b) Using Zorn’s lemma, every direct product in D can be turned into a
special inverse system.
(c) Let J0 be a class of objects of 21. Assume that the class 3 of objects of
D is closed under special inverse limits, and that every single degree complex
A’ ~ D such that A’ ~ J0 for every i E Z is contained in 3. Then every
bounded below complex A ’ ° e OE such that A’ E 30 for every i E Z is contained
in 3.

2.3. LEMMA. The class of all acyclic complexes in D(Ub) is closed under special
inverse limits.

This follows from 0.11.

2.4. PROPOSITION. Let B be an abelian category and let ~ D(B) be closed
under special inverse limits. Assume that inverse limits exist in 21 and let F:
D(U) - D(B) be a covariant functor which commutes with inverse limits and
preserves semi-split short exact sequences. Then F-1(J) ce D(U) is closed

under special inverse limits.

This follows immediately from the definitions.

2.5. COROLLARY. Let Z ~ D be a class of complexes. Then the class of all
complexes A’ ~ D such that Hom’ (T’ , A’ ) is acyclic for every T’ ~ I is
closed under special inverse limits. In particular, the class of all K-injective
complexes is closed under special inverse limits. 1

This follows from 2.3 and the proposition applied to the functors Hom’ (T’ , - )
(T’ E I).

2.6. DEFINITIONS. Let B ~ D be a class of complexes.
(a) A direct system (Pn )nEE in D is a B-special direct system if it satisfies the
following conditions:

(i) E is well ordered.
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(ii) If n E E has no predecessor, then Pn - lim P*m.

(iii) If n ~ E has a predecessor n - 1, then the natural chain map P*n-1 ~
Pn is injective, its cokernel Cn* belongs to B, and the short exact
sequence

is semi-split.
(b)B is closed under special direct limits if every B-special direct system in
D has a limit which is contained in B, and every complex isomorphic in D
to a complex of 13 is contained in B.

It is clear that the examples in 2.2 can be dualized. It is clear also that the
class of all acyclic complexes in D(Ub) is closed under special direct limits.
We have also the following analogues of 2.4, 2.5:

2.7. PROPOSITION. Let 93 be an abelian category and let ~ D(B) be closed
under special inverse limits. Assume that direct limits exist in 21 and let F:
D(U) ~ D(B) be a contravariant functor which transforms direct limits into
inverse limits and preserves semi-split short exact sequences. Then F-’ (J) ~

D(U) is closed under special direct limits.

2.8. COROLLARY. Let Z ~ D be a class of complexes. Then the class of all
complexes A’ E D such that Hom* (A’, T’) is acyclic for every T’ ~ I is

closed under special direct limits. In particular, the class of all K-projective
complexes is closed under special direct limits.

This follows from 2.3. and 2.7.

2.9. NOTATION. Assume that inverse (resp. direct) limits exist in OE and let OE
be a class of complexes in 6. We let D (resp. D) be the smallest class of
complexes in D which is closed under special inverse (resp. direct) limits and
contains OE.

2.10. There is an analogue of 2.4 for contravariant functors, and of 2.7 for
covariant functors, in which the class 3 c D(B) is assumed to be closed
under special direct limits.

3. Existence of K-projective or K-injective resolutions

A. Left resolutions

3.1. Let B be a class of complexes in OE. We shall assume in this section that
B has the following property.
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(1) Every bounded above complex A’ ~ D has a left resolution P* ~ A’ with
P’ ~ B

Equivalently, for every complex A ’ ~ D and every integer n E Z, there
exist P ~ B with Hj(P*) = 0 for j &#x3E; n and a chain map f: P* ~ A* which
induces an isomorphism Hj(P*) ~ H’ (A’ ) for every j  n.

3.2. EXAMPLES. (a) If 21 has enough projectives, we can take for 13 the class
of all bounded above complexes P’ ~ D with P’ projective for every i E Z.
It is well-known that T consists in this case of K-projective complexes (this
follows also from 1.2, the dual of 2.2(c) and 2.8). By 2.8, the complexes in
1 are then also K-projective.

(b) Let 8l be the category of all sheaves of O-modules on a ringed space
(X, (9). Let 13 be the class of all complexes P* ~ D which are bounded above
and such that each f!lJi is a direct sum of sheaves of the form OU~X with U
open in X. Then 13 satisfies 3.1(1). More generally, for each i E Z, let Ul be
a basis of the topology of X, and let B(U*) be the class of all bounded above
complexes P* c- 13 such that each Pj is a direct sum of sheaves of the form
(9u, , with U E H’ . Then 13(U’) satisfies 3.1(1).

3.3. LEMMA. Let A’ E D. Then under the assumption 3.1(1) there exists a
13-special direct system (Pn )n-1 and a direct system of chain maps fn: P*n ~
03C4nA* such that fn is a quasi-isomorphism for every n  0.

We construct (Pn )n-1 and (fn)n- l by induction. As - 1 has no predecessor
in our indexing set, we must take P*-1 = 0, f-1 1 = 0, and by 3.1(1) we can
find a quasi-isomorphism fo: P*0 ~ 03C40 A* with P. E B. Let now n  1, and

suppose that P*-1, ···, P*n-1 and f-1, ... , fn-1 are already constructed. Let
P ’ - Pn’-l’ B ’ = 03C4n A* and f : P* ~ B ’ the chain map induced byfn-1. By
3.1(1) we can find a quasi-isomorphism, g : Q* ~ C*f[- 1] with Q’ [1] ~ B.

As C*f [- 1] = P’ ~ B*[-1], g gives two maps g’ : Q* ~ P* and g": Q* ~
B*[- 1], and g’ is a chain map. Let then h: C*-g’ = Q*[1] ~ P* ~ B’ be
defined by h(x, y) = g"[1](x) + f(y). It is easily checked that h is a chain
map and that C*h = C*g [1]. Since g is a quasi-isomorphism, so is therefore h,
and we may take Pn - C*-g’, fn = h.

3.4. THEOREM. Assume that direct limits exist in 21 and that lim is exact. Let
the class 13 ~ D satisfy 3.1 (1). Then every complex in D has a left B-resolution.

This follows immediately from 3.3.
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3.5. COROLLARY. Assume that direct limits exist in 21 and that lim is exact.

Assume moreover that U has enough projectives. Then every complex in D has
a left K-projective resolution.

Indeed, taking 13 as in 3.2(a), every complex in B is K-projective.

B. Right resolutions

3.6. Let ~ D be a class of complexes. Assume that ,3 has the following
property

(1) Every bounded below complex A’ ~ D has a right resolution A* ~ l’ with
l’ E 3. 

Notice that this holds for example if 3 is the class of all bounded below
complexes of injective objects of 21, in case 21 has enough injectives.

Dualizing the arguments used in part A, we get immediately:

3.7. LEMMA. Let A’ E D. Then under the assumption 3.6(l) there exist a
J-special inverse system (I*n)n-1 1 and an inverse system’ of chain maps fn:
03C4 -n A* ~ I*n such that fn is a quasi-isomorphism for every n  0.

3.8. PROPOSITION. Assume that inverse limits exist in 21 and that lim is exact.
Let the class 3 ~ D satisfy 3.6(1). Then every complex in D has a right
J -resolution.

3.9. COROLLARY. Assume that inverse limits exist in 21, that lim is exact and
that U has enough injectives. Then every complex in D has a right K-injective
resolution.

3.10. This unfortunately does not even apply to modules over a ring R, since
in this case lim is not exact. The assumption on lim in 3.9 is however used
only to ensure that in the situation of 3.7 the chain map f = lim fn: A* ~
lim In is a quasi-isomorphism. As the inverse system (In )n, -1 has a very special
form, a much weaker assumption is already sufficient. We get in particular:

3.11. PROPOSITION. Let R be a ring and let 21 be the category of all left
R-modules. Then every complex in D has a right K-injective resolution.

This follows from 3.7, 2.5 and 0.11.

REMARK. Together with 3.5, this proves theorem C.



134

3.12. Let X be a topological space, U a sheaf of rings on X (not necessarily
commutative) and U = 9Jlob(X) the category of all sheaves of left (9-modules
on X. Let S c Mob(X) be a class of sheaves. We consider the following
condition on B.

(1) For every x E X, there exist a fundamental system UX of open neighbor-
hoods of x and an integer dx such that Hi(U; B) = 0 for every e E 0,
U ~ Ux, i &#x3E; dx.

EXAMPLES. (a) Let (X, O) be a scheme and let 0 be the class of all quasi-
coherent (9-modules on X. Then (1) is satisfied.

(b) Assume that every point of X has a fundamental system of contractible
open neighborhoods and let the clashs 93 consist of constant sheaves on X.
Then (1) is satisfied.

3.13. PROPOSITION. Assume that B satisfies 3.12(l) and let d’ ~ D be such
that c- 0 for every ~ Z. Let J be the class of all bounded below
complexes of injective O-modules. Then the chain map f = lim fn given by 3.7
is a quasi-isomorphism. In particular has a right .3 -resolution, hence also
a right K-injective resolution.

We use the notation of 3.7. Let P* = lim P*n. We have a commutative
diagram

Let m E Z. For n  -m, n ~ N, fn induces an isomorphism

In view of (1), the homomorphism

induced by f is therefore injective.
For surjectivity, let x E X, V c X an open neighborhood of x and

y e 0393(V; Pm) satisfy dy = 0. By definition of P*, y = (03B3n)n-1 with
y, E 0393(U; fnm) and d03B3n = 0. Let Ux, dx  0 be as in 3.12(1), and choose
N ~N such that N &#x3E; dx - m.
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For n E N, let l*n be the kernel of P*n ~ P*n-1. For n &#x3E; N and U ~ Ux, the
sequence

is then exact. It follows therefore from 0.11 that the homomorphism

is an isomorphism.
In view of (2), there exists U E Ux, U c V, such that the image of 03B3N|U in

Hm(r(U; JN» is contained in the image of Hm(r(U; A*)). By the isomor-
phism (5), the image of y lu in Hm(0393(U; P*)) is therefore also contained in
the image of Hm(0393(U; A*)). This implies that (3) is surjective.

4. K-injective resolutions of complexes of sheaves

In this paragraph X is a topological space, (9 is a sheaf of rings (not
necessarily commutative) on X, and 91 is the category Mob(X) of all sheaves
of left O-modules on X.

4.1. LEMMA. Let Z = (J*e~E be a fqmily of acyclic complexes, and let
A* E D. Then d’ has a right resolution s: A* ~ B* such that for every e E E
and every chain map cv: J*e ~ d’ , the chain map s 0 (JJ is homotopic to 0.

For each chain map 03C9: J*e ~ A*, there exists a quasi-isomorphism
SQ): ci A*03C9 such that s03C9 03C9 is homotopic to 0.

Let

We may assume that Q is well ordered. Let A be the set of all initial intervals

of 03A9, and let 0: Q - A be defined by 0(m) = (m’ E 03A9|03C9’  03C9}.
We define now by induction a direct system of complexes (B*03B4) )bEA in D.
We set B*~ = 9/’.
If b E A has no predecessor and b =1= 0, define
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If ô e A has a predecessor b - 1, then ô = 03B8(03C9) for some chain map cv:

J*e ~ d’ . As d’ = B0 and ~  03B4 - 1, we have already a chain map
from A* to B*03B4-1. We can then find a homotopy commutative diagram in D,
with t03C9 a quasi-isomorphism,

which we use to define B*03B4 and the chain map B*03B4-1 ~ B*03B4 (hence also the
chain maps B*03B3 ~ B*03B4 for y  b).

Let then B* = lim B*03B4, and let s: A* = B*~ ~ B* be the natural chain
map. Then s is a quasi-isomorphism, and it has obviously the required
properties.

4.2. LEMMA. Let B* E D. Then there exists an injective chain map m: B* ~ L*
which is a quasi-isomorphism and such that for every j E 7L, m(Bj) is contained
in an injective submodule of Lj.

For each j E Z choose an injective map fJ: Bj ~ 5i, with 5i injective. Let
P* be the complex defined by fi = 5i Et) Pj+1 and differential d(x, y) =
( y, 0). We have then an injective chain map u: B* ~ P*, u(b) = ( f (b),
fj+1(db)) (b E Bj). Let v : P* ~ Coker u be the natural chain map and let
L* = l*03BD[-1]. It is then easily checked that the natural chain map m:
A* ~ L* induced by u has the required properties.

4.3. LEMMA. Let I = (J*e )eEE be a family of acyclic complexes, and let
A* E D. Then A* has a right resolution t: A* ~ 5’ such that:

(a) Hom’ (J*e, P*) is acyclic for every e E E.
(b) Each fi is an injective O-module ( j E 7L).

Let a be an infinite cardinal such that a  Card (géi) for every e E E, j E Z,
and a  Card(O) (we consider here the sheaves as "espaces étalés"

[3, II.1.2]). Let 03B2 be the smallest cardinal strictly greater than a, and let 0393 be

the smallest ordinal whose cardinal is 03B2.
We construct by induction a direct system of complexes (P*03B3)03B3~0393 in D.
Let 0 be the smallest element of r. We set 6 = A*.
If y E r has no predecessor, and 03B3 ~ 0, let P*03B3 = lim P*03B3’.
If y E r has a predecessor y - 1, we can find by 4.1 a quasi-isomorphism sy :

P*03B3-1 ~ B*03B3 such that for every chain map 03C9: J*e ~ P*03B3-1, S03B3 w is homotopic
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to 0. Replacing if necessary B*03B3 by B*03B3 ~ J*03B3, where J*03B3 is the cone over Id:

-fl*-l ~ P*03B3-1, we may assume that s,, is injective. By 4.2. we can find a
quasi-isomorphism My: B*03B3 ~ W) which is injective and such that u03B3(Bj03B3) is

contained in an injective submodule of Ç ( j E Z). We take then P*03B3 = l*03B3
and define the maps P*03B3’ ~ P*03B3 for y’  y by the requirement that P*03B3-1 1 ~ P*03B3
is uy o s03B3.
We let then p* = lim P*03B3 and take for t the natural chain map A* =

X§ - P*. Notice that the natural chain maps fy’ ~ f are all injective. For
notational simplicity we shall consider the complexes P*03B3 as subcomplexes of f * .

It is clear that t is a quasi-isomorphism. Let now 0: J*e ~ P* be a chain
map. By choice of r, ~(J*e) c fy. for some y E r. By construction, 0:
£° - P*03B3+1 is then homotopic to 0. This implies (a).
For similar reasons, if a is an ideal of (9 and/: 03B1 ~ fJ is a homomorphism,

then f (a) c Pj03B3 for some y E r, and by construction f extends to O ~ Pj03B3+1.
This implies (b).

4.4. LEMMA. Let a = max(Card(O), Card(,)).
(a) For every surjective homomorphism f : A ~ B in 9Jlob(X) there exists a
subsheaf do of A such that f: A0 ~ B is surjective and Card(A0) 
a Card(B).
(b) Let 1 =1= 0 be an acyclic complex in D. Then J* has an acyclic subcomplex
J* ~ 0 such that Card(Pj)  a for every j E Z.

(a) We can find a commutative diagram

with h surjective and W a direct sum of at most Card(81) sheaves of the form
OU~X, U open in X. Let A0 = Im(g). Then Card(A0)  Card(l) 
Card(X)Card(O)Card(B)  acard(é3).

(b) Since g-’ =1= 0, we can find i E Z, an open subset U of X and a section
s E r( U; 1’), with s ~ 0. Let then Ji be the subsheaf of 1’ generated by
s. For j &#x3E; i + 1,letf/i = 0. For j = i + 1,1etyj = d(Ji). For j  i, we
construct Jj by descending induction. If Yi" is already constructed, with
Card(Jj+1)  a, let J’j = d-1(Jj+1). Since J* is acyclic, (a) shows that
we can find J* ~ J’j in such a way that d(Jj) = d(g-’j) and Card(Jj)  a.
It is clear that this procedure gives a subcomplex Y* of J* with the required
properties.
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4.5. THEOREM. Every complex in D has a right K-injective resolution.

There exists a family (Je’ )eEE of acyclic complexes such that every acyclic
complex J* ~ D with Card(JJ)  max(Card(O), Card(N)) is isomorphic to
some J*e, e E E. Let then A* ~ D be an arbitrary complex, and let t:

si’ ~ P* be the resolution constructed in 4.3. We show that P* is K-injective.
Let J* e OE be acyclic. Using Zorn’s lemma and 4.4, we find that there

exist a well ordered set W and an increasing family (J*03C8 )03C8~03A8 of subcomplexes
of J* with the following properties.
(1) If 03C8 E IF has no predecessor, then J*03C8 = U
(2) If 03C8 ~ 03A8 has a predecessor 03C8 - 1, then J*03C8 /J*03C8-1 is acyclic and

Card(JJ03C8-1/JJ03C8-1)  max(Card(O), Card(N)) for every j E Z.
It follows from 4.3 that the inverse system of complexes of abelian

groups (Hom*(J*03C8, P*))03C8~03A8 satisfies the conditions of 0.11. Therefore

Hom*(P*, P*) = 1 m Hom*(P*03C8, X° ) is acyclic.

4.6. The method used here to construct K-injective resolutions uses only the
following properties.
(a) The existence and exactness of direct limits in 9L
(b) The existence of a family (J*e)e~E of non-zero acyclic complexes such that
every non-zero acyclic complex has a subcomplex isomorphic to one of the
J*e’s.
(c) The existence of a well-ordered set I without largest element having the
following properties.
(cl) For every direct system (A*i)i~I (in which all the maps are injective),
every chain map J*e ~ lim A*i factors through some A*i.
(c2) For every direct system (Ai)i~I in 21 and every ideal a of the structure
sheaf, every morphism a ~ lim Ai factors through some Wi.
As these conditions are also fulfilled when 21 is the category of sheaves on

an etale site, every complex of such sheaves has therefore also a K-injective
resolution.

5. Some classes of complexes of sheaves

In this section all ringed spaces are assumed to tbe commutative.
Unless otherwise stated, we consider a fixed ringed space (X, O), and 21

is the category 9Jlob(X) of all sheaves of O-modules on X.

5.0. We let 13(X) (resp. Q(X)) be the class of all complexes A* e 6 satisfying
the following conditions.
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(a) A* is bounded above.
(b) For each i E 7L, sl’is a direct sum of sheaves of the form OZ~X, with Z
open (resp. locally closed) in X.

If U’ = (Ui)i~Z is a family of families of open subsets of X, we let also
B(U*) be the class of all complexes A* ~ B such that each Ai is a direct sum
of sheaves of the form (9ucx with U E U’(i E 7L).

A. K-flat complexes

5.1. DEFINITION. A complex A* ~ D is K-flat if for every acyclic complex
gr E D, A* ~O gr is acyclic.

5.2. PROPOSITION. Let A* E D. Suppose that di = 0 for i =1= 0. Then ci is

K-flat if and only if A0 is a flat O-modules.

This is clear.

5.3. PROPOSITION. Let d’ E D. Then the following conditions are equivalent.
(a) d’ is K-fla t. 
(b) For every x E X, the complex A*x of Ox-modules is K-flat.
(c) X om* (A*, J’) is K-injective for every K-injective complex P* E D.

The equivalence of (a) and (b) is clear, and that of (a) and (c) follows from
0.10 and the natural isomorphism

5.4. PROPOSITION. (a) If si*, B* ~ D are K-flat, then so is A* ~O B*.
(b) If (Y, OY) is a ringed space and f: Y ~ X is a morphism of ringed spaces,
then.f* transforms K-flat complexes of D(X) into K-flat complexes of D(Y).
(c) The class of all K-flat complexes is closed under filtered direct limits in D.
(d) If in a distinguished triangle of R two of the vertices are K-flat, then so is
the third one.

This is clear.

5.5. COROLLARY. All the complexes in m and  are K-flat.

5.6. PROPOSITION. Every complex in D has a left B-resolution, hence also a left
D-resolution and a left K-flat resolution.

This follows from 3.4 and 3.2(b).
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5.7. PROPOSITION. If A* ~ D is K-flat and acyclic, then A* ~O B* is acyclic
for every B* ~ D

Let P* be a K-flat resolution of B*. Then A* ~O B* is quasi-isomorphic to
si’ ~O P* since A* is K-flat, and A* ~O P* is acyclic since P* is K-flat and
si’ acyclic.

5.8. PROPOSITION. If A* ~ D is K-projective, then it is K-flat.

Let J* ~ D be acyclic, and let P* ~ D be K-injective. We use the natural
isomorphism

If d’ is K-projective, the right hand side is acyclic, and it follows from
0.10 that A* ~O J* is acyclic.

This is of course relevant mainly in the case where X is discrete.

5.9. PROPOSITION. Let A* E D. Then A* has a left resolution fi’ ~ A* with
the following property: for every x E X, L*x ~ A*x is a K-projective resolu-
tion of the complex A*x of Ox-modules. Moreover fi’ is K-flat, and every
D-resolution of A* has this property.

That fi’ is K-flat follows from 5.8 and 5.3. In view of 5.6, it remains only to
check that if L* is a Q-resolution of A* , then L*x is a K-projective resolution
of A*x.

It follows immediately from the definitions that if(Y, OY) is a ringed space
and f : Y ~ X is a morphism of ringed spaces, then f* maps B(X), B(X),
Q(X), Q(X) into B(Y), B(Y), Q(Y) and Q(Y) respectively. Consider now
the case where ( Y, OY) = ({x}, Ox) and f is the obvious map. Then f * is

exact and transforms Q-resolutions into Q(F)-resolutions. But over a point
Q(Y)-resolutions are K-projective, by 2.5. Thé result follows.

5.10. REMARK. Let U’ be as in 5.0 and suppose that each Ui is a basis of the

topology of X. Then the construction of B-resolutions can easily be adapted
to prove that every complex in D has a left B(U*)-resolution.

B. Sections over open subsets

We investigate here conditions which en sure that a complex of sheaves
behaves well under the functors r(U; -) or 039303A6(U; -), where U is open in
X and 03A6 is a family of supports.
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5.11. DEFINITIONS. Let A* E CL

(a) A* is K-limp if H,om’ (J*, d’) is acyclic for every acyclic complex
J* E B.
(b) A* is K-flabby if Hom*(J*, d’) is acyclic for every acyclic complex
J* ~ Q.

(c) A* is weakly K-injective if Hom*(J*, d’) is acyclic for every acyclic
K-flat complex J*.

5.12. It is clear that

K-injective =&#x3E; weakly K-injective =&#x3E; K-flabby ~ K-limp.

As every complex in D has a K-injective right resolution, every complex
has therefore also a weakly K-injective, a K-flabby and a K-limp right
resolutions.

5.13. PROPOSITION. Let A* ~ D be such that 1’ = 0 for i ~ 0. Then the

following hold.
(a) A* is K-flabby if and only if dO is a flabby sheaf.
(b) A* is K-limp if and only if Hj(U; A0) = 0 for every open set U c X and
every j  1.

Suppose that d’ is K-flabby, and let U c X be open. Let Z = X - U. The
natural exact sequence

may be considered as an acyclic complex J* E ,Q, and the acyclicity of
Hom*(J*, A*) is equivalent to the exactness of

Thus dO is flabby.
Conversely, suppose that dO is flabby. Let,f’: A* ~ P* be a resolution of

A* by a bounded below complex of injective O-modules. Then W) is an

acyclic complex of flabby sheaves, and W§ is bounded below. Therefore
Hom’ (OZ~X, l*f) is acyclic for every locally closed subset Z of X. It follows
then from 2.2 and 2.8 that Hom*(L*, l*f) is acyclic for every =3’ e ,Q. As a
consequence Hom’ (L*, A*) is quasi-isomorphic to Hom*(L*, P*) for every
J’ E ,Q, and A* is K-flabby since P* is so. This proves (a).
A similar argument shows that A* is K-limp if Hj(U; dO) = 0 for every

j  1 and every open subset U of X.
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We use Cech complexes to prove the converse. Let U = (U03B1)03B1~I be an open
covering of some open subset U of X. Choose a total order on the set I. If
a, ... , y E E, let Uex...y  U03B1 n... n U03B3. We have then a natural acyclic
complex l* (U)

where the differentials are defined in the usual way, and for every sheaf 4
the complex Hom(l* (U), B) is the augmented Cech complex

The sheaves for which all these augmented Cech complexes are acyclic are
precisely those which are acyclic for all functors r( U; -) (U open in X). As
l*(U) ~ B, it follows that if d is K-limp, then H’(U; .910) = 0 for every
i &#x3E; 0 and every open subset U of X.

5.14. PROPOSITION. Let P* ~ D be K-injective. Then for every A* ~ D,
eewz* (d’ , J’) is weakly K-injective.

Let Y’ be an acyclic K-flat complex. We have a natural isomorphism

By 5.7, gr ~O A* is acyclic. Hence the right hand side of (1) is acyclic, and
X Om* (d’ , P*) is therefore weakly K-injective.

5.15. PROPOSITION. (a) If two of the vertices of a distinguished triangle of R
are K-limp (resp. K-flabby, resp. weakly K-injective), then so is the third one.
(b) Let (Y, (9y) be a ringed space and f: X ~ Y a morphism of ringed spaces.
If d’ E D(X) is K-limp (resp. K-flabby, resp. weakly K-injective), then so is
f*d’ in D(Y).
(c) The class of all K-limp (resp. K-flabby, resp. weakly K-injective) complexes
in D is closed under special inverse limits.

(a) is clear, and (c) follows from 2.5. For (b) we note that if gr E D(Y) is
an acyclic K-flat complex, thenf*Y. is acyclic by 5.7, and K-flat by 5.4(b).
Moreover f*(B(Y)) c 13(X), f*(Q(Y» c Z(X). It remains then only to
use the adjunction formula
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5.16. PROPOSITION. Let A* E OE be a K-limp acyclic complex and let U c X
be open. Then 0393(U; A*) is acyclic.

Let y E F(U ; An) satisfy dy = 0. We must find a section a E r(U ; dn-l)
such that d6 = y.

Define a complex L* as follows. For i &#x3E; n let W’ = 0. Let en be the

subsheaf of An generated by y. For i  n define inductively W’ =
d-1(li+1). This defines an acyclic subcomplex W* of A*. There exists a
B-resolution f : P* ~ l* such that Y’ = 0 for i &#x3E; n, Pn = OU~X and

fn(1U) = y. Now Hom*(P* , A*) is acyclic since A* is K-limp and *° e E§l
is acyclic. Considering f as a chain map from P* to A* , there exists therefore
g = (gi)iEZ E Hom-1 (P*, A*) such that dg = f, where gi E Hom (Pi, Ai-1).
On Pn, dg is the map dA. 0 gn + gn+1 ° dw - dA. 0 gn since Pn+

1 
= 0. Thus

y = fn(1U) = dA.(gn(1U)) = d03C3, where 03C3 = gn(1U) E r(U ; An-1).

5.17. COROLLARY. Let f : A* ~ .f’ be an injective resolution of A* E D. Then
the following are equivalent.
(i) A* is K-limp.
(ii) For every open subset U of X, the map r( U; A*) ~ r(U; P*)induced by
f is a quasi-isomorphisme

Applying 5.16 to the cone W* of f, we find that (ii) follows from (i). Conversely,
if (ii) holds, then Hom’ (OU~X, l*) is acyclic for every open subset U of X.
Hence Hom* (Y*, l*) is acyclic for every P* c- 13 by 2.7. Therefore

Hom*(P*, A*) is quasi-isomorphic to Hom*(P*, P*) for every P* E 13,
and (i) follows.

5.18. PROPOSITION. Let A* e OE be a K-flabby acyclic complex, U an open
subset of X and (D a family of supports in U. Then 039303A6(U; d’) is acyclic.

Let y E 039303A6(U; An) be such that dy = 0. Let Z c U be the support of y,
V = U - Z. We have an exact sequence

which we may view as an acyclic complex 9 E ,Q, with OZ~X in degree 0. By
assumption Hom* (2*, A*) is therefore acyclic.

Since dy = 0, 5.16 shows that there exists f3 E r( U; An-1) such that
df3 = ( - 1)n03B3. Then dfl ( v = (-1)n 03B3|V = 0, and by 5.16 again there exists
a E 0393(V; An-2) such that da = (- l)n f3lv. The triple (a, 03B2, y) gives an
element f ~ Homn(L*, A*) = Hom (fl-2, An-2) x Hom(9-1, dn-l) X
Hom (A’, , ), and df = 0. Thus there exists g E Homn-1(L*, A*) such
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that dg = f. Consider the component go: OZ~X ~ An-1 of g. Setting
s = go(lz), we have ds = y, and s E rz(U; dn-l) c 039303A6(U; An-1). Thus
039303A6(U; W*) is acyclic.

5.19. CoROLLaRY. Let f’: A* ~ 5’ be an injective resolution of A* E D. Then
the following are equivalent.
(i) d’ is K-flabby.
(ii) For every open subset U of X and every family of supports 03A6 in U, the map

039303A6(U; A*) ~ 039303A6(U; 5’) induced by f is a quasi-isomorphism.

The argument is the same as for 5.17.

5.20. PROPOSITION. Let A*, y. E D. Assume that A* or P* is acyclic and that
one of the following conditions holds.
(a) d’ is weakly K-injective and y. is K-flat.
(b) d’ is K-flabby and y. E Q.
(c) W’ is K-limp and y. E 13.
Then Hom* (P*, A*) is acyclic.

Suppose first that d’ is acyclic and that (b) (resp. (c)) holds. Let D ~ D be
the class of all complexes 03B5* such that Hom’(tC., A*) is acyclic. By 5.18
(resp. 5.16), OE contains the single degree complexes whose only non-zero
term is of the form OZ~X with Z locally closed (resp. open) in X. By 2.8, E
is closed under special direct limits. It follows that D ~ Q (resp. D ~ B).
Thus Hom’ (J*, d’) is acyclic in this case.

Let now P* be a K-injective resolution of A*. The results just obtained
imply in particular that under the assumption (b) (resp. (c)) the complexes
Hom*(P*, A*) and Hom’ (Y’ ,5’) are quasi-isomorphic, and the latter is
acyclic if g. is acyclic. This settles the cases (b) and (c).
Suppose now that (a) holds. Let f7J’ be a B-resolution of g’ . Since A* is

weakly K-injective, the complexes Hom*(J* A*) and Hom*(P*, A*) are
quasi-isomorphic. By (c), the latter is acyclic if A* is acyclic. The case where
Y. is acyclic follows immediately from the definition of weak K-injectivity.

5.21. PROPOSITION. Let A* E D. Then the following conditions are equivalent.
(a) .s;1’ is K-flabby (resp. K-limp).
(b) A* is K-flabby (resp. K-limp) as a complex of sheaves of abelian groups.
(c) For every K-injective resolution A* ~ P* and every locally closed (resp.
open) subset Z of X, the morphism Hom« (OZ~X, A*) ~ Hom’ ((9zcx, 5’) is
a quasi-isomorphism.
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(a) =&#x3E; (b) is a special case of 5.15(b). To prove (b) =&#x3E; (c), let P* be a

K-injective resolution of A*. Then P* is weakly K-injective as a complex of
sheaves of abelian groups. It follows then from 5.19 (resp. 5.17) used for
complexes of sheaves of abelian groups, that the morphism

is a quasi-isomorphism. Since Hom*Z(ZZ~X, J*) = Hom’ (OZ~X, J*) for
every Y’ E D, the result follows.

Finally (c) ~ (a) by 5.19 (resp. 5.17).

5.22. PROPOSITION. Let A*, J* ~ D and let B* = Xom* (J*, A*).
(a) If A* is weakly K-injective and y. is K-flat, then A» is weakly K-injective.
(b) If A* is K-flabby and y. E Z, then f!4’ is K-flabby.
(c) If d’ is K-limp and y. E B, then 4- is K-limp.

Notice first that if J*, J* ~ D are K-flat and J* is acyclic, then 5-* ~O y.
is a K-flat acyclic complex. In view of the isomorphism

we get then (a). For (b) (resp. (c)), we use moreover 5.20 and the fact that
if J* E i3 and 9-’ E Q (resp. J* c- 13 and 1° E B), then J* ~O J* c- Z
(resp. g-’ ~O J* ~ B).

REMARK. One can show more generally that if Y*, W’ e Q (resp. J*,
1° E B), then J* (8) Ci 9-* E ,Q (resp. J* 0, 1° E B).

6. Some formulae for complexes of sheaves

We discuss here some standard formulae for complexes of sheaves (see e.g.
[1, V.10]), using the results of the previous paragraphs to get rid of some
finiteness conditions.

As in paragraph 5, all ringed spaces are assumed to be commutative.
If (X, (9x) is a ringed space, we let B(X) and D(X) denote the classes of

complexes of sheaves of OX-modules defined in 5.0.
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A. The functors RHom and RXom.

6.1. PROPOSITION. Let A*, aI’ E 1)(X). Then RHom*(A*, B*) and
R Xom (A*, B*) are defined and can be computed by anyone of the. following
methods.

(i) Using a K-injective resolution of B*.
(ii) Using a K-flat resolution of d’ and a weakly K-injective resolution of,04*.
(iii) Using a Q(X)-resolution of ci« and a K-flabby resolution of B*.
(iv) Using a B(X)-resolution of A* and a K-limp resolution of B*.

This follows from 4.5 and 5.20.

6.2. REMARK. It is well known that in some cases RXom* (d’ , B*) can
be computed by means of a locally finitely generated free resolution

of A* [4, 11.7.4]. 1 am however unable to get any improvement in this
direction.

B. Hypercohomology

6.3. As every complex in OE(X) has a K-injective resolution, the func-
tor Rr(U; -) (U open in X) is defined and can be computed by means
of K-injective resolutions. The same applies to R0393(U; -) if 03A6 is a family
of supports in U. It follows that for W’ E D(X) the hypercohomology
groups

and more generally

are well-defined.

6.4. PROPOSITION. Let U ce X be open and let d’ E 1)(X). Then Rr(U; A*)
and H*(U; A*) may be computed by means of right K-limp resolutions of W’ .
Similarly, if 03A6 is a family of supports in U, then R039303A6(U; A*) and H*03A6(U; A*)
may be computed by means of right K-flabby resolutions of si*.

This follows from 5.17 and 5.19.
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C. Tensor products.

6.5. PROPOSITION. (a) For every A*, B* E 1)(X), A* ~LOX B* is defined and
may be computed by means of a K-flat resolution of either of the factors.
(b) For every A*, B*, L* E 1)(X) there is a natural isomorphism

(a) follows from 5.6 and 5.7, and (b) follows from (a) and the associativity
of the tensor product.

6.6. PROPOSITION. Let d’ , A’, L* E D(X). Then

We may assume that B* is K-flat and L* K-injective. By 5.3, Xom* (B*, W ° )
is then K-injective, and we are reduced to the corresponding formulae in
D(Ub) and D(X).

D. Inverse and direct images

6.7. PROPOSITION. Let f: X ~ Y and g: Y ~ Z be morphisms of»ringed spaces.
Then the following hold.
(a) The derived functors Lf* and Rf* are defined. Moreover Lf* (resp. Rf*)
may be computed by means of left K-flat resolutions (resp. right K-limp
resolutions).
(b) L(g f)* = Lf* Lg*,

R(g f)* = Rg*oRf*
(c) Let sl’ E 1)(Y), B* E 1)(X). Then

(a) follows from 5.6, 4.5 and 5.16. The first assertion of (b) follows from
5.4(b), and the second from (a) and 5.15(b). For (c) we may take A* K-flat
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and A K-injective. Using then 5.15(b) and 6.1 (ii) for the left hand side, and
5.4(b) and 5.3 for the right hand side, we are reduced to the corresponding
formulae in D(Ub) and OE(Y).

6.8. PROPOSITION. Let f: X - Y be a morphism of ringed spaces, and let
A*, B* E D(X). Then

This follows from 5.4 and the corresponding formula in D(X).

E. Hypercohomology with compact supports and the functors f and f!

In this section we consider functors for which the methods devised in this

paper are much less adequate.
All the topological spaces are assumed to be Hausdorff and locally

compact, and f: X - Y is a morphism of ringed spaces. Recall that a sheaf
A on X is c-soft if Hic(U; A) = 0 for every i &#x3E; 0, U open in X.

6.9. For V c Y open, let (D(V) be the set of all (necessarily closed) sub-
spaces C of f-1(V) such that the restriction of f to C - V is proper. For
A E mod(X), the assignment

defines a sheaf fil on Y which is in an obvious way an OY-module. For
y E Y there is a natural isomorphism

6.10. Let 5i E Dlob(X) be c-soft. For B E mod(Y), the assignment

defines a presheaf f!KB on X which is in an obvious way an OX-module.
This presheaf is actually a sheaf, as is easily deduced from the following
observation.

Let U c X be open and (U03B1)03B1~I an open covering of U, with I totally
ordered. We have a long exact sequence
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where the differential is defined in the usual way. Then Ker di is c-soft for
every i E N. (We need actually to known this only for i = 0, 1.)
To check this, notice first that (2) is an acyclic finite complex of c-soft

sheaves if I is finite. That Ker di is c-soft in this case is then obvious. In
general, if J is a finite subset of l, we have an analogue of (2) with U replaced
by Uj = U,,j U,,,, and differentials dJi. We know already that Ker d’ is

c-soft. As Ker di = lim Ker d’, where J runs over the finite subsets of I,
Ker di is also c-soft.

If K* is a complex of c-soft sheaves, we define in a similar way a functor
f!k.: D(Y) ~ D(X) by f!K. (B*)(U) = Hom’ (f!(K*U~X), B*)(B* E D(Y),
U open in X).

REMARK. It follows from 6.9(2) that we could as well start with Y such that

K|f-1(y) is c-soft for every y E Y.

6.11. LEMMA. (a) f commutes with direct limits.
(b)f; commutes with inverse limits.

(a) follows from 6.9(2) and the analogous property ofrc, and (b) is obvious
from the definitions.

6.12. Let MT E mob(X) be c-soft. For every A E mod(X), B E 9Jlob(Y),
there is a natural homomorphism

which is easily seen to be an isomorphism, when / is a direct sum of sheaves
of the form OZ~X (Z locally closed in X), c.f. [1, V.7.5].

If K* is a complex of c-soft sheaves, we have in a similar way a natural
chain map

for A* e D(X), B* E D(Y), and (2) is an isomorphism if each di is a direct
sum of sheaves of the form OZ~X (Z locally closed in X), in particular if
A* E £(X).

6.13. Let now K* E D(X) be a right resolution of Wx by a bounded below
complex of c-soft sheaves. We set then
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This actually does not depend on the choice of K*, up to canonical
isomorphism. To see this, notice that if Y* is an acyclic bounded below
complex of c-soft sheaves, then for every open subset U of X the complex
f!(L*U~X) is still acyclic, and therefore so is Hom*(f!(L*U~X), P*) for every
K-injective complex P* E OE(Y).

6.14. Our aim is to prove that the functors R fi and’ are adjoint and that
they satisfy various formulae. Typically, if Z is a closed subset of X and
U - X - Z, then for every complex A* there is a distinguished triangle in
1) with vertices A*, A*U~X and A*Z~X, and we can expect this triangle to
induce a long exact hypercohomology sequence

What seems to be needed to carry out this program is a good analogue of
the notion of c-softness. The various results discussed below would follow

without any assumption on the underlying topological spaces (apart from
local compactness) from the existence of a class 6 of complexes having the
following properties.
(a) If P* is an injective resolution of A* E C, then for every open subset U
of X the induced map R0393c(U; A*) ~ RF, (U; P*) is a quasi-isomorphism.
(b) If Y is a locally closed subset of X and A* E C, then d;cx e C.
(c) If (A*i )iEI is a direct system in D and all the A*i’s belong to 6, then so
does their direct limit.

(d) The K-injective complexes are contained in C.
(e) If two of the vertices of a distinguished triangle of R belong to C, then
so does the third.

(f) The class 6 is stable under f .
The author’s efforts to construct such a class having failed, the discussion

will be carried out under the assumption that the functors under consideration
can be evaluated on complexes of c-soft sheaves.
We are therefore led to consider the following condition on a ringed space

(T, OT):
(2) For every acyclic complex of c-soft sheaves Y* E D(T), with differential

di: ,pi - Li+1 (i E Z), Ker di is c-soft for every i E 7L.
This condition is fulfilled in particular if T is locally finite dimensional in

the following sense: every point t E T has an open neighborhood U such that
for some n E N, Hn+1c(U; W) = 0 for every A E 9Jlob(T).

Notice that the existence of right resolutions by complexes of c-soft
sheaves is ensured by 4.3. In particular, if (X, (9x) satisfies (2), then the
sequence (1) is exact and hypercohomology with compact supports on X
commutes with direct limits. If f : X ~ Y is a morphism of ringed spaces and
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for every y E Y the ringed space (f-1 ( y), (9x |f-1(y)) satisfies 6.14(2), then the
complexes of c-soft sheaves on X can be used to evaluate Rf!.

6.15. PROPOSITION. Assume that for every y E Y, the ringed space (f - 1 (y),
OX|f-1(y)) satisfies 6.14(2). Then for every d’ E D(X), B* E 1)(Y), we have
natural isomorphisms

We need only to prove (1). Let K* be a right resolution of (9x by a bounded
below complex of c-soft sheaves.

Let J’ E D(Y) be K-injective and let A» E Q(X). By 6.12, we have a
natural isomorphism in D(Y)

hence also an isomorphism

If L* is acyclic, then 21’ ~OX Jf’ is an acyclic complex of c-soft sheaves,
and by 6.9(2) and the assumption on the fibres the complex fi(/ ~OX A.)
is therefore also acyclic. Since P* is K-injective, the left hand side of (5) is
then acyclic, and f!K. P* is therefore K-flabby.

Let now 21’ be a Q (X)-resolution of A* and P* a K-injective resolution
of B*. By 6.1, 5.22(b) and 6.7(a), the right hand side of (4) represents then
Rf* RXom*(A*, f! B*). Our assumptions on the fibres and 6.9(2) imply
also thatf!(2* ~OX K*) represents Rf!A*. Thus the left hand side of (4)
represents R Xom* (Rf!A*, B*). This proves (1), and (2), (3) follow.

6.16. REMARKS. (a) Let Jf’ be a complex of c-soft sheaves, and letf!
D(X) ~ D(Y) be the functor A* ~ f!(A* ~OX K*). Under the hypothesis
of the proposition, the formula which comes naturally out of 6.12 is

which is more similar to 6.7(2).
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(b) In the proof we have checked also that if P* E D(Y) is K-injective and
K* E D(X) is a complex of c-soft sheaves, then f!K. P* is K-flabby.

6.17. PROPOSITION. Let g: Y ~ Z be a morphism of ringed spaces. Then the
following hold.
(a) If for every z E Z the ringed space (g-1(z), OY 1g- 1 (z) ) satisfies 6.14(2), then

(b) If moreover for every z E Z the ringed space ((gof)-l(z), OX|(g f)-1(z))
satisfies 6.14(2), then

Let A* E !)(X) and let y be the K-injective resolution of Q/ constructed
in 4.5. We certainly have

The left hand side represents R(gof),(d’), and f!(P*) represents Rj;(d’).
It remains to check that g!(f!(P*)) represents Rg!(f!(P* )). By construction
in 4.5, P* is a complex of injective sheaves, hence a complex of c-soft
sheaves. Then f!,f is also a complex of c-soft sheaves. It can therefore be
used to compute Rg,.
Under the hypothesis of (b), 6.16 shows that f’, g’, (g f)! are right adjoint

to Rf!, Rg, and R(g f)! respectively. Thus (2) follows from (1).

6.18. PROPOSITION. Assume that for every y E Y the ringed space (f-1(y),
OX|f-1(y)) satisfies 6.14(2). Then for every d’ E D(X), B* E 1)(Y), there is a
natural isomorphism

For every si’ E D(X), B* E 1)(Y), there is a natural chain map

We need only to check that (2) is an isomorphism when A* is a complex of
c-soft sheaves and B* E B(Y). As f!, f* and tensor product commute with
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direct limits, it is even sufficient to check this when &#x26;6’ is a single sheaf OV~Y
with V open in Y. In this case it remains to check

which follows immediately from 6.9(2).

6.19. PROPOSITION. Suppose that for every y E Y the ringed space (f -1 ( y),
OX|f-1(y)) satisfies 6.14(2). Then for every pair of complexes A*, B* E 1)(Y)
there is a natural isomorphism

Let P* E D(X). Using 6.6, 6.16 and 6.18, we get

and the result follows.

6.20. PROPOSITION. For every cartesian diagram of commutative ringed spaces

where q is flat and every fzber of f, equipped with the restriction of the structure
shead of X, satisfies 6.14(2), we have natural isomorphisms of functors

These two formulae can be deduced from each other by adjointness. We need
therefore only to prouve the first one. Notice also that since q is flat, then so
is q’, and we may therefore use q* and q’* instead of Lq* and Lq’* respectively.
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There is a natural transformation of the functors in (1) from the left hand
side to the right hand side defined as follows. Let A be an (9x-module. If V
is an open subset of Y and c V is an open subset of Y’, then every
section y contained in 0393(V; f!(A)) = 039303A6(V)(f-1(V); A) induces a section of
q*%/ on V’, and q*f! A is the sheaf generated by these sections. But we also
have q’(f’-1(V’)) c f-1(V), and therefore y induces a section of q’*A over
f’-1(V’). This section has a support which is proper over V’, and therefore
can be considered as a section off!" q’* d.

It is therefore sufficient to prove that we have an isomorphism at the level
of stalks. We may thus assume that Y’ = {y} is reduced to a single point
of Y. If moreover the structure sheaf of Y’ is given by (9y,y, then the assertion
reduces to 6.9(2). This allows to reduce the problem further to the case where
Y also consists of the single point y. In this case the problem is to show that
if R is a ring, Wx is a sheaf of R-algebras, S is a flat R-algebra and X satisfies
6.14(2), then tensor product with S commutes with hypercohomology with
compact support on X. This is obviously true when S is free on R, hence also
when S is flat on R since both tensor product and hypercohomology with
compact supports commute with direct limits.
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