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Abstract. Mass spectrometric measurements commonly
yield data on hundreds of variables over thousands of points
in time. Refining and synthesizing this raw data into chemi-
cal information necessitates the use of advanced, statistics-
based data analytical techniques. In the field of analytical
aerosol chemistry, statistical, dimensionality reductive meth-
ods have become widespread in the last decade, yet compa-
rable advanced chemometric techniques for data classifica-
tion and identification remain marginal. Here we present an
example of combining data dimensionality reduction (fac-
torization) with exploratory classification (clustering), and
show that the results cannot only reproduce and corroborate
earlier findings, but also complement and broaden our cur-
rent perspectives on aerosol chemical classification. We find
that applying positive matrix factorization to extract spec-
tral characteristics of the organic component of air pollu-
tion plumes, together with an unsupervised clustering al-
gorithm, k-means + +, for classification, reproduces classi-
cal organic aerosol speciation schemes. Applying appropri-
ately chosen metrics for spectral dissimilarity along with op-
timized data weighting, the source-specific pollution charac-
teristics can be statistically resolved even for spectrally very
similar aerosol types, such as different combustion-related
anthropogenic aerosol species and atmospheric aerosols with
similar degree of oxidation. In addition to the typical oxida-
tion level and source-driven aerosol classification, we were
also able to classify and characterize outlier groups that
would likely be disregarded in a more conventional analy-
sis. Evaluating solution quality for the classification also pro-
vides means to assess the performance of mass spectral simi-

larity metrics and optimize weighting for mass spectral vari-
ables. This facilitates algorithm-based evaluation of aerosol
spectra, which may prove invaluable for future development
of automatic methods for spectra identification and classi-
fication. Robust, statistics-based results and data visualiza-
tions also provide important clues to a human analyst on the
existence and chemical interpretation of data structures. Ap-
plying these methods to a test set of data, aerosol mass spec-
trometric data of organic aerosol from a boreal forest site,
yielded five to seven different recurring pollution types from
various sources, including traffic, cooking, biomass burn-
ing and nearby sawmills. Additionally, three distinct, mi-
nor pollution types were discovered and identified as amine-
dominated aerosols.

1 Introduction

The field of chemometrics, i.e. “using mathematical and sta-
tistical methods [. . .] to provide maximum chemical informa-
tion by analysing chemical data” (Kowalski, 1981; Vande-
ginste, 1982) serves as an important mediator between com-
plex, multivariate chemical measurements and their interpre-
tation. Since the 1970s a variety of chemometric applica-
tions have emerged in various fields of mass spectrometry
and are common, e.g. in biological and medical implemen-
tations, food science and chemical engineering (e.g. Belu
et al., 2003; Karoui et al., 2010; Kell, 2004; Pierce et al.,
2012; Sauer and Kliem, 2010; van der Greef et al., 2004;
Wishart, 2007). Furthermore, aerosol mass spectrometry, al-
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though a latecomer among mass spectrometric applications,
seems to have been quick in adopting and improving on some
of the basic chemometric tools found useful elsewhere, as
exemplified by the surge in use of factor analytical tech-
niques for data dimensionality reduction in the recent decade
(Canonaco et al., 2013; Lanz et al., 2007b; Zhang et al., 2005,
2011).

Yet, there is a considerable amount of work still to be done
in the field of aerosol data chemometric analysis – a signif-
icant part of more advanced AMS data analysis is still done
manually and thus inevitably limited by the expertise and ca-
pacity of the human analyst. In particular, the classification
and interpretation of the AMS spectra are still largely based
on a dozen or so mass spectral variables called “marker sig-
nals” and their ratios (Aiken et al., 2007, 2008; Cubison et
al., 2011; Farmer et al., 2010; Mohr et al., 2012). Explor-
ing the logical follow-up to the automatic data dimensional-
ity reduction by applying similar mathematical, computer-
aided tools also for un-/semi-supervised classification and
identification of AMS spectra, has not been performed out-
side of the specific application of single-particle mass spec-
trometric studies (e.g. Freutel et al., 2013; Liu et al., 2013;
Murphy et al., 2003; Rebotier and Prather, 2007). Automatic
or machine-learning-based classification tools would likely
prove invaluable for consistent and objective analysis of a
much wider range of AMS data, lessening the outcomes’ de-
pendence on the subjective views of analysts or reliant on
their years of expertise in mass spectral interpretation (Aus-
loos et al., 1999; Ulbrich et al., 2009). Even for an experi-
enced analyst, exploratory data analysis has the potential to
uncover previously unknown underlying mathematical struc-
tures within the data (Tukey, 1977), offering invaluable clues
for the correct selection of solutions and their interpretations.

Sometimes individual, classical analysis methods are used
at the edge of their appropriate domain. For example, fac-
tor analysis assumes constant profiles over long time frames,
when chemical processes actually modify the profiles (Zhang
et al., 2011), and hard classification methods can be used for
data reduction when observations are non-discrete and form
a continuum (Marcolli et al., 2006). More robust results may
be obtained by sticking more closely to the core applicabil-
ity area of each method, where their core assumptions are
better expected to hold, and by combining multiple separate
methods instead.

More diverse, combined techniques can also overcome in-
herent limitations of data models. They may, for example,
enable the uncovering of the minor, “outlier” aerosol types
that often go unnoticed in a long-term factor analysis because
of their low relative contribution to total aerosol mass (Ul-
brich et al., 2009). Such additional, quantitative information
on aerosol chemotypes is widely beneficial for many types
of studies involving, e.g. receptor modelling with chemical
mass balance or constrained factor analysis models (Belis et
al., 2013; Canonaco et al., 2013).

In this work we explore the possibility of complementing
the current techniques for AMS data reduction with some an-
alytical and processing methods found to be useful in similar
mass spectrometric applications. We apply data dimensional-
ity reduction to deconvolve ambient air pollution events, ex-
tracting the characteristic pollution spectra, and subsequently
use and optimize unsupervised classification to resolve the
pollution types. Our motivations are to (1) test whether a
simple unsupervised data clustering method can be used to
classify discrete aerosol mass spectral samples without a pri-
ori information provided by a human analyst, (2) explore the
effect of similarity metric selection and data weighting to
optimize data preprocessing (Horai et al., 2010; Kim et al.,
2012; Stein and Scott, 1994) and thus enhance the structures
in data, leading to improved classification (Anderberg, 1973;
Spath, 1980). Finally we will (3) compare which classifica-
tion measures best capture the differences between differ-
ent atmospheric aerosol chemotypes, often referred to by the
AMS scientific community, and examine how the observed
structures in data translate to information on pollution types.

The results on the performance of distance metrics along
with the relative importance of variables (optimized weight)
for correctly grouping mass spectra can also lead the way
towards an automated classification of AMS results against
relevant library spectra, as well as providing ways to evalu-
ate and classify (discrete or deconvolved) spectral results in
large numbers, such as those often seen in sensitivity analysis
or bootstrapping analyses in factor analytical model verifica-
tion. Indirectly, the information may also help in any manual
classification and identification tasks.

We will exemplify the functionality (and hopefully use-
fulness) of such a machine-learning approach in an analy-
sis of an extensive set of AMS ambient air pollution spec-
tra. We propose that, in this case, the methodology offers an
improved way to derive not only reliable, reference spectra
for the local, archetypal anthropogenic pollution types, but
also quantitative estimates for their expected natural varia-
tion. This information has an immediate and direct use, e.g.
in constrained factor analytical models that require an input
for reference spectra variability (Canonaco et al., 2013).

From an aerosol chemical viewpoint, solid, quantitative
knowledge on local pollution types and their chemical char-
acteristics can help decipher and understand a variety of
physicochemical observations during times when a site expe-
riences pollution events. Concentrating on individual pollu-
tion events also enables the observation and identification of
often overlooked minor or rare emission sources, which can
provide new information on local or regional atmospheric
aerosols.

2 Methods

Although the focus of this study is on statistical analysis of
aerosol mass spectrometric measurements, any such venture
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is inherently affected by the nature and quality of the ex-
perimental data, as well as its preprocessing. We will first
provide a short overview of the main features, advantages
and shortcomings of the aerosol mass spectrometer instru-
ment (Sect. 2.1) and describe the specific set of data we used
(Sect. 2.2) in the testing of the methodology to serve as a
background and put into context the choices made when se-
lecting our specific statistical methods and algorithms.

The statistical methods themselves are described in a brief
manner in Sect. 2.3, since their in-depth review or commen-
tary is beyond the scope of this article. We encourage the in-
terested reader to follow the references provided for a more
comprehensive account and additional background informa-
tion on the specifics and inner workings of these data analyt-
ical techniques and algorithms.

2.1 The AMS instrument and data preprocessing

2.1.1 Compact time-of-flight mass spectrometer
(C-ToF-AMS)

The data analysed in this study are acquired with an aerosol
mass spectrometer featuring a compact time-of-flight (C-
ToF) mass analyser. The instrument is developed and man-
ufactured by Aerodyne Research Inc. (Billerica, MA, US).
While outclassed mass resolution-wise by subsequent high-
resolution (HR) ToF-AMS variants (Canagaratna et al., 2007;
DeCarlo et al., 2006), the C-ToF-AMS mass analyser comes
with the highest sensitivity, and thus signal-to-noise ra-
tio (SNR) of any AMS instrument (DeCarlo et al., 2006;
Drewnick et al., 2009). This high precision clearly benefits
any statistical analysis and partly offsets the smaller num-
ber of variables available in unit mass resolution (UMR) data
compared to high resolution.

The C-ToF-AMS, described in a thorough fashion by
Drewnick et al. (2005), shares many common characteristics
with most ToF-AMS instruments – an aerodynamic lens to
concentrate the sample aerosol into a tight beam of particles
upon entering through the inlet of the instruments, a beam
chopper to enable particle size measurement based on their
flight time through a vacuum chamber, a thermal vapour-
izer set at 600 ◦C to flash vapourize the sample, 70 eV elec-
tron impact ionization of the vaporized sample implemented
with a tungsten filament, and finally an orthogonal extraction
time-of-flight mass analyser to provide the ions’ mass spec-
tra.

In the particular C-ToF-AMS we used, the particle time-
of-flight (PToF) chamber is considerably shortened (10 cm
versus the normal 40 cm chamber). The advantage of this
modification is an increased sample transmission from the
inlet up to the vapourization and ionization region, at the cost
of an increased signal from aerosols’ carrier gas, due to the
reduction in time and distance for air molecules to diverge
from the beam. To combat the effect of an increased number
of air molecules passing through the system, a helium flow

is introduced to the PToF chamber to increase the pressure
and thus the diffusion of air molecules in the beam passing
through the chamber. With this arrangement the air signal is
reduced by a factor of 10 to 100, depending on the setting,
while only affecting the aerosol signal to a much lesser ex-
tent. The helium ions are later removed by an additional high
pass mass filter located before the analyser. While not affect-
ing this work, an additional negative effect of this geometry is
the reduced resolution in particle time-of-flight sizing caused
by the shortened PToF flight track.

2.1.2 Preprocessing of AMS data and derivation of
final data matrices

The AMS data need a number of steps and corrections to
first compute the per ion mass loading from the raw mass
analyser signal, and then to estimate and propagate the errors
arising from several sources along the way to the final results.
As the general methodology of AMS standard data process-
ing has fortunately been amply described (Allan et al., 2003;
Jimenez et al., 2003), as has the derivation of mass spec-
tral matrices and their error estimates (Ulbrich et al., 2009;
Zhang et al., 2005), we will only summarize the procedure
here and concentrate on the particulars that deviate from the
standard approach in our preprocessing.

The AMS data were automatically corrected for changes
in m/z axis calibration, using a time-dependent calibration
function and a set of around a dozen known marker peaks to
fit the time-of-flight to m/z calibration individually to each
measured spectrum. The peak areas of all unit m/z signals
were then integrated, with manually checked and modified
integration regions to yield the background-subtracted signal
at each m/z ratio.

The instrument signal response degrade over time was ac-
counted for by using a time period after instrument calibra-
tion as a reference point and normalizing the measured air
induced signal (airbeam, AB) to the mean value of the ref-
erence time (ABref). The normalization ratio AB/ABref, de-
scribing the instrument response to a known mass concentra-
tion of air molecules, was used as a scaling factor for all the
measured signals, as suggested by Allan et al. (2003). Due to
concerns of non-linearity of the detector response with very
high signals typical of N2 and O2, raised by the off-target
molecular ratios for air O2 / N2 / Ar, argon signal observed
at 40 Th was used as a metric for the airbeam intensity.

Airbeam non-linearity in the C-ToF-AMS is discussed in
more detail by Hings et al. (2007), who attribute it to signal
thresholding affecting low (< 1 ion per MS extraction) signals
differently from air ions with multiple ions detected in each
extraction.

The AMS fragmentation table was slightly modified to ac-
commodate for the issues arising from the modified PToF
chamber and the increased airbeam. Namely some air-related
signal ratios used in the fragmentation calculations, such as
relative air contribution to observed signals at 15, 29 and
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30 Th, were recalculated based on exact molecular ratios ob-
tained from filter runs, automatically performed every 3 h.
After this recalibration all the minor, artificial, non-air sig-
nals originally seen during filter runs (e.g. in organics and
nitrates) at the aforementioned m/z ratios were effectively
assigned to the airbeam, excluding them from further analy-
sis.

Efficiency of the ionization process was determined via
ammonium nitrate response factor calibration outlined by
Jimenez (2003) and Allan et al. (2003). Finally, collection
efficiency (CE; Huffman et al., 2005) was evaluated in rela-
tion to mass derived from a (twin) differential mobility par-
ticle sizer (DMPS; Aalto et al., 2001) after the subtraction of
black carbon (BC) given by an aerosol aethalometer (Hansen
et al., 1984). The CE correction proposed by Middlebrook et
al. (2012) was only applied to one (March 2009) out of the
three data sets used in this analysis (see Sect. 2.2), with a
small modification to the base CE suggested by the DMPS
comparison, as applying it was actually found to slightly
weaken the correlation between DMPS and AMS data in-
stead of improving it. For the other two data sets (May 2008,
September 2008) a constant CE was applied based on a lin-
ear least squares fit to best match the mass observed by the
AMS against that derived from the DMPS.

Finally matrices consisting of organic mass spectra and
their estimated errors at all measurement points, averaged
in data acquisition phase to 5 min intervals, were extracted
from the preanalysis software. The error of the organic sig-
nals at each time and for each m/z ratio were estimated and
propagated to the output matrices using the standard AMS
error calculation procedure (Allan et al., 2003; Jimenez et
al., 2003) within the AMS Sequential Igor data Retrieval
(SQUIRREL; v.1.50) analysis software programmed in Igor
Pro (Wavemetrics Inc, Lake Oswego, OR, USA).

The two matrices, one for organic mass spectra and one
for the error estimate were additionally preprocessed using
the PMF Evaluation Tool (PET; Ulbrich et al., 2009). The
preprocessing features mainly take into account an additional
correction to the error matrix from electric noise of the instru-
ment, and allow the down-weighting of certain signals with
poor SNR or those derived directly from m/z 44 (thus the
variation in m/z 44 carrying too much weight in subsequent
data analysis by default). The final mass spectral matrices
were then used as an input data for the feature extraction al-
gorithm, explained in Sect. 2.3.1.

2.2 Site, measurement campaigns and identification of
air pollution events

The experimental data used in this statistical analysis ex-
ercise originate from long-term ambient air observations at
the SMEAR II station in Hyytiälä, Juupajoki, Finland. The
particulars of the measurement campaigns, environment and
pollution events are described below.

Table 1. Time frames of measurements and numbers of successfully
extracted pollution spectra per data set.

Campaign Start date End date No. of Spectra
days extracted

May 2008 29 Apr 2008 8 Jun 2008 40 23
Sep 2008 10 Sep 2008 15 Oct 2008 35 25
Mar 2009 4 Mar 2009 29 Mar 2009 25 33

2.2.1 SMEAR II field site in Hyytiälä and the
EUCAARI measurements

As the practical example of the study is about applying our
exploratory data analytical techniques to resolve the archety-
pal air pollution classes typical of a non-urban field site,
we obviously strive for a high-quality, variable and compre-
hensive set of data to refine and test the methodology. Our
data sets of choice originate from the comprehensively doc-
umented and characterized station of SMEAR II in Hyytiälä,
during the well-covered intensive measurement EUCAARI
campaigns of 2008 to 2009 (Kulmala et al., 2009). This al-
ready rather familiar data will offer a good test bed for the
proposed methodology. Below, both the station and the in-
tensive measurement campaigns are described.

Situated in southern Finland (61◦50′40′′ N 24◦17′13′′ E)
amidst subarctic pine forest, the Hyytiälä forestry sta-
tion and the collocated Station for Measuring Ecosystem–
Atmosphere Relations (SMEAR II; Hari and Kulmala, 2005)
offer an environment that is well representative of the vast
taiga biome of northern Eurasia. While not exactly pristine,
the surrounding lands are rather unbroken homogenous pro-
duction forests consisting mainly of typical Scandinavian
and Russian taiga tree species: pines (Pinus sylvestris) spruce
(Picea abies), and to a lesser extent birch (Betula pendula,
Betula pubescens) and other deciduous broadleaf species
(e.g. species from Populus, Alnus and Sorbus genera). From
land use statistics, Williams et al. (2011) estimate that 94 %
of the local (5 km radius) and 90 % in the nearest 50 km land
area consist of forested land (including forest at seedling
or sapling state). The nearest town of Orivesi (pop. 9500)
lies 19 km due south of the station and the city of Tampere
(pop. 213 000), ca. 48 km to the south-west. The surround-
ing county of Juupajoki is sparsely populated (5–10 inhabi-
tants per km2) and while it does have some local sources of
anthropogenic air pollution, such as household heating and
cooking, they are generally very limited in terms of magni-
tude and geographical breadth.

A notable exception to the absence of major anthropogenic
pollution sources in the local environment are the two lumber
mills and the wood pellet factory in the small village of Ko-
rkeakoski, 7 km east-south-east from Hyytiälä, and the other
small sawmills further away, which do have a marked influ-
ence on the volatile organic compounds (VOC) concentra-
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tions and aerosol population of Hyytiälä when the incoming
air mass is advected over these mills (Eerdekens et al., 2009;
Liao et al., 2011). Additionally, although the local aerosol
sources such as passing vehicles, cooking emissions at the
forestry station, nearby cottage, household or sauna heating
are negligible on a large scale, they can momentarily affect
the local air quality if emitted from close enough not to be
diluted below the detection limits, and are thus detected by
many of the more sensitive, high-time-resolution instruments
at the SMEAR II stations.

Nevertheless, the preeminent cause of degraded air quality
(relative to the background) at the station is the medium-to-
long-range air convection from industrialized areas of south-
ern Finland, the St. Petersburg region in Russia in particular
(Kulmala et al., 2000; Patokoski et al., 2015; Riuttanen et
al., 2013) and even all the way from the industrial heartlands
of (mostly eastern) continental Europe (Niemi et al., 2009;
Sogacheva et al., 2005).

As it is independent of these anthropogenic components,
the local atmosphere is always influenced by the ever-present
biogenic background aerosol and biogenic volatile organic
compounds (BVOC). These exhibit their own seasonal and
diurnal variations. BVOC concentrations are generally high,
both during the afternoon due to maximum emissions and at
night-time due to the trapping of emissions in the shallow,
unmixed boundary layer (Rinne et al., 2005). The aerosol
biogenic particle mass was also higher at night due to ther-
mally driven condensation of semi-volatile species into exist-
ing seed particles. Due to the biological origin of the natural
aerosol, the biogenic aerosol background is obviously higher
in warmer months (e.g. Patokoski et al., 2014).

The relative lack of local anthropogenic sources and their
pronounced dependence on air mass origins, manifesting as
observations of isolated aerosol and gas phase plumes, make
Hyytiälä an ideal natural laboratory for studying the effects
and characteristics of local and transported air pollution on
the otherwise clean atmosphere over the expansive subarctic
biomes.

The EUCAARI study, conducted from 2007 to 2010,
aimed at examining the interactions between air pollution
and climate change (Kulmala et al., 2009). The results have
been widely published (see Kulmala et al., 2011, for a sum-
mary of findings) and include discussions, e.g. on aerosol
source apportionment and chemical ageing (Kulmala et al.,
2011; Ng et al., 2010b). The intensive observation periods of
the project took place in spring 2008, autumn 2008 and late
winter 2009. The exact time frames of the AMS measure-
ments are available in Sect. 3.1, Table 1.

An especially comprehensive analysis of the intensive EU-
CAARI AMS data is written by Crippa et al. (2014), provid-
ing a reference point to compare our results with. Their anal-
ysis provides plausible estimates of aerosol speciation using
consistent methodology. Due to the obvious limitations in-
duced by the very large number of data sets and the some-
what rigid methodology of using general reference spectra

from quite different types of environments for all the sites
and by applying rather strict constraints to their allowed vari-
ability, it is possible for the analysis to miss out on some
divergent, locally relevant phenomena. As an additional mo-
tive for this work, we aim to provide considerably enhanced
prerequisite information for applying such a factor analyti-
cal methodology to an individual site, by observing the lo-
cal anthropogenic aerosol characteristics and variation, and
tailoring the input reference spectra and variation estimates
accordingly.

2.2.2 Identification and selection of air pollution events

The term “air pollution event” is in the context of this study
defined loosely as a period of significantly increased concen-
trations relative to a stable background aerosol. This implies
that the pollution episode has a distinct beginning, a point in
time when a relatively stable background aerosol is first com-
plemented with a specific pollution aerosol, and an end, when
the pollution vanishes, leaving a background aerosol similar
in composition and mass to that observed before the event.
During the pollution episode we assume the observed total
aerosol is a two- (or in some cases multi-) component super-
position of background and chemically invariable “pollution
plume” aerosols. Although there are undoubtedly aerosol dy-
namical processes going on between the two aerosol types,
the background and the plume, we assume these to be of mi-
nor importance due to the generally short time frames of the
events. Some examples of typical pollution event types and
durations are given in the results (Fig. 1).

When basing the pollution event definition on aerosol
mass, while we can pick out the clearest instances of pollu-
tion with confidence, we run into problems when the increase
in mass concentration approaches the magnitude of noise in
the instrument. Also, after pollution events that last a better
part of a day or longer, it is questionable whether the back-
ground aerosol has remained the same and whether it is even
possible to describe the changing pollution unambiguously.
To address these issues of demarcation, we needed to define
further conditions to separate real pollution from short instru-
ment noise peaks on one hand and long periods of increased
concentrations of gradually changing or evolving pollution
aerosol on the other. Hence, the qualitative requirements of a
pollution episode to be accepted for our analysis were set as
follows.

1. A distinct temporary rise of organic aerosol mass con-
centration above background level.

2. The ability to unambiguously separate the pollution
plume from the background.

3. The supposed pollution spectra needs to be physically
reasonable (i.e. not a minor spike of instrument noise).

The above criteria were taken as qualitative, and their fulfil-
ment evaluated visually from the time series and mass spec-
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Figure 1.

tra. Still, some rough guideline values for required plume fea-
tures are given below to convey the magnitudes of the thresh-
olds used in our manual event screening.

A rough estimate of a 10 % rise of plume peak mass versus
surrounding background aerosol mass was taken as an ap-
proximate threshold for criterion 1 selection. The timescales

considered ranges of pollution events from minutes (two
data points equalling 10 min) to several days (maximum was
5 days, in the case shown in Fig. 1d). The first criterion can
thus be considered lax and likely overly inclusive. Criterion
two was much stricter and in practice required the decon-
volved pollution time series to exhibit a small enough corre-
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Figure 1. Examples of time series of extracted PMF factors for four different pollution cases, ranging from simple to very complex cases.
(a) A simple, clear case with stable background. (b) An example of a well-resolved extraction with a repeating pollution plume and two
changing background factors. While the factors are marginally correlated, the separation is still considered clear. (c) An extraction of a
weaker pollution plume factor from two temporally changing background factors. The complex event shown in (d, e) is a borderline accepted
case due to its long duration (criterion 1; Sect. 2.2.2) and presence of several pollution types (criterion 2), but was eventually accepted to the
analysis due to the clear temporal and chemical separation of the pollution factors.

lation between the temporal behaviours of plume and back-
ground aerosols: in the background time series a low level of
jitter around mean background mass during the plume was
accepted in mild cases, as long as it did not contain marked
dips (anti-correlation) or hills (correlation) matching or mir-
roring the plume behaviour. The approximate limit was that
the (anti-)correlation should not affect the pollution factor
mass by more than ±20 % due to the mass misapportionment
between plume and background. An example of such minor,
but accepted positive correlation is seen in Fig. 1d. Addi-
tionally, the pollution was required to vanish (average mass
concentration < 10 % of factor peak mass) at the background
periods before and after the event. The third criterion meant
that, on a practical level, all the spectra were required to not
resemble white noise, contain only a single variable signal
or conduct similar abnormal behaviour that would probably
arise from technical issues or analysis artefacts (i.e. factor

splitting). These stricter criteria (2 and 3) disqualified an es-
timated one-third of the sample events fulfilling criterion 1.

We note that stricter, fully qualitative and preferably
statistics-based limits for event screening would certainly
be preferential, and might enable automatic event identifi-
cation. From a more quantitative analysis the exact uncer-
tainty induced in this sample selection process could be also
derived. Our rough estimate for the magnitude of maximum
uncertainty is the 20 % deriving mainly from the effect of
mass misapportionment allowed in the correlation examina-
tion phase (criterion 2). Unfortunately, due to the chemomet-
ric focus of this study, a more exhaustive time-series-based
analysis of the phenomenon of air pollution plumes was not
achieved here.

It should be noted that, while the first and third condi-
tions could be examined using a simpler non-statistical anal-
ysis method like background subtraction, there are many
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pollution episodes where this would not suffice. While we
could define the pollution-plus-background spectrum from
the event period and the background spectrum as an average
of background before and after the event, and subtract the
latter from the previous, yielding the characteristic pollution
spectrum (e.g. in Fig. 1a) the second condition is much more
problematic if the background varies, not even necessarily in
a linear way, or several pollution plumes overlap (e.g. shown
in Fig. 1d). This especially applies to events with a long du-
ration, from several hours to even a couple of days, and to
events with multiple consecutive peaks, which still represent
the same event (case in Fig. 1b). To account for these compli-
cations we feel a more advanced data reduction method, such
as the factor analytical approach presented in Sect. 2.3.1, is
indeed required to be able to thoroughly evaluate which of
the events satisfy our selection criteria.

2.3 Statistical analysis tools

As numerous studies have already been conducted on feature
extraction and data dimensionality reduction in connection
with AMS results (Ng et al., 2010a; Zhang et al., 2011), in
this work we will focus more on classification and identifica-
tion techniques suitable for AMS data.

Based on a brief review of suitable data analytical meth-
ods, we selected the specific methods and algorithms used
in this work: for pollution feature extraction we selected a
model already tried and tested for AMS data, the positive
matrix factorization (PMF; applying the ME-2 algorithm;
Paatero, 1999) and for feature classification we use the el-
egantly simple and long-established k-means clustering al-
gorithm (MacQueen, 1967). While there exist favourable re-
views for PMF as a data reducing/receptor model, for AMS
studies (e.g. Hopke et al., 2016) no similar reviews were
found to suggest a preferential clustering algorithm for AMS
data. As k-means is often considered a default algorithm for
approaching a multitude of classification problems, we se-
lected it for this AMS spectra classification exercise. While it
will provide a baseline with which to compare future results,
k-means may not be the optimal algorithm for this purpose,
and a comprehensive evaluation of suitably different algo-
rithms would certainly be beneficial in future spectra classi-
fication studies.

In this work we will use PMF in a non-classical way,
to extract characteristic air pollution spectra from air pol-
lution plumes, which are often considered to be anomalous
data and discarded from long time series analyses. As there
often exists considerable variation among mathematically
equally good PMF solutions, termed ”rotational ambiguity”
(see Supplement Sect. S1), the issue of selecting the correct
solution needs to be resolved. We propose that in the context
of this work, selecting the PMF solution with non-correlating
time series of plume and background can be used to iden-
tify the rotation that best separates the characteristic pollution
factor, and thus largely avoids the factor analytical models’

inherent weakness of rotational ambiguity, which also afflicts
PMF (Paatero et al., 2014). We will then demonstrate classifi-
cation of the extracted spectra to aerosol types using k-means
clustering, and study the effects of simple data preprocessing
options and basic metrics for spectral (dis)similarity on these
classification solutions.

2.3.1 Positive matrix factorization (PMF) and its
application to studying air pollution plumes

In the analysis of aerosol mass spectrometric results, data re-
ductive methods are put to good use for reasons explained in
the introduction. To respond to the challenges and require-
ments posed by the AMS data, experts in statistics and mod-
elling have updated many traditional analysis tools and de-
veloped new ones to answer the specific needs of this type of
environmental data analysis. Perhaps the best-known tech-
nique developed specifically for feature extraction from en-
vironmental, multidimensional data is the use of the positive
matrix factorization (PMF) model to deconvolve and inter-
pret the enigmatic organic aerosol chemistry reflected by the
often complex AMS mass spectra.

The PMF technique developed by Paatero and Tapper
(Paatero, 1997; Paatero and Tapper, 1993, 1994) is an iter-
ative, factor analytical model to explain observations at a re-
ceptor site, i.e. time series (t) of variables (v) (in form of a
size t × v matrix X), using a bilinear combination of tempo-
ral behaviour of loadings of factors (f in a t × f matrix G)
and the factors’ time-invariant profiles (an f × v matrix F),
describing composition. If then E denotes the unexplained
residual, the difference between the model (G × F) and the
observations (X), the PMF model can be formulated

X(t×v) = G(t×f ) × F(f ×v) + E(t×v), (1)

where the subscripts indicate the sizes of matrices corre-
sponding to the number of points in time series (t), number
of factors (f ) and number of variables (v). While t and v are
decided by the set of data available (and possible preprocess-
ing), f is essentially a free parameter selected by the analyst,
as is apparent from Eq. (1). Importantly, in PMF all the en-
tries in each of these matrices are limited to positive values,
corresponding to environmentally relevant loadings and pro-
files being non-negative. This considerably reduces the num-
ber and variety of mathematical solutions to the modelling
problem, and helps to effectively filter out some of the phys-
ically unrealistic, negative solutions (Paatero, 1997).

One of the noteworthy improvements, summarized in de-
tail by Paatero and Tapper (1994), over previous feature
extraction methods such as principal component analysis
(PCA; Hotelling, 1933; Jolliffe, 1986; Pearson, 1901) is that
the PMF model does not blindly minimize E, but rather the
weighted residual. This allows for a better measure of the
amount of variation not explained by noise from the exper-
imental measurement, denoted by the standard deviation of
variables (a size t × v matrix σ ).
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Therefore, for the objective function to be minimized, Q
can be written

Qt×v =
∑t

i=1

∑v

j=1

(

Ei,j

σ i,j

)2

. (2)

That is, the squared residual to be minimized is effectively
scaled by the variance of each point in the matrix.

PMF analysis is performed for each air pollution event (de-
fined in Sect. 2.2.2) individually. The time window of the
analysis period is selected around the event to include both
the pollution episode and some background before and af-
ter the event. The advantage of studying this type of rela-
tively short-term phenomena is that we can easily evaluate
the fulfilment of the criteria outlined in Sect. 2.2.2, and we
can additionally discriminate between mathematically equal
solutions, mostly evading the issue of rotational ambiguity.
Essentially, knowing beforehand what the (qualitative) tem-
poral behaviour of a pollution and background factors should
be like (i.e. the time series of the factors should be uncorre-
lated), we can explore a number of factors and the solution
space to select the solution best fulfilling our criteria of phys-
ical correctness. By adhering to these criteria, we strive to
minimize the ambiguity related to our selection of solutions,
as well as considerably reduce the effect of subjectivity with
regard to selecting solutions.

The uncertainties and limitations in PMF are related to
measurement errors, uncertainty in data and modelling er-
rors of the PMF bilinear model and rotational ambiguity of
the PMF results (Paatero et al., 2014). Rotational uncertainty
is inherent to all linear algebraic, factor analytical models
(Henry, 1987) and arises from the existence of several model
solutions of mathematically equal rates of explanations of the
observations. Rotational ambiguity was decreased or even
eliminated as the number of zero values available in the data
increased (Anderson, 1984; Paatero and Hopke, 2009), mak-
ing this type of plume modelling by PMF propitious (as the
background regions contain ample observations close to zero
concentrations of plume chemical constituents). The topic of
rotational ambiguity is discussed in more detail, and further
references are available in the Supplement (Sect. S1). The
modelling errors in PMF relate to simplifications and unre-
alistic assumptions (e.g. unchanging factor profiles in PMF,
translating to neglecting the effect of atmospheric chemistry
on mass spectra). Paatero et al. (2014) note that the effect
of measurement (random) errors along with rotational uncer-
tainty decrease (in cases where there are more zero values
available in larger data) with increasing data set size, while
the modelling errors are exacerbated.

Regarding the PMF uncertainties overall, we propose that
aerosol plume and pollution event modelling of AMS data
by PMF generally decreases analysis uncertainty compared
to analysing the full time series, specifically in our case of
high SNR data with small random errors. The higher ro-
tational ambiguity induced by having a smaller set of data
is offset by the abundance of zero values in concentrations,

while the modelling errors from the neglect of chemistry are
decreased due to shorter analysis time windows. Addition-
ally, the selection of solution and rotation is facilitated by the
external, physical criterion of minimal correlation of factor
time series. We propose that using the [modulus of] correla-
tion minimum as a guideline for rotation selection resolves
the physically correct rotation (source-wise differentiation of
factors) from among the ones available in the solution space.

An inherent feature of factor analytical receptor models is
also that they are unable to separate components with a high
degree of correlation in profiles (spectra) or loadings (mass
concentration) (Henry et al., 1984). This problem of multi-
collinearity hinders or even prevents the extraction of spectra
from individual sources that are collocated. In such a case
a mixed air mass, e.g. one transported from an urban loca-
tion with multiple sources (traffic, cooking and combustion)
would be resolved as a single factor, the characteristic spec-
tra which would be a linear sum of the actual, single sources.
A similar effect, profile-wise, occurs with extensive oxida-
tion of organic aerosol components – the spectral similar-
ity of organic aerosol increases upon atmospheric oxidation,
leading to difficulties in differentiating between highly ox-
idized aerosol types, even if they originate from chemically
distinct emissions (Ng et al., 2010b; Zhang et al., 2011). Both
of these effects are likely to impact negatively on data reduc-
tion achieved by PMF and can carry over to clustering, which
by default assumes discrete or deconvolved samples.

Nevertheless, we should be warranted in expecting that
not all the sources are similarly collocated; thus some ex-
tracted samples indeed represent “pure” spectra from single
sources (e.g. a passing car or an individual aerosol plume
from a single smokestack close by). This would allow identi-
fication and proper handling of the mixed plumes within the
framework of sample classification and weighting, covered
in the next Sect. 2.3.2 and 2.3.4). We will evaluate and ad-
dress these issues further in light of results in Sect. 3.4 and
3.6.

2.3.2 The k-means algorithm

K-means clustering is one of the most popular, widely used
and well-known classification algorithms developed as far
back as the 1950s and 1960s (Ball and Hall, 1965; Mac-
Queen, 1967; Steinhaus, 1956). It is a simple iterative parti-
tioning clustering algorithm that partitions a set of objects in
a multidimensional space into a preset number (k) of clusters
based on a distance (or dissimilarity) metric. For each clus-
ter resulting from any partitioning solution we can calculate
a quantity measuring the cluster cohesion, a within-cluster
sum of squared distance between the calculated cluster cen-
tre µn (of a cluster cn) and all member objects xi assigned to
it. In Euclidean space we get the following:

J (Cn) =
∑

x∈Cn

‖xi − µn‖
2. (3)
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The k-means algorithm tries to minimize this quantity J (Cn)

summed over all clusters k, which we denote J (C):

J (C) =

(

k
∑

n=1

J (Cn)

)

. (4)

The iterative procedure of k-means is briefly described in the
Supplement (Sect. S2). Upon convergence with a solution,
i.e. global or local minimum of J (Cn), the output of the al-
gorithm gives the user the final assignment of points to clus-
ters, the cluster centroid locations c as well as distances from
each data point to all other points and the cluster centres.
These distances can be used to evaluate the quality of both
the entire clustering solution and the cohesion and variance
of individual clusters. It is important to note that k-means
converges on any minimum of Eq. (4) found, regardless of
whether it is global or local. Finding the global minimum is
not guaranteed but can be made more probable by performing
repetitive clustering with different initializations for starting
cluster centres and selecting the result with lowest J (C).

Further discussion on the selection of user parameters for
k-means initialization and cluster numbers is presented in
Sect. 3.2 and in the Supplement (Sect. S2). For this anal-
ysis we used a k-means algorithm applying an improved
initialization method (k-means++; Arthur and Vassilvitskii,
2007), and the number of clusters (k) was kept as a free pa-
rameter within a range of k = 2 to 20. The selection of dis-
similarity metric parameters is discussed below.

2.3.3 How to define (dis)similarity of mass spectra

Among the most important questions in clustering is the se-
lection of a measure for distance or (dis)similarity between
two objects, a topic for which there are both theoretical (An-
derberg, 1973) and experimental (e.g. Stein and Scott, 1994)
considerations to be taken into account. Fortunately for the
choice of metric we have plenty of recommendations avail-
able for our selection: there are several guidelines and recom-
mendations (e.g. Cormack, 1971; Gordon, 1999; Kaufman
and Rousseeuw, 2009) available of which similarity metric
best to apply for various types of problems, including prob-
lems related to identification, comparison and classification
of mass spectra similar to ours. As an experimental basis for
the metric comparison we cite the informative and thorough
study by Stein and Scott (1994) of NIST Mass Spectrometry
Data Center, the conclusions of whose are covered in wider
detail further below. Importantly, the distance metric selected
needs to be mathematically compatible with the type of vari-
able on hand. This point in question is addressed in Sect. S3.

Some common approaches available for and often used as
distance (d) metrics include the following:

1. the squared Euclidian distance

d (u,v) =

n
∑

i=1

‖u − vn‖
2, (5)

2. the city block distance (or “Manhattan distance”; John-
son and Wall, 1969; Carmichael and Sneath, 1969)

d (u,v) =

n
∑

i=1

‖u − vn‖ , (6)

3. the cosine distance (Sokal and Sneath, 1963)

d (u,v) = 1 −
u × v

‖u‖‖v‖
, (7)

4. the correlation distance (Fortier and Solomon, 1966;
McQuitty, 1966; Sokal, 1958)

d (u,v)

= 1 −

∑n
i=1(ui − ū)(vi − v̄)

√

(∑n
i=1(ui − ū)2

)

√

(∑n
i=1(vi − v̄)2

)

, (8)

where u and v are n-dimensional vectors corresponding to
objects (with the subscript n here corresponding to the m/z

variables), and ū and v̄ are the mean of variables in u and
v. Although often called “distances”, the squared Euclidean,
cosine and correlation measures are, strictly speaking, not
distance metrics, as they violate the triangle equality required
for a proper distance metric, and should be considered in-
stead measures (metrics) of dissimilarity between a pair of
objects (Anderberg, 1973; Spath, 1980). Other metrics obvi-
ously exist as well, but as a comprehensive review is out of
the scope of this work, we limited our comparison to these
common metrics available in our analysis software (Matlab
2015a, MathWorks Inc., Natick, MA) standard functionality.

Additionally to experimentally evaluating the metrics,
Stein and Scott (1994) recommend data-weighting methods
such as signal intensity scaling and mass scaling to be exam-
ined. They find modest improvement of a couple of percent
accuracy in the dot product (cosine) and Euclidean-based
matching when scaling the signal intensities by their square
root to emphasize smaller signals, or when scaling all the sig-
nals by a power of their “mass” (i.e. m/z ratio), placing more
weight on the higher m/z signals as a preprocessing measure.
For intensity scaling the weight given to a variable (signal at
m/z) can be expressed as

weightintensity =
√

[si]signal, (9)

where si is a (root function) intensity scaling factor. For mass
scaling the variable weights are given by

weightmass =

(

m

z

)sm

, (10)

where sm (> 1) is a mass scaling factor for the variable loca-
tions (m/z). We also test these in connection to our data and
report the results in Sect. 3.2.3.
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Although the theory and literature seem to favour the co-
sine (dis)similarity as a measure of mass spectral objects’ as-
sociations with each other, we ran several comparisons using
different parameters for k-means++ and present the results
in Sect. 3.2. To objectively evaluate and interpret the classifi-
cation results, we additionally pursued a metric other than an
expert opinion for measuring the quality of a solution. Some
alternative evaluation options are discussed and our method
of choice, the silhouette examination, is presented below.

2.3.4 Silhouettes in evaluation and interpretation of
clustering solutions

To evaluate and, to an extent, validate the clustering analysis
we need an objective, diagnostic metric to compare different
results. There are several alternatives available, four of which
we tested in relation to this work. We considered the four
evaluation criteria available in the Matlab software statistics
toolbox (R2015a), namely the silhouette (Rousseeuw 1987),
Calinski–Harabasz (Caliński and Harabasz, 1974), Davies–
Bouldin (Davies and Bouldin, 1979) and gap (Tibshirani et
al., 2001) criteria, the evaluation results of which are pre-
sented in Sect. S4, Figs. S2 to S4.

The downside of the three latter methods is that they do
not (at least unmodified) accept all non-distance dissimilar-
ity metrics such as the cosine (dis)similarity. For squared
Euclidean distance, which was compatible with the evalu-
ation functions, the methods yield mixed results. Upon ex-
amining the k-means solutions as described below in the re-
sults section, as well as looking at theoretical considerations
(Sects. 2.3.3, S3), we feel the use of non-Euclidean met-
ric may indeed be recommendable, and that the silhouette
criterion does manage to convincingly identify the number
of “natural”, physically reasonable aerosol types (clusters) –
therefore we will opt for using the silhouette value criteria
detailed by Rousseeuw (1987) in our evaluation of the clus-
tering results of this work.

Rousseeuw (1987) defines for each object i, belonging to
cluster A and having B as the nearest-neighbouring cluster, a
silhouette value of s(i):

s (i) =



















1 −
a (i)

b (i)
; fora (i) < b(i)

0; fora (i) = b(i)
b (i)

a (i)
− 1 fora (i) > b(i)

, (11)

where a(i) is the average distance to all other objects of the
same cluster (A), and b(i) is the average distance to all ob-
jects of the closest neighbouring cluster (B). For a singleton
cluster containing only one object, a(i) is not well defined.
Rousseeuw puts s(i) to zero in this case, but other conven-
tions exist that use a silhouette of one for singletons.

The silhouette value has some convenient properties for in-
terpreting the quality of the clustering assignments that can
be applied on single-point, cluster and total solution levels.

When s(i) is close to unity, the within-cluster dissimilarity
a(i) is much smaller than the between-cluster dissimilarity
b(i), indicating the point is very likely correctly grouped,
and conversely, classifying the point the next nearest clus-
ter would be a much poorer choice. On the other hand, if s(i)

is close to −1, it signifies that the next best clustering choice
would actually be a much better one than the current assign-
ment; i.e. the point is on average more similar to the points
in the neighbouring cluster than to the points in its assigned
cluster. This implies that the point is likely misclassified. If
s(i) is close to zero, the point is situated between clusters,
and it is not at all clear to which it belongs – its dissimilarity
to both of the groups is about equal (a(i) ≈ b(i)).

The average s(i) of points in a cluster of average silhouette
width expresses if a cluster is clear cut or weak: the higher
the average cluster silhouette width, the more pronounced the
cluster. A graphical representation displayed in the Supple-
ment (Fig. S5). The overall silhouette width is the average
s(i) of all the objects and can be used as a parameter to
judge the overall quality of the clustering solution. Maximiz-
ing the overall silhouette value can be used to evaluate the
“natural” number of clusters in the data (Rousseeuw, 1987),
an approach we will also utilize in this work. Some further
notes on silhouette values can be found in the Supplement
(Sect. S5).

2.3.5 Posterior processing – weighting cluster centres
and deriving within-cluster variation

The k-means algorithm yields a list of assignations of all ob-
jects to clusters and defines the cluster centres as the arith-
metic mean of the objects within the cluster. These artificially
constructed centres can be used to denote the average object
within that cluster. However, this approach is subject to one
of the main weaknesses of k-means: the susceptibility to out-
liers, borderline cases and outright misclassifications affect-
ing the cluster centre location in the same way as the ob-
jects that would be considered very appropriately clustered.
These derive directly from the simplistic functionality of the
k-means algorithm (Sect. 2.3.2), and therefore there is little
to be done to alleviate the issues outside of selecting another
algorithm.

Nevertheless, we do have additional, diagnostic informa-
tion available to us outside of the simple list returned by the
k-means algorithm; in the form of the silhouette value in-
formation calculated from the assignation listing combined
with the dissimilarity matrix. In this work we aim to utilize
the statistical information available to us to the fullest, and in
the spirit of this goal we apply a simple post-processing step
to derive weighted centroid objects to represent the groups of
objects in a more robust, classification error-resistant way.

Assuming the objects nearer the cluster centre are a bet-
ter representation of the class than the ones on the edges,
or indeed the ones likely misclassified, they should carry
more weight when a typical representative of the class is
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selected or constructed. In this work we construct charac-
teristic centroid objects, i.e. spectra, by taking a weighted
arithmetic mean of the cluster members instead of the orig-
inal, unweighted sample mean. As a weight we use the sil-
houette values indicating the confidence we have on the rep-
resentability of the object. Any likely misclassified objects
with negative silhouette values have their weight set to zero.
The weighted cluster centroid Cw can be expressed as

Cw =

∑n
i=1uiwi
∑n

i=1wi

; wi = max(0, s(i)), (12)

where ui are the cluster member objects and wi the respective
weights, i.e. the non-negative silhouette values s(i) obtained
from Eq. (11). Similarly we obtain a weighted standard de-
viation σwfor a measure of the within-cluster variation. With
a Bessel correction (Gauss, 1823) for small-sample variance,
we can write for the weighted standard deviation:

σw =

√

√

√

√

∑n
i=1wi(ui−Cw)

∑n
i=1wi −

∑n
i=1w

2
i

∑n
i=1wi

. (13)

The change in mass spectrum induced by the weighting was
determined to be extremely low, as can be seen comparing
the unweighted and weighted spectra, exemplified in the Sup-
plement, Fig. S6. For the final spectral solution presented
in this work, the similarity (r2

s , [Pearson] coefficient of de-
termination for mass-scaled spectra) between the scaled and
unscaled centroids was found to range from 0.994 to 1.000),
confirming that weighting by silhouette does not markedly
alter the resulting spectra.

Overall the variabilities represented by the weighted stan-
dard deviations are generally smaller than the unweighted
ones, due to the down-weighting of outlier objects’ influence.
The aim of this post-processing is to derive more represen-
tative characteristic mass spectra for the pollution types, and
to decrease the error from the ambiguity of the classification.
This should allow us to derive plausible estimates for the ac-
tual natural variation within a specific aerosol type.

3 Results and discussion

In the following chapter, we present some examples of pol-
lution spectrum extraction (Sect. 3.1), and evaluate the sim-
ilarity and weighting parameters used for their subsequent
grouping (Sect. 3.2). We then offer an aerosol chemical in-
terpretation for the different aerosol types (clusters) for the
grouping we consider most realistic (Sect. 3.3 and 3.4) and
further try to understand and interpret the metastructure of
clustering solutions, i.e. how the solutions relate to each
other, what drives them and how they are related to divisions
in chemical characteristics (Sect. 3.5). Finally some basic es-
timates of natural variability within the pollution types are
given in Sect. 3.6.

3.1 Extraction of pollution spectra

Although time consuming, applying the pollution feature ex-
traction approach (described in Sect. 2.3.1) to the identified
pollution events (Sect. 2.2.2) allowed us to extract the pol-
lution factors’ spectral profiles. Applying our simplistic se-
lection criteria to find the most physically correct rotation
among the solutions, we hope to have minimized the rota-
tional ambiguity, as well as the need for subjective choices by
the analyst. Following the procedure described in Methods,
we managed to extract a total of 81 characteristic mass spec-
tra, corresponding to as many unique pollution plumes. In the
Supplement, namely the local time and above-canopy wind
direction taken at the time of peak mass concentration was
recorded for all plumes. The background spectra were not
further considered in this analysis. The per-campaign distri-
bution of the successfully extracted pollution events are pre-
sented in Table 1.

Some examples of factor time series of various types of
accepted extractions are given in Fig. 1, illustrating the con-
siderable (temporal) variability in the types and conditions
of pollution events, e.g. from a single plume with a stable
background (Fig. 1a) to very complex events with multiple
overlapping plumes (Fig. 1d and e).

3.2 Evaluation of clustering parameters and
preprocessing options

As discussed in Sect. 2.3.2, there are several options for the
standard k-means clustering, particularly in terms of data
preprocessing, selecting the number of clusters and the dis-
tance metric, but also in specifying the number of repetitions,
type of clustering initialization and treatment of empty clus-
ters during the iteration process. In the course of data analy-
sis, we explored the effects of these parameters and prepro-
cessing options on the quality of our clustering solutions and
their general structures.

3.2.1 General clustering parameters

We note that using a low number of repetitions (< 10) does
not reliably return the exact same optimal solution, so there
seem to be several similar, but non-identical, local minima
as well as the global one for k-means to convergence on. A
hundred or a thousand repetitions already seem to offer con-
sistent and reproducible results. In evaluating the effects of
preprocessing, 1000 repetitions were used and in a calcula-
tion of the results selected for detailed chemical evaluation
(Sect. 3.4), the algorithm was run 10 000 times.

The clustering initialization method was not found to no-
tably affect our results in any way, at least with a generally
high number of repetitions. Due to literature recommenda-
tions based on comparison (Shindler, 2008), the k-means++

initialization by Arthur and Vassilvitskii (2007) was selected
for use.
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Figure 2. Solution silhouette value of clustering solutions for k = 2 to k = 20, for the four dissimilarity metrics (colour coded). The solid
lines depict solution silhouette values for unscaled data and the dashed lines represent the solution qualities for when data weighting is
applied (non-optimized mass scaling, sm = 1.36; Sect. 2.3.3). The 0.25 and 0.50 limit (dotted black lines) indicate lower limits above which
we could expect weak (silhouette 0.25) and strong (0.50) structures to exist in the data (Kaufman and Rousseeuw, 2009; Sect. 2.3.4).

We set the additional option “empty cluster action”, i.e.
what would happen if an empty cluster is created in the
course of the iterative process, as a “singleton”, meaning that
the point with the highest distance score to its cluster centre
was assigned its own cluster. This forces the solution to al-
ways conform to the original cluster number. Generally, an
empty cluster was produced in much less than 1 % of all the
total iterative processes, so we do not consider this to have
affected the overall result, especially since the k dependence
of the solution quality was studied in any case.

The selection of cluster number k is unquestionably of
high importance, as is the selection of the dissimilarity metric
(Anderberg, 1973; Spath, 1980; Hastie et al., 2005), so they
were more thoroughly and quantitatively investigated. Since
the above-mentioned parameters were generally found to
have a major effect on the clustering outcomes, they were not
fixed, but kept as free parameters throughout the rest of the
testing phase. This allowed us to observe whether the effects
of preprocessing procedures would be dependent on k or the
dissimilarity metric. The results of applying the commonly
used preprocessing options, namely the intensity and mass
scaling procedures recommended by Stein and Scott (1994),
Horai and co-workers (2010), among others, are presented
below.

3.2.2 Solution quality without preprocessing

Having no definitive preconception on the number of clus-
ters, we evaluated clustering results for a range of k (k =

2. . .20) for all the metrics studied: squared Euclidean, city
block/Manhattan, cosine and correlation. Using total solution
silhouette value as a solution quality indicator, we search for
the maxima (or clear elbows) in the silhouette results (Fig. 2),
implying particularly favourable solutions.

Based on the silhouette value comparison for the unscaled
data (Fig. 2) we conclude the following: the city block dis-
tance metric seems to perform poorly compared to the other
three alternatives. The squared Euclidean, correlation and co-
sine methods are more or less equal in their silhouette quality,
making the selection based on this test alone a difficult task.
We also find the silhouette values for the latter methods be-
tween values of 0.25 and 0.50, suggested by Kaufman and
Rousseeuw (1989) as a region of weak structure in the set of
data, and calling for the use of additional methods to probe
whether the implied structure is real or artificial. We addi-
tionally note that there is clear variation in silhouette values
as a function of k, indicating a lower range (k<11) solutions
are more likely to correspond to natural divisions in the data
than the high range (k>11). In the following tests we there-
fore decided to include the range of k = 2 to k = 12.
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Figure 3. A contour plot for a field of solution silhouette values for the studied dissimilarity metrics, as a function of cluster size k (x axis)
and mass scaling factor sm (y axis). The maximum near-squared Euclidean k = 2, sm ≈ 3 indicate a solution with a high silhouette, but this
solution only separates one outlier cluster (n = 3; cluster O-II, explained in the next section) from the other objects, so this solution was not
considered separately.

For additional visualization, similar diagnostics for when
(not specific metric optimization) mass scaling is applied are
also presented in Fig. 2. The example mass scaling factor sm

of 1.36, selected for the briefly illustrating the effect from
scaling, was selected based on a more comprehensive review
presented below.

3.2.3 Solution quality with mass and intensity scaling

As preprocessing options we also tested the two methods rec-
ommended by Stein and Scott (1994), namely intensity and
mass scaling of the data variables, as explained in Sect. 2.3.3,
Eq. (10). Similar to Stein and Scott, we also explore val-
ues for si ranging from 1. . .2 and sm = 0. . .3, with a step of
0.01 to pinpoint any maxima and evaluate the stability of the
results with regard to minor changes in scaling values. The
resulting 2-D field of solution silhouette values is shown in
Fig. 3, and can be thought of as an extension to Fig. 2, which
corresponds to the situation for scaling factors sm = 0 and
si = 1. Generally, the mass scaling processing was found to
enhance the cluster-like structuring of the data, enabling im-
proved differentiation between groups. It also seems there is
no single value of sm that would maximize the structure, but
the optimum scaling factor value depends on the number of
clusters (k). Even so, sm values between 1 and 2 seem to
produce the highest silhouette values for all metrics. If opt-
ing for the use of a single sm value for similar AMS data,
we therefore suggest, based on sm distribution of solutions
shown in Table 2, an sm of 1.36±0.24 (mean ± SD) to be ex-

amined as a starting point. When comparing the scaled result
silhouettes from non-preprocessed data, the improvement is
non-homogeneous, and seems to specifically enhance some
solutions over others, as illustrated in Fig. S7.

Similarly, intensity scaling was charted for k = 2. . .12 and
si = 0. . .3. However, unlike mass scaling, intensity scaling
only seems to deteriorate the solution quality for our AMS
set of data, for the entire range of si values tested (0 to 1).
The effect of intensity scaling is illustrated in Figs. S8 and
S9. Based on this result, we would not recommend intensity
scaling for a data set of this type without further results to the
contrary.

Finally, we tested the combination of mass and intensity
scaling, but found the results worse than for mass scaling
alone. We additionally tested two methods with similar aims,
namely omitting the low end mass spectrum < 45 Th and
down-weighting m/z 44-related signals, similarly to the stan-
dard procedure in preprocessing PMF matrices, explained in
Sect. 2.1.2. While omission of low masses seems to generally
improve classification considerably (Sect. S3 and Fig. S1),
we find the method too arbitrary to recommend, and find
mass scaling can be used to produce similar results with bet-
ter founded, more elegant methodology. The tests on m/z 44
down-weighting were inconclusive at best and would require
further testing to be validated as a procedure with positive
effects on clustering structure.

In conclusion of the preprocessing methods, we find
mass scaling is the only method to consistently (but non-
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Table 2. Diagnostics values, clustering parameters and cluster populations for solutions of 6 to 10 clusters. Oxidation level is described for
each cluster centroid and potential sources are (preliminarily) identified. Within-cluster silhouette values are colour coded for readability
(< 0.24 orange, 0.25. . .0.49 yellow, > 0.5 green). Solutions chosen for further analysis (correlation k = 8 and k = 10) are highlighted in red.
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sqEucl

1.32 6 0.463023 0.55 17 0.47 23 0.38 10 0.38 5 0.47 3 0.77

Corr

1.62 6 0.455023 0.66 17 0.51 21 0.30 11 0.33 6 0.15 3 0.90

1.23 7 0.462723 0.65 17 0.57 15 0.25 9 0.41 8 0.35 6 0.08 3 0.86

1.21 8 0.489823 0.65 17 0.56 15 0.25 9 0.41 8 0.35 5 0.48 3 0.86 1 N/A

1.42 9 0.468621 0.65 16 0.53 12 0.34 7 0.32 10 0.33 6 0.16 5 0.49 3 0.89 1 N/A

1.36 10 0.467621 0.64 16 0.54 11 0.35 6 0.28 3 0.17 9 0.37 6 0.23 5 0.49 3 0.88 1 N/A

Cos

1.66 6 0.451423 0.63 17 0.49 20 0.31 12 0.38 6 0.13 3 0.88

1.69 7 0.475523 0.63 17 0.47 20 0.32 12 0.38 5 0.50 3 0.88 1 N/A

1.15 8 0.481223 0.63 17 0.54 13 0.38 9 0.35 10 0.24 5 0.47 3 0.82 1 N/A

0.96 9 0.453121 0.64 16 0.54 13 0.23 8 0.32 9 0.34 5 0.25 5 0.44 3 0.79 1 N/A

homogeneously) enhance the data cluster structure. Whether
the other procedures mentioned above might under certain
circumstances or specific combinations also prove beneficial,
is a question left for a more detailed future study. In the fol-
lowing, we will overview the silhouette maxima obtained us-
ing variable mass scaling, as presented in Fig. 3, and the in-
formation it reveals on the general structures within our set
of data.

3.3 Overview of the clustering results

Having utilized the optimized parameters and preprocessing
methods, based on the test results, we are yet left with a num-
ber of plausible solutions of almost equal mathematical qual-
ity. These solutions, shown as the bright silhouette maxima in
Fig. 3, are connected to various structures in our set of pol-
lution data. In the following we will try and interpret these
data structures both from mathematical and physicochemical
viewpoints.

Beginning with an overview of the favourable solutions of
highest mathematical quality, we located and tabulated the
maximum silhouette values obtainable for each dissimilarity
metric and each number of clusters k. Examining the cor-
responding silhouette value distributions (Fig. S10), we set
0.45 as the prerequisite value for a solution to be included
in this comparison. This translated to 12 solutions (i.e. max-
ima for the solution regions with silhouette > 0.45) being se-
lected for a detailed, manual examination and interpretation.
The silhouettes of the top solutions and k are presented in
Table 2.

A brief overview of the k values associated with high-
est silhouette solutions k (Fig. 3) suggest our set of objects
would best be divided either in

a. two distinct classes, emerging from the original data
without any mass scaling, or

b. a more complex classification leading to 6 to 10 separa-
ble classes when optimized mass scaling is applied.
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Figure 4. Weighted cluster centroid spectra for solution k = 2 (correlation and cosine) for the non-preprocessed data set. The k = 2 division
appears to be driven mainly by age of the aerosol; cluster A corresponding to aged and cluster B to fresh aerosol. The error bars denote
weighted within-cluster standard deviation.

We hypothesize that these alternative classifications corre-
spond to different types of structures present in the data –
a two-cluster structure would imply separation based on a
dominant, binary-type variable, or a two-part division along
a single axis (i.e. dimension, property), whereas 6 to 10 clus-
ters likely imply divisions along more than one dimension.
In the following we first investigate and interpret the binary
(two-cluster) structure (Sect. 3.3.1), and subsequently aim to
explain the finer, multidimensional structures and classifica-
tions reflected by the 6 to 10 cluster solutions (Sect. 3.3.2).

3.3.1 The two-cluster solution – separation by
oxidation state

The two-cluster (sm = 0) solutions, obtained with both co-
sine and correlation metrics, produce the exact same biclus-
ter division of objects. To understand the reasoning of this
separation, we need to examine the aerosol chemical differ-
ences between the two classes implied by the division. After
constructing the mass spectra from weighted cluster centres
(Fig. 4), we interpret the main chemical difference between
the groups is the age (i.e. oxidation level) of the aerosol.
Approximated oxygen-to-carbon (O : C) ratios can be calcu-
lated using Aiken’s “ambient” parameterization (Aiken et al.,
2008) of

O : C(f44) = 382 × f44 + 00794, (14)

where f44 is the fraction of total signal observed at 44 Th.
This would yield an O : C of 0.51 for cluster A, branding
it intermediately aged and semi-volatile (Canagaratna et al.,
2015; Ng et al., 2010b), whereas cluster B’s O : C of 0.16
would imply it consists of fresh, hydrocarbon-dominated

aerosol pollution cases situated oxidation-wise somewhere
between HOA and SV-OOA (Aiken et al., 2008; Jimenez et
al., 2009; Ng et al., 2010b).

It should be noted that without mass scaling this separa-
tion is thus the most natural one (with silhouette maximum
at k = 2; Fig. 2). The result is rather unsurprising consider-
ing the several low m/z (< 45 Th) oxidation-related signals
(16 to 18, 29, 44 Th) usually dominating the signal frac-
tion distributions. However, as the result also holds when
down-weighting m/z 44 Th-derived signals, as mentioned in
Sect. 3.2.3, we believe the two-factor solution is an actual,
true structure in the data, as opposed to an artefact of the
AMS fragmentation table calculations. We therefore con-
clude that the two-cluster structure represents aerosol clas-
sification into very fresh (cluster B) and relatively more aged
(cluster A) groups.

3.3.2 Interpreting the underlying structures of higher
order (k = 6. . .10) solutions

As the number of plausible solutions with similar magnitude
(0.45 to 0.49) silhouettes for the preprocessed set of data is
larger than just a few, we will not thoroughly describe all the
solutions here or at this point claim one is superior to the
others, but instead try to formulate a synthesis of the results,
and identify the common features exhibited by the solutions.

When looking at all highest total silhouette values of the
solutions, excluding the two-cluster solutions covered above
and inspecting the mass spectra derived from the cluster cen-
troids, we can find several analogous characteristics shared
by essentially all the solutions. Presenting an overview of
the k = 6. . .10 solutions in a tabular format (Table 2), we
can begin to understand the underlying structures in com-
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mon: firstly, there seem to be two ever-present, clear-cut clus-
ters (silhouettes > 0.5) with high within-cluster silhouettes of
0.55. . .0.66 and 0.47. . .0.57, labelled here as strong clusters
(S-I, S-II), with minor variations in cluster population size or
the resulting centroid spectra.

Secondly, there seems to always be a group of two to three
outlier clusters (O-I to O-III), each with very unique indi-
vidual mass spectra. Here we brand them outlier groups due
to their small cluster populations (n = 1. . .6) and the striking
dissimilarity to other observed groups (additionally quanti-
fied in Table S1). While examining the changes in within-
cluster silhouettes, we find the inclusion of the third, single-
ton outlier (O-III) in its own class a marked improvement
to the solution in terms of cluster cohesion – a change also
reflected in enhanced total solution quality when O-III is in-
cluded.

The remaining clusters are much less pronounced (within-
silhouettes typically < 0.4), and much less stable as k is in-
creased – they clearly present the biggest challenge for this
type of analysis. For the purposes of easy reference we term
them the weak clusters (W-I to W-III).

Observing the composition of the weak clusters, they seem
to form a structure independent to those of the clear-cut and
outlier groups; the sum of population over the weak clusters
is rather invariable (n = 32. . .35), and only in very few cases
is there disagreement between the solutions in assigning an
object into strong versus weak clusters. This potentially sug-
gests the weak structure forms a supercluster distinct from
both the strong and the outlier clusters. The inner cohesion
of this supercluster, however, seems low, as evidenced by the
low within-cluster silhouettes and the interchangeability in
assignments into subclusters between equally good total so-
lutions.

To examine the effect of outliers in data, we additionally
excluded the outlier and/or the strong clustered objects and
reran the analysis for the remaining data, but the results were
found to revert to an analogous situation with the same prob-
lem of silhouette-wise ambiguity and low inner cohesion of
the weak subclusters.

From examining the within-cluster silhouette values of the
clusters we would be inclined to look primarily to the Table 2
solution at k = 8 for a correlation metric solution, due to the
highest mathematical solution quality (silhouette 0.49) and
reasonable (silhouette > 0.25) cohesion for all of the weak
clusters. However, at this point we feel we have reached the
limit of what we can conclude based on the silhouette values
alone, and also have to consider the aerosol chemical inter-
pretability of the solutions.

3.4 Aerosol chemical interpretation of clusters

As ever, when applying inherently mathematical algorithms
such as PMF2/ME-2 and k-means++ to physical or chemi-
cal experimental data, it is important to remember the algo-
rithms are, in the end, only analytical tools that in the best

case help in answering a particular question or gaining fur-
ther understanding of the data. Their ultimate usefulness is,
therefore, measured by the interpretability and applicability
of the answer in the physical or chemical context, as much as
its methodological robustness and statistical (un)certainty. In
this work, the final test of our methodology is to see if we can
understand the resulting cluster assignations in the context of
aerosol chemistry and to interpret the clusters as air pollution
types.

When interpreting aerosol mass spectra measured from
ambient air, it should be kept in mind that the aerosol is
not only the product of the primary emission or nucleation,
but also the physicochemical processes taking place post-
emission. These notably include condensation and evapora-
tion of trace gases, as well as interaction with other aerosol
types. In particular, it has been suggested that the interactions
between the primary and secondary aerosols, and likewise
anthropogenic and natural ones and their precursors, may
play a considerable role in forming and transforming the at-
mospheric aerosols we observe (e.g. Weber et al., 2007; Carl-
ton et al., 2010). These interactions are poorly understood
and usually not taken into account when analysing ambient
observations. It seems likely, though, that these effects would
hinder attempts of classification by smearing out differences
between aerosols from various different sources.

Also, the issues caused by collinearities in loadings (i.e.
the inability of PMF to separate collocated single sources,
but rather produce an extraction containing a linear combina-
tion of the single sources) may produce samples with inade-
quate deconvolution, which would exhibit a superposition of
spectral features of many aerosol source types. In the clus-
tering phase, these samples would be expected to show up
as between-cluster objects, falling between the “pure” sam-
ples, and exhibiting low silhouette values. The posterior pro-
cessing (Sect. 2.3.5) we applied should thus down-weight
these mixed observations, diminishing their influence on the
final cluster centroids. The collinearity problems caused by
spectral profile similarities, on the other hand, are harder to
resolve. In case of high similarities between spectral pro-
files from various combustion processes (hydrocarbon-like
organic aerosol (HOA) vs. cooking organic aerosol (COA)
vs. biomass burning organic aerosol (BBOA); Mohr et al.,
2012) as well as the tendency for the most highly oxidized
organized aerosols to closely resemble each other (Ng et al.,
2010b; Zhang et al., 2011), the low dissimilarities between
the objects hinder robust classification even if PMF manages
to correctly extract these spectra from the background. In
the end, differentiation between highly similar spectra comes
down to the quality of (a) the classification algorithm, (b) the
dissimilarity metric and (c) the data-weighting optimization.
Although our algorithm selection was fixed in this work,
the parameter optimizations described in Sect. 3.2 should
provide us with an improved resolution for examining the
aerosol chemical classes and structures in the set of data.
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For AMS data we are fortunate to have access to years of
research by the worldwide AMS users’ community and the
numerous studies reporting compositions of various aerosol
types, which significantly helps us in understanding the clus-
ter centroid spectra. An especially helpful information repos-
itory relevant for any AMS-related mass spectral identifica-
tion and comparison exercises, such as the problem at hand,
is the AMS spectral database (described by Ulbrich et al.,
2009), containing a total of 248 unit resolution AMS spec-
tra from both ambient air, chamber and combustion exper-
iments. The spectra contain examples of source-attributed
aerosol types obtained in laboratory experiments or ambi-
ent aerosol feature extraction, various averaged mass spectra
of ambient aerosols over longer periods and laboratory stan-
dards measured using the AMS. As the spectra are obtained
using many different AMS variants and under very differ-
ent conditions, not all the spectra contain the same variables
(m/z) or are normalized in a standard way, which may cause
uncertainty when comparing spectra.

To help interpret our obtained clusters we calculated the
similarities between the AMS spectral database specimens
and the mass spectra derived from our cluster centroids.
Where needed we would then refer to the specific publica-
tions describing the details of the comparison spectra of in-
terest. As a measure of similarity we use the metric found
to perform best for the tested data set (as per evaluation in
Sect. 3.2), the Pearson product-moment correlation (Eq. 8),
scaled dynamically by (m/z)1.36. We believe to have shown
mass scaling is advantageous also for measuring the similar-
ity of AMS spectra, as it is well known to improve spectral
similarity comparisons in mass spectrometric applications
(e.g. Horai et al., 2010; Kim et al., 2012; Stein and Scott,
1994), and will thus use rs and r2

s as measures of similarity
between a pair of spectra instead of the uniformly weighted
r and r2. Only correlations with p<0.05 are considered.

As mentioned in Sect. 2.2, information on pollution event
hourly times and peak wind directions was logged during the
feature extraction analysis. The summary of these diagnos-
tics sorted according to clustering results are shown in the
Supplement (Sect. S9; Figs. S11, S12). However, due to the
small number of objects in most clusters, sample sizes are
too low for solid conclusions to be made from this auxiliary
data.

3.4.1 The strong clusters – biomass burning and
sawmill pollution

The clusters we can identify, quantify and interpret with high
confidence are the strong clusters (S-I and S-II), clearly set
apart by the k-means++ algorithm.

Looking at the correlations with database spectra, we find
the first cluster (S-I) correlates highly (r2

s = 0.85) with the
PMF-derived semi-volatile oxidized organic aerosol (SV-
OOA) spectra reported by Ng et al. (2010a) as an average
spectra of 15 ambient AMS data sets, and also correlates

with several other SV-OOA mass spectra from the database.
The cluster S-I mass spectrum also correlates highly with
most laboratory-generated boreal-forest-relevant secondary
organic aerosols, e.g. those from α-terpinolene (r2

s = 0.91),
α-terpinene (0.90), α-pinene (0.87), α-humulene (0.84) and
myrcene (0.82) oxidation by ozone, reported by Bahreini et
al. (2005). The spectrum also seems to closely match the bio-
genic background aerosol mass spectrum generally observed
at the station when anthropogenic sources are absent. This
type of spectrum has also been reported previously for the
site, for example by Allan et al. (2006). As the strong plume-
like nature of these air pollution events makes the possibility
of a purely natural source for this aerosol type unlikely, we
investigated the wind direction patterns during the peak con-
centration of the events classified in this category, along with
the location of potential local and regional aerosol sources
(Figs. S11, S13 to S16). Based on this auxiliary information,
we conclude that the aerosol plumes likely originate from
the nearby sawmills at Korkeakoski, situated some kilome-
tres from the station, also matching the monoterpene plume
observations of Liao et al. (2011). Despite the chemical sim-
ilarity to natural semi-volatile background aerosol in boreal
forest (e.g. OOA 2 from the work of Corrigan et al. (2013),
the PMF model does manage to reliably discriminate the
sawmill plume factor from the background, so it seems ev-
ident the two mass spectra have differences. We hence la-
bel this aerosol type the “sawmill secondary organic aerosol”
(sawmill SOA), and hypothesize that it is formed via gas-to-
particle conversion from the BVOCs emitted in large quan-
tities as wood is cut and subsequently dried at the sawmills.
Notable in this spectrum type is the almost complete lack of
signal at 57 Th (corresponding to C4H+

9 and C3H5O+; Mohr
et al., 2012), a very typical peak to occur in most other an-
thropogenic AMS spectra.

The second cluster that can be easily identified is S-II.
The absolutely highest correlation (r2

s = 0.97) within ambi-
ent spectra is the PMF-derived, aged, low-volatile biomass
burning organic aerosol (OO2-BBOA) quantified by Crippa
et al. (2013) for metropolitan Paris aerosol and with other
similar, highly oxidized specimen, e.g. the low-volatile ox-
idized organic aerosol (LV-OOA; r2

s = 0.93) observed by
Lanz et al. (2007a) in wintertime Zurich, and suggested in
their analysis to have originated from wood burning. Of the
laboratory spectra, it closely matches the spectra collected
during a burning experiment for oak smouldering (Weimer et
al., 2008; r2

s = 0.85) and burning a type of undergrowth veg-
etation (sage rabbit bush; r2

s = 0.88; Fire Lab at Missoula
Experiment FLAME-1 – spectra submitted to AMS spec-
tral database by J. Kroll). We name the S-II cluster “anthro-
pogenic low-volatile oxidized organic aerosol” (A-LV-OOA)
since, while it contains low numbers of biomass burning
marker signals (m/z 60, C2H4O+

2 and m/z 73 Th, C3H5O+
2

fragments from the anhydrosugar levoglucosan; e.g. Elsasser
et al., 2012; Cubison et al., 2011; Schneider et al., 2006),
their ion concentrations remain low (f60 + f73 < 0.01) and
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Figure 5. Mass spectra derived from [correlation, k = 8] clusters S-I (sawmill-SOA) and S-II (A-LV-OOA). Error bars indicate within-cluster
variability (silhouette-weighted within-cluster standard deviation).

thus we are hesitant to say the aerosol is from biomass exclu-
sively. As discussed in Sect. 2.2.1, despite limited population
in the area, domestic wood burning is common in rural Fin-
land for domestic heating during the cold season and recre-
ational purposes (saunas, barbeques) during the warmer sea-
son, and it has been shown biomass burning smoke is rapidly
oxidized upon release to the atmosphere (Hennigan et al.,
2011; Cubison et al., 2011), producing low-volatile aerosol
compounds in a matter of hours. It is also known (Ng et al.,
2010b; Zhang et al., 2011) that upon reaching a high-level of
oxidation, most aerosols start to resemble general LV-OOA,
as they gradually lose their unique mass spectral features,
making it plausible that the pollution aerosols in cluster S-II
are from different sources. However, compared to the highly
oxidized, biogenic background LV-OOA the S-II mass spec-
trum exhibits the m/z 57 and 60 Th anthropogenic markers
and is missing the characteristic, large 53 Th peak generally
reported in boreal forest biogenic background aerosol (e.g.
OOA-1 reported by Corrigan et al., 2013). As the plume-like
nature of the studied pollution episodes would also imply an-
thropogenic sources over natural ones, we conclude that S-II
is almost certainly of anthropogenic origin.

The mass spectra of biomass burning and the sawmill
aerosol groups, derived from the highest silhouette (0.49) so-
lution (correlation, k = 8) are depicted in Fig. 5.

3.4.2 The weak clusters – anthropogenic fresh and
semi-volatile aerosols from traffic, biomass
burning, cooking and industry

Whether due to a very low number of observations, limits
imposed by instrument SNR ratio, high chemical similarity
between the weak clusters or inconclusively resolved PMF
extractions due to plumes consisting of multiple sources,

the mass spectral structures separating the weak groups of
aerosols from each other is much less pronounced than the
division between the strong and the outlier cluster charac-
teristic spectra relative to other aerosol types. Although it
is hard to judge based on this set of data alone, we think
the faults lie mostly with the collinearity issues arising from
the chemical similarity and/or source collocation hypotheses,
since the number of observations related to the weak groups
overall is quite large (around 40 % of total) and the instru-
ment SNR seems to enable the classification of other groups
without ambiguity. From the general outlook of the weak
clusters’ spectra we observe many hints (low m/z 44 Th sig-
nal, pronounced 55 and 57 Th peaks, distinct repeating spec-
tral structure at 65. . .83 Th) pointing to the direction of fresh
anthropogenic combustion-originating aerosols.

The actual differentiation between AMS aerosol spectra
from cooking, and traffic is notoriously hard for unit mass
resolution spectra, as discussed by Mohr et al. (2012), and
is traditionally mostly based on the relative abundances of
signals at m/z 55 and 57 Th. Mass spectral differentiation
between fresh BBOA and COA is even harder, as their char-
acteristic unit-resolution spectra are near indistinguishable
– we calculated a similarity of r2

s = 0.83 between (unit-
resolution converted) COA and BBOA spectra from the data
of Mohr et al. (2012). The nature of cooking fuel (e.g. wood,
coal, natural gas) and use of cooking oil also likely affects
the resulting COA spectrum and its similarity towards either
HOA or BBOA.

Looking again at the highest silhouette solution (correla-
tion, k = 8), the fresh aerosol types with the lowest O : C are
clusters W-II (O : C = 0.15) and W-III (0.15). Cluster W-
II translates to a characteristic spectra that best correlates
with hydrocarbon-like organic aerosol (HOA) reported by
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Figure 6. Mass spectra corresponding to clusters W-I (A-SV-OOA), W-II (HOA) and W-III (COA). Error bars denote within-cluster vari-
ability (silhouette-weighted within-cluster standard deviation). Solution for correlation k = 8.

Ulbrich et al. (2009; for Pittsburgh), Crippa et al. (2013;
Paris), Lanz et al. (2007a; Zurich), and the average HOA
of 15 data sets described by Ng et al. (2010b) with respec-
tive r2

s ’s of 0.92, 0.91, 0.90 and 0.92. Similarities with lab-
oratory data are observed with aerosol specimen such as lu-
bricating oil aerosol (r2

s = 0.87), diesel bus exhaust (0.90)
and fuel (0.77), reported by Canagaratna et al. (2004), but
notably high similarity also exist with mass spectra from
burning plastic (0.96) and the aerosol products of various
cooking experiments (r2

s = 0.84. . .0.92), described by Mohr
et al. (2009), as well as laboratory spectra of decanal (0.86)
and hexadecanol (0.84) measured by Alfarra et al. (2004).
However, the similarities of W-II spectra to reputable cook-
ing organic aerosol spectra, extracted from comparable ambi-
ent observations (e.g. Mohr et al., 2012; Crippa et al., 2013)
are notably lower (0.62; 0.71), compared to the aforemen-
tioned indications that this aerosol class would be related to
traffic-related HOA. The ratio of m/z 55 : m/z 57 signals for
this aerosol type is 1.17, agreeing with findings by Mohr et
al. (2012) for HOA.

The wind direction analysis combined with a potential
source survey (available in Sect. S9; Figs. S11, S13 to S16)
additionally points to the conclusion that the source of this
aerosol is in the sector with a nearby public road. We thus
term W-II as hydrocarbon-like organic aerosol (HOA) in ac-
cordance with AMS aerosol naming conventions.

The other “fresh” aerosol type, W-III (Fig. 3.6) exhibits
highest similarities (r2

s = 0.88, 0.86) with the aforemen-

tioned ambient cooking aerosols, measured in Barcelona
(Mohr et al., 2012) and Paris (Crippa et al., 2013) while
correlating markedly less (0.53. . .0.72) with the HOA spec-
tra of the database. Laboratory spectrum matches are with
charbroiling (0.72; Lanz et al., 2007a) β-caryophyllene
(0.87) and β-pinene (0.75; Bahreini et al., 2005), the for-
mer sesquiterpene being an important constituent in many
essential plant oils used in cooking. Moderate correlations
(r2

s = 0.56. . .0.70) are found with Mohr et al. (2012) cook-
ing aerosol specimen and the various smoke chamber spec-
tra from FLAME-1 (0.36. . .0.79) mass spectra (Fire Lab at
Missoula Experiment – spectra submitted to AMS spectral
database by J. Kroll). Signal ratio m/z 55 : m/z 57 for the
W-III spectrum is 3.14, which, when interpreted in accor-
dance with the COA estimation method introduced by Mohr
et al. (2012), suggests this aerosol type would be cooking re-
lated. We therefore label the W-III cluster as cooking organic
aerosol (COA). However, in the end, due to the close simi-
larity of COA and BBOA (Mohr et al., 2012), we cannot rule
out the possibility of fresh biomass burning or combustion
aerosol from barbeques also contributing to this mixed class
of observations.

Separating both of these fresh two subclasses from the
weak supercluster leaves us with the semi-volatiles species in
the form of one to three clusters. The solution with one semi-
volatile aerosol pollution type, W-I, in (correlation, k = 8) is
mathematically the most robust one.
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W-I pollution type exhibits mixed mass spectral character-
istics between the HOA and COA types (Fig. 6). The main
difference with the former two-cluster spectra is the spectra
from the remaining part of the weak cluster (W-X) group im-
plies a considerably higher oxidation state (estimated O : C
ratio of 0.40 compared to 0.18 and 0.15 for HOA and COA;
Aiken et al., 2008; Eq. 14). The library spectra similarity
examination brands this aerosol a general semi-volatile ox-
idized organic aerosol (SV-OOA), with the closest similar-
ity to SV-OOA observed in Barcelona (r2

s = 0.91; Mohr et
al., 2012) and Pasadena (r2

s = 0.88; Hersey et al., 2011).
The similarities to ambient urban aerosols, HOA and COA,
as well as traffic-, burning- and cooking-related laboratory
spectra, are generally moderate to high (typically 0.5. . .0.8)
but with no real pointers to a single, dominant type of ori-
gin over the others. The ratio of m/z 55 : m/z 57 of 1.57
is between that of the HOA (1.17) and COA (3.14) spec-
tra (Mohr et al., 2012) and the higher m/z range (45 to
100 Th) seem to offer little in terms of features distinct from
COA and HOA. We brand W-III a A-SV-OOA, for anthro-
pogenic semi-volatile oxidized organic aerosol, to separate it
from the biogenic and natural SV-OOA types, such as semi-
volatile forest background or sawmill-SOA aerosols, as the
close connection to combustion-related aerosol types seems
evident based on the (dis)similarities between the clusters.
We hypothesize that this aerosol type is a mixture of anthro-
pogenic aerosols from various origins, such as traffic, cook-
ing and possibly industrial processes, the common feature
of which is that they have been subjected to some oxidation
and mixing, smearing out the characteristic features of more
distinct classes of aerosols such as the fresh HOA and COA
types.

However, we will also present an on-going interpreta-
tion based on the k = 10 (correlation) solution with three
separate A-SV-OOA factors: we suggest these three classes
could be interpreted as source-specific anthropogenic SV-
OOA types. We hypothesize that the differences between
the fresh aerosol types, sorted according to their emission
source, are not yet completely smeared out by an intermedi-
ate level of oxidation. This would allow k-means++ to dif-
ferentiate (albeit with much less confidence) between the A-
SV-OOA types, resulting in differentiation based on origin
either from traffic SV(HOA), cooking SV(COA) or biomass
burning SV(BBOA), shown in Fig. 7.

This interpretation is indeed supported to some extent by
the correlation examination against HOA, COA and BBOA
spectra of the AMS spectral database (Table S3 in the Sup-
plement), and in the case of SV(HOA), the only group with a
moderate number of observations (n = 11), also by the wind
direction analysis, pointing to the south-to-west sector with
the main nearby roads as the sector of origin (Figs. S11 and
S13). To corroborate this finer source specific differentia-
tion of A-SV-OOA, however, a larger amount of observations
would certainly be beneficial.

3.4.3 The outliers – amine compounds from
biogenic sources?

While the spectra examined thus far seem interpretable in the
“traditional” framework of AMS aerosol-type classification
(LV-OOA, SV-OOA, BBOA, HOA, COA), the outlier clus-
ters do not fit these conventional categories. There are also
no spectra matching our observations in the AMS spectral
library. We therefore additionally examine the spectral fea-
tures and compare them to observations in other mass spec-
trometry literature.

To begin with, we note the distinctive feature of all the
mass spectra outlier clusters are rather “exotic”, at least in an
AMS context, with peaks at 58, (72), 86 and 100 Th (Fig. 8).
These even molecular masses are relatively rarely observed
in the AMS organic spectra due to the nitrogen rule implying
the presence of a nitrogen atom. The homologous ion series
of amine compounds (CnH2n+2N+) yields masses 30, 44, 58,
72, 86, 100 Th (Kraj et al., 2008), exactly matching the peaks
not obscured by other large ions, which suggests the presence
of various amine compounds.

Ge et al. (2011) calculated in their review article a grand
total of 67 aerosol phase amine observations (1972–2009).
Amine spectra with some similar features have been ob-
served elsewhere (Aiken et al., 2009; Huffman et al., 2009;
Sun et al., 2011; Chang et al., 2011), and amines have been
postulated to contribute to the AMS organic signal at 30 Th
at the SMEAR II station (Allan et al.,2006). None of the
studies cited offer a close match, however, and many of the
main spectral features and signal ratios differ markedly from
the ones seen here. Additionally, some rather similar spectra
have been presented by Murphy et al. (2007), who measured
secondary aerosol generated from various aliphatic amines
using an AMS, and the 70 eV electron impact ionization
spectrum of trimethylamine, available from the US National
Institute of Standards and Technology (NIST).

The aerosol phase amine sources have thus far mostly been
attributed to either local industrial pollution or marine bio-
logical production (see Ge et al., 2011 for a review of obser-
vations). In our case both of these sources would be surpris-
ing considering the inland location and the scarcity of nearby
industrial plants, along with the apparent seasonal depen-
dence of the observations (only observed in the springtime
measurements). However, we cannot rule them out at this
point. As additional hypotheses for the origin we offer the
following: (1) biodegradation-produced volatile aerosol pre-
cursors released at snowmelt (Kieloaho et al., 2013; Kuhn
et al., 2011), (2) manure application to agricultural fields
or amine emissions from nearby cattle farm (Schade and
Crutzen, 1995; Ge et al., 2011; Kuhn et al. 2011; Sintermann
et al., 2014; Sect. S12, Fig. S14) and (3) biogenic amine
emissions (Kieloaho et al., 2013) related to clear-cutting a
nearby patch of forest (Virkkula et al., 2014).

An additional discussion on the amines and their poten-
tial origins is available in the Supplement (Sect. S12). This
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Figure 7. Mass spectra for the correlation k = 10 solution, dividing the intermediate oxidized objects into three groups, labelled here,
according to their proposed sources, as W-Ia (SV(HOA)), W-Ib (SV(COA)) and W-Ic (SV(BBOA)). Error bars represent within-cluster
variability (silhouette-weighted within-cluster standard deviation).

section also includes a discussion on alternative sources for
these signals and, while the final decision on the sources and
origins of the outlier clusters’ spectra remains speculative,
we believe the most likely explanation is the amine com-
pounds. Therefore we name the outlier I-III peaks “amine-
58” (O-I), “amine-100” (O-II) and “amine-86” (O-III) with
respect to their major characteristic peaks, most likely cor-
responding to fragment ions with elemental composition
CH4N+ (at m/z 30 Th), C2H6N+ (44 Th), C3H8N+ (58 Th),
C4H10N+ (72 Th), C5H12N+ (86 Th) and C6H14N+ (at
100 Th).

3.5 Interpretation of spectral structures and main
dimensions defining the pollution types

Below we try to summarize what we consider the most im-
portant dimensions or axes, on which the more complex
(k = 6. . .10) classifications would be based, and their inter-
pretation in an aerosol chemical framework.

3.5.1 Oxidation level and aerosol age

Traditional AMS spectral analysis revolves around studying
the process of oxidation or the ageing of an aerosol particle
in the atmosphere. The oxidation process depends on par-
ticle chemical structure, number and type of oxidant radi-
cals available and the time spent in the atmosphere, so it
is highly variable and difficult to model. From this branch

of study and the connection of volatility to oxidation level
(Donahue et al., 2011, 2012; Kroll et al., 2011; Jimenez et
al., 2009), some of the “standard” labels for atmospheric pro-
cessed aerosol types (LV-OOA, SV-OOA) also originate. It
has been known for a long time in the AMS community that
mass spectra peaks such as m/z 43 Th (C3H+

7 fragment from
alkyl group molecules and C2H3O+ from non-acid organic
oxidation products; e.g. Ng et al., 2011) and 44 Th (CO+

2 ;
common fragment from carboxylic acids; Duplissy et al.,
2011), as well as their relative contributions, are good indica-
tors of oxidation (Aiken et al., 2007; Ng et al., 2011; Cana-
garatna et al., 2015). Upon ageing, the fraction of organic
aerosol signal observed at 44 Th (f44) and O : C ratio of a par-
ticle increase, and the marker for fresh emissions, m/z 43 Th
signal goes down along with most high mass (> 45 Th) sig-
nals. Agreeing with the clear separation of aerosol types by
age found in the clustering solutions of this work, the “oxida-
tion axis” is clearly one of the main dimensions along which
cluster borders are drawn.

3.5.2 Aerosol source-specific characteristics

The other axes for cluster separation seem to relate to
their source-specific fingerprints. The results presented in
Sect. 3.1 and 3.2, and particularly the solution diagnostics
values shown in Table 2, suggest that there are one or more
source-related divisions resulting in a fairly clear-cut sepa-
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Figure 8. Mass spectra corresponding to weighted cluster centroids (correlation, k = 8) for groups O-I (amine-58)), O-II (amine-100) and
O-III (amine-86). Error bars denote within-cluster variability (silhouette-weighted within-cluster standard deviation, unavailable for the
singleton O-III).

ration of clusters. One such clear division seems to be be-
tween the anthropogenic aerosol groups considered primary,
and thus usually originated from a combustion process (such
as biomass or fossil fuel burning, combustion engines ex-
haust or aerosol formed in high-temperature cooking), and
the secondary aerosol from particle conversion biogenic or-
ganic vapours (albeit in our case from anthropogenic sources
in the form of the sawmills). In our case this distinction sep-
arates the sawmill secondary organic aerosol (cluster S-I)
from other aerosols of similar age and oxidation from dif-
ferent sources (especially W-I) in a clear-cut manner. A short
examination on a potential S-I spectral marker at m/z 53 Th
can be found in the Supplement (Sect. S11, Fig. S17).

The structure that is the most difficult to explain con-
clusively is the set of mass spectral features setting apart
the various components of the observed weak cluster struc-
ture. The separation of fresh HOA from COA and BBOA
has been discussed and characterized in many studies (e.g.
Crippa et al., 2013; Mohr et al., 2009), but in practise clas-
sifying these aerosols in an unambiguous manner remains
troublesome. It does, however, seem clear from the results
presented here that the f55 : f57 ratio is indeed a viable in-
dicator of a dimension separating HOA pollution type (low
f55 : f57) from COA and BBOA, as suggested by e.g. Mohr
et al. (2009) and Crippa et al. (2013). We note the f55 : f57

values derived from the clustering solution, 1.17 for HOA

and 3.14 for COA, match well with the estimates given by
Mohr (0.9 ± 0.2 for HOA; 3.0 ± 0.7 for COA). Furthermore,
there also appear to be additional, equally definitive indica-
tors available in the higher masses, as discussed in the Sup-
plement (Sect. S11; Fig. S18).

As the important separation of the sawmill-SOA cluster
(S-I) also happens to be clearly reflected in the f55 : f57 di-
mension, due to the very low f57 signal in its centroid mass
spectrum, we adopt this axis selection along with the oxida-
tion axis (reflected by estimated O : C) as a basis for repre-
senting the clustering solution in a simplified way. This re-
sults in a two-dimensional projection of the 125-dimensional
data structure (Fig. 9). It should be underlined that this rep-
resentation is a crude simplification of the actual solution,
aimed at providing at least some visualization of the tremen-
dously more complex spatial structure. Consequently, many
of the potentially more complex structures located higher up
on the m/z scale equally driving the solution are not shown,
which explains why some points seem to be out of place in
the two-dimensional projection. With that said, the solution
does seem to make a lot of sense, and we can see that the
clusters are relatively well defined.

For this set of observations we did not obtain a separate
distinct (fresh) BBOA cluster, so we were unable to evalu-
ate the difference between BBOA and COA. As for the more
controversial classification of A-SV-OOA subtypes, the sep-
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Figure 9. Correlation k = 8 clustering solution projected onto 2-
D axes, corresponding to f44 derived oxidation level (estimated
O : C; Aiken et al., 2008) and f55 : f57 ratio (truncated at 10) typ-
ically used for COA vs. HOA source apportionment (Mohr et al.,
2012). Marker size corresponds to silhouette value of the point,
ranging from zero to one. Cluster centroid locations are marked
separately with darker colours. Outlier clusters are shown in grey,
without centroids.

aration can be visualized in the (f55 : f57, f60 + f73) space
(Fig. 10), f60 and f73 corresponding to the expected biomass
burning axis (Cubison et al., 2011; Elsasser et al., 2012;
Schneider et al., 2006). The low cohesion of A-SV(COA)
and A-SV(BBOA) clusters in particular is likely due to both
(a) very few observations available and (b) a scarcity of clear
mass spectral differences between the groups.

3.5.3 Exotic variables specific to outlier observations
and groups

In addition to these more traditional fingerprints in the AMS
spectra, in this case we also have outlier observations, dis-
tinguishable by their unusual high mass (m/z 58, [76], 86,
100 Th) signals. It seems evident the dimension separat-
ing these groups would correspond to these specific vari-
ables. This reasoning is also supported by visualization of
the outlier spectra (Fig. 11) in an appropriate 2-D space (e.g.
f86 + f100 vs. f58).

3.6 Estimating the natural variability within the
aerosol types

Finally, we briefly examine the intracluster variabilities,
translating to inferred mass spectral variability within the
aerosol types. While we feel it would be dangerous to claim
that the variation within the spectra of a specific group can be
directly understood as the natural variability of that aerosol
type at this site, we propose it can be considered as an up-
per limit estimate of this variability, since the within-cluster

Figure 10. Classification of A-SV-OOA (Cluster W-I) types into
subgroups W-Ia, W-Ib and W-Ic, corresponding to SV(HOA),
SV(COA) and SV(BBOA). 2-D visualization is given in y axis
f55/f57 (truncated to 4) and x axis f60 + f73. Marker size indi-
cates object silhouette value. Other groups (W-II, W-III, S-X, O-X)
are omitted from graph. Due to small sample size and low cohesion
of clusters such a classification should be considered speculative at
this point.

Figure 11. Outlier clusters (O-I to O-III) assumed to contain
amines, and their respective centroids plotted in colour, and any
other clusters in grey in (f58, f86 + f100) spatial projection. Marker
size corresponds to object silhouette value (unavailable for the sin-
gleton cluster O-III).

variation is caused both by the actual variability in the natural
aerosol, and the uncertainty induced by its measurement and
analysis. Overall, the effects of instrument (white) noise is
filtered in the feature extraction (PMF) phase, and the effects
of possible misclassifications or presence of mixed source
pollution events (collocated sources incompletely resolved
by PMF) in clustering are likely limited to borderline, be-
tween cluster cases that have minimal influence on the fi-
nal spectra due to the silhouette-based posteriori weighting.
The collinearity effects discussed in Sect. 2.3.1 do contribute
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Figure 12. Silhouette-weighted standard deviation, as a function of m/z, for cluster S-I (sawmill-SOA). Upper panel: constant value (a value)
estimate. Middle panel: linear regression estimate. Lower panel: exponential (quadratic) regression estimate.

to the total analysis error, but their quantitative determina-
tion was not achieved in this work. For the clean-cut, high-
silhouette strong and outlier clusters collinearity is unlikely
to introduce significant uncertainty, and the analysis uncer-
tainties would be expected to afflict mostly the weak clusters
more susceptible to source collocation and high spectral sim-
ilarities. However, such a distinct difference seems absent be-
tween the estimated variabilities of strong and weak clusters,
lending confidence that the collinearity effect is not conse-
quential for this set of data. The rotational ambiguity of PMF
remains an issue, and while we have done our best to find the
cleanest possible separation of the pollution and background
spectra, some degree of uncertainty is unavoidable. Although
there some tools have been proposed to assess the rotational
sensitivity (e.g. bootstrapping; Norris et al., 2008; Tibshirani
et al., 2001), the exact level of mass spectral uncertainty aris-
ing from the rotational ambiguity remains difficult to quan-
tify. Also as the standard k-means does not utilize informa-
tion of uncertainties of input objects, a profound error analy-
sis would require more advanced classification tools. We note
the uncertainty estimates of PMF results is a topic still requir-
ing attention, as highlighted by Reff et al. (2007), and the
field of AMS PMF would likely benefit from development of
further easy-to-approach statistical tools. Nevertheless, con-
sidering there exist very few if any statistically well-founded
estimates for this type of aerosol variability, we propose that
in the absence of more reliable results, the variabilities im-

plied by this study can be used as an indicator of the likely
magnitude of the underlying natural variability within the ob-
served classes of aerosols at a site like this.

We examined the within-cluster variabilities of the aerosol
types studied, and calculated silhouette-weighted standard
deviations as a function of m/z ratio, which was then fitted
with constant, linear and exponential (quadratic) regression
models. An example of such a parameterization is shown in
Fig. 12, and the model parameters for all clusters (in the cor-
relation k = 8 solution) are given in Table 3.

The variability parameters are especially important for
(partially or fully) constrained factor analysis, such as tech-
niques utilizing the ME-2 algorithm. For example, in the
most commonly approach used in the Source Finder (SoFi),
a single value (a value; Canonaco et al., 2013), it is typical to
restrict allowed spectral variation to a certain fraction of the
reference spectra, applied uniformly across all m/z ratios.
Based on this work we find that the a value approach may
not be the optimal way to restrict spectral variation allowed
in factorization models such as the ME-2-driven constrained
PMF, and that m/z dependent parameterizations would bet-
ter represent the actual natural variability that should be ac-
commodated by the model. Ultimately, pulling approaches
(Canonaco et al., 2013; Paatero and Hopke, 2009) might
prove preferable to hard limit constraints for variation. Nev-
ertheless, if still opting for the use of a constant a value, our
results imply the natural variability within an aerosol type
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Table 3. Within-cluster, silhouette-weighted variabilities parameterized using constant, linear and exponential (quadratic) least squares re-
gressions to the clustered data (variability [y] as a function of m/z [x]). The constant variability estimate corresponds to the a value approach
used in ME-2 analysis for constraining the PMF model.

Constant Linear fit Quadratic fit
y = a y = bx + a y = cx2 + bx + a

Cluster a b (10−3) a c (10−5) b (10−3) a

S-I sawmill SOA 0.32 2.56 0.10 2.70 −1.89 0.24
S-II A-LV-OOA 0.34 1.81 0.19 1.60 −0.82 0.27
W-I A-SV-OOA 0.18 0.59 0.13 1.28 −1.51 0.19
W-II HOA 0.41 1.60 0.28 5.37 −7.25 0.56
W-III COA 0.24 −0.09 0.24 3.25 −5.44 0.41

may be significantly larger than what is often allowed in con-
junction with the constrained PMF/ME-2 (e.g. Crippa et al.,
2014).

4 Conclusions

While advanced data analytical techniques, such as PMF,
have already been widely adopted for AMS data reduction
and feature extraction, the application of similar chemomet-
ric methods for AMS spectra identification and classification
is as of yet an uncommon sight.

In this study we make a pitch for adopting some of the tried
and tested statistical methods from other mass spectrometric
fields into the analysis of AMS results. As a practical exam-
ple we present a case of applying simple clustering to a set
of AMS pollution spectra, and show that even a simple algo-
rithm such as the k-means++ can, with proper optimization,
match and reproduce the traditional expert classification of
AMS aerosol types unsupervised (i.e. without a priori train-
ing).

Clustering as a method is especially sensitive to certain
parameters; the algorithm used, data preprocessing (scaling)
and the dissimilarity measure (distance metric) used for the
objects’ spatial representation. In this work we compared the
performance of some of the most basic measures of dissim-
ilarity in k-means++ clustering for our example data, along
with some suggested data preprocessing (scaling) methods.
At least in the context of this limited case, the [Pearson] cor-
relation metric seems slightly preferential as a measure of
spectral (dis)similarity, closely followed by [dot product] co-
sine and squared Euclidean dissimilarity measures – at least
when the AMS mass spectra are normalized. For represent-
ing spectral similarity of unnormalized data, we suggest ei-
ther cosine or correlation metrics due to mathematical con-
siderations (i.e. multiplication invariance).

Optimized mass scaling, that is, weighting the mass spec-
tra signals by an exponential function of their m/z ratios,
seems beneficial for unsupervised classification of AMS
aerosol types. Based on our example set of data we sug-
gest scaling the signal variables at each mass-to-charge by

an exponential weight (m/z)sm of sm = 1.36 ± 0.24. Contrar-
ily, intensity scaling, or scaling the MS variables (signals) by
their root function appears to be detrimental for the structure
of our spectral data set. We hypothesize that this may be due
to our spectra being normalized to unity and generally not
being overtly dominated by any individual signals – unlike
spectra in many soft ionization MS applications – potentially
upscaling general instrument noise more than the informative
minor signals.

Without scaling as a preprocessing step, k-means++

produces a differentiation between oxidized and fresh(er)
aerosol samples. Up-weighting higher m/z signals allows for
classification in the framework of source-specific AMS or-
ganic aerosol subcategories such as differentiating between
HOA and COA, strongly indicating that much of the informa-
tion needed for this classification resides among the higher
up m/z variables. We thus suggest taking this piece of in-
formation into consideration when interpreting and classify-
ing AMS spectra, either manually or by applying a machine-
learning approach. Exploring similar mass scaling in connec-
tion with comparable statistical analysis methods may prove
useful, especially in applications where data weighting is al-
ready commonplace and easy to implement.

Limiting the role of PMF to solving short-term air pollu-
tion events and plumes with minimal number of factors fa-
cilitates identification of the physically meaningful rotation,
which best temporally separates the pollution plume from the
background aerosol. Using correlation minimum between the
time series of the pollution and the background as a selection
criterion minimizes the need for expert judgement by human
analysts when exploring PMF solutions of pollution events.
Similarly, applying computer-aided, unsupervised classifica-
tion, any result should be more or less free of analyst bias
when deciding the classifications of mass spectra to organic
aerosol subtypes. An appropriately chosen clustering quality
metric, such as the silhouette value, can be used to infer the
natural number of clusters in data as well as to optimize scal-
ing factors, to magnify the structures present in data. Nat-
urally, this does not excuse the human analyst from the fi-
nal responsibility of physicochemical interpretation, compar-
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ison and evaluation of the mathematical solutions produced
by any classification algorithm. It should also be noted that
the first phases of the task, of manually identifying pollu-
tion events and performing the feature extraction step for
each of the events individually, is very labour-intensive and
some subjectivity remains in deciding the selection criteria
for what constitutes a pollution episode – hence the process
should ideally be made more automatic and statistics based.

Despite the laboriousness, compared to currently used ap-
proaches such as trying to use PMF to directly extract source-
specific, anthropogenic organic aerosol subtypes from ex-
tended data sets and identify the correct rotations from the
resulting solution space, we suggest the methodology pre-
sented here has several advantages. (1) Due to limiting the
PMF time windows to short pollution episodes explained
with fewer factors and variability driven by pollution plume
behaviour, the major factor analytical problem of rotational
ambiguity is diminished and there is less need for expert
judgement in the selection of solutions. Concentrating on
short-lived events also better fulfils the factor analytical re-
ceptor model’s assumption of constant profiles (i.e. aerosol
bulk composition is not driven by chemical processes but a
result mixing from different sources). (2) From the clustering
solution it is possible to derive solid, quantitative estimates of
the archetypal pollution spectra along with their uncertainties
– information which has direct use and value when applying
the reference spectra in e.g. constraining future factor anal-
yses. Detailed chemical knowledge on pollution types may
also help in further understanding the physicochemical prop-
erties of anthropogenic atmospheric aerosols and their inter-
actions. Finally, (3) by analysing air pollution cases individu-
ally we can also identify and extract minor sources and iden-
tify outlier aerosol types, which fall way under the PMF’s
limit of detection, of explaining approximately 5 % of the
variability of the total aerosol mass (Ulbrich et al., 2009).
These outlier groups may ultimately prove important and of-
fer new scientific information, as exemplified by the observa-
tion of suspected amine compounds presented in our results.

In our example of applying feature extraction (PMF) and
unsupervised classification (k-means++) to a set of AMS
data, we could produce reference spectra and their variabil-
ity estimates for local pollution archetypes. Aerosol chemi-
cal interpretation of the results from our test bed set of data
from a background, boreal forest station (SMEAR II) sug-
gests that the main dimensions or “axes” driving the classifi-
cation relate to (a) an oxidation state reflecting aerosol age-
ing; (b) source types, whether representing spectral structures
of various combustion source types (traffic, cooking, biomass
burning) or characteristics of aerosol formed from biogenics
through gas-to-particle conversion; (c) exotic variables char-
acteristic of outlier observations and outlier groups (from
the perspective of traditional AMS aerosols’ classifications).
We observe that although atmospheric ageing does gradually
smear out the characteristics of the emitted aerosols, statis-
tically resolvable spectral features seem to be retained and

could be used to infer the origin of the emission. However,
as the spectral similarity of aerosols increases, a proper selec-
tion of dissimilarity metric and scaling becomes essential, as
does the availability of a sufficient amount of high-precision
observations of single-component pollution plumes. In fu-
ture studies we also suggest exploring soft classification al-
gorithms, such as fuzzy clustering (Dunn et al., 1973), in con-
nection with aerosol mass spectral classification to avoid po-
tential issues with non-discrete or incompletely deconvolved
samples.

We propose that optimizing the similarity metrics, both
via correctly selecting the algorithm and data weighting, pro-
vides not only a basis for exploratory classification but also a
means for identifying AMS spectra by comparing them with
references available in the AMS spectral database. We can
also see prospective use for exploratory classification, with
clustering as an obvious example, in evaluating sets of dis-
crete or deconvolved AMS spectral samples, such as the sam-
ples often produced in large numbers in bootstrapping or sen-
sitivity analysis exercises when evaluating factor analytical
models.

Ultimately, we hope to have demonstrated that statistics-
based, computer-aided classification of AMS spectra seems
promising, and in that the differences and characteristic fea-
tures of mass spectra can indeed be parameterized for an in-
creasingly machine-learning-oriented approach to AMS ad-
vanced data analysis.

5 Data availability

Data used are available upon request from the authors. Clus-
ter centroid spectra will be made available in the AMS Spec-
tral Database (http://cires1.colorado.edu/jimenez-group/
AMSsd/) upon publication, and the individual spectra
extracted from the air pollution events along with their clas-
sification are also available online (at https://etsin.avointiede.
fi/dataset/urn-nbn-fi-csc-kata20170118173805948017; Äi-
jälä et al., 2017).

The Supplement related to this article is available online
at doi:10.5194/acp-17-3165-2017-supplement.
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