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Resolving bundled microtubules using anti-tubulin
nanobodies
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Microtubules are hollow biopolymers of 25-nm diameter and are key constituents of

the cytoskeleton. In neurons, microtubules are organized differently between axons and

dendrites, but their precise organization in different compartments is not completely

understood. Super-resolution microscopy techniques can detect specific structures at an

increased resolution, but the narrow spacing between neuronal microtubules poses

challenges because most existing labelling strategies increase the effective microtubule

diameter by 20–40 nm and will thereby blend neighbouring microtubules into one structure.

Here we develop single-chain antibody fragments (nanobodies) against tubulin to achieve

super-resolution imaging of microtubules with a decreased apparent diameter. To test the

resolving power of these novel probes, we generate microtubule bundles with a known

spacing of 50–70 nm and successfully resolve individual microtubules. Individual bundled

microtubules can also be resolved in different mammalian cells, including hippocampal

neurons, allowing novel insights into fundamental mechanisms of microtubule organization in

cell- and neurobiology.
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M
icrotubules are hollow biopolymers of 25-nm diameter
and are key constituents of the cellular cytoskeleton,
the mechanical framework of dynamic polymers

and associated proteins that directs cell shape and facilitates
intracellular transport1. The exact spatial organization of
microtubules and their bundling is of central importance to a
number of fundamental cellular processes such as mitosis, cell
polarization and the outgrowth of cellular processes, for example,
in neurons1. Conventional fluorescence microscopy allows
selective labelling of microtubule modifications and associated
proteins, but cannot resolve individual microtubules within
tightly bundled microtubule arrays. Electron microscopy, in
contrast, allows resolving individual microtubules, but is
very labour intensive, while high-density labelling of specific
proteins has remained challenging. Single-molecule localization
microscopy (SMLM) provides selectivity at an increased
resolution, but the extremely small spacing between neuronal
microtubules (20–70 nm)2 poses novel challenges, because
existing labelling strategies typically increase the apparent
microtubule diameter by 20–40 nm and will thereby blend
neighbouring microtubules into one structure3. It is therefore
widely assumed that despite all progress in super-resolution
microscopy, electron microscopy is still the only technique
that allows insight into complex microtubule structures4. Here,
we use both computer simulations and experimental approaches
to explore how labelling strategy affects SMLM imaging of
microtubules. We develop single-chain antibody fragments
(nanobodies) against tubulin and achieve super-resolution
imaging of microtubules with a decreased apparent diameter,
allowing us to optically resolve bundled microtubules.

Results
Simulations of microtubules with different labels. To explore
the effect of label size and fluorescent probe positioning on
resolving ability, we first performed numerical simulations to
examine how labelling density, localization precision and fluor-
ophore positioning affect the apparent microtubule width
(determined as the full width at half maximum (FWHM) from
Gaussian fits to intensity profiles integrated over 512 nm of
microtubule length; Fig. 1a). Using a maximum localization
uncertainty of 8 nm, we found that the apparent microtubule
width was B31 nm for a fluorophore positioned directly at the
microtubule surface (probe position of 0 nm, Fig. 1b). Placing
the fluorophore further away increased the FWHM by double the
displacement, that is, 41 nm for a fluorophore position of 5 nm.
A more stringent precision cutoff resulted in decreased FWHM
(Fig. 1c) and the FWHM decreased from 63 nm for a probe
position of 15 nm and precision cutoff at 13 nm to 27 nm with
fluorescent probes directly on the microtubule lattice and a
precision cutoff of 3 nm.

To examine how label size affects the probability of resolving
closely spaced microtubules, pairs of randomly picked profiles
were superimposed with a set distance between the microtubule
centres and the resulting profile was analysed. If the lowest
intensity between the two microtubule centres was o75% of the
intensity of the lowest peak, then the microtubules were
considered to be resolved and the resolving probability was
calculated as the fraction of resolvable cases out of 250. As
expected, decreasing label size results in increasing the resolving
probability (Fig. 1d). For example, given a labelling density of 7%
and a precision cutoff of 13 nm, the probability of resolving
microtubules with centres spaced 55-nm apart increased from
0.03 to 0.49 to 0.97 for probes positioned at 12.5 nm, 5 nm and
0 nm from the microtubule lattice, respectively (data taken
from fit).

Generation and characterization of tubulin nanobodies.
Conventional staining strategies often use a combination of
primary antibodies binding a specific epitope, followed by a
fluorescently tagged secondary antibody that recognizes the
primary antibody, resulting in significant displacement of the
fluorescent probe from the target (Fig. 1e). Typically, smaller
labels have been obtained by directly conjugating a fluorophore to
the primary antibody, or by using antibody fragments. Antibody
fragments derived from heavy chain only camelid antibodies
(nanobodies) are now emerging as promising alternatives,
because of their small size (B15 kDa, B4 nm), as well as ease of
selection and production. Previous work has demonstrated
the usage of nanobodies to create smaller labels for SMLM.
Overexpression of GFP–tubulin and subsequent labelling with an
anti-GFP nanobody conjugated to a fluorescent dye significantly
decreased the effective diameter of individual microtubules3.
However, this strategy requires overexpression of GFP–tubulin to
very high levels, which will perturb cytoskeletal organization and
is not possible in many biological systems.

To experimentally assess the effect of label size on resolving
power, we created three novel labels for SMLM of endogenous
tubulin, complementing the existing strategies using conventional
antibodies. First, we developed two different nanobodies against
tubulin. One was derived from two rounds of phage display
selection using a universal synthetic library of humanized
nanobodies (VHH#1) and the other using an MRC7 cell library
(VHH#2) (Supplementary Fig. 1a,b; see Methods section for
details), similarly selected in two rounds of phage display.
Immunoblotting with VHH#1 or VHH#2 on lysates of HEK293
cells overexpressing GFP–a-tubulin or GFP–b-tubulin revealed
that both nanobodies react with the endogenous tubulin as well as
GFP–b-tubulin (Supplementary Fig. 2a,b). Conjugation of Alexa
Fluor 647 (AF647) to the nanobodies did not interfere with their
binding properties (Supplementary Fig. 2c; Supplementary Figs 3
and 4). As a second approach, recombinant human-derived
single-chain variable fragments (scFvs) directed against a- and
b-tubulin were purified and also coupled to AF647 (ref. 5). All
bacterially expressed and purified labels were relatively pure and
stable over long periods of time (Supplementary Fig. 2a).

Resolving microtubule bundles in vitro. To test the SMLM
resolving power of the different microtubule labels, we established
an in vitro bundling assay using polymerized microtubules in
combination with the microtubule bundler AtMAP65-1, which
promotes the formation of a planar network of antiparallel
microtubules with a single-dimer spacing in between (Fig. 1f)6.
Silanized coverslips were used to stably attach the microtubule
bundles to the coverslip surface to allow for subsequent staining
procedures. As a control, we performed SMLM on non-stained
samples to which fluorescently tagged tubulin (conjugated to
HiLyte Fluor 647) was added in to the polymerization mix. In this
condition, most bundles could be clearly resolved with an average
spacing of 65±2 nm (s.e.m., n¼ 56, Supplementary Fig. 3a). Both
VHH#1 and VHH#2 conjugated to AF647 efficiently decorated
the bundles and in most cases the individual microtubules could
be clearly distinguished when the microtubule centres were
60–70-nm apart (Fig. 1g, Supplementary Fig. 3b). In contrast,
when a conventional primary anti-a-tubulin antibody directly
coupled to AF647 was used, such bundled microtubules could
often not be resolved.

Comparative analysis of microtubule labels in adherent cells.
When we tested our nanobodies on microtubules in cells, we
found that we could resolve microtubules that were spaced down
to 40 nm (Fig. 2a). To quantitatively compare the nanobody
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approach with the other staining methods in cells, we labelled
microtubules in fixed Ptk2 and COS-7 cells using different
tubulin labels conjugated to AF647. We determined the FWHM
from a Gaussian fit to intensity profiles perpendicular to the
microtubule averaged over 512-nm length to rule out possible
profile artifacts that could arise from low labelling density
(Fig. 1b). We found that individual microtubules were densely
labelled with the most common diameter (average mode±s.e.m.)
varying from 39.3±0.8 nm (VHH#2, N¼ 10 data sets with in
total n¼ 1,365 profiles) to 54.0±1.2 and 61.7±0.8 nm (directly
conjugated primary anti-tubulin antibody, N¼ 10, n¼ 2,462, and
primary anti-tubulinþ secondary-AF647, N¼ 10, n¼ 2460,
respectively; Fig. 2b, Supplementary Fig. 4a,b; see Methods
section for details and Supplementary Fig. 5a for statistical

testing). Because in the rendering of the SMLM images we
rejected all localizations with localization precision Z13 nm,
these values suggest that fluorophores coupled to primary anti-
bodies are on average B12.5-nm displaced from the microtubule
lattice (Fig. 1c). Strikingly, this distance is reduced too2.5 nm for
VHH#2.

To translate the observed microtubule FWHM into a
resolution estimate, we again analysed composite profiles
obtained by superimposing two randomly picked profiles with a
set distance between the microtubule centres (Fig. 2c). On the
basis of cumulative probability plots obtained for the VHH#1,
VHH#2, primary and primary–secondary antibody labellings,
B50% of all bundled microtubules with 25-nm lattice-to-lattice
spacing (corresponding to 50 nm between peaks) will be resolved
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Figure 1 | Smaller labels allow resolving bundled microtubules. (a) Simulations of conventional (top) and single-molecule localization-based microtubule

images for different probe densities, localization precision cutoffs and probe positions (distance between target molecule and fluorophore). Unless

specified otherwise, probe position is 2.5 nm and precision cutoff is 8 nm. Probe density is 100% and 50% for the third and fourth row, respectively.

A Gaussian localization accuracy distribution with mean±s.d. of 7.5±2.5 nm is used. (b) FWHM of Gaussian fits to microtubule cross sections integrated

over 512 nm length as a function of probe density and for different probe positions. Error bars represent s.e.m. Each point is the average of 150 FWHMs

measured on 512 nm long microtubule (MT; empty stretches along the MTwere not included). (c) MT FWHM versus probe position for different cutoffs of

the localization accuracy distribution. (d) Estimation of resolving power for staining of microtubules with probes at increasing distance from the

microtubule. Probe density is 7%, localization precision cutoff threshold is 13 nm. Two-hundred and fifty profiles per distance. (e) Illustration of the different

labelling strategies compared in this study. (f) Scheme of the in vitro microtubule bundling assay to test the resolving power of different microtubule

labelling strategies. Rhodamine-labelled microtubules are assembled into planar bundles with defined spacing formed by the microtubule-bundler

GFP–AtMAP65-1. (g) Conventional (top) and SMLM (middle and bottom left) images and representative line scans (bottom right) of in vitro microtubule

bundles stained with a fluorescently labelled primary anti-a-tubulin antibody (1ary-AF647) or two novel tubulin nanobodies (VHH#1 and VHH#2)

conjugated to AF647. Scale bar, 1 mm. More examples are provided in Supplementary Fig. 3.
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Figure 2 | Resolving bundled microtubules in cells using tubulin nanobodies. (a) SMLM reconstruction of a Ptk2 cell stained with VHH#1 and intensity

profile of closely spaced microtubules along the yellow line. Yellow arrows indicate microtubule ends. Scale bar, 1 mm. A larger field of view of the same cell

can be found in Supplementary Fig. 4b. (b) Histograms of microtubule FWHM for different probes. scFvs: mixture of human single-chain antibody

fragments (scFvs) recognizing a- and b-tubulin. For representative images, see Supplementary Fig. 4a. (From top to bottom: n¼ 1,365, 547, 352, 2,462,

2,460 profiles from N¼ 10, 5, 9, 10, 10 different acquisitions). Mean (blue) and mode (red) value are indicated±s.e.m. (using N). (c) Estimation of

resolving power for different labels obtained by combining arbitrarily selected line profiles at increasing distance between centres. (d) Scatter plot of FRC

resolution estimate versus microtubule FWHM for images of microtubules in COS-7 cells stained with different labels. Error bars depict 95% confidence

intervals. (e) Overview 3D-SMLM reconstruction of a U2OS cell stained with AF647-labelled VHH#1. The z-depth is colour-coded according to the scale

on the left of the image. Scale bar, 5 mm. (f) Magnified image of the inset in e. Colour code is the same as in (e). Scale bar, 500 nm. (g) Area containing

parallel microtubules at different depth in the cell. Colour code is the same as in e. Scale bar, 500nm. (h) Collapsed cross section (z-x) of the volume

depicted in g. Scale bar, 100 nm. (i–k) SMLM reconstruction of microtubule bundles labelled with VHH#1 in the dendrites of a hippocampal primary neuron.

Yellow arrows indicate microtubule ends and yellow lines were used for line scans across densely packed microtubule bundles (j,k). Inset shows the

diffraction-limited fluorescence image. Scale bar, 2mm. (l) 3D-SMLM reconstruction of a hippocampal primary neuron labelled with VHH#1. The Z-depth is

colour-coded according to the scale on the left of the image. Yellow arrows indicate microtubule ends. Inset shows the diffraction-limited fluorescence

image. Scale bar, 2 mm.
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by the nanobody labels, whereas the directly conjugated primary
antibodies or the sandwich labelling will only resolve B20% and
B5% of all microtubule pairs, respectively. Consistent with the
in vitro bundling results, VHHs are expected to resolve 490% of
microtubule pairs with a lattice-to-lattice spacing of 60 nm, which
is the typical spacing of tightly bundled microtubules in neuronal
dendrites2.

To further quantify the gain in resolution, we used the
Fourier Ring Correlation resolution measure (FRCrm) as an
independent, quantitative estimate of resolution that accounts for
both localization precision and probe density7. Whereas direct
application of the available FRC ImageJ-plugin to our data
yielded highly variable results, this could be circumvented by
data preprocessing to average different localizations emerging
from the same fluorophore emitting over multiple frames
(Supplementary Fig. 5b). As expected, smaller apparent
diameters also resulted in better FRCrm resolution estimates,
with the exception of VHH#2, whose lower labelling density
resulted in a worse FRCrm compared to VHH#1, despites its
smaller FWHM. For VHH#1, the average FRCrm was 45±4 nm
(Fig. 2d). These results demonstrate that our novel anti-tubulin
nanobodies provide improved resolution.

Tubulin nanobody for 3D-SMLM in U2OS cells and neurons.
To test how anti-tubulin nanobodies performed in three
dimentional (3D)-SMLM, we labelled microtubules in U2OS cells
with VHH#1 and performed 3D-SMLM using the biplane
approach8. We found that microtubules could easily be resolved
in z-direction (Fig. 2e–h) at distances of 100 nm. Finally, we used
the VHH#1 nanobody to perform SMLM on microtubules in
primary hippocampal neurons (Days in vitro, DIV1) and could
successfully resolve individual microtubules in neurites (Fig. 2i–l).
The cross-sections across densely packed microtubule bundles
indicate a center-to-center spacing of 60 to 80 nm, consistent with
earlier results using electron microscopy on cross sections2. In
several cases, ends of individual microtubules could be clearly
identified (Figs 2i,l, arrows). Thus, tubulin nanobodies can be
used to resolve neuronal microtubule bundles.

Discussion
We have introduced novel labels for microtubules that allow
using SMLM to resolve previously inaccessible functional details
of microtubule organization such as bundling, both in vitro and
in fixed cells. These labels nicely complement the recently
introduced live-cell marker for tubulin8 that allows nanoscopy
using STED (Stimulated Emission Depletion) microscopy and
SIM (Structured Illumination Microscopy) in living cells, but does
not remain bound to microtubules upon fixation (Supplementary
Fig. 6). Microtubules are key components of many complex
cytoskeletal assemblies and their organization, polymerization,
motility and interactions with motor proteins are controlled
by a plethora of posttranslational modifications and modulating
proteins, such as microtubule polymerases, severing proteins and
bundlers. Therefore, our ability to resolve individual microtubules
in such cytoskeletal assemblies paves the way towards a deeper
understanding of the mechanisms underlying microtubule
organization and function, both in health and disease.

Methods
VHH#1 selection. VHH#1 was selected from a novel library of 3� 109 humanized
nanobodies. Briefly, commercial biotinylated tubulin (Cytoskeleton) was diluted to
obtain a 10–20 nM solution (1ml final) and efficient recovery of biotinylated
tubulin was confirmed on 50ml streptavidin-coated magnetic beads (Dynal).
Fractions of bound and unbound samples were compared by western blot using
streptavidin–HRP. Adequate amounts of beads and biotinylated antigen were
incubated for 2 h with the phage library (1013 phages diluted in 1ml of PBS

containing 0.1% Tween-20 and 2% nonfat milk). Phages were previously adsorbed
on empty streptavidin-coated magnetic beads to remove nonspecific binders.
Phages bound to tubulin-coated beads were recovered on a magnet and washed
10 times (round 1) or 20 times (round 2) using PBS containing Tween-20 0.1%.
Bound phages were eluted using 500 ml triethylamine (100mM) for 10min. Eluted
phages were neutralized using 1M Tris pH 7.4. Elution was repeated once more.
E. coli (TG1) were infected with the eluted phages. Round 2 was carried out using
1012 phages as input. After round 2, 40 bacteria clones were picked at random and
used to produce nanobodies in the culture medium. Nanobody specificity was
analysed by immunofluorescence as described before5 and nanobodies staining
microtubules were analysed further.

VHH#1 expression and purification. For production of VHH#1, WK6 E. coli
containing the plasmid pHEN2–VHH#1–His6–cMyc3 were grown in 2 l of ‘Terrific
Broth’ (17mM KH2PO4, 72mM K2HPO4, 12 g l� 1 tryptone, 24 g l� 1 yeast extract,
0.4% glycerol) containing 2mM MgCl2, 0.1% glucose, and 100 mgml� 1 ampicillin
with shaking at 37 �C until the E. coli had an OD600 of 0.6–0.9. Isopropyl
b-D-1-thiogalactopyranoside (IPTG) was then added to a concentration of 0.5mM,
and the flasks were shaken at 28 �C overnight (B16 h). To extract the nanobody
from the periplasmic space, cells were centrifuged (5,000g, 10min), resuspended in
24ml of TES buffer (0.2M Tris pH 8.0, 0.5mM EDTA, 0.5M sucrose) and shaken
for 1 h at 4 �C. The cell–TES mixture was then diluted by the addition of 36ml of
TES/4 buffer (50mM Tris pH 8.0, 0.125mM EDTA, 0.125M sucrose), and shaken
for 1 h at 4 �C. The cells were then pelleted (5,000g, 10min), and the nanobody-
containing supernatant removed. The His6-tagged VHH#1 was then purified using
HisPur cobalt-agarose resin (Thermo Scientific) following manufacturer’s
instructions. The eluted protein was concentrated B10-fold using ‘Vivaspin’
columns (3 kDa MWCO; General Electric). SDS–polyacrylamide gel electro-
phoresis (PAGE) and Coomassie-staining of the resulting gels revealed the
nanobody to be 490% pure. VHH#1 was dialysed overnight against PBS at 4 �C
to remove any residual imidazole. The 2 l of culture yielded B50mg of pure
nanobody. The stability of VHH#1 was analysed by immunoblotting of a sample
stored at 4 �C for 44 months. Two micrograms of VHH#1 were used for
Coomassie staining and about 100 ng for immunoblotting using anti-VHH serum
976 (1:2,000 (ref. 9)) or mouse monoclonal anti-c-myc antibody (1:5,000, Abcam)
recognizing the carboxy-terminal myc-tag of VHH#1.

VHH#2 selection. The VHH phage display library was generated from llamas
immunized with MCF7 cells9. Two rounds of selection were performed as
described9. For selection of VHHs against tubulin, the bovine brain tubulin
(Cytoskeleton) was directly coated onto 96-well NUNC Maxisorp plates (Thermo
Scientific) in a series of dilutions (0; 0.1;1; 5 mg in PBS) by incubation for 30min
at room temperature and then overnight at 4 �C. Phages retrieved from the
phage-glycerol stock were preincubated with 2% milk-PBS for 30min at room
temperature, and added to the tubulin-coated wells and kept at rppm temperature
on a shaker for 2 h. Afterwards wells were washed extensively with 0.05% Tween-20
in PBS. Bound phages were eluted with 100ml per well of 0.1M triethylamine
followed by recovery via infection of E. coli TG1. Phages from the first round were
subjected to the second round of selection with 0, 0.1, 1 or 5 mg of coated tubulin.
E. coli TG1 were infected with the phages from the second selection and plated on
LB-agar plates supplemented with ampicillin. Ninety-six random colonies were
picked for testing. Expression of VHHs targeted to the bacterial periplasm was
induced by addition of 1mM IPTG at 37 �C overnight. To obtain the periplasmic
fraction, bacterial pellets were resuspended in 10 volumes of PBS (pH 7.4)
containing protease inhibitor cocktail (Roche), subjected to two freeze/thaw cycles,
and spun down for 15min at 4,600 r.p.m. Periplasm was collected as supernatant
fraction. Specificity of VHHs for tubulin was determined by enzyme-linked
immunosorbent assay.

VHH#2 expression and purification. For efficient bacterial expression, four of
the most successful and divergent VHH sequences were directly subcloned from
pUR8100 into modified pET28a–EPEA vector using SfiI/NotI restriction sites.
pET28a–EPEA was created inserting AAACAAAGYQDYEPEA–STOP sequence
(NotI/XhoI) in front of the C-terminal 6�His-myc sequence which allows
purification with Capture Select C-tag matrix (Life Technologies). Although all of
the constructs were expressed and purified, from now on, we focused on one of the
VHH sequences showing the best performance during protein production and
labelling (Clone H, that is, VHH#2).

For protein production, an overnight culture of E. coli BL21(DE3) transformed
with pET28a-VHH#2-EPEA was grown in LB supplemented with kanamycin till
OD600E0.8 and induced with 0.5mM IPTG for 4 h at 25 �C or at 20 �C overnight.
VHHs were purified from the periplasmic fraction in PBS (pH 7.4) containing 0.5%
Triton-X100, protease inhibitor cocktail (Roche) and 0.5mM TCEP and purified
using Capture Select C-tag matrix according to the manufacturer’s instructions
(Life Technologies). Bound VHH was eluted from the beads in buffer containing
2M MgCl2, 20mM Tris-HCL (pH 7.0) and immediately dialyzed against PBS
(pH 7.4). Impurities were removed by size exclusion chromatography performed
on an ÄKTA FPLC system (ÄKTA purifier, GE Healthcare, UK) using a Superdex
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75 gel filtration column. Fractions containing VHH#2 were pooled and
upconcentrated to 1–1.5 mgml� 1.

Cell culture and immunostaining. COS-7, MRC5 or Ptk2 cells were plated on
19-mm diameter glass coverslips or 8-well Labtek chambers (Thermo scientific),
respectively and cultured in DMEM/Ham’s F10 (50/50%) medium supplemented
with 10% FCS and 1% penicillin/streptomycin for 2–3 days. Culturing of primary
neurons was described before10. Briefly, hippocampal primary neurons were
prepared from embryonic day 18 rat brains. Cells were plated on coverslips coated
with poly-L-lysine (30 mgml� 1) and laminin (2mgml� 1) at a density of 40,000
per well. Hippocampal cultures were grown in Neurobasal medium (NB)
supplemented with B27, 0.5 mM glutamine, 12.5 mM glutamate and penicillin/
streptomycin. For optimal microtubule imaging, cells were pre-extracted and fixed
in extraction buffer containing 80mM PIPES (pH 6.9), 7mM MgCl2, 1mM EGTA,
0.3% Triton-X100 (Sigma-Aldrich), 150mM NaCl, 5mM glucose, 0.25%
glutaraldehyde (Electron Microscopy Sciences) for 90 s at 37 �C and then in PBS
with 4% PFA and 4% sucrose for 10min at 37 �C. After fixation, cells were washed
two times in PBS and cells were further permeabilized for 10min in PBS with
0.25% Triton-X100. Cells were then washed three times in PBS, quenched for
10min with 50mM NH4Cl in PBS, washed again and incubated with Image-IT
(Molecular Probes) for 30min at RT. After three washes with PBS, blocking buffer
1 (used for staining with antibody and VHH#2) containing 2% w/v 2% w/v BSA-c
(Aurion)11, 0.2% w/v gelatin, 10mM glycine, 50mM NH4Cl in PBS (pH 7.4) or
blocking buffer 2 (used for VHH#1, also works for VHH#2) containing 10% FHS
(Gibco, Life Technologies) and 0.1% Triton-X-100 in PBS (pH 7.4) was added for
30–45min. Primary antibodies or VHHs were diluted in corresponding blocking
buffer and were incubated overnight at 4 �C (antibody) or 1–2 days at RT (VHHs).
For the secondary antibody labelling, coverslips were washed from the primary
antibody and anti-mouse antibody conjugated to AF647 were diluted in a same
blocking buffer and added for 1–1.5 h at room temperature. Antibody were
a-tubulin (Sigma-Aldrich, clone B-5-1-2, T5168) conjugated to AF647 (dilution
1:100), AF647 conjugated goat anti-mouse IgG (Hþ L) secondary antibody
(Molecular Probes, Life Technologies, dilution 1:500). VHH#1 and VHH#2 were
diluted to about 10mg/ml. All coverslips were extensively washed with PBS shortly
before imaging, post-fixed in PBS with 4% PFA and 0.25% GA for 10min at room
temperature and again extensively washed with PBS. For co-staining with F-actin
marker, neurons already labelled with VHH#1-AF647 were washed in PBS and
incubated with AF568 Phalloidin from Molecular probes (Life Technologies, 1:200
in PBS) for 20min, extensively washed in PBS and mounted for imaging. For live
staining with SiR-tubulin8, 100 nM of the probe was added to the growth medium
and incubated for 1 h at 37 �C, 5% CO2. MRC5 cells expressing plus-end
microtubule marker EB3–GFP were used for the life imaging. COS7 cells were fixed
with standard pre-extraction/fixation protocol (see above), mixture of 3% PFA and
1% glutaraldehyde for 10min at 37 �C or 4% PFA for 10min at 37 �C. Fixed cells
were extensively washed in PBS and processed for imaging.

Ptk2 cells were fixed at 37 �C using prewarmed PEM buffer (15mM PIPES
pH 7, 1mM MgCl2, 10mM EGTA) containing 0.1% Triton X-100 and 0.4%
glutaraldehyde for 10min. They were washed three times with PBS, incubated with
PBS containing 50mM NH4Cl for 10min, washed twice with PBS, incubated with
freshly prepared PBS with 0.1mgml� 1 sodium borohydride for 5min, washed
three times with PBS, incubated with Image-IT blocking solution (Life
Technologies) for 30min, washed three times with PBS, and then incubated with
blocking buffer 2. Labelled VHH#1 nanobody was then added to a final
concentration of 600 nM, and the cells incubated overnight at 25 �C (note that
similar labelling was obtained with a 4 h incubation). The cells were then washed
three times with PBS containing 0.1% Triton X-100, and twice with PBS and
processed for imaging.

In vitro microtubule bundling assay. Rhodamine-labelled microtubuless were
prepared from stabilized seeds as described earlier,12 and stored at � 80 �C. HiLyte
Fluor 647-tubulin was purchased from Cytoskeleton and HiLyte Fluor
647-microtubules seeds were made in a same way like Rhodamine–microtubule
seeds. The seeds were quickly transferred into a 37 �C water bath, incubated for
5min and kept in the dark at room temperature for 24 h. Labelled microtubules
were diluted 1:30 in PEM80 (80mM PIPES, pH 6.9, 2mM MgCl2, 1mM EGTA)
containing 10mM of Taxol (Sigma). Then 50 ml of this dilution was mixed with
0.2 ng of recombinant purified GFP–AtMAP65-1 (ref. 6) and incubated for 20min
at room temperature to allow formation of bundles. Imaging flow chambers were
assembled using microscope slides and coverslips connected with double-sided
tape. Before each experiment coverslips were plasma cleaned for 10min, coated for
1min with 0.4% diethylenetriamine diluted in H2O and baked for 1 h at 200 �C.
Microtubules with and without GFP–AtMAP65-1 were washed into the flow
channels and kept in dark. After 20min, unbound microtubules were washed out
with PEM80 containing 1 mM Taxol. For the immunostainings, attached
Rhodamine-microtubules were first fixed for 3min with 4% PFA and 0.25% GA in
PEM80, washed with PEM80 containing 1 mM Taxol, quenched for 10min with
50mM NH4Cl in PBS, washed again and unspecific binding of proteins to the
surface was blocked with blocking buffer 1 for 30min at room temperature.
Samples intended for staining with VHH#1 were in addition blocked with
Image-IT for 30min and then blocked with blocking buffer 2 (see above).

Primary AF647-labelled anti-a-tubulin antibody (1:20), VHH#1 (10 ng ml� 1) or
VHH#2 (10 ng ml� 1) were diluted in corresponding blocking buffer, added to the
flow channels and incubated in room temperature for 2 h in the dark. Stained
samples were postfixed for 3min with 4% PFA and 0.25% glutaraldehyde in
PEM80, washed with PEM80 and imaged immediately.

SMLM imaging. Imaging of fixed cells stained with microtubule probes conjugated
to AF647 was performed using 10–100mM mercaptoethylamine (MEA), 5% w/v
glucose, 560 mgml� 1 glucose oxidase, 40mgml� 1 catalase in PBS. Imaging
mixture for in vitro microtubule samples contained 100mM MEA, 5% w/v glucose,
560 mg/ml glucose oxidase, 40mgml� 1 catalase in PEM80 containing 1 mM Taxol.

SMLM microscopy13–15 was performed on a Nikon Ti microscope equipped
with a 100� Apo TIRF objective (NA. 1.49), a Perfect Focus System and an
additional 2.5� Optovar to achieve an effective pixel size of 64 nm. Evanescent or
oblique laser illumination was achieved using a custom illumination pathway with
a 15-mW 405-nm diode laser (Power Technology), a 50-mW 491-nm DPSS laser
(Cobolt Calypso), and a 40-mW 640-nm diode laser (Power Technology).
Fluorescence was detected using an Andor DU-897D EMCDD camera. All
components were controlled by Micromanager software16. For SMLM imaging of
AF647, the sample was continuously illuminated with 640-nm wavelength light. In
addition, the sample was illuminated with 405-nm light at increasing intensity
to keep the number of fluorophores in the fluorescent state constant. Typically
5,000–15,000 frames were recorded per acquisition with exposure times of
30–40ms.

SMLM imaging of Ptk2 cells was performed as described17. Imaging chambers
were filled with Buffer TN (50mM Tris-HCl pH 8, 10mM NaCl) containing 10%
glucose, 10mM MEA (pH adjusted to 8 with KOH; Sigma), 40 mgml� 1 catalase
(Sigma, C40-100MG), and 0.5mgml� 1 glucose oxidase (Sigma, G2133-50KU),
and sealed with a coverslip. Imaging was performed using a standard Nikon
NSTORM microscope, using a 647-nm laser adjusted to provide total internal
reflection-based illumination. Videos were acquired using an iXon EMCCD
(Andor) and a 100Hz frame rate, with a typical acquisition containing
50,000–100,000 frames. A 488-nm laser was sometimes used to increase the rate at
which the AF 647 molecules exited the dark state; however, this was typically not
necessary. Acquisitions were then processed to create super-resolution images
using custom-written software3 (Fig. 2, Supplementary Fig. 4b). For 3D-SMLM,
we use the biplane method as described3,18.

SMLM localization and rendering algorithms. For Fig. 1 and Supplementary
Figs 3 and 4a, we used localization software written in Java as an ImageJ plugin,
called Detection of Molecules. Each image in an acquired stack was convoluted
with the two-dimensional (2D) Mexican hat kernel matching the microscope’s
point spread function (PSF) size. The intensity histogram of the convolved image
was fitted to a Gaussian distribution and used to calculate the threshold intensity
value (mean value of the fit plus three s.d.). The maximum intensity values within
individual spots were chosen as initial positions for the peaks’ fitting performed on
the original image. We used unweighted nonlinear least squares fitting with
Levenberg-Marquardt algorithm to the assumed asymmetric 2D Gaussian PSF.

Only fits with a calculated width within±30% of the measured PSF’s standard
deviation were accepted. Localizations within one pixel distance in a number of
successive frames were considered to arise from the same molecule. In this case the
weighted mean was calculated for each coordinate, where weights were equal to
inverse squared localization precision. The resulting table with molecule
coordinates and precision was used to render the final localization image with
5-nm pixel size for microtubule FWHM analysis, and 10- or 20-nm pixel size
otherwise. Each molecule was plotted as a 2D Gaussian with integrated intensity
equal to one and with s.d. equal to the localization precision. SMLM-localization
and rendering of 3D data into images was done as described before3.

Analysis of super-resolution images. To estimate the FWHM of the micro-
tubules, line region of interests were drawn by hand on the microtubules in the
reconstructed image. A custom-made ImageJ macro was then used to generate an
intensity profile perpendicular to the region of interests, integrating the intensity
values over a length of 500 nm. A Gaussian distribution was fitted to the intensity
profile, from which the FWHM was derived as FWHM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi

2log 2
p

� s.
In order to calculate the probability of separately resolving two microtubule

profiles, all profiles used for FWHM calculation were normalized along the y axis to
an area under the curve of 1 and centred on the x axis on the mean derived from
the Gaussian distribution fit. To allow for subpixel shifts, bicubic interpolation was
applied to the intensity profiles. Two profiles were randomly selected and
positioned with their centres a distance between 5- and 125-nm apart from each
other. The profiles were summed, and the dip in intensity between the two peaks
was calculated. If this dip was 425% of the intensity of the lowest peak, the two
profiles were considered to be resolved. After 250 iterations with different
randomly selected profiles, the distance between the means was increased by
0.5 nm and the procedure was repeated. At each position, the ratio between
resolved and non-resolved sets of intensity profiles was used to calculate the
resolving probability. All analysis was performed in the open source software
package R.
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An independent estimate of image resolution was obtained using Fourier Ring
Correlation (FRC), as described previously7. In short, particle tables generated by
Detection of Molecules were converted to tables with only x- and y-coordinates for
each localization remaining. The FRC plug-in for ImageJ created by the Delft
University of Technology Quantitative Imaging Group was then used to obtain a
resolution estimate. To obtain consistent results, it was essential to perform
frame-to-frame fluorophore linking (see above, Supplementary Fig. 5).
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