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Abstract. The aim of this study is to investigate a new type boundary value problems which consist of
the equation −y′′(x) + (By)(x) = λy(x) on two disjoint intervals (−1, 0) and (0, 1) together with transmission
conditions at the point of interaction x = 0 and with eigenparameter dependent boundary conditions,
whereB is an abstract linear operator, unbounded in general, in the direct sum of Lebesgue spaces L2(−1, 0)⊕
L2(0, 1). By suggesting an own approaches we introduce modified Hilbert space and linear operator in it
such a way that the considered problem can be interpreted as an eigenvalue problem of this operator. We
establish such properties as isomorphism and coerciveness with respect to spectral parameter, maximal
decreasing of the resolvent operator and discreteness of the spectrum. Further we examine asymptotic
behaviour of the eigenvalues.

1. Introduction

In this study we shall investigate a new type boundary value problems, which consist of the equation

Ly := −y′′(x) + (By)(x) = λy(x) (1)

on (−1, 0) ∪ (0, 1), together with boundary condition at x = −1

Γ1(y) := cosαy(−1) + sinαy
′

(−1) = 0, α ∈ [0, π) (2)

transmission conditions at the point of interaction x = 0

Γ2(y) := y(+0) − β1y(−0) − γ1y′(−0) = 0, (3)

Γ3(y) := y′(+0) − β2y(−0) − γ2y′(−0) = 0, (4)

and eigenparameter dependent boundary condition at x = 1

Γ4(y) := λy(1) − y′(1) = 0, (5)
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where B is an abstract linear operator in the Hilbert space L2(−1, 0) ⊕ L2(0, 1), λ is a complex spectral
parameter and the coefficients βi, γi, (i = 1, 2) are real numbers.

We want to emphasize that the boundary value problem studied here is new, since it contains an non-
differential term, namely abstract linear operator B in the equation. Furthermore, eigenvalue parameter
appears not only in the equation but also in one of boundary conditions and at the point of interaction
x = 0 are given two transmission conditions.

Note that the results of this study can be applied to the wide variety of boundary-value-transmission
problems of the form (1)-(5). To illustrate this fact let us give some examples of perturbed operators B
which are unbounded in L2(−1, 0) ⊕ L2(0, 1) and satisfy the conditions Theorems 2.3, 3.1, 3.2, 3.3, 4.8 and
4.9 of this study

1.

By :=
n∑

i=1

qi0(x)y(ai0) +

m∑
j=1

q j1(x)y′(a j1),

where the functions qi j(x) are continuous in each intervals [−1, 0) and (0, 1] and has a finite one-hand
limits qi j(±0) , 0.

2.

By :=
∫ 0

−1
(K10(x, s)y(s) + K11(x, s)y′(s))ds +

∫ 1

0
(K20(x, s)y(s) + K21(x, s)y′(s))ds,

where the functions K1 j(x, s) , 0 and K2 j(x, s) , 0 are continuous in [−1, 1] × [−1, 0] and
[−1, 1] × [0, 1], respectively. Clearly, these operators are unbounded in L2(−1, 0) ⊕ L2(0, 1), but are
compact from W2

2(−1, 0) ⊕W2
2(0, 1) to L2(−1, 0) ⊕ L2(0, 1).

Usually, the eigenvalue parameter appears linearly only in the differential equation of the classic Sturm-
Liouville problems. However, in solving of many significant physics problems the eigenvalue parameter
appear also in the boundary conditions. There is quite substantial literature on such type problems. Here
we mention the results of [6–8, 11, 13, 14, 17–19, 21] and references cited therein. Walter [14] gave an
operator-theoretic formulation of such problems. Fulton [6, 7] employed the residue calculus in a manner
similar to Titchmarsh [9] to give a direct proof of the convergence properties of the eigenfunction expansion.
He also presented an asymptotic representation for the eigenvalues and eigenfunctions and considered the
case of an infinite and a semi-infinite interval. Hinton [8] obtained a uniform convergence theory for a
larger class of functions. He gave a precise description of the class where uniform convergence takes place.

In recent years there has been increasing interest of such type problems but under supplementary
so-called transmission conditions(see, for example [17, 18, 21]).

Recently, Ekin Uǧurlu and Elgiz Bairamov [10] have investigated a singular dissipative boundary
value problem with transmission conditions. A. Boumenir [1] use sampling techniques to reconstruct
the characteristic function associated with the eigenvalues of two linked Sturm-Liouville operators by a
transmission condition. J. Ao et al. [13] have considered the finite spectrum of Sturm-Liouville problems
with transmission conditions and eigenparameter-dependent boundary conditions. E.Şen and A. Bayramov
[11] studied a discontinuous boundary-value problem with retarded argument which contains a spectral
parameter in the boundary condition and with transmission conditions at the point of discontinuity. B.
Chanane [5] computed the eigenvalues of Sturm-Liouville problems with discontinuity conditions inside a
finite interval by using the regularized sampling method.

Such properties as isomorphism, coerciveness with respect to the spectral parameter, completeness and
Abel bases of a system of root functions, distributions of eigenvalues of some discontinuous boundary value
problems with transmission conditions and its applications to the corresponding initial boundary value
problems for parabolic equations have been investigated in [16–18, 21]. The various physics applications
of this kind of problems arise in heat and mass transfer problems [3], in vibrating string problems when the
string loaded additionally with point masses [2], in diffraction problems [15], etc.
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2. Isomorphism and Coerciveness of the Problem in Modified Hilbert Spaces

For operator-theoretic formulation we shall assume that θ := β1γ2 − β2γ1 > 0 and in the Hilbert space
(L2(−1, 0) ⊕ L2(0, 1)) ⊕ C introduce a new inner product by

< F,G >Ξ0
2,θ

=

∫ 0

−1
y(x)z(x)dx +

1
θ

{∫ 1

0
y(x)z(x)dx + y1z1

}
(6)

for F :=
(

y(x) , y1

)
,G =:

(
z(x) , z1

)
∈ (L2(−1, 0) ⊕ L2(0, 1)) ⊕ C. It easy to verify that Ξ0

2,θ := ((L2(−1, 0) ⊕
L2(0, 1)) ⊕ C, <, >Ξ0

2,θ
) is a Hilbert space.

Suppose that D(B) = W2
2(−1, 0) ⊕W2

2(0, 1) and define a linear operator Ã : Ξ0
2,θ −→ Ξ0

2,θ by

Ã

(
y(x) , y(1)

)
=

(
−y′′(x) + (By)(x) , y′(1)

)
, F ∈ D(Ã) (7)

on the domain D(Ã) which is defined as the set of all F :=
(

y(x) , y1

)
∈ Ξ0

2,θ satisfying the following
conditions:

(i) y(x) ∈W2
2(−1, 0) ⊕W2

2(0, 1)
(ii) Γ1(y) = 0,Γ2(y) = 0,Γ3(y) = 0 (8)
(iii) y1 = y(1). (9)

Then, the considered problem (1) − (5) can be written in the operator form as

ÃF = λF, F ∈ D(Ã). (10)

Now we introduce a new inner product space Ξ2
2,Γ = (D(Ã)), < ., . >2,Γ) with the inner-product

< F,G >Ξ2
2,Γ

=< y, z >W2
2 (−1,0) + < y, z >W2

2 (0,1) (11)

for F =

(
y(x)
y(1)

)
, G =

(
z(x)
z(1)

)
∈ D(Ã).

Remark 2.1. It can be shown that all axioms of inner product are satisfied. Indeed, let < F,F >Ξ2
2,Γ

= 0. From this, by
(11) it follows immediately that the first component y(x) of this element is zero vector of W2

2(−1, 0) ∪W2
2(0, 1) and

consequently y(1) = 0. So, F = (y(x), y(1)) = (0, 0) is zero vector of Ξ2
2,Γ. The other axioms are satisfied, obviously.

Lemma 2.2. Ξ2
2,Γ is a Hilbert space.

Proof. Let Fn =

(
yn(x)
yn(1)

)
; n = 1, 2, ... be any Cauchy sequence in Ξ2

2,Γ. Then the sequence {yn(x)} consisting

of the first components of sequence {Fn}, n = 1, 2, ... forms a Cauchy sequence in the Hilbert space
W2

2(−1, 0) ⊕W2
2(0, 1). Thus, there exist z(x) ∈W2

2(−1, 0) ⊕W2
2(0, 1) such that∥∥∥yn(x) − z(x)

∥∥∥
W2

2 (−1,0)⊕W2
2 (0,1)

→ 0 (n→∞).

Since the embeddings W2
2(−1, 0) ⊂ C1[−1, 0] and W2

2(0, 1) ⊂ C1[0, 1] are continuous we have,

| Γiyn − Γiz | ≤ c ‖ yn − z ‖W2
2 (−1,0)⊕W2

2 (0,1) (i = 1, 2, 3)

for some c > 0. Hence

Γiz = lim
n−→∞

Γiyn = 0 (i = 1, 2, 3). (12)

Consequently, defining G =

(
z(x)
z(1)

)
we see that G ∈ Ξ2

2,Γ and ‖Fn − G‖Ξ2
2,Γ
−→ 0 (n → ∞). The proof is

complete.
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Theorem 2.3. If the operator B acted compactly from the Hilbert space W2
2(−1, 0) ⊕W2

2(0, 1) into the Hilbert
space L2(−1, 0) ⊕ L2(0, 1), then for any ε > 0 there exists Rε > 0 and Cε > 0, such that for all λ ∈{
λ ∈ C :

∣∣∣ar1λ − π
∣∣∣ < π − ε

}
for which |λ| > Rε the operator λI − Ã from Ξ2

2,Γ onto Ξ0
2,θ is an isomorphism and the

coercive inequality

||F||Ξ2
2,Γ

+ |λ| ||F||Ξ0
2,θ
≤ Cε ||G||Ξ0

2,θ
(13)

holds for the solution F = F(λ) of the equation (λI − Ã)F = G, G ∈ Ξ0
2,θ.

Proof. Let sinα , 0 , γ1 , 0 (other cases are similar). Denote

L0y := −y′′(x) − λy(x),Γ10(y) := sinαy
′

(−1),Γ20(y) := −γ1y′(−0),Γ30(y) := y′(+0) − γ2y′(−0),Γ40(y) := −y′(1).

We shall define the operator L̃0(λ) by L̃0(λ)y :=
(
L0(λ)y,Γ10(y),Γ20(y),Γ30(y),Γ40(y)

)
.

Then, by virtue of [16, Lemma 3.1] for any ε > 0 there exists Rε > 0 and Cε > 0 such that for all
λ ∈ Gε :=

{
λ ∈ C :

∣∣∣ar1λ
∣∣∣ < π − ε, |λ| > Rε

}
this operator is an isomorphism from W2

2(−1, 0)⊕W2
2(0, 1) onto(

L2(−1, 0) ⊕ L2(0, 1)
)
⊕ C4 and for these λ for the solution of the problem L̃0(λ)y = f (x) , Γi0(y) = 1i , i =

1, 2, 3, 4, the coercive estimate

|λ|
∥∥∥y

∥∥∥
W2

2
+

∥∥∥y
∥∥∥

L2
≤ C(ε)

∥∥∥( f (.) , 11 , 12 , 13 , 14

)∥∥∥
L2 ⊕ C4 (14)

holds; where
(

f (.) , 11 , 12 , 13 , 14

)
∈

(
L2(−1, 0)⊕ L2(0, 1)

)
⊕ C4 and

∥∥∥.∥∥∥W2
2
,
∥∥∥.∥∥∥L2

and
∥∥∥.∥∥∥L2 ⊕ C4 denotes the

norms of the spaces W2
2(−1, 0) ⊕W2

2(0, 1) , L2(−1, 0) ⊕ L2(0, 1) and
(
L2(−1, 0) ⊕ L2(0, 1)

)
⊕ C4, respectively.

Since the embedding W2
2(−1, 0) ⊕W2

2(0, 1) ⊂ L2(−1, 0) ⊕ L2(0, 1) is continuous (see, for example [12] )
the linear functionals Γi1(y) := Γ1(y) − Γi0(y) (i = 1, 2, 3, 4) are continuous in the space Wk

2(−1, 0)⊕Wk
2(0, 1)

for any integer k ≥ 1.
Let us define the operator L̃(λ) by L̃(λ)y =

(
(λI − Ã)y,Γ4(λ)y

)
and consider the following problem

L̃(λ)y = F , F ∈ Ξ0
2,θ ⊕ C. (15)

Since the operator `(y) := −y′′ is continuous from W2
2(−1, 0) ⊕W2

2(0, 1) into L2(−1, 0) ⊕ L2(0, 1) and the
operator B is compact from W2

2(−1, 0)⊕W2
2(0, 1) into L2(−1, 0)⊕L2(0, 1), the operator λI−Ã is continuous

from Ξ2
2,Γ into Ξ0

2,θ. By [20, Lemma 1.2.8/3] for any ε > 0 there exists Cε > 0 such that∥∥∥Bu
∥∥∥

L2
≤ ε

∥∥∥u
∥∥∥

W2
2

+ C(ε)
∥∥∥u

∥∥∥
L2
, u ∈W2

2(−1, 0) ⊕W2
2(0, 1). (16)

Taking in view (14)-(16) and applying [17, Theorem 4] to the equation (16) we have that for any ε > 0
(small enough) there exists Rε > 0 and Cε > 0 such that for all λ ∈ Gε for which |λ| > Rε the operator L̃(λ)
is an isomorphism between the spaces

{
y : y ∈ W2

2(−1, 0) ⊕W2
2(0, 1) , Γi(y) = 0 (i = 1, 2, 3), ‖y‖ := ‖y‖W2

2

}
and

(
L2(−1, 0) ⊕ L2(0, 1)

)
⊕ C and for these λ the coercive estimate (13) holds. The proof is complete.

3. The Resolvent Operator and Discreteness of the Spectrum

We can now prove the following important results for the resolvent operator R(λ, Ã) = (λI − Ã)−1.

Theorem 3.1. Let the operator B : W2
2(−1, 0) ⊕W2

2(0, 1) −→ L2(−1, 0) ⊕ L2(0, 1) be compact. Then, for any ε > 0
there exists Rε > 0 such that all λ ∈

{
λ ∈ C :

∣∣∣ar1λ − π
∣∣∣ < π − ε

}
for which |λ| > Rε is regular value of the

operator Ã and for the resolvent operator R(λ, Ã) = (λI − Ã)−1 the following inequality holds

‖R(λ, Ã)‖ ≤ Cε |λ|−1. (17)
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Proof. By taking F = R(λ, Ã)G in (13) we get

||R(λ, Ã)G||Ξ2
2,Γ

+ |λ| ||R(λ, Ã)G||Ξ0
2,θ
≤ Cε ||G||Ξ0

2,θ
(18)

from which it follows immediately that ||R(λ, Ã)G||Ξ0
2,θ
≤ Cε|λ|−1

||G||Ξ0
2,θ

that is the estimate (17) is hold.

Theorem 3.2. The Resolvent operator R(λ, Ã) acted boundedly from the Hilbert space Ξ0
2,θ to the Hilbert space Ξ2

2,Γ.

Proof. Again, as in the proof of the previous theorem, by taking F = R(λ, Ã)G in (13) we have immediately
that ||R(λ, Ã)G||Ξ2

2,Γ
≤ Cε ||G||Ξ0

2,θ
.

Theorem 3.3. If the operator B from W2
2(−1, 0) ⊕W2

2(0, 1) to L2(−1, 0) ⊕ L2(0, 1) is compact, then for any ε > 0
there exist Rε > 0 such that for all λ ∈

{
λ ∈ C :

∣∣∣ar1λ − π
∣∣∣ < π − ε

}
for which |λ| > Rε the resolvent operator

R(λ, Ã) : Ξ0
2,θ −→ Ξ0

2,θ is compact.

Proof. Firstly, let us show that the embedding Ξ2
2,Γ ⊂ Ξ0

2,θ is compact.

Let Fn =

(
yn(x)
yn(1)

)
∈ Ξ2

2,Γ, n = 1, 2, 3, ... be any bounded sequence. Then, {yn(x)} must be bounded in

the Hilbert space W2
2(−1, 0) ⊕W2

2(0, 1).
Since the embeddings W2

2(−1, 0) ⊂ L2(−1, 0) and W2
2(0, 1) ⊂ L2(0, 1) are compact (see, [12]), there exist

the subsequence {ynk (x)} and the function y0(x) ∈ (L2(−1, 0) ⊕ L2(0, 1)) such that

‖ynk − y0‖L2(−1,0) −→ 0 and ‖ynk − y0‖L2(0,1) −→ 0 as n −→ ∞. (19)

Moreover, since the embeddings W2
2(−1, 0) ⊂ C[−1, 0] and W2

2(0, 1) ⊂ C[0, 1] are continuous, the numerical
sequence {ynk(1)} is bounded. Thus, there exist a convergent subsequence {ynks

(1)} of sequence {ynk (1)}.

Denoting y1 := lims−→∞ ynks
(1) consider F0 =

(
y0(x)

y1

)
∈ Ξ0

2,θ. Since

‖Fnks
− F0‖

2
Ξ0

2,θ
= ‖ynks

− y0‖
2
L2(−1,0) +

1
θ

(‖ynks
− y0‖

2
L2(0,1) + |ynks

(1) − y1|
2
C) (20)

we have

‖Fnks
− F0‖

2
Ξ0

2,θ
−→ 0 (n −→ ∞). (21)

Consequently, the embedding Ξ2
2,Γ ⊂ Ξ0

2,θ is compact.Moreover by Theorem 3.2 that for any ε > 0 there exist

Rε > 0 such that for all λ ∈
{
λ ∈ C :

∣∣∣ar1λ − π
∣∣∣ < π − ε

}
for which |λ| > Rε the resolvent operator R(λ, Ã)

acted boundedly from Ξ0
2,θ to Ξ2

2,Γ. Thus, the resolvent operator R(λ, Ã) : Ξ0
2,θ −→ Ξ0

2,θ is compact.

Corollary 3.4. The spectrum of the operator Ã is discrete.

4. Asymptotic Behaviour of the Eigenvalues

Define the operatorA : Ξ0
2,θ −→ Ξ0

2,θ by action law

A

(
y(x)
y(1)

)
=

(
−y′′(x)

y′(1)

)
(22)
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with the same domain as Ã and the operator B1 : Ξ0
2,θ −→ Ξ0

2,θ with domain D(B1) ⊇ D(A) and action law

B1F =

(
(By)(x)

0

)
. (23)

It can be seen easily that the eigenvalues of boundary value transmission problem (1)− (5) and the operator
Ã = A +B1 are the same. Because of this reason, we will examine the eigenvalues of the operator Ã.

Lemma 4.1. The operatorA : Ξ0
2,θ −→ Ξ0

2,θ is symmetric.

Proof. Suppose that y and z are satisfied the boundary condition (2) and transmission conditions (4) − (5).
Then the direct calculations gives

W(y, z;−1) = 0 and W(y, z;−0) = −
1
θ

W(y, z; +0) (24)

where as usual by W( f , 1; x) we denote the wronskians W( f , 1; x) := f (x)1′(x) − f ′(x)1(x). Taking into
account the equalities (24) we can derive by two partial integration that < AY,Z >Ξ0

2,θ
= < Y,AZ >Ξ0

2,θ
for

any Y =

(
y(x)
y1

)
, Z =

(
z(x)
z1

)
∈ D(A), soA is symmetric.

Corollary 4.2. All eigenvalues of the operatorA are real.

Now we shall define one-hand eigensolutions Φ1(x, λ) and Φ2(x, λ).
Let the function Φ1(x, λ) is defined as

Φ1(x, λ) = sinα cos
√

λ(x + 1) −
1
√
λ

cosα sin
√

λ(x + 1). (25)

It can be checked directly that this function satisfies the first boundary condition (2) and the equation (1) in
the case B = 0.

In terms of this solution we shall construct the following initial-value problem:

−y′′(x) = λy(x), x ∈ [0, 1], (26)

y(0) = β1Φ1(0, λ) + γ1Φ
′

1(0, λ), y′(0) = β2Φ1(0, λ) + γ2Φ
′

1(0, λ). (27)

Obviously this problem has an unique solution y := Φ2(x, λ) given by

Φ2(x, λ) = (β1 sinα − γ1 cosα) cos
√

λ cos
√

λx − (γ2 sinα +
β2

λ
cosα) sin

√

λ sin
√

λx

+ (
β2
√
λ

sinα −
γ2
√
λ

cosα) cos
√

λ sin
√

λx − (
√

λγ1 sinα +
β1
√
λ

cosα) sin
√

λ cos
√

λx (28)

Let us define an eigensolution Φ(x, λ) by

Φ(x, λ) =

{
Φ1(x, λ), x ∈ [−1, 0)
Φ2(x, λ), x ∈ (0, 1] . (29)

Lemma 4.3. The eigenvalues of the operatorA coincide with the zeros of the function w(λ) = Γ4(Φ).

Proof. It is easy to verify that for all λ ∈ C, −Φ′′(x, λ) = λΦ(x, λ) , x ∈ [−1, 0) ∪ (0, 1] and Γ1(Φ(., λ)) =
Γ2(Φ(., λ)) = Γ3(Φ(., λ)) = 0. Let w(λ0) = 0, i.e. Γ4(Φ(., λ0)) = 0. Then, we have that

Φ̃0 :=
(

Φ(., λ0)
Φ(1, λ0)

)
∈ D(A) and AΦ̃0 = λ0Φ̃0.

Moreover, it is obvious that, if λ = λ0 is an eigenvalue ofA, then w(λ0) = Γ4(Φ(., λ0)).
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Remark 4.4. If λ = λ0 is an eigenvalue of the operatorA, then
(

Φ(x, λ0)
Φ(1, λ0)

)
would be eigenelement corresponding

to this eigenvalue.

Theorem 4.5. The eigenvalues of the operatorA are bounded below.

Proof. Consider the case sinα = 0. Let λ = µ2. By substituting the above formulas for Φi(x, λ) (i = 1, 2) in
the definition of w(λ) we have

w(λ) = −γ1 cosα µ2 cos2 µ −

(
γ2 + β1 + γ1 −

β2

µ2

)
cosα µ sinµ cosµ

−
(
β2 + β1

)
cosα sin2 µ + γ2 cosα cos2 µ. (30)

Putting s = it (t > 0) in this formula we have w(−t2)→ ∞ as t→ ∞. Consequently, w(λ) , 0 for λ negative
and sufficiently large in module.

We are now ready to find the asymptotic approximation formulas for the eigenvalues of the considered
operator A. Since the eigenvalues are coincide with the zeros of the entire function ω(λ), it follows that
they have no finite limit. Moreover, we already know that all eigenvalues are real and bounded below.
Therefore, we may renumber them as λ0 ≤ λ1 ≤ λ2 ≤ ...., which counted according to their multiplicity.

Theorem 4.6. The operatorA has an precisely numerable many real eigenvalues, whose behavior may be expressed
by two sequence {λn,1} and {λn,2} with following asymptotic as n→∞ :

Case 1. If sinα = 0, then

µn,1 =
(
n −

1
2

)
π + O

(
1
√

n

)
, µn,2 =

(
n +

1
2

)
π + O

(
1
√

n

)
(31)

Case 2. If sinα , 0, then

µn,1 =
(
n − 1

)
π + O

(1
n

)
, µn,2 =

(
n +

1
2

)
π + O

(1
n

)
(32)

where λn,1 = µ2
n,1 , λn,2 = µ2

n,2.

Proof. Consider the Case1. Let λ = µ2 and µ = σ + it. Denote ω0(λ) = −γ1 cosα µ2 cos2 µ.
Let {ξn,1} and {ξn,2} be two sequence, such that 0 < ξn,i < 1

2 and let Jn,i(i = 1, 2) are the bounds of the
domains

{
µ ∈ C : |σ| ≤ π(n + ξn,1), |t| ≤ π(n + ξn,2)

}
. We can choose the sequences {ξn,1} and {ξn,2} so that{

π(n + ξn,i) , πm
}

for every integers n and m. Taking in view that w(λ) and w0(λ) are analytic inside and on
a closed contours Jn,i respectively and the fact that 0 < ξn,i < 1

2 , it easy to show that |w0(λ)| > |w(λ) − w0(λ)|
on both Jn,1 and Jn,2 for sufficiently large n. Then by applying Rouche’s theorem on sufficiently large
contours Jn,i it follows that w(λ) and w0(λ) have the same number zeros inside Jn,i provided that all zeros
are counted according to their multiplicity. Since inside the contour Jn,1 the function w0(µ2) has zeros at
points µ0 = 0 and µn =

(
n− 1

2

)
π, n = ∓1,∓2, ..., (with multiplicity 2), the zeros of w(λ) may be represented

as two sequence λn,1 = µ2
n,1 and λn,2 = µ2

n,2,n = 0, 1, 2, ..., so that π(n − 1 + ξn,1) < µn,1 < π(n + ξn,1) and
π(n + ξn,2) < µn,2 < π(n + 1 + ξn,2) for sufficiently large n. Consequently,

µn,1 =
(
n −

1
2

)
π + δn,1 and µn,2 =

(
n +

1
2

)
π + δn,2

where |δn,1| < π
2 and |δn,2| < π

2 for sufficiently large n. Putting back in (30) we can derive that δn,1 =

O( 1
√

n
) and δn,2 = O( 1

√
n

), so the formula (31) is proved. The proof of the other case is similar.

Below we shall write f (r) ∼ 1(r) r→∞ if limr→∞
f (r)
1(r) = 1.
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Lemma 4.7. Let the linear operator B1(A − λ0I)−1 be compact for some regular point λ0 of A. Then the spectrum
of the operator Ã = A + B1 is discrete and for the eigenvalues (λn,i ,α) (i = 1, 2) which are arranged in the form
|λ1,i,α| ≤ |λ2,i,α| ≤ ... in angle

{
λ ∈ C :

∣∣∣ar1λ − π
∣∣∣ < π − α

}
where all eigenvalues are written as multiple as its, the

following asymptotic formulas for modulus |λn,i,α| are hold as n→∞ :

Case 1. If sinα = 0, then

|λn,1,α| = π2n2 + o
(
n2

)
, |λn,2,α| = π2n2 + o

(
n2

)
(33)

Case 2. If sinα , 0, then

|λn,1,α| = (n − 1)2π2 + o
(
n2

)
, |λn,2,α| = (n +

1
2

)2π2 + o
(
n2

)
(34)

Proof. Let sinα = 0. Employing the same method as in proof of Theorem 5.1 in [18] we can show that the
operatorA is self-adjoint. Since

λn,1 = π2n2 + O(n), (35)

there exists real numbers α and β such that

π2n2 + αn ≤ λn,1 ≤ π
2n2 + βn. (36)

Denoting N+(r,A) =
∑

0≤λn,1≤r
1 and applying the asymptotic equality


√

1 +
M
r
−

√
M
r

 =

(
1 + O(

1
√

r
)
)
, r→∞

where M > 0 any real number, from (36) we deduce that

N+(r,A) =

√
r
π

+ O(1), r→∞. (37)

From this asymptotic equality it follows that lim
r→∞
ε→ 0

N+(r(1+ε),A)
N+(r,A) = 1. Then denoting

N+(r, α, Ã) =
∑
λn,i,α∈

{
λ∈C:

∣∣∣ar1λ−π
∣∣∣< π−α} 1 , by virtue of [4] we have

lim
r−→∞

N+

(
r, α, Ã

)
N+(r,A)

= 1. (38)

Consequently

N+

(
r, α, Ã

)
= N+(r,A) + o(N+(r,A)) =

√
r
π

+ o(
√

r), r→∞. (39)

From (39) it follows that n =

√
|λn,1, α |

π + o(
√
|λn,1, α|) and consequently

|λn,1, α| = π2n2 + o(n2) , n→∞. (40)

The proof of the other case is similar.
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Theorem 4.8. Under conditions of the previous Lemma, the spectrum of boundary value transmission problem
(1) − (5) is discrete and for the eigenvalues {λ̃n,i}(i = 1, 2), that arranged in decreasing modulus, the following
asymptotic formulas are valid:

Case 1. If sinα = 0, then

λ̃n,1 = π2n2 + o
(
n2

)
, λ̃n,2 = π2n2 + o

(
n2

)
. (41)

Case 2. If sinα , 0, then

λ̃n,1 = (n − 1)2π2 + o
(
n2

)
, λ̃n,2 = (n +

1
2

)2π2 + o
(
n2

)
(42)

Proof. Let sinα = 0. Because of the Theorem 2.3, for every α (0 < α < π
2 ), the number of eigenvalues of the

operator Ã which lies outside of the angle
{
λ ∈ C :

∣∣∣ar1λ − π
∣∣∣ < π − α

}
is finite. We denote the number of

these eigenvalues by kα. We can arrange the eigenvalues of the operator Ã as following

λ̃n+kα,i = λn,i, α , n = 1, 2, ... i = 1, 2 (43)

Then from (40) and (43) we obtain

|̃λn,i| = |λn−kα,i,α| = π2(n − kα)2 + o((n − kα)2) = π2n2 + o(n2) , n −→ ∞, i = 1, 2. (44)

Further, for every α(0 < α < π
2 ) there exist a natural number nα such that

|̃λn,i|
−1Reλ̃n,i > cosα, |̃λn,i|

−1
|Imλ̃n,i| < sinα

for all n > nα. From the last inequalities we have

cosα ≤ lim inf
n→∞

Reλ̃n,i

|̃λn,i|
≤ lim sup

n→∞

Reλ̃n,i

|̃λn,i|
≤ 1 and 0 ≤ lim inf

n→∞

|Imλ̃n,i|

|̃λn,i|
≤ lim sup

n→∞

|Imλ̃n,i|

|̃λn,i|
≤ sinα .

Letting α → 0 in the last inequalities we have limn−→∞
Reλ̃n,i

|̃λn,i |
= 1 and limn−→∞

|Imλ̃n,i |

|̃λn,i |
= 0. Consequently

Reλ̃n,i = |̃λn| + o(|̃λn,i|) = π2n2 + o(n2) and |Imλ̃n,i| = o(|̃λn,i|) = o(n2), respectively. From these asymptotic
equations we find that λ̃n,i = π2n2 + o(n2) , n −→ ∞. The proof of the other case is similar.

The main result of this section is the following Theorem.

Theorem 4.9. If the operator B is compact from W2
2(−1, 0) ⊕W2

2(0, 1) into L2(−1, 0) ⊕ L2(0, 1), then the spectrum
of boundary value transmission problem (1) − (5) is discrete and for the eigenvalues {λ̃n,i} ( i = 1, 2,n = 1, 2, ...)
arranged as |̃λ1,i| ≤ |̃λ2,i| ≤ |̃λ3,i| ≤ ...., the following asymptotic formulas are hold:

Case 1. If sinα = 0, then

λ̃n,1 = π2n2 + o
(
n2

)
, λ̃n,2 = π2n2 + o

(
n2

)
. (45)

Case 2. If sinα , 0, then

λ̃n,1 = (n − 1)2π2 + o
(
n2

)
, λ̃n,2 = (n +

1
2

)2π2 + o
(
n2

)
(46)

Proof. By virtue of Theorem 3.3 the resolvent operator R(λ,A) : Ξ0
2,θ −→ Ξ2

2,Γ is bounded. On the other
hand, since B : W2

2(−1, 0)⊕W2
2(0, 1)→ L2(−1, 0)⊕ L2(0, 1) is compact, then the operator B1 : Ξ2

2,Γ −→ Ξ0
2,θ is

also compact. Consequently, the operator B1R(λ,A) : Ξ0
2,θ −→ Ξ0

2,θ is compact. Finally, applying Theorem
2.3 we complete the proof.
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Remark 4.10. It is well-known that for special case Bu = q(x)u (i.e. for standard Sturm-Liouville problems) the
eigenvalues are real and the first asymptotic term has the form O(n). However, in our problem, the eigenvalues may be
also nonreal complex numbers and the first asymptotic term appears in the weak form as o(n2) because of the abstract
linear operator B in the equation.
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