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ABSTRACT

We present , a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The
algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori
log-normal statistics.  estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky,
which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm
succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally,  provides a map with
an uncertainty estimate of the reconstructed surface brightness. Furthermore, with  we introduce a new, optimal visibility
weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows
improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy
Method.

Key words. methods: data analysis – methods: statistical – techniques: image processing – techniques: interferometric –
radio continuum: general

1. Introduction

Aperture synthesis techniques using large interferometers have a
long and successful history in radio astronomy (Ryle & Hewish
1960; Thompson et al. 1986; Finley & Goss 2000). While en-
abling observers to achieve very high resolutions, data process-
ing with large interferometers is considerably more complicated
than it is with a single dish instrument. A radio interferome-
ter effectively measures the Fourier transformation of the sky
brightness (see, e.g., Thompson et al. 1986). Unfortunately, in-
verting this relationship to achieve an estimate of the desired
source brightness is a nontrivial task since an interferometer
only samples a fraction of the Fourier plane, effectively con-
volving the true image brightness with an observation-dependent
pointspread function. A crucial part in data reduction is therefore
the imaging, i.e., estimating the sky brightness distribution from
the observed data.

The development of new imaging methods is still a field
of ongoing research. An important reason is that all widely
used imaging algorithms in radio astronomy have a number
of drawbacks. The most successful method CLEAN (Högbom
1974; Clark 1980; Schwab 1984) assumes the image to be com-
prised of uncorrelated point sources and, therefore, is naturally
nonoptimal for highly resolved, extended, and diffuse sources.
Some of the newest enhancements of CLEAN try to address
this problem using a multiscale approach (Cornwell 2008; Rau
& Cornwell 2011), but it is not clear, in general, how to prop-
erly choose the scales. The maximum entropy method (MEM,
Cornwell & Evans 1985), is by design prone to oversmooth-
ing the images. The non-negative-least-squares (NNLS) ap-
proach, has been shown to be an improvement over CLEAN only
on mildly extended sources (Briggs 1995a; Sault & Oosterloo
2007). The new Adaptive Scale Pixel (ASP) method (Bhatnagar
& Cornwell 2004) and very recent approaches using wavelets

within the framework of compressed sensing (Wiaux et al. 2009;
Carrillo et al. 2012, 2013) seem promising to overcome many of
these problems. For all of these methods, however, no reliable
uncertainty estimates for the image reconstruction are available
to date (e.g., Thompson et al. 1986; Taylor et al. 1999).

A second incentive for new developments of imaging tech-
niques are recent advances in radio astronomical instrumenta-
tion, where new developments in data analysis are required to
exploit new capabilities in data acquisition. The new genera-
tion of radio telescopes, such as the upgraded VLA, LOFAR,
the SKA pathfinder missions or ultimately the SKA itself, are
opening new horizons in radio astronomy (see, e.g., Garrett
2012). Their unprecedented capabilities of simultaneous, broad-
band frequency coverage including previously unexplored wave-
length regimes, sensitivity, and wide fields of view will almost
certainly advance astrophysical and cosmological sciences (see,
e.g., the German SKA white paper, Aharonian et al. 2013).

In this paper, we introduce  (Radio Extended
SOurces Lognormal deconVolution Estimator), a novel algo-
rithm for the imaging of diffuse and extended radio sources in
total intensity. We take a new approach to the problem, using
Bayesian statistics in the framework of information field theory
(Enßlin et al. 2009) and based on clearly formulated mathemati-
cal principles. The new algorithm is designed to fulfill two main
requirements:

1. to be statistically optimal for extended and diffuse radio
sources,

2. to include reliable uncertainty propagation and provide an
error estimate together with an image reconstruction.

In its present form  also comes with mainly two lim-
itations: it is by design nonoptimal for point sources, and the
computational costs are fundamentally more demanding than for
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many standard methods (in addition, present implementations
are rather inefficient but that is not a principal constraint). The
first issue can naturaly be solved in the Bayesian framework pre-
sented (see Sect. 4) and tests have shown that mildly compact
sources can be handled to some degree. The latter would need to
be addressed on a more fundamental level of algorithmical re-
search (see Appendix C). To some degree, this behavior is typi-
cal and expected for Bayesian methods where accurracy often is
paid for by higher computational costs (see, e.g., Jaynes 2003).
The approach used in  is no exception to this.

The main scientific focus of  is by construction on
extended and diffuse radio sources. Among those are galaxy
clusters with their weak diffuse halos and strong extended relic
structures, lobes of radio galaxies, giant radio galaxies, super-
nova remnants, galactic radio halos, and the radio emission from
the Milky Way.

Ultimately, we aim to present the new algorithm together
with a Bayesian framework (see Sect. 2) which we believe
will be advantageous to formulate and solve upcoming and
more complex imaging problems in radio data analysis. Among
these, for instance, could be multifrequency techniques for
GHz-broadband data, direction-dependent calibration problems,
unknown beam reconstructions, polarization imaging, and many
more. We come back to an outlook in Sect. 4.

2. The algorithm

2.1. Aperture synthesis

In aperture synthesis, we try to connect an array of telescopes
in such a way that we can effectively synthesize a combined in-
strument with significantly improved resolution. Using the van
Zittert-Cernike theorem from the theory of optical coherence
(Born & Wolf 1999), it can be shown that such a radio inter-
ferometer takes incomplete samples of the Fourier transformed
brightness distribution I in the sky (Thompson et al. 1986). In
the most basic model, taking an observation of I translates into

V(u, v, w) = W(u, v, w)

∫

dl dm
I(l,m)

√
1 − l2 − m2

× e−2πi
(

ul+vm+w
√

1−l2−m2
)

. (1)

The quantity V(u, v, w) is the visibility function following clas-
sical terminology of optical interferometry. The coordinates u,
v, and w are vector components describing the distance between
a pair of antennas in an interferometric array, where this dis-
tance is usually referred to as a baseline. They are given in num-
bers of wavelengths, with u and v usually parallel to geographic
east-west and north-south, respectively, and w pointing in the di-
rection of the center of the image plane (i.e., the phase center).
The coordinates l and m are a measure of the angular distance
from the phase center along axes parallel to u and v, respectively.
W(u, v, w) is a sampling function defined by the layout of the in-
terferometric array. This function is zero throughout most of the
u, v, w-space, apart from where measurements have been made,
where it is taken to be unity.

For simplicity, we now restrict ourselves to the com-
mon approximation of measuring the sky as flat in a plane
tangent to the phase center of the observation, such that

w
√

1 − l2 − m2 ≈ 0. Nevertheless, this is not a necessary
requirement of our formalism (see Sect. 2.2).

With this assumption, (1) simplifies approximatively to a
two-dimensional Fourier transformation,

V(u, v) ≈ W(u, v)

∫

dl dm I(l,m) e−2πi(ul+vm). (2)

Our instrument measures the visibility function, but we are ac-
tually interested in the brightness distribution of the source in
the sky. This means that we ideally want to invert the relation-
ship (2). Unfortunately, this is not possible, since we have lost all
information on the Fourier modes that have not been measured
because of the incomplete sampling of the Fourier plane. Thus,
an inversion of (2) does not yield the true brightness distribution,
rather we find its convolution with the inverse Fourier transform
of the sampling function, better known as the point spread func-
tion (psf) or, in common radio astronomical terminology, the
dirty beam Idb = F −1W, i.e.,

ID = F −1V = F −1WF I = Idb ∗ I. (3)

Here, we introduced a symbolic Fourier operator F , which is
strictly defined later, the common notation ID, dirty image, for
the simple Fourier inversion of the visibilities, and the symbol ∗
to denote a convolution operation.

Reconstructing the real brightness distribution is therefore an
ill-posed inverse problem. In principle, infinitely many signal re-
alizations could have led to the measured visibility function and
we have no way to discriminate between them exactly. However,
we can find a statistical description that may produce the most
probable signal given the measured visibility function.

2.2. Bayesian signal inference in radio astronomy

In the following, we develop a statistical solution to the inverse
problem (2) using Bayesian inference techniques. Later, the con-
dition of a spatially extended source brightness distribution, will
lead us to the formulation of . Our derivation relies on
notation and methods developed within the framework of infor-
mation field theory (Enßlin et al. 2009; Enßlin 2013).

To start, we comment briefly on our mathematical notation.
As in Eq. (3), we generally use a basis-free description of phys-
ical quantities and functions by interpreting them as vectors and
operators. This is also common in contemporary literature on
imaging (e.g., Rau et al. 2009). A detailed comment on the
notation can be found in Appendix B.1.

For an illustration of this notation, properly defining the
Fourier operator in (3) as Fkx = exp(−i(ul + vm)) with x = (l,m)
and k = (u, v), (2) becomes

Vk = Wk

∫

dx FkxIx

= WF I. (4)

Following the notation of Enßlin et al. (2009), we define two fun-
damental quantities, the signal s and the data d. The signal is the
ideal, true physical quantity we would like to investigate with
our observation. The data is what our measurement device has
delivered us. In this radio astronomical application, the signal is
the true brightness distribution in the sky or at least directly func-
tionally connected to it, s ↔ I(x) and the data is our visibility
function d := V(k). From now on, we use this definition, but oc-
casionally translate equations into traditional radio astronomical
notation for a more transparent presentation.

If we know how to translate the actions of our measure-
ment device into mathematical operations, we can write down
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a fundamental data model, connecting signal s and data d with a
response operator R as in

d = Rs, (5)

ignoring measurement noise temporarily.
This is basically Eq. (4), if we identify the response operator

with R = WF . We can add more terms to this response operator,
slowly introducing more complexity. An inevitable addition is
to consider a gridding and degridding operation within the sam-
pling W ′ = WG. This is not a feature of the instrument itself, but
is needed in its computational representation for purely numer-
ical reasons, to put the visibilities onto a regularly spaced grid
to apply the fast Fourier transform algorithm (Cooley & Tukey
1965; Bracewell 1965) to improve computational speed enor-
mously. Henceforth, if not explicitly shown, we drop the prime
and consider G to be contained in the sampling operator W.

An important extension is to introduce a mathematical rep-
resentation of the primary beam pattern A in the response R =
WF A. Even more sophisticated instrumental effects like beam
smearing, bandwidth efffects, or directional dependent sampling
could as well be included. Also an extension of the response to
noncoplanar baselines, and thus allowing for a non-negligible w-
term in Eq. (1), could be directly incorporated without funda-
mental complication, e.g. in similar form to the w-projection al-
gorithm (Cornwell et al. 2008). For the purpose of this study,
none of these instrumental effects are considered explicitly, and
do not pose a fundamental problem. For further discussion see
Sect. 4.

Another relevant extension is to include multifrequency syn-
thesis by adding a new dimension to signal and data using, e.g.,

a common spectral model I(x, ν) = I(x, ν0)
(

ν
ν0

)−α(x)
yields

Vk′ =

∫

dx RkxIxν

= Wk

∫

dx Fkx Ax Ixν0

(

ν

ν0

)−αx

(6)

with k′ = kν.
Taking this a step further, a full approach using all four

Stokes polarizations is conceivable. In that case, the response
representation can in principle be expanded into a full radio
interferometer measurement equation (RIME) description, as
presented, e.g., by Smirnov (2011a,b). However, both multifre-
quency and polarization imaging are outside the scope of the
present work.

In a real observation, data are always corrupted by measure-
ment noise. This means we have to add this kind of noise contri-
bution n to our data model, as follows:

d = Rs + n. (7)

As already noted, even without noise, we cannot exactly invert
this relationship. We thus instead seek an optimal statistical so-
lution for the signal s given our data d. To find the optimal re-
construction, we regard the signal as a random field following
certain basic statistics and being further constrained by the data.
In probabilistic terms, we look for an expression of the posterior
distribution P(s|d) of the signal s given the data d. It expresses
how the data constrain the space of possible signal realizations
by quantifying probabilities for each of them. It comprises all the
information we might have obtained through a measurement.

With the posterior distribution, we can in principle
estimate the real signal by calculating for instance its
posterior mean 〈s〉P(s|d), equivalent to minimizing the

posterior-averaged L2 – norm of the quadratic reconstruc-
tion error argminm

〈‖(s − m)‖L2

〉

P(s|d) (see, e.g., Jaynes 2003).
This is the desired type of solution to the ill-posed inverse
problem (7).

Probability theory shows that we can calculate P(s|d) if we
have expressions for the likelihood P(d|s), describing our model
of the measurement process and the noise statistics, and for the
statistics of the signal alone, the prior distribution P(s). The
renowned Bayes’ theorem states this as,

P(s|d) =
P(d|s)P(s)

P(d)
, (8)

where P(d) is called the evidence distribution. It effectively acts
as a normalization factor since it does not depend on s and thus
is unimportant for statistical inferences on the signal.

To specify the likelihood for a radio interferometric obser-
vation, we only need a valid model for the measurement pro-
cess. With (7), we see that this involves detailed knowledge of
the instrument response R and the statistical properties of the
measurement noise n.

Throughout this work, we assume the response representa-
tion (2.2) to be exact, or, expressed differently, the data to be
fully calibrated. On the perspective of combining calibration and
imaging into one inference step, see Sect. 4.

As for the thermal noise of a radio interferometer, it is fair to
assume Gaussian statistics, mainly induced by the antenna elec-
tronics and independent between measurements at different time
steps of the observation (Thompson et al. 1986). Henceforth, the
noise field n is assumed to be drawn from a multivariate, zero
mean Gaussian distribution of dimension nd,

P(n) = G(n,N)

:=
1

det(2πN)1/2
exp

(

−1

2
n†N−1n

)

. (9)

The assumption of uncorrelated Gaussian noise leads to a diag-
onal covariance matrix Nkk′ = δkk′σ

2
k
. For this work, we assume

the noise variance σ2
k

to be known.

We can now derive an expression for the likelihood by
marginalizing over the noise field:

P(d|s) =

∫

Dn P(d|s, n) P(n)

=

∫

Dn P(d|s, n) G(n,N)

P(d|s) =

∫

Dn δ(n − (d − Rs)) G(n,N) (10)

P(d|s) = G(d − Rs,N), (11)

where the integral is meant to be taken over the infinite space
of all possible noise realizations. By inserting the delta function
in (10) we stated the implicit assumption that our response (2.2)
is exact.

We are left with the crucial question of how to statistically
represent our signal prior to the measurement. Until now, the
derivation was kept general and we effectively formulated an
inference framework for aperture synthesis imaging. Now, we
need to specify a prior P(s), depending on the type of signal
field to which the statistical estimation should be optimal.

In the next section, we present a solution to the inference
problem with a signal prior chosen to represent the properties of
extended and diffuse emission.
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2.3. The RESOLVE algorithm

To specify the prior distribution, we choose to follow an ap-
proach of least information. The question is: What is the most
fundamental, minimal state of knowledge we have about the
signal, prior to the measurement and without introducing any
specific biases?

We focus on diffuse and extended sources in total intensity.
Stating this alone enables us to give a few central assumptions
we want to be reflected in the prior distribution:

1. An extended source exhibits a certain, a priori translation-
ally and rotationally invariant (but usually unknown) spatial
correlation structure.

2. The signal field must be strictly positive, since it should rep-
resent a physical intensity.

3. Typically, signal fields in radio astronomy show high varia-
tion in structures across the observed field of view, with a few
strong components surrounded by weak extended structure,
going over to large regions basically dominated by noise,
usually spanning many orders of magnitude in intensity.

Apart from these statements, we assume that we know nothing
more specific about our signal, and the prior should be chosen
accordingly. For instance, we do not want to include specific
source shapes or intensity profiles.

The assumption of translational and rotational invariance is
very common and useful in signal inference, where it translates
into homogeneity and isotropy of the prior statistics. Given our
just stated, restricted prior assumptions, there is no reason, in
general, to assume a priori that the correlation of the signal
should change under spatial translation or rotation1. We thus
keep this assumption as valid throughout this paper.

The first constraint (1.) urges us to consider how to in-
clude the fact that the signal exhibits a spatial correlation of un-
known structure. First we might argue to use an uninformative
prior, not favoring any particular configuration. However, we do
know something, namely that there must be at least some kind
of spatial correlation, although its exact structure is obscure to
us. Thus, we search for the statistics of a random field about
whose correlation we know the least possible, i. e., only the two-
point correlation function (equivalent to the second moment of
the statistics). Now, the maximum entropy principle of statistics
(e.g., Caticha 2008) states that if we search for such a probability
distribution, it must be Gaussian. Of course, a priori, we might
not even have any information about the two-point correlation.
Nevertheless, it is shown below that the data itself yields this in-
formation, which we can extract during the inference procedure.

For the problem of reconstructing a Gaussian signal field
with unknown covariance, an optimal solution to the inference
problem (7) can actually be found analytically or at least approx-
imatively in calculating the posterior mean 〈s〉P(s|d) of the signal.
A number of methods have been derived to do this, e.g., the crit-
ical filter and variants thereof (Enßlin & Weig 2010; Enßlin &
Frommert 2011; Oppermann et al. 2011b, 2013) or approaches
using the method of Gibbs sampling (Jasche et al. 2010; Sutter
et al. 2012; Karakci et al. 2013).

Unfortunately, if we consider the second (2.) and third (3.)
constraints from above more closely, we must come to the con-
clusion that Gaussian signal fields are inappropriate for our

1 It should be emphasized that this a priori assumption is not in con-
tradiction with an a posteriori solution not exhibiting homogeneity and
isotropy. Ultimately, if the combination of data and measurement noise
allow for a specific source shape, the likelihood dominates the prior and
drive the reconstruction in this direction.

problem since they are neither positive definite nor strongly fluc-
tuative over orders of magnitude in strength.

Instead, we assume that the logarithm of our signal field is
Gaussian. If s is now a Gaussian field, I = es exhibits all the
desired properties (1–3). This is effectively following log-normal
statistics. If we adapt the data model (7),

d = RI + n = RI0es + n, (12)

we are now faced with a considerably more complicated, non-
linear problem. The factor I0 can be set to account for the right
units, w.l.o.g. we set it to one for the rest of this work.

The likelihood P(d|s) and the signal prior P(s) take the fol-
lowing form,

P(d|s) = G(d − Res,N)

=
1

det(2πN)1/2
e−

1
2

(d−Res)†N−1(d−Res), (13)

P(s) = G(s, S )

=
1

det(2πS )1/2
e−

1
2

s†S −1 s. (14)

Then, the posterior of s

P(s|d) ∝ G(d − Res,N) G(s, S ) (15)

possibly becomes highly non-Gaussian due to the nonlinearity
introduced by (12).

Indeed, the resulting problem cannot be solved analytically.
A possible approach would be to separate the quadratic and
higher terms in, (15)

P(s|d) ∝ e
−1/2 s†(S −1+M)s + s† j +

∞
∑

n=3

Λn
x1 ···xn

sx1
···xn

(16)

where Λn is a rank – n tensor, and

j = R†N−1d (17)

M = R†N−1R. (18)

The higher order terms could be handled either by invoking per-
turbative methods as known in statistical or quantum field theory
(Huang 1963; Peskin & Schroeder 1995), and already further de-
veloped for statistical inference (e.g., Enßlin et al. 2009), or by
using a Monte Carlo Gibbs sampling method (Hastings 1970;
Geman & Geman 1984; Neal 1993). Since these methods are
computationally very expensive for this log-normal ansatz and
the high dimensionality of the problem, we do not follow them
any further in this work.

Instead, we seek an approximate solution m to estimate the
signal field that maximizes the posterior,

m = argmaxsP(s|d) ≈ 〈s〉P(s|d) . (19)

This method is known as Maximum a posteriori (MAP) in sta-
tistical inference and can be interpreted as an approximation to
the posterior mean 〈s〉P(s|d)

2. For the present problem it leads to
a nonlinear optimization problem of a gradient equation for the
posterior. With this approach, it is further possible to calculate a
consistent uncertainty estimate. In principle, the uncertainty of a
signal reconstruction can be estimated by the width of the pos-
terior. In this case, we use the inverse curvature of the posterior

2 It is not guaranteed to yield a close result, especially not for highly
non-Gaussian posterior shapes. Alternatively, it can be derived by min-
imizing an L∞-norm error measure instead of the L2 minimization
underlying the posterior mean approach.
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at its maximum to approximate the relative uncertainty D (see
Appendix A for details).

In this context, we still need to specify how to deal with
the unknown correlation structure, i.e., the Gaussian signal co-

variance S =
〈

s†
〉

. As mentioned earlier, the problem of recon-

structing a Gaussian random field with unknown covariance has
already been solved (Jasche et al. 2010; Enßlin & Weig 2010;
Enßlin & Frommert 2011; Oppermann et al. 2011b; Sutter et al.
2012), and even the respective problem for a log-normal ran-
dom field has been partly solved before (Oppermann et al. 2013).
Unfortunately, none of these methods can be readily applied to
the inference problem at hand, since they require the signal re-
sponse to have a diagonal representation in signal space. This is
not necessarily fullfilled for the Fourier response (2.2). We there-
fore develop a different approach, which, nevertheless, closely
follows the previously mentioned works.

Crucially, as explained above, our prior knowledge signal
statistics is homogeneous and isotropic. This implies that the
unknown signal covariance becomes diagonal in its conjugate
Fourier space and can be expressed by its power spectrum Ps(|k|)
(see the Wiener-Kinchin theorem in Bracewell 1965),

S (k, k′) =
〈

s(k)s(k′)†
〉

= (2π)nsδ(k − k′)Ps(|k|) (20)

where Ps(|k|) is just the Fourier transformation of the homoge-
neous and isotropic autocorrelation function C(r) = S (|x − y|),
where

Ps(|k|) =
∫

dr C(r) exp(ikr). (21)

Because of the assumption of isotropy, the power spectrum only
depends on the length |k| of the Fourier vector k. The power
spectrum is therefore sensitive to scales but not to full modes
in Fourier space. Where the distinction is needed, we will make
it explicit using the notation |k|.

We now parameterize the unknown covariance S as a decom-
position into spectral parameters pi and positive, disjoint projec-
tion operators S (i) onto a number of spectral bands such that the
bands fill the complete Fourier domain

S =
∑

i

piS
(i). (22)

These parameters can be introduced into the inference problem
as a second set of fields to infer.

We therefore add a second MAP algorithm to the signal
MAP, solving for these unknown parameters pi. We then iter-
ate between both solvers until convergence is achieved. The al-
gorithm produces a signal estimate m, an approximation to the
reconstruction uncertainty D, and a power spectrum estimate pa-
rameter set pi. At iteration stage n, the equations to be solved are

S −1
(n−1)m + em(n) Mem(n) − j em(n) = 0, (23)

D(n)xy = S −1
(n−1) xy + em(n)x Mxye

m(n)y

+em(n)y

∫

dz Mxz em(n)z − jx em(n)x δxy, (24)

p(n)i =
qi +

1
2
tr

[

(m(n)m
†
(n)
+ D(n))S

(i)
]

αi − 1 +
̺i

2
+ (T p)i

· (25)

The two quantities j and M are defined as above, q and α are
parameters of a power spectrum parameter prior, ̺ is a mea-
sure for the number of degrees of freedom of each Fourier band,

Visibilities, s0 and P0

MAP
s estimator

m,Cov[m]

MAP
p estimator

break? p

m, Cov[m], p

Fig. 1. Flow chart, illustrating the basic workflow of the 
algorithm.

and T is an operator, which enforces a smooth solution of the
power spectrum pi. A thorough derivation and explanation of all
these terms can be found in Appendix A. Equation (23) is the
fix point equation that needs to be solved numerically to find a
Maximum a posteriori signal estimate m(n) for the current iter-
ation. The second Eq. (24) results from calculating the second
derivative of the posterior for the signal estimate m(n), its inverse
serves as an approximation to the signal uncertainty D(n) at each
iteration step. The last Eq. (25) represents an estimate for the
signal power spectrum using the current signal uncertainty D(n)

to correct for missing signal power in the current estimate m(n).
The iteration is stopped after a suitable convergence criterion is
met (see Appendix C). The final estimate for the sky brightness

is then I = em±
√

e2m
[

eD − 1
]

(see Appendix A for details) using
the last estimates for m and D. The whole algorithm is visualized
in a flow chart in Fig. 1.

It should be noted that solving these equations can be rela-
tively time-consuming compared to, e.g., MS-CLEAN, depend-
ing on the complexity of the problem at hand, since it involves
a nonlinear optimization scheme (23) and the numerical inver-
sion and random probing of an implicitly defined matrix (24)3

(for details, see Appendix C). We call the combined algorithm
 (Radio Extended SOurces Lognormal deconVolution
Estimator).

2.4. Properties of RESOLVE

2.4.1. Image weighting and resolution

As derived in A.4,  naturally converges to a robust-like
image weighting (see Briggs 1995a). It effectively weights all
visibilities by the ratio of the reconstructed power spectrum to
the noise power spectrum. This is conceptually similar to an

3 The overall computational costs go roughly with NglobalNprO(
√

nsnd)
in the limit of a large number of visibility measurements nd. The ns are
the number of pixels in image space, Npr is the number of used ran-
dom probing vectors to estimate matrix traces, and Nglobal is the global
number of iterations  needs to converge (see Appendix C).
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optimal noise weighting in Wiener Filtering. It is thus unnec-
essary to set the image weighting by hand and W in (2.2) really
only contains the sampling operation and no further weighting.

Since the weighting depends on the converged power spec-
trum, this also means that the image resolution is determined by
the algorithm and cannot simply be predicted beforehand. After
the algorithm has been applied, the achieved resolution can be
estimated from the reconstruction (see B.2).

2.4.2. Deconvolution

To the first order, the process of image deconvolution with
 can be understood considering the multiplicative
term em in the fix-point Eq. (23). It acts effectively as a con-
volution kernel in Fourier space, which is exploited by the algo-
rithm for extrapolating the measured visibilities into the regions
of uv-space without direct measurements. In this way, 
is also capable of achieving some degree of superresolution. For
pure extended emission, the tests in Sect. 3 strongly indicate that
 deconvolves at least as effectively as standard methods.
For a more detailed explanation, see B.2.

2.4.3. Residual images

Residual images are usually defined as the inverse Fourier trans-
form of the difference between the visibility data and the recon-
structed image Ires := F −1(d − Fm) and are frequently used to
judge the image quality. For the test simulations presented later
in Sect. 3,  provides noise-like residuals as usually ex-
pected. However, it should be noted that without taking the un-
certainty properly into account, a residual image alone might not
be the best measure for image quality with  (for details
see B.2).

2.4.4. Image rms-noise and dynamic range

Of course, image noise and dynamic ranges can be calculated for
 images. For a meaningful comparison with standard
results, however, calculating an rms and a peak value should be
done considering the uncertainty. For a conservative estimate up-
per and lower bounds can be used instead of simple image values
(see B.2).

2.4.5. Compact emission

As presented, compact emission cannot be handled optimally us-
ing . Extensions for a combined algorithm are foresee-
able (see Sect. 4), but for all practical purposes,  in its
present form will need to be combined with a previous step of
point-source subtraction for best results.

3. Test simulations

In what follows, we present a range of tests of  us-
ing simulated data. We have implemented the algorithm4 in
P using the versatile signal inference library NIFT
(Selig et al. 2013). For all details of the implementation, we re-
fer to Sect. 2 and Appendix C. We also show comparisons to
CLEAN and MEM to benchmark the performance and fidelity
of our algorithm.

4 To get access to the code prior to its envisaged public re-
lease, please contact henrikju@mpa-garching.mpg.de or ensslin@
mpa-garching.mpg.de

(a) uv-coverage in units of # of wavelengths.

(b) Point spread function.

Fig. 2. Point spread function uv-coverage for the simulated 20 min
snapshot observation in VLA-a configuration. The image of the point
spread function is 1002 pixels large, the pixel size corresponds to
roughly 0.2 arcsec.

For all tests, we constructed simulated observations with the
tool 5 using a realistic uv-coverage from a VLA obser-
vation in its A-Configuration. We thus simulated an approxima-
tively 20 min snapshot observation with a total of 42 120 visi-
bility measurements at a single central frequency of 1 GHz (see
Fig. 2). This setting leads to an especially sparse sampling of the
uv-plane. For ease of code development and testing, we have not
used longer observations. On the other hand, if we can solve the
more demanding cases of sparse uv-coverage, we certainly can
handle better-suited data.

For the next two Sects. (3.1 and 3.2), the signals were
drawn from a log-normal distribution, exactly meeting our prior

5 See http://www.lofar.org/wiki/lib/exe/fetch.php?

media=software:makems.pdf
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assumptions. In Sect. 3.3, we go beyond that and illustrate the
validity of our statistical model by using a signal derived from a
CLEAN image of a real source.

Through all simulations, we varied thermal visibility noise
levels. The variance of the complex Gaussian input noise in uv-
space is defined equal for all visibilities. Low noise refers to
σ2

ln
= 10−3 Jy2, whereas high noise denotes σ2

hn
= 105 Jy2.

This translates into an average visibility signal-to-noise ratio of
roughly 103−104 and 0.1–1., respectively. These numbers are of
course somewhat arbitrary, and are only chosen for demonstra-
tional reasons as extreme cases. They are not intended to neces-
sarily reflect realistic visibility noise values in every possible as-
pect, but to serve as examples for particularly low- or high-noise
cases.

To give a quantitative account of the accuracy of the recon-
structions, we use a relativeL2 – norm measure of the difference
of signal to map

δ =

√

∑

(es − em)2

∑

(es)2
, (26)

where the sums are taken over all pixels of the reconstruction.
This choice is motivated by the fact that the inference approach
underlying  approximates a reconstruction that is opti-
mal in the sense of minimizing this error measure (see Sect. 2
and Eq. (19) therein).

In Sects. 3.1–3.3, we focus exclusively on the reconstruction
of the signal, i.e., the sky brightness distribution. The reconstruc-
tion of the power spectrum is discussed separately in Sect. 3.5.

3.1. Main test results

Here, we describe the main test results for the reconstruction of
a simulated signal using .

In Fig. 4, an artificial log-normal signal is shown alongside
the results from  for observations with low- and high-
noise. The error measures are δln = 0.12 and δhn = 0.3 for the
low and high noise case respectively.

We can recover all the structures of the original surface
brightness, down to even very small features in the low-noise
case and at least all main features in the high-noise case. All
strong effects of the point spread function have been successfully
removed, thus showing that  is effective in deconvolv-
ing the dirty image.

In fact, the reconstruction is expected to be smoothed out on
the smaller scales because of the inherent image weighting (see
Sect. 2.4.1). All information in the power spectrum gets lost for
powers comparable to the noise variance.

On a sidenote, it can be seen that mildly compact emission,
for instance in the strongest emission regions of the simulated
signal, can be handled by  as well. Further tests seem
to indicate that even some purely compact emission can be re-
constructed by , but further work is clearly needed (see
Sect. 4.

For convenience and comparison, in Fig. 3 we show a resid-
ual map for the low-noise reconstruction. It qualitatively reveals
an almost noise-like structure with mainly gridding artifacts in
the background, which usually would be expected for a close re-
construction. However, more remnant substructure in the resid-
ual would be consistent with the reconstructed uncertainty as
further tests have shown. With the original signal available in
the presented simulations, the difference maps are nevertheless
a more reliable way to judge the quality of the reconstruction.

Fig. 3. Residual map for the low noise reconstruction.
.

3.2. Comparison to standard imaging methods

In this section, we briefly introduce common imaging algorithms
in radio interferometry and show comparisons to . We
focus on two of them, MS-CLEAN and MEM, which are proba-
bly the most widespread methods to date.

In addition, we should mention recent developments in the
application of Compressed Sensing (Candes et al. 2006; Donoho
2006, CS) to radio imaging, most notably the development of
the sparsity averaging reweighted analysis algorithm (Carrillo
et al. 2012, SARA). Another recent approach applied Gibbs sam-
pling methods to imaging in radio interferometry (Sutter et al.
2014), also within the framework of Bayesian inference, but re-
stricted to pure Gaussian priors. Yet another proposed method
is the ASP algorithm (ASP). A direct comparison of 
to either SARA, Gibbs Sampling methods, or ASP is out of the
scope of this work mainly due to unavailability of robust public
implementaions, but we discuss possible ways to include the CS
approach into our Bayesian framework in the conclusions (see
Sect. 4).

For CLEAN, we used the implementation in the radio astro-
nomical software package CASA (Reid & CASA Team 2010);
for MEM we utilized the task VTESS from the software package
AIPS (Greisen 1990).

3.2.1. Comparison to CLEAN

The CLEAN algorithm was first presented by (Högbom 1974)
and is undoubtably the most widely used deconvolution algo-
rithm in radio astronomy. It works around the major assumption
that the image is comprised of point sources. In its simplest vari-
ant, it iteratively finds the highest peak in the dirty map, sub-
tracts a psf-convolved fraction of a delta function fitted to the
peak, and saves the delta components in a separate image. After
some noise threshold is reached, the algorithm stops and recon-
volves the components with a so-called clean beam, usually the
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(a) Signal. (b) Dirty Image.

(c)  reconstruction with low noise. (d) Absolute error |es − em|.

(e)  reconstruction with high noise. (f) Absolute error |es − em|.

Fig. 4. Reconstruction of a log-normal signal field, observed with a sparse uv-coverage from a VLA-A-configuration and different noise levels.
The images are 1002 pixels large, the pixel size corresponds to roughly 0.2 arcsec. The brightness units are in Jy/px. The ridge-like structures in
the difference maps simply stem from taking the absolute value and mark zero-crossings between positive and negative errors. First row left: signal
field. First row right: dirty map. Second row left  reconstruction with low noise. Second row right: absolute per-pixel difference between
the signal and the  reconstruction with low noise. Third row left:  reconstruction with high noise. Third row right: absolute
per-pixel difference between the signal and the  reconstruction with high noise.
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main lobe of the point spread function or a broader version of it
to downgrade resolution.

Over time, many variants of CLEAN have been developed
(Clark 1980; Schwab 1984; Sault & Wieringa 1994). Among
those, multiscale CLEAN (MS-CLEAN; Cornwell 2008) was
constructed to better reflect extended emission by subtracting
Gaussians of various shapes instead of pure point sources. We
will compare the results of  to MS-CLEAN.

In Fig. 5, a comparison is shown between the results of
 and MS-CLEAN. For this test, the same simulated
low-noise data were used as in Sect. 3.1. We compare 
to two different CLEAN reconstructions with natural and uni-
form weighting. We also compared to robust weighting with a
robust parameter of r = 0, which yields an intermediate re-
sult between the other two schemes. Since the results are only
midly different from uniform weighting, we have left them out.
We used a very small noise threshold and a standard gain fac-
tor of 0.1. In total, we choose to run the algorithm interactively
for around 1000 iterations. We used approximately ten different
scales for the multiscale settings, ranging from a single pixel to
enough to roughly match the scales found in the signal. Together
with the reconstructions, we show maps of the squared differ-
ence to the signal (es − m)2 for each of them. The L2 – error
measures and dynamic range values are shown in Table 1. For
the  dynamic range, the most conservative and the most
optimistic values are given considering the measurement uncer-
tainty as explained in Sect. 2.4.1. For the most conservative es-
timate,  achieves a dynamic range roughly 1.5 times
higher than the best CLEAN result.

Both quantitative analysis and visual comparison show that
 clearly outperforms MS-CLEAN in this case. Its re-
sult is closer to the signal in the L2 error measure sense and it
is clearly superior in reconstructing the detailed extended struc-
ture of the surface brightness signal. In particular, the very weak
emission around all the brighter sources is much better resolved
and denoised than in the MS-CLEAN images. The reconstruc-
tion with natural weighting is overestimating the flux scales con-
siderably, while uniform and robust weighting roughly find the
same correct solution as . However, at least for natural
weighting, this is a somewhat biased comparison, since the natu-
ral weighting scheme is by construction enhancing point-source
sensitivity, while preserving larger side-lobe structures (Briggs
1995b), and thus not the optimal choice for resolving extended
emission.

3.2.2. Comparison to the maximum entropy method

The maximum entropy method (MEM) is an imaging algorithm
introduced into radio astronomy by (Cornwell & Evans 1985).
It actually goes back to earlier developments in statistical in-
ference, connected to the broad field of entropic priors (Gull
& Daniell 1979; Skilling et al. 1979). It should not been con-
fused with the maximum entropy principle of statistics men-
tioned earlier, which describes how to update probability distri-
butions when new information has to be included (Caticha 2008;
Enßlin & Weig 2010, see also Sect. 2.3) .

MEM aims to maximize a quantity called image entropy S im,
which is defined for strictly positive signal images s as

S im = −
∫

dx s(x) log (s(x)/m(x)) (27)

where m(x) is a model image of the observed signal, thus al-
lowing us to introduce some kind of prior information into the

Table 1. L2 error measures and dynamic ranges for ,
MS-CLEAN and MEM for the low-noise simulation and the reconstruc-
tion shown in Figs. 5 and 6.

Algorithm δ DNR

 0.12 73–113
MS-CLEAN, natural 1.46 13
MS-CLEAN, uniform 0.67 49
MEM 0.99 45

problem. The data enter this formalism as a constraint for the
maximization problem. Since both, MEM and  were
designed toward extended emission, an analysis of MEM within
the presented Bayesian inference framework together with a the-
oretical comparison to , illustrating their significant dif-
ferences, can be found in Appendix B.3. In short,  is
better suited to represent structured extended emission, because
of its implicit reconstruction of the signal correlation as opposed
to maximally smoothed reconstructions.

In Fig. 6, a comparison is shown between the results of
 and MEM as implemented in the VTESS task from
the radio astronomical software package AIPS. Again, the same
simulated low-noise data were used as in Sect. 3.1. As a model
image, we used an MS-CLEAN reconstruction with uniform
weighting. We again show maps of the squared error (es − m)2

for the reconstruction with  and MEM respectively. The
L2 error measures are shown in Table 1.

It can be clearly seen that  also outperforms MEM,
as reflected by the ℓ2 – norm analysis. The overall structure is
reconstructed roughly correctly, though some fine structure is
clearly missing. Additionally, MEM underestimates the image
peak values in general, which is expected because of the specific
smoothing MEM prior (see Appendix B.3).

3.3. Comparison with a real signal

So far we have only shown reconstructions of signals that were
drawn from log-normal statistics, using the exact assumptions
that we use to specify the prior distribution. It is expected that
 should be optimal for these simulated signals.

To further demonstrate the validity of our assumptions, we
have conducted a test, in which we did not use a signal drawn
from log-normal statistics. Instead, we took an MS-CLEAN im-
age, obtained from real data of the galaxy cluster Abell 2256
(Clarke & Ensslin 2006) and reused this as a signal for the sim-
ulated observation using the same VLA configuration as before.
The original data were taken with the VLA at 1.369 GHz in
D-configuration. The surface brightness values are not in the
original range but chosen arbitrarily in our simulation, effec-
tively given in Jy/px. The signal (i.e., the adapted CLEAN image
of Abell 2256) and the reconstruction from  are shown
in Fig. 8.

Although this time we have at no point introduced log-
normal statistics into the simulation process, the prior assump-
tion still seems to be valid and leads to results comparable in
exactness to the tests using explicit log-normal signals.

3.4. Signal uncertainty

As already stated in Sect. 2.3,  provides also an estimate
of the uncertainty of the signal reconstruction. The algorithm
uses the inverse second derivative D of the posterior, evaluated
at the specific signal estimate m, to approximate the posterior
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(a)  reconstruction. (b) Absolute error |es − em|.

(c) CLEAN map with natural weighting. (d) Absolute error |es − mnatural|.

(e) CLEAN map with uniform weighting. (f) Absolute error |es − muniform|.

Fig. 5. Comparison of  with MS-CLEAN for the simulated low-noise observation of Sect. 3.1. The images are 1002 pixels large, the pixel
size corresponds to roughly 0.2 arcsec. The brightness units are in Jy/px. The ridge-like structures simply stem from taking the absolute value and
mark zero-crossings between positive and negative errors. From first to last row: , MS-CLEAN with natural weighting, MS-CLEAN with
uniform weighting.
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(a)  reconstruction. (b) Absolute error |es − em|.

(c) MEM map. (d) Absolute error |es − mMEM|.

Fig. 6. Comparison of  with MEM for the simulated low-noise observation of Sect. 3.1. The images are 1002 pixels large, the pixel size
corresponds to roughly 0.2 arcsec. The brightness units are in Jy/px. The ridge-like structures simply stem from taking the absolute value and mark
zero-crossings between positive and negative errors. First row left:  reconstruction. First row right: absolute per-pixel difference between
the signal and the  reconstruction. Second row left: MEM reconstruction using the radio astronomical software package CASA. Second
row right: absolute per-pixel difference between the signal and the MEM reconstruction.

covariance. In Appendix A.2, it is shown that a full signal esti-
mate taking approximative uncertainty into account leads to

I ≈ emx ±
√

e2mx
[

eDxx − 1
]

. (28)

In Fig. 7, we present the following example of the approximated
relative uncertainty

√

√

√ 〈(esx )2〉G(m,D) − 〈esx〉2G(m,D)

〈esx〉2G(m,D)

=

√

[

eDxx − 1
]

(29)

for the low noise reconstruction of Sect. 3.1, together with
the signal estimate, and absolute and relative difference map
between signal and estimate. The subscripts indicate that our
approach effectively approximates the full posterior with a
Gaussian G(m,D) centered on the signal estimate and with a
covariance of D (see Appendix A.2).

Figure 7 shows that the uncertainty follows the structure of
the reconstruction. Where the signal is strong, the relative un-
certainty is much lower than in regions that are mainly dom-
inated by noise. A comparison between the estimated rela-
tive uncertainty and the real relative difference map shows the
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(a)  reconstruction. (b) Absolute error |es − em|.

(c) Relative uncertainty map. (d) Relative difference map |es − em| /es

Fig. 7. First row left:  reconstruction for the low-noise reconstruction of Sect. 3.1. First row right: absolute per-pixel difference between
the signal and the  reconstruction. The ridge-like structures simply stem from taking the absolute value and mark zero-crossings between
positive and negative errors. Second row left: relative Uncertainty map derived from the  reconstruction. Second row right: relative
difference map between signal and  reconstruction.

approximative nature of the theoretical estimate. While both
maps agree nicely in structure, they do not fully match in terms
of values. Overall, the theoretical uncertainty underestimates the
real relative difference. However, the deviations between both
maps are much stronger in the outer regions, where the signal is
only weak. In the center of the map, where the source mainly is
located, both agree relatively well.

If we further use (28) to calculate the absolute uncertainty
for the low-noise reconstruction of Sect. 3.1, we find that
roughly 40% of the original signal values lie within a 1σ re-
gion, and roughly 70% within a 2σ region. Although this result
deviates from pure Gaussian expectations, this is a reasonable

outcome. Since the posterior is in general non-Gaussian, the as-
sumption of posterior Gaussianity needed to exactly define (28)
can only result in an approximation.

Calculating the uncertainty to a very high precision is com-
putationally expensive6. It involves the probing of an implicitly
defined matrix and a numerical algorithm to invert this matrix
(see Appendix C). In this case, we stopped the stochastic probing

6 The estimation of the uncertainty goes roughly with

Npr

(

O(
√

nsnd) + O(
√

nsns log(ns))
)

, where Npr is the number of

probes, nd the number of visibility measurements, and ns the number of
pixels in image space (see Appendix C).
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(a) Signal.

(b)  reconstruction.

Fig. 8. Reconstruction of a signal field that was obtained from a CLEAN
image of the real extended emission of Galaxy cluster Abell 2256. For
the simulation, the same setup with low noise was used as in Sect. 3.1.

of D at some point for computational reasons and smoothed the
outcome a bit to obtain Fig. 7. This might add to the deviations
from pure Gaussian expectations on the absolute uncertainty,
which we mentioned earlier. However, since the matrix repre-
sentation of D theoretically enforces smoothness, this procedure
should to some degree be an acceptable way to overcome nu-
merical artifacts.

3.5. Power spectrum reconstructions

Until now, we have focused entirely on the reconstruction of
signal maps. Now we discuss the reconstruction of the signal
power spectrum that  achieves automatically to infer the

Fig. 9. First panel: power spectrum reconstruction for the simulated
low-noise and high-noise observations of Sect. 3.1. Second panel: evo-
lution of the high-noise power spectrum reconstruction over 80 itera-
tions. The iteration process is indicated from transparent to full green.

best signal solution. The signal power spectrum is defined as the
Fourier transformation of the autocorrelation function of the sig-
nal, assuming translationally and rotationally invariant statistics.
We find

P(|k|) =
∫

dr C(r) exp(ikr). (30)

(for more details, see Sect. 2.3).

Qualitatively, it can be understood as decomposing the sig-
nal autocorrelation into its different contributions from various
scales. High power on low Fourier modes means strong corre-
lations on larger scales and high power on high Fourier modes
means strong correlations on smaller scales.

In the first row of Fig. 9, we show the reconstruction of
power spectra for the low- and high-noise reconstructions of
Sect. 3.1. The figure shows the original power spectrum, which
defines the correlation structure of the signal field, and the final
results of  after 6 iterations in the low, and 80 iterations
in the high noise case. It can be seen that, with more noise, the
reconstruction loses sensitivity for the smaller scales. This is re-
flected in the high-noise map reconstruction in Fig. 4, where the
smallest scales are smoothed out by the algorithm.

The second row of Fig. 9 serves as an example for the ac-
tual reconstruction process, where all of the 80 iterations for the
high-noise power spectrum are shown, together with the starting
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guess, which was a simple and generic power law Psg ∝ k−2. The
power spectrum dropped first, and then slowly rose again. This
is a consequence of a numerical procedure to ensure the conver-
gence of the underlying nonlinear optimization routines, where
a constant diagonal is first added to the uncertainty estimate D−1

used in the power spectrum reconstruction, and then suppressed
again with converging iterations (see Appendix C).

We emphasize that an accurate power spectrum reconstruc-
tion can be a scientific result on its own and should not be re-
garded as a mere by-product. Since this is a rather unusual topic
for observations of radio total intensity, it might be in place to ex-
plain a little further its meaning and to outline possible scientific
merits.

The most typical physical source of extended emission in ra-
dio astronomy is synchrotron radiation. By spelling the power
spectrum of the total intensity from some astronomical syn-
chrotron source we effectively measure its correlation structure.
Since synchrotron intensity is in part determined by the mag-
netic field strength (Rybicki & Lightman 1985) in the source,
we automatically gather valuable scientific information on the
magnetic field statistics as well, which gives

CI(r) = 〈I(x)I(x + r)〉 ∝
〈

B(x)2B(x + r)2
〉

. (31)

Detailed derivations of this and related statistical quantities, to-
gether with many discussions on its scientific use, mostly in
the context of analyzing turbulent magnetic fields, can be found
in a series of astrophysical papers (e.g., Spangler 1982, 1983;
Eilek 1989; Waelkens et al. 2009; Junklewitz & Enßlin 2011;
Oppermann et al. 2011a; Lazarian & Pogosyan 2012)

For future observations, it might be especially interesting to
use these results from  to compare data of specific astro-
physical synchrotron sources, e.g., supernova remnants or radio
halos of galaxies and clusters, to simulations thereof. In simu-
lations, the inputs are under control, and (31) can actually be
calculated and compared with real data7

4. Conclusions

We presented a new approach to signal inference and imaging in
radio astronomy and especially radio interferometry. The infer-
ence algorithm  is targeted to be optimal for the imag-
ing of extended and diffuse radio sources in total intensity. In
simulations,  demonstrated to produce high fidelity re-
constructions of these extended signals, drawn from pure log-
normal statistics or from real data. Comparisons showed that
 can outperform current imaging algorithms in these
tasks.

Furthermore,  is capable of producing an approxi-
mative uncertainty estimate for the inferred image through con-
sistent propagation of measurement uncertainty. This is not pos-
sible with current imaging algorithms.

In addition to the inferred signal reconstruction, 
also estimates the power spectrum of the signal, i.e., its two-
point correlation structure. The power spectrum is used for the
signal reconstruction, but can be regarded as a new scientific
outcome by itself. For instance, it opens opportunities to study
the statistical properties of magnetic fields that lead to observed
synchrotron emission. At the same time it offers a unique tool

7 It should be noted that for this, a log-normal power spectrum needs
to be calculated from the reconstructed spectrum of the Gaussian field s.
This can be done in a straight-forward way, (see e.g. Greiner & Enßlin
2015).

to compare simulations of turbulent, magnetoionic media in ex-
tended radio sources to observations.

It was shown that instead of using classical visibility weights
directly,  chooses these internally, according to the ratio
of reconstructed signal power to noise power. This is much in
the spirit in which the robust weighting approach was originally
conceived by Briggs (Briggs 1995b,a).

It should be noted, however, that obtaining all results with
high accuracy, especially producing the uncertainty map, can
be significantly more time consuming than traditional imaging
methods because of the complicated numerical procedures nec-
essarily involved to solve Eqs. ((23), (24)). Thus, more work is
needed to obtain a more efficient implementation of the algo-
rithm, examples include using a major/minor-cycle prescription
as in standard imaging software, relaxing the usage of gridding
operations in the response, using the most efficient libraries for
all optimization algorithms, and developing a parallelized ver-
sion for computer clusters or GPUs.

We only analyzed simulated data and reviewed the funda-
mental principles underlying . To simplify the analy-
sis, we omitted some typical complexities of radio interferome-
ters. However, the response operator R (see Eq. (2.2)), describing
the act of observation, can easily be expanded to cover more ef-
fects, thereby adapting to the needs of the actual observational
situation.

It is most straightforward to include the effects of a primary
beam, as long as it is known accurately for the instrument in
question. Also a direction- or time-dependent point spread func-
tion can be included without any further fundamental compli-
cations, although computational complexity would be consider-
ably higher.

Furthermore, it should be highlighted that the inclusion of
single dish data is almost readily possible. A radio interferom-
eter is not sensitive to the largest scales of the sky brightness
because it cannot measure at arbitrarily small uv-points, leaving
a gap in the center of the uv-plane. This problem can in prin-
ciple be overcome by combining the radio interferometric data
with single dish observations on the same source. When using
CLEAN-derived imaging algorithms, there always is a problem
with the choice of the correct restoring beam, since it is not pos-
sible to trivially use the point spread function of the radio inter-
ferometer for the combined data. There is no problem like this
with the imaging approach presented in this work.

The extension to multifrequency synthesis (see Eq. (6)) and
polarization imaging is already being worked on and will be the
subject of upcoming publications.

Another future topic is the possible inclusion of calibration
into the framework. A first step could be to include the calibra-
tional errors into the error budget and use an approach similar to
the extended critical filter (Oppermann et al. 2011b), where the
noise covariance is subject to the inference itself. In principle,
calibration itself can be understood as a reconstruction problem
for which the presented methods could be useful. In the long run,
the distinction between calibration and imaging is somewhat ar-
tificial and should ideally be merged into one step of complete
reconstruction (see also Smirnov 2011a,b).

Finally, a future goal should be to extend the imaging al-
gorithm  to a broader approach that can handle diffuse
emission and point sources simultaneously (see, e.g., Selig &
Enßlin 2015, for an example from photon count imaging). It
could be worthwhile to think about merging the approaches of
compressed sensing, where optimal imaging strategies for sparse
signals are already known, with the presented Bayesian approach
into which they could be included in form of a Laplacian prior.
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Appendix A: Derivation of RESOLVE

For a complete derivation of , we first provide some
general remarks, and then divide the section into two parts,
where we derive a Maximum a posteriori solution for the sig-
nal field, and for its power spectrum.

From Sect. 2, we recall the basic premises of the inference
problem to be solved. We want to find the statistically optimal
reconstruction of the total intensity signal I given a data model,

d = RI + n = Res + n, (A.1)

under the assumptions that

− I follows log-normal statistics, such that s = log I follows
Gaussian statistics;

− the noise n follows Gaussian statistics as well;
− and R models the linear response of a radio interferometer

(see Eq. (2.2) in Sect. 2).

Under these assumptions the likelihood P(d|s) and the signal
prior P(s) take the following form as was shown in (11)

P(d|s) = G(d − Res,N)

=
1

det(2πN)1/2
e−1/2 ((d−Res)†N−1(d−Res)), (A.2)

P(s) = G(s, S )

=
1

det(2πS )1/2
e−1/2 (s†S −1 s). (A.3)

Then, the posterior of s

P(s|d) ∝ G(d − Res,N) G(s, S ) (A.4)

can become highly non-Gaussian due to the nonlinearity intro-
duced by (A.1).

As a further complication, we have to assume a priori that

the signal covariance S =
〈

s†
〉

is unknown. Assuming statistical

homogeneity and isotropy for the signal statistics, we parame-
terize its power spectrum P(k) as a decomposition into spectral
parameters pi and positive projection operators S (i) onto a num-
ber of spectral bands such that the bands fill the complete Fourier
domain

S =
∑

i

piS
(i). (A.5)

 consists of two inference steps to solve the main prob-
lem (12) iteratively for s and all pi. We fully describe both steps
individually in the following subsections.

A.1. Reconstruction of the signal field s

For the reconstruction of the signal field s, we assume the power
spectrum parameters pi to be known from a previous inference
step. This can formally be expressed by marginalizing over them
while assuming a delta distribution for the known parameters p∗

P(s|d, p∗) =
∫

Dp P(s|d, p) P(p|p∗)

=

∫

Dp P(s|d, p) δ(p − p∗). (A.6)

For convenience, we rewrite our notation to work with the
Hamiltonian H(s, d) instead of the posterior P(s|d),

P(s|d) :=
e−H(d,s)

Z
(A.7)

with Z := P(d). This effectively expresses our problem in
more familiar terms of statistical physics, while the Hamiltonian
H(s, d) = − log (P(d|s)P(s)) still comprises all important signal-
dependent terms and is usually easier to handle than the
posterior.

The Hamiltonian of problem (A.4) reads

H(s, d) = − log (G(d − Res,N) G(s, S ))

=
1

2
s†S −1

p∗ s +
1

2
(es)†Mes − j†es + H0, (A.8)

where j = R†N−1d, M = R†N−1R and H0 summarizes all terms
that are not dependent on the signal s.

Using the Gibbs free energy ansatz of Enßlin & Weig (2010),
Oppermann et al. (2013) have shown that it is possible to red-
erive the critical filter for this Hamiltonian. However, in prac-
tice, it is only solvable under the assumption of a diagonal M in
signal space. Otherwise we would be forced to explicitly com-
pute arbitrary components of the very large matrix of size n2

s ,
representing the operator M, which is computational infeasible.
Unfortunately, for the response under consideration here (2.2),
with an incomplete sampling of the Fourier plane in data space,
M is not diagonal in general.

Thus, we instead use the MAP principle to solve the infer-
ence problem for s. Maximizing the posterior readily translates
to minimizing the Hamiltonian (A.7). If we take the derivative of
the Hamiltonian (A.8) with respect to the signal field s and set it
to zero, we get

δH(s)

δs
= S −1

p∗ s + es Mes − j es = 0. (A.9)

This is a high dimensional, nonlinear equation, which can be
solved numerically using an iterative optimization algorithm, in
our case a steepest descent method. We call the solution of this
equation m = argmaxsP(s|d).

The solution m is an estimate for the Gaussian field s. To
calculate a signal estimate Î for the original log-normal signal
I = es, we just take the exponential of m

Î = em. (A.10)

A.2. Uncertainty of the signal reconstruction

A full statistical analysis involves accounting for the uncer-
tainty of the signal estimate. For this, we use the informa-
tion encoded in the second posterior moment (or covariance)
D = 〈(s − m)(s − m)†〉 as a measure of the expected uncertainty
of the signal reconstruction. Within the MAP approach, we ap-
proximate the inverse posterior covariance D−1 with the second
derivative of the Hamiltonian

D−1 ≈ − δ
2H(s)

δsx δsy
|s=m = S −1

p∗ xy + esx Mxye
sy

+esy

∫

dz Mxz esz − jx · esx δxy, (A.11)

which needs to be inverted numerically in practice. In this way,
we effectively assume that the real signal posterior is approxi-
mated with a Gaussian G(m,D). Unfortunately, D only approx-
imates the posterior covariance of the Gaussian field m. We
need to translate this into a posterior covariance for the full esti-
mate Î = em.
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If the signal posterior were exactly Gaussian, we could just
assume our posterior estimate to be of exact log-normal statis-
tics, solve for the mean and variance analytically and thus write

〈esx〉G(m,D) = emx+
1
2

Dxx (A.12)

〈(esx )2〉G(m,D) − 〈esx〉2G(m,D) = e2mx+Dxx

[

eDxx − 1
]

, (A.13)

using the definitions for the mean and variance of a log-normal
distribution (see ,e.g., Mood et al. 1974). But since the posterior
is not Gaussian in general, we cannot solve Eqs. ((A.12), (A.13))
analytically. This was, in the first place, the reason why 
uses the MAP approach (see Sect. 2.3). Nevertheless, since
we effectively approximate the full posterior with a Gaussian
G(m,D) when using Eq. (A.11) as the posterior covariance, one
might be tempted to just use Eqs. ((A.12), (A.13)) anyhow.

However, in practice, it turns out that within the MAP ap-
proach this procedure is prone to overestimating signal estimate
and its uncertainty. This is because usually the maximum of
a log-normal distribution lies above its mean (for details see
Greiner 2013). We thus drop the extra terms of D in the argu-
ment of the exponentials in Eqs. ((A.12), (A.13)), keep (A.10),
and write

Îx = emx ±
√

e2mx
[

eDxx − 1
]

(A.14)

if we want to account for the uncertainty in the reconstruction.

A.3. Reconstruction of the power spectrum parameters p

In the second step of , we assume to have a solution
for m and D from the last iteration and estimate the unknown
spectral parameters p from the signal-marginalized probability
of data and power spectrum P(p, d):

P(p, d) =

∫

Ds P(s, d|p) P(p)

=

∫

Ds G(d − Res,N) G(s, S p) P(p). (A.15)

This approach was first derived in Oppermann et al. (2013) for
Gaussian signal fields. We closely follow their argument and also
show its approximate validity for log-normal fields.

To do this, we first need to define a prior for the power
spectrum parameters p. In this, we follow Enßlin & Frommert
(2011), Enßlin & Weig (2010), and Oppermann et al. (2013),
and choose independent inverse-gamma distributions for each
spectral parameter pi,

P(p) =
∏

i

PIG(pi)

=
∏

i

1

qiΓ(αi − 1)

(

pi

qi

)−αi

exp

(

− qi

Pi

)

, (A.16)

where Γ(·) denotes the gamma function, qi defines an exponen-
tial cutoff in the prior for low values of pi, and αi is the slope of
the power-law decay for large values of pi. In principle, by tun-
ing these parameters, the prior can be adapted according to the
a priori knowledge about the power spectrum. Usually, we use
the limits of qk → 0 and αk → 1 for all k. This turns the inverse-
gamma prior into Jeffreys prior (Jaynes 2003), which is flat on
a logarithmic scale. In some tests though, we have allowed for
nonunity αk parameters to suppress unmeasured Fourier modes.

During the reconstruction of the power spectrum, we
additionally introduce a smoothness prior as developed by
Oppermann et al. (2013) to punish most probably unphysical and
numerically unwanted random fluctuations in the power spec-
trum. In that prescription, the inverse-gamma prior (A.16) is aug-
mented with a probability distribution that enforces smoothness
of the power spectrum

P(p) = Psm(p)
∏

k

PIG(pk). (A.17)

The spectral smoothness prior can be written as a Gaussian
distribution in τ = log p:

Psm(p) ∝ exp















− 1

2σ2
p

∫

d
(

log k
)













∂2 log pk

∂
(

log k
)2













2














∝ exp

(

−1

2
τ†Tτ

)

, (A.18)

where the differential operator T includes the second derivative
of τ = log p and a scaling constant σ2

p that determines how strict
the smoothness should be enforced. This particular form of the
prior favors smooth power-law spectra. For all details we refer
to (Oppermann et al. 2013).

As was shown there, the corresponding inverse-gamma prior
for the τ parameters can easily be derived from the conservation
of probability under transformations

P(τ) = P(p)

∣

∣

∣

∣

∣

dp

dτ

∣

∣

∣

∣

∣

=
∏

i

q
αi−1
i

Γ(αi − 1)
e−[(αi−1)τi+qie

−τi ]. (A.19)

With this prior, we can calculate the signal-marginalized joint
probability (A.15) if we apply one crucial approximation.
Since P(s, d|τ) in (A.15) is non-Gaussian because of the high
nonlinearity of the e(d−Res) – terms, we cannot just move on ana-
lytically. We instead use a saddle point method and approximate
the argument of the exponential occurring inP(s, d|τ), which can
be written as e−H(s,d) using (A.7). To perform the saddle point ap-
proximation, we replace H(s, d) with its Taylor expansion up to
second order around the maximum of the Posterior m, derived in
the previous iteration of the signal reconstruction, i.e.,

e−H(s,d) ∝ e(− 1
2

(d−Res)†N−1(d−Res)− 1
2

s†S −1
τ s)

≈ e(H(m)+ 1
2

(s−m)†D(m)−1(s−m)) (A.20)

This effectively approximates the non-Gaussian signal posterior
P(s, d|τ) with a Gaussian with mean m and covariance D. We
note that this procedure is similar to a mean field approximation
in statistical physics (Huang 1963).

With this approximation, we can solve the marginalization
integral in (A.15) and calculate P(τ, d), or alternatively the
Hamiltonian,

H(d, τ) = − logP(d, τ)

= − log

∫

DsG(d − Res,N)G(s, S )P(p)

≈ 1

2
tr

(

log S τ
) − 1

2
tr

(

log Dτ
)

+ H(m, τ)

+
∑

i

(

(αi − 1) τi + qie
−τi

)

+
1

2
τ†Tτ + H0, (A.21)
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where we have used the matrix theorem log |S | = tr
(

log S
)

, and
have collected all terms not depending on τ into a constant H0.

Taking the derivative of (A.21) with respect to one parame-
ter τi and replacing pi = eτi , we find

pi =
qi +

1
2
tr

(

(mm† + D)S (i)
)

αi − 1 +
̺i

2
+ (T log p)i

· (A.22)

With this equation we can update the power spectrum parameters
for each iteration using the current m and D.

This is in perfect accordance with previous findings (Enßlin
& Frommert 2011; Enßlin & Weig 2010; Oppermann et al. 2013)
and shows effectively that we can rediscover the critical filter for
a pure MAP approach if we accept the approximation (A.20) as
valid.

A.4. RESOLVE and image weighting

In aperture synthesis, imaging is usually combined with a
weighting scheme that is included in the Fourier inversion of
the visibilities. Essentially, the term W in (3), defining the dirty
image ID, can be expanded to hold more factors than the mere
sampling function

ID = F −1(T · B · w · S · F I), (A.23)

with W = T · B · w · S , where T is a possible tapering of outer
visibilities, B is a user-choosen baseline weighting, w are the
statistical noise weights obtained from an analysis off the ther-
mal noise, and S is the sampling function. In this section, we
prove that  implicitly converges to a meaningful set of
weights.

Historically, mainly two weighting schemes have been em-
ployed. Natural weighting just multiplies every visibility point
with the inverse thermal noise variance for the particular base-
line and is therefore a simple, noise-dependent down-weighting
mechanism. Uniform weighting ensures that the weight per grid-
ded visibility cell is constant and, hence, effectively gives higher
weight to outer baselines, where usually less visibility points are
found in a grid cell.

In a seminal work (Briggs 1995b), Briggs has shown that
natural weighting can be obtained under the constraint that the
sample variance of the image should be minimized. In contrast,
uniform weighting can be shown to reduce sidelobe levels, but
actually downgrades sensitivity at the same time.

In the same work, a new weighting scheme was devised
that interpolates between these two extremes, called robust
weighting. The robust weights are determined as

W(k) ∝ 1

1 + σ2(k)/s2
p(k)
, (A.24)

where σ2 is the thermal noise variance, and s2
p is some param-

eter that originally was derived having in mind some measure
of the source power at the given visibility (Briggs 1995b). In
practice, s2

p is usually adjusted by hand to meet the needs of
the astronomer for having a tradeoff between sensitivity and
resolution.

This form of weighting can be explained within the pre-
sented Bayesian framework, and, furthermore, we show that an
algorithm like  naturally converges to optimal robust-
weighting-like parameters according to the ratio of estimated
noise and signal power.

For this, we consider the negative logarithm of the poste-
rior (15), i.e., the Hamiltonian of our inference problem (see
Eq. (A.4) in Appendix A for details),

H(s, d) =
1

2
s†S −1s +

1

2
(es)†Mes − j†es + H0· (A.25)

We can expand the exponents in a Taylor series and separate the
quadratic from the higher orders in s as we have done in (16)

H(s, d) =
1

2
s†

(

S −1 + M
)

s − s† j + H0

+

∞
∑

k=3

1

k!
Λ(M, j)k

x1···xk
sx1
· · · sxk

. (A.26)

If we now apply the MAP principle and set the derivative with
respect to s to zero, we find
(

S −1 + M
)

s − j + ∆(M, j, s) = 0 (A.27)

where we have defined∆(M, j, s)= δ
δs

∞
∑

k=3

1
k!
Λ(M, j)k

x1···xk
sx1
· · · sxk

.

We can partly solve this equation for s:

s =
(

S −1 + M
)−1

j −
(

S −1 + M
)−1
∆(M, j, s). (A.28)

The first term is the analytic solution to the quadratic part of the
full log-normal Hamiltonian. It was shown to be equivalent to a
Wiener Filter applied to the data d (Enßlin et al. 2009), which
would be the optimal solution for a purely Gaussian signal field.

Using (20) for the covariance matrices S and N and j =
R†N−1d, we can write the Wiener Filter operator in (A.28),

F =
(

S −1 + M
)−1

R†N−1, in Fourier space:

F(k) =
1

1 + P
g
n(k)/Ps(k)

, (A.29)

where P
g
n = GkuPn(u) is the noise power spectrum on the regular

grid, defined by the gridding operator G.
This has the exact same form as the definition of the robust

weights (A.24), and even the original premise is fulfilled that the
factor s2

p in (A.24) should be connected to the source power. The
great difference is that the Wiener Filter naturally weights each
mode in Fourier space differently, given that the signal power
spectrum Ps(k) is known.

Since  reconstructs this power spectrum, it is capa-
ble of doing this type of weighting, as is every algorithm that
leads to an equation like (A.28) and simultaneously gets infor-
mation about the signal power spectrum. Of course, 
solves (A.28) iteratively, and only the converged solution gives
optimal weights for the log-normal inference problem. No sim-
ple and direct equivalence can be given between these effective
weights and robust weighting. It is not even meaningful to write
them down explicitly since the sum in ∆(M, j, s) in principle
extends infinitely.

We conclude that the classical robust weighting can theo-
retically be understood as the optimal solution to a signal re-
construction problem of a Gaussian signal field, equivalent to a
Wiener Filter operation, and that algorithms invoking higher or-
ders of signal statistics than the Wiener Filter, like , do
an extended weighting operation modified by the higher statisti-
cal moments. In fact, this similarity between the robust weights
and Wiener Filtering was already mentioned by Briggs himself
(Briggs 1995b), although in that work, no clear explanation of
the connection was given.
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Appendix B: Technical supplements

B.1. Mathematical notation

All physical quantities and functions common to radio astro-
nomical imaging are represented in a basis-free notation as vec-
tors and operators, defined on an arbitrary-dimensional func-
tional vector space. Operations on vectors are represented by
inner products, appropriately defined for discrete and continu-
ous spaces as:

− discrete space : a†b :=
∑

x

ax bx,

− continuous space : a†b :=

∫

dx a(x) b(x) dx, (B.1)

where the † symbol stands for a transposing operation (and
a possible complex conjugation in case of a complex vector).
In contrast, where needed explicitly, the · symbol will denote
component-wise multiplication, so that (a · b)x = a(x) b(x).

We now can effortlessly combine discrete and continuous
quantities in our notation. This is important, since, in real ob-
servations, the visibility Vk is always a function defined over a
discrete, complex Fourier space, spanned by nd measurements,
whereas the sky brightness Ix is in principle a continuous func-
tion, defined over an infinitely large, real space. Of course, on
the computer, a continuos space needs to be discretized again,
but the assumption is that, within needed accuracy, discretiza-
tion still allows for a theoretical description of quantities like Ix

as continous fields. This assumption is frequently made in com-
putational field theory as well (see, e.g., Peskin & Schroeder
1995). For a more thorough discussion on the framework of sig-
nal inference, see Enßlin et al. (2009).

If the inner product actually is just a discretized version of
a continuous one, a volume factor needs to be included in the
sum, which, for clarity, is explicitly ommited in this study for
all equations. In computational practice though, this is unavoid-
able, since all quantities effectively become discrete when finally
calculated on a computer (for details see Selig et al. 2013).

B.2. RESOLVE and standard imaging procedures

 operates under some different concepts from stan-
dard imaging procedures in radio astronomy. The greatest dif-
ference comes about because of the nature of the  im-
age reconstruction as a Bayesian statistical estimator. It is only
completely interpretable when considered together with its un-
certainty. Because of the unavailability of a proper image uncer-
tainty in virtually all standard methods, most notably in CLEAN,
images are usually interpreted differently from how they should
be with . Furthermore, some features that usually are
entirely set by the user are implicitly achieved in .
What follows is a brief list of important points and issues to be
considered when interpreting  in terms of standard no-
tions. It should hopefully serve to help reconnect to well-known
procedures in imaging when using .

– deconvolution of the dirty beam is the most obvious prob-
lem in radio imaging (see Eq. (3)). An illustration as to how
 achieves this deconvolution needs to take different
points into account. For one, the multiplicative term em in
the fix-point Eq. (23) acts effectively as a convolution ker-
nel in uv-space. This enforces some amount of smoothness
in the visibility structures. This smoothness is exploited by

 for extrapolating the measured visibilities into the
regions of uv-space without direct measurements. A more
complex explanation of course also needs to encapsulate the
effect of the reconstructed power spectrum on this smoothing
scale. A more general explanation draws from the fact that
the proposed Bayesian log-normal reconstruction is by de-
sign data driven. This means that the algorithm much more
comfortably adjusts side-lobe structures to strong emission
regions roughly present in the data, as opposed to the effec-
tively suppressed case of leaving those structures as fainter
emission regions in the final signal estimate.

– image resolution is handled by  in a slightly differ-
ent way. Because of the inherent robust-like image weight-
ing of  (see A.4) and its capabilities of extrapolating
in unmeasured regions of uv-space, the algorithm automati-
cally sets an optimal resolution scale, which is even capa-
ble of achieving some degree of superresolution. This res-
olution scale cannot be simply predicted beforehand. After
the algorithm has been applied though, the achieved resolu-
tion can be estimated. A comparison of the raw reconstructed
signal power mm† with its uncertainty D in Fourier space
reveals the Fourier modes for which the reconstruction be-
comes uncertain and is smoothed because of the implicit ro-
bust weighting. For a strictly conservative approach, it is of
course always possible to smooth the final image with an
instrument resolution kernel, should the superresolution be
in doubt. In contrast, classical image weights or tapering on
top of  should not simply be applied without further
consideration. They represent an additional filter operation,
which may (or may not) let  to diverge. In any case,
all additional weighting terms should be implemented into
the reponse operator.

– residual images are usually defined as the inverse Fourier
transform of the difference between the visibility data and
the reconstructed image Ires := F −1(d − Fm). They are very
often used as a diagnostic for the quality of image recon-
struction and to check for known patterns of reconstruction
errors. Usually, algorithms are required to get as close to a
pure noise-like residual as possible (see ,e.g., Bhatnagar &
Cornwell 2004). Although  meets these criteria for
the presented simulated data (see Fig. 3), some caution is
advised for. In general, a residual image alone is not neces-
sarily the best quality measure for , nor should it
necessarily be expected to be close to a pure noise back-
ground image in every case. The algorithm was designed
to find a MAP estimate for the signal as an approximation
to a posterior mean, and there is in general no reason that
this estimate alone needs to be equivalent to an image with
a residual that resembles pure background noise. It should
be more reliable to consider the residual together with the
reconstructed uncertainty, where the range of residual im-
ages consistent with the  image and its uncertainty
should encompass a pure noise image outcome.

– image rms-noise and dynamic range are typical quanti-
fiers of radio astronomical image properties. For a mean-
ingful application to  images, again, the image
uncertainty needs to be taken into account. As explained
above for the achieved resolution,  smoothes small
scale noisy features in low signal-to-noise regions, while in-
creasing uncertainty. Thus, calculating an rms value from
these regions simply from the reconstructed image might be
strongly biased. Instead, using the range of values, consis-

tent with the uncertainty, I = em +
√

e2m
[

eD − 1
]

should
give correct results, where a conservative approach would
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use lower bounds for the peak value and upper bounds for
rms-estimations.

B.3. Bayesian derivation of MEM

As outlined in Sect. 3, MEM aims to maximize the image
entropy S im,

S im = −
∫

dx s(x) log (s(x)/m(x)) , (B.2)

where m(x) is a model image of the observed signal, thus al-
lowing us to introduce some kind of prior information into the
problem. The data enter this formalism as a constraint for the
maximization problem. Usually, one adds a term to (B.2) that
measures the closeness of the entropic signal reconstruction to
the data in the form of a χ2(d,Rs) distribution, which is nothing
else but the log-likelihood of (11):

1

2
χ2(d,Rs) =

1

2
(d − Rs)†N−1(d − Rs)

=− log(P(d|s)) + const. (B.3)

With (27) and (B.3), MEM achieves a solution by extremizing

J(d, s) = − log P(d|s) − µS im (B.4)

for s. The multiplier µ is usually adjusted during the extremiza-
tion to meet numerical constraints (see Cornwell & Evans 1985,
for details).

We now repeat a short section from (Enßlin & Weig 2010),
analyzing the assumptions of this approach from the viewpoint
of Bayesian signal inference.

As we have identified (11) as the log-likelihood, it is
also possible to re-identify the prior distribution. If we inter-
pret J(d, s) as a Hamiltonian H(d, s), than the entropy term can
be understood as a log-prior

µS Im(s) = logP(s). (B.5)

With this, we can read off the underlying prior distribution
implicitly assumed in MEM,

P(s)= exp

[

−µ
∫

dxs(x) log

(

s(x)

m(x)

)]

=
∏

x

(

s(x)

m(x)

)−µs(x)

· (B.6)

This prior is very specific. It extremely suppresses strong pixel
values and thereby always favors to smooth out emission over
all pixels in the image, while sharp peaks are heavily down-
weighted. In the case of the model m(x) being a close approx-
imation to the real signal, the prior becomes effectively flat and
MEM turns basically into a maximum likelihood fit.

In comparison to , it implicitly assumes no corre-
lation between pixels, and a generally more than exponentially
falling brightness distribution. Both features are significant devi-
ations from the assumptions behind . We argue that the
presented MEM prior is effectively not well suited for extended
emission, but rather attempts a model-dependent, “blind” image
smoothing operation as opposed to the data-driven usage of re-
constructed spatial correlations in . In this, 
is much better suited for structured and not only maximally
smooth emission. In addition, tests indicate that  can
also handle more compact emission to some degree, something
that MEM usually has significant problem with.

Appendix C: Implementation of RESOLVE

C.1. General implementation

We have implemented  in P, where crucial parts
have been translated into more efficient  code using C8.
The actual implementation of the algorithm makes heavy use of
the versatile inference library NIFT (Selig et al. 2013).

To perform the gridding and degridding operations needed
in radio astronomical applications, we use the generalized fast
Fourier transformations package 9. The grid convolution is
performed using a Kaiser-Bessel kernel following Beatty et al.
(2005).

For numerical optimization, we use a self-written steepest
descent solver and in some cases the conjugate gradient routine
provided by the SP package.

The algorithm is controlled by a number of numerical proce-
dures and parameters, governing the grade of convergence and
the degree of accuracy. Apart from standard parameters, such
as the maximum number of iterations or the accuracy of the
steepest descent. The most important are:

− Different starting guesses for s and p might have a strong
impact on the performance or the solution of . In
nonlinear optimization, there is, for instance, always the
danger of only converging to a local minimum. Experience
showed that in most cases, it is optimal to use constant fields
and simple generic power spectra as starting guesses to pre-
vent any biases. However, other options are available, e.g.,
a CLEAN or a dirty map, and/or their respective empirical
power spectra, in some cases allowing for an improvement
in computation time.

− To calculate D for (A.22), we have to numerically invert D−1

and statistically probe the needed matrix entries (Selig et al.
2012) using an implicit representation of the operator as a
coded function. For this, we employ a conjugate gradient
routine whose convergence and accuracy parameters must
be set. This numerical inversion is usually the most serious
bottleneck in computation time (see Sect. C.2). Especially
calculating D for an estimate of the signal uncertainty can be
a time consuming task, depending on the accuracy needed.

− For observations with rather poor uv-coverage, problems
might occur with the inversion of the operator D, which
sometimes tends to be numerically nonpositive definite dur-
ing early iterations. In that case, we have implemented a
solution where a diagonal matrix with a user-defined pos-
itive constant M0 gets added to D−1 to ensure positive-
definiteness. While the solution is slowly converging over
the global iterations, M0 is constantly decreased. This is
a standard approach in numerical optimization, see, for
instance Transtrum & Sethna (2012).

− For large data sets, it is sometimes of high advantage to bin
the power spectrum instead of mapping it over all possibly
allowed modes set by the user defined image size. Otherwise,
the calculation might take prohibitively long.

C.2. Analysis of algorithmic efficiency

As visualized in Fig. 1,  mainly consists of two parts, a
signal estimator, and a power spectrum estimator. They are iter-
ated Nglobal times, until convergence is achieved, while both the

8 See http://docs.cython.org/
9 See https://github.com/mrbell/gfft
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maximum number of iterations and the exact convergence crite-
ria can be set by the user. The signal estimator utilizes a steepest
descent algorithm to solve Eq. (23), which needs Nsd internal it-
erations. The power spectrum is estimated with Eq. (25), where
the trace of the inverse operator given by Eq. (24) needs to be
calculated. Since the operator is only given implicitly, its diago-
nal entries need to be probed Npr – times using random vectors
(Selig et al. 2012), where, for each probe, the operator Eq. (24)
has to be inverted using a conjugate gradient algorithm.

The steepest descent iterations are dominated by the op-
erations needed to calculate M (see Eq. (23)), which in-
volves the response operator R with a FFT and a subse-
quent Gridding operation. Therefore, its computational cost goes
roughly with Nsd

(

O(nd) + O(ns log(ns))
)

, where nd is the total
number of visibilities, and ns the number of pixels in image
space.

The conjugate gradient is dominated by the need to
compute the same operation, only, at least some fraction
of ns times, and for each probe individually. Usually a
maximum of

√
ns iterations of the conjugate gradient are

performed. This leads to a total computational cost of

roughly Npr

(

O(
√

nsnd) + O(
√

nsns log(ns))
)

.

A realistic assessment of the asymptotic overall algorith-
mic efficiency is complicated because all of the iteration num-
bers, Nglobal, Nsd, and Npr, can in principle vary strongly from

case to case. Although Nsd usually will be larger than Npr
10,

the conjugate gradient term will likely dominate the algorith-
mic costs. In realistic applications, nd will usually be larger than
ns, because, for modern instrument data sets, the number of vis-
ibilities can reach the millions. In that case, the algorithmic effi-
ciency probably tends to NglobalNprO(

√
nsnd).

In addition, this analysis shows that calculating an estimate
for the uncertainty of the signal reconstruction is very costly. To
accurately compute the diagonal of D, a large number of probes
is needed so that Npr can easily exceed the thousands.

10 At least empirically taken from the simulations, the number of probes
can be kept well below a couple of hundreds.

On our development machine, with up to eight used CPUs
and a maximum of 64 GB working memory, the nonoptimized
code produced the results presented in Sect. 3.1 in roughly a
couple of hours for the low-noise case, and a couple of days for
the high-noise case. For the relatively small size of the simulated
VLA snapshot data sets, we never used more than a few percent
of the memory but this would most likely change for larger data
sets.
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