. mathematics

Article

Resolving Cross-Site Scripting Attacks through Fusion
Verification and Machine Learning

Jiazhong Lu *, Zhitan Wei *

check for
updates

Citation: Lu, J.; Wei, Z.; Qin, Z.;
Chang, Y.; Zhang, S. Resolving
Cross-Site Scripting Attacks through
Fusion Verification and Machine
Learning. Mathematics 2022, 10, 3787.
https://doi.org/10.3390/
math10203787

Academic Editors: Jianping Gou,
Weihua Ou, Shaoning Zeng and
Lan Du

Received: 9 September 2022
Accepted: 8 October 2022
Published: 14 October 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Zhi Qin, Yan Chang and Shibin Zhang *

School of Cybersecurity, Chengdu University of Information Technology, Chengdu 610225, China
* Correspondence: cuitzsb@cuit.edu.cn
1 These authors contributed equally to this work as co-first authors.

Abstract: The frequent variations of XSS (cross-site scripting) payloads make static and dynamic
analysis difficult to detect effectively. In this paper, we proposed a fusion verification method
that combines traffic detection with XSS payload detection, using machine learning to detect XSS
attacks. In addition, we also proposed seven new payload features to improve detection efficiency. In
order to verify the effectiveness of our method, we simulated and tested 20 public CVE (Common
Vulnerabilities and Exposures) XSS attacks. The experimental results show that our proposed method
has better accuracy than the single traffic detection model. Among them, the recall rate increased by
an average of 48%, the F1 score increased by an average of 27.94%, the accuracy rate increased by
9.29%, and the accuracy rate increased by 3.81%. Moreover, the seven new features proposed in this
paper account for 34.12% of the total contribution rate of the classifier.

Keywords: XSS attack; traffic detection; payloads; fusion verification

MSC: 68T09

1. Introduction

XSS (cross-site scripting) attacks have caused enormous damage to economics and
individual privacy [1]. Moreover, XSS attacks have been adjusted from the seventh to the
third most common in the newly released 2021 version of OWASP (Open Web Application
Security Project) Top 10 [2].

Normally, there are three types of XSS attack, namely reflected XSS attack, stored XSS
attack, and DOM-based XSS attack. These three attack types usually use the GET or POST
methods of the HTTP protocol to inject malicious code at the URL or POST Body. Reflected
XSS usually injects malicious code into the URL, which can only be triggered in the current
browser and does not store malicious code permanently. The malicious code of stored XSS
is injected into the server-side database through vulnerabilities, which can cause long-term
information leakage and other hazards. In fact, we can think of DOM-based XSS as a special
kind of reflected XSS. Its malicious code can only be triggered in the current browser when
it runs the script on the client side for front-end page rendering.

In general, there are two popular methods to defend against XSS attack: static analysis
and dynamic analysis. Static analysis finds vulnerabilities by scanning the source code to
analyze information such as lexical, grammar, control flow, data flow, and other information.
It is in the development and coding phase of the program that requires developers to master
a lot of security-related knowledge. Dynamic analysis inputs test data during program
execution and analyze the output information to determine whether there are loopholes.
However, this method relies on the completeness of the test data.

In the face of frequent variations in XSS payloads, it is hard for traditional XSS detection
to have a pleasing result. There are some factors that have a significant impact on the results.
For example, traditional XSS detection requires a large number of manual participation
and the integrity of the attack vector.

Mathematics 2022, 10, 3787. https:/ /doi.org/10.3390/math10203787

https://www.mdpi.com/journal /mathematics

https://doi.org/10.3390/math10203787
https://doi.org/10.3390/math10203787
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9844-3824
https://orcid.org/0000-0001-6323-9420
https://doi.org/10.3390/math10203787
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10203787?type=check_update&version=1

Mathematics 2022, 10, 3787

2 of 14

Recently, machine learning techniques have been widely used in XSS attack detection
and achieved good results. However, most of the detection approaches based on machine
learning only focus on one of the traffic or XSS payloads. On the one hand, traffic detection
has certain timeliness, but it is difficult to accurately detect and identify XSS attacks. On the
other hand, XSS payload detection has a certain degree of accuracy, but it lacks timeliness.
Another reason for this may be that there is currently no public dataset that includes both
normal traffic and XSS attack traffic (the only type of attack in the attack traffic is XSS).

As a result, a lot of XSS detection methods cannot meet the dual requirements of
timeliness and accuracy in real environments, and the pros and cons of a single model will
directly affect the performance of the entire detection model. This leads to the problem of
low accuracy and a high false negative rate for a single model.

The primary contribution of this paper is to propose a fusion verification method that
combines traffic detection and XSS payload detection. Previously, both traffic detection
and XSS payload detection have been separately applied to XSS detection. However, to
the best of our knowledge, fusion verification methods combining the two methods have
not been reported in the literature for detecting XSS attacks. The main contributions of this
paper are:

e Combine traffic detection and XSS payload detection for XSS attack detection through
fusion verification

e Propose seven new payload detection features through feature extraction based on
XSS attack methods

e Obtain datasets of normal traffic and XSS attack traffic by simulating public CVE

2. Related Work

For the study of XSS attack detection, network security researchers have successively
put forward some effective detection methods and preventive measures.

In terms of static analysis, Medeiros et al. [3] proposed a cross-site scripting vulner-
ability detection method combining static source code analysis and data mining in 2015.
The accuracy of XSS vulnerability detection and the effect of fixing code as improved by
this method, but the disadvantage was false positives. Choi et al. [4] proposed an HXD
(Hybrid XSS Detection) system. The system used both static string analysis and dynamic
browser rendering with a black-box detection approach. Experimental results showed
that HXD had a low false positive rate. Mohammadiet al. [5] detected XSS vulnerabilities
through an automatic unit testing method. They preferred to automatically construct
an XSS vulnerability unit test from each web page; the test input pair framework was
then automatically generated using a grammar-based attack generator, which was then
evaluated. The proposed method reduced the error rate of XSS vulnerabilities. In 2019,
YAN et al. [6] proposed a PHP code vulnerability detection method based on sensitive path
and taint analysis. The method first converted the background code of the web application
into the intermediate representation of the code, such as the abstract syntax tree, then found
the slot (dangerous function), then determined the sensitive path through the slot, and
finally performed taint analysis on this path to determine whether the vulnerability exists.
However, the disadvantages of static analysis were obvious, it relied on a lot of manual
work by human experts with knowledge of both programming and security domains, and
the source code was usually not open-source.

In terms of dynamic analysis, Parameshwaran et al. [7] designed a DOM-based XSS test
platform, which was based on taint analysis in 2015. The platform included a vulnerability
generator and a detection engine. Experiments showed that the method had an excellent
effect on detecting DOM-based XSS attacks. Wang et al. [8] proposed a TT-XSS framework to
detect DOM-based XSS using dynamic taint analysis. The application dynamically analyzed
the collected URLs that were then sent to the taint tracking analysis module, the obtained
taint trajectories were sent to the automatic vulnerability verification module, and the
verification module was completed by generating attack vectors from taint trajectories. In
2021, Khalaf et al. [9] proposed an algorithm that allowed attack detection and prevention

Mathematics 2022, 10, 3787

3of 14

using an input validation mechanism. This approach supported web security testing
by providing an easy-to-use and accurate vulnerability prediction model and validation
method, which had the advantage of having a very low false positive rate. However,
this method relied on the completeness of the testing dataset. If the testing dataset was
not perfect or faced deformation attacks, it would produce a high false negative rate. In
addition, this is a common problem for all dynamic analyses.

In recent years, zero-day attacks and deformation attacks are common, and it is difficult
for traditional static analysis and dynamic analysis to play an effective role in XSS detection.
Therefore, a large number of scholars have introduced machine learning technology for
XSS detection and achieved good results. Zuhair et al. [10] also extracted features from Web
pages and URLs but made a mixed feature subset division, combined with phishing attacks,
and finally used the SVM algorithm for training and testing. Rathore et al. [11] proposed a
machine learning method based on URLs, web pages, and SNSs to detect XSS attacks in 2017,
extracted twenty-five XSS attack features, and used ten classifiers for detection. To achieve
better performance, Hosseini et al. [12] proposed a model for detecting malicious crawler
behavior using machine learning techniques and tested and compared several machine
learning algorithms, such as Bayesian networks, SVM, and decision trees. Finally, in this
experiment, it was found that the SVM-based model had higher detection accuracy for
malicious crawlers and extracting effective features could improve the detection accuracy.
In 2021, Hu et al. [13] designed and implemented an XSS attack detection model for
web applications. This model added the verification code recognition function to solve
the problem of submitting data to the server just by entering the verification code; this
model had a low false positive rate. Malviya et al. [14] developed a web browser for
machine learning classification to mitigate XSS attacks. Experimental results showed
that the proposed method outperforms other proposed methods in classification accuracy,
recall, precision, and F1-score. Mokbal et al. [15] proposed a novel XSS attack detection
framework based on the ensemble learning technique for web applications, which used the
XG boost (Extreme Gradient Boosting) algorithm and the extreme parameter optimization
method. The proposed framework passed multiple tests on the testing dataset, and the
accuracy could reach 99.59%. Soltani et al. [16] proposed a framework for a DID (Deep
Intrusion Detection) system. The authors deployed and evaluated offline IDS (Intrusion
Detection System) following this framework. Experiments showed that the evaluation
indicators, such as the precision rate and recall rate, of this method, reached 0.992 and
0.998, respectively. In addition, the shortage of high-quality data has always been a key
problem in machine learning. Multi-fidelity classification algorithms [17-19] solve this type
of problem by incorporating information from other sources that can be obtained at a low
cost while maintaining good correlation. In this regard, it can also be applied to the XSS
attack detection model in the future to improve the generalization ability of the model.

Our previous work [20] can detect XSS attacks more accurately by using machine
learning to jointly detect traffic and logs and at the same time, trace the process of XSS
attacks in the entire network, but it needs to collect a large number of network device logs
for analysis.

To sum up, the current XSS attack detection approaches still have the following problems:

e XSS remains one of the most serious and common types of attacks. Therefore, a more
effective detection method is needed to defend against XSS attacks.

e The pros and cons of a single model of the existing detection methods will directly
affect the effectiveness of the entire detection model.

e Existing detection methods have a high false negative rate in the face of the frequent
variations in XSS payloads, which needs to be reduced.

e There is currently no public dataset that includes both normal traffic and XSS attack
traffic (the only type of attack in the attack traffic is XSS).

Therefore, this paper focuses on developing a fusion verification method. We obtain
a real-world experimental dataset by simulating XSS vulnerabilities in CVE (Common
Vulnerabilities and Exposures) and capturing network traffic on the web server side. Then

Mathematics 2022, 10, 3787

4 of 14

we combined traffic detection with XSS payload detection to form a fusion verification
method to defend against XSS attacks. Moreover, this method combines the timeliness
advantages of traffic detection and the accuracy advantages of payload detection. We
expect that this method can improve the performance of detection models and solve the
problems that existing solutions have that make it difficult to meet actual needs.

3. Proposed Methodology

Figure 1 shows the overall framework for detecting the XSS proposed in this paper.
First, the original dataset of the experiment is obtained by reproducing the CVE vulnerabil-
ity. Then we use the rdpcap function of the Scapy library in Python to read the pcap file of
the original dataset and summarize the data according to the upstream and downstream of
the two-way communication. In addition, it is divided into two detection modules, one is
traffic detection and the other is XSS payload detection. We extract the traffic dataset and
the payload dataset separately through different modules. The two modules perform pre-
processing and feature extraction, respectively, to form a data format that can be recognized
by machine learning input. Next, the two modules separately perform preprocessing and
feature extraction to form a recognizable data format for machine learning input and send
it to the classifier for detection. Due to the particularity of the traffic itself, we found that
each flow in the pcap packet corresponds to multiple payloads at the same time, and each
result of the traffic detection module may correspond to the results of multiple payload
detection modules. Therefore, we can combine the results of the two modules by matching
the source port feature (src_port) common to both detection modules. Finally, the final
detection result is obtained through the fusion verification of the two detection models so
as to improve the detection performance of the entire model.

CVE
Scapy
Traffic = + XSS payload
detection Traffic dataset Payloads dataset detetion
1 1
Traffic Payloads
preprocessor preprocessor
Traffic Payload
features J features
RF RF
Classifier Classifier
<
Match

Payload 1
Payload 2

Payload 3
Flow 2 < Payload 4
Payload 5
Flow n < Payload m
Fusion
verification

{ 1

Normal Malicious

Flow 1

Figure 1. The framework of the proposed method.

3.1. CVE Vulnerability Set

This paper targets the widely used content management system—WordPress [21]
(43.0% of websites worldwide use WordPress). From NVD [22] (National Vulnerability

Mathematics 2022, 10, 3787

5o0f 14

Database), we have selected 10 recent XSS vulnerabilities for both reflected XSS and stored
XSS. The specific CVE list is shown in Table 1. Then, the original dataset is formed by
simulating locally and using WireShark [23] to capture the traffic packets of the reproduced
process, and the dataset format is pcap packet.

Table 1. CVE list.

XSS Type Vulnerability Number
CVE-2021-25067, CVE-2021-24234, CVE-2021-24180, CVE-2021-24225,
Reflected XSS CVE-2021-24436, CVE-2021-24437, CVE-2021-24452, CVE-2021-25041,

CVE-2021-25047, CVE-2021-25065

CVE-2021-25046, CVE-2021-24988, CVE-2021-24315, CVE-2021-24528,
Stored XSS CVE-2021-24658, CVE-2021-24518, CVE-2021-24505, CVE-2021-24504,
CVE-2022-1915, CVE-2022-1896

3.2. Traffic Features Extraction

After detection and analysis, it is found that the XSS attack traffic is different from
the normal traffic. Since XSS attack traffic not only needs to load normal web pages but
also needs to load malicious js files or external malicious links, resulting in extra network
resources and system resources. Thus, the packets of XSS attack traffic are generally larger.

A total of 1947 flows have been extracted for analysis in this paper. Two types of
features have been used for learning: traffic-related features and time-related features,
which help the classifier to distinguish between normal traffic and XSS attack traffic.
Moreover, the traffic-related features include the five-tuple features of the communication
process (due to the particularity of the format of the IP address itself, the source IP address
and the destination IP address are omitted), as shown in Table 2. This experiment has used
enough traffic to reflect the real network environment and real traffic features.

Table 2. Traffic features and descriptions.

Feature Type Feature Name Descriptions
proto Transfer protocol number
src_port Source port
dst_port Destination port
up_pkts Total number of upstream packets
dw_pkts Total number of downlink packets
up_pl_bytes Total uplink load
Trafficrelated dw_}?l_bytf'es Total doyv'rllink load
up_min_plsize Upstream minimum payload
features dw_min_plsize Downlink minimum payload
up_avg_plsize Upstream load average
dw_avg_plsize Downstream load average
up_max_plsize Upstream maximum payload
dw_max_plsize Downlink maximum payload
up_stdev_plsize Upstream load variance
dw_stdev_plsize Downlink load variance
duration Stream duration
up_avg_ipt Average time interval of upstream packets
dw_avg_ipt Average time interval of downlink packets
) up_min_ipt Uplink minimum time interval
Time-related dw_min_ipt Downlink minimum time interval
_min_ip ownlink minimum time interva
features up_max_ipt Uplink maximum time interval
dw_max_ipt Downlink maximum time interval
up_stdev_ipt Upstream time interval variance

dw_stdev_ipt Downlink time interval variance

Mathematics 2022, 10, 3787

6 of 14

3.3. Payload Features Extraction

In this section, after an in-depth study of XSS attack methods and causes, we have
summarized three representative attack methods from the attackers’ point of view. Then we
extracted seven attribute features of the payloads according to the summarized attack methods.

3.3.1. XSS Attack Methods

(1) Script: Script injection can be divided into static script injection and dynamic script in-
jection. Static script injection usually constructs malicious code within <script></script>
tags to trigger scripts. Dynamic script injection refers to triggering the browser to
introduce external malicious links through the src attribute of the script tag.

(2) JavaScript pseudo-protocol: XSS attack using JavaScript pseudo-protocol is also a
common injection method. The JavaScript pseudo-protocol treats the segment after
the code “javascript:” as a JavaScript script and executes it.

(3) Inline events: JavaScript interacts with HTML through DOM events. The HTML DOM
allows JavaScript to react to HTML events and execute JavaScript when events occur.
XSS attack can use DOM events to bind malicious code. Most DOM events have names
starting with “on”, and most HTML tags can use the on-event to trigger script code.
Table 3 shows some on-events.

Table 3. Some on-events and descriptions.

Attribute Descriptions
onerror Run the script when an error occurs
onload Run the script when the document loads
onfocus Run script when window gets focus
onclick Run a script when the mouse is clicked
onmouseover Run a script when the mouse pointer moves over an element

Table 4 shows examples of three XSS attack methods:

Table 4. XSS attack examples.

Methods Examples
Script <script>alert(123);</script>
JavaScript pseudo-protocol <iframe src="javascript:alert(‘xss’)”>
Inline events

3.3.2. Attribute Features

Usually, experienced attackers will change the encoding or capitalization of malicious
code to carry out deformation attacks. Therefore, this paper has preprocessed the extracted
sentences to convert them into original sentences. The preprocessing includes lowercase
conversion, URL decoding, HTML decoding, JavaScript decoding, ASCII decoding, Uni-
code decoding, and URL decoding twice. Values are then extracted from the processed
dataset to fit the features proposed in this paper.

Through extensive research on XSS attack methods and analysis of their lexical features,
we have found that text characters commonly found in malicious code are often combined
with certain fixed symbols. Therefore, matching the combined form can reduce the detection
of false positive rate compared to just matching text characters. The following seven
attribute features are summarized:

(1) HTML_Tags

HTML tags in XSS attacks typically appear more frequently than text loads in normal
traffic. In HTML tags, the label starts with a left angle bracket. For example, <script,
<iframe, and <img in Table 5 appear in the form of left angle brackets plus script, iframe,
and img characters. Therefore, the combination of the left angle bracket and the label
character is classified into a class of features.

Mathematics 2022, 10, 3787

7 of 14

Table 5. Seven new attribute features.

Features Examples
HTML_Tags <script, <img, <body, etc.
JavaScript javascript:
On_Event onerror=, onmouseover=, onload=, etc.
Function_Body alert(, confirm(, eval(, etc.
Document_Object document.cookie, etc.
Third_Party_Links src=, href=, http:, https:, //
Delimiter space,/, +

(2) JavaScript

The JavaScript pseudo-protocol is usually combined with HTML tags to form mali-
cious code, such as <iframe src="javascript:alert("xss’)”>, where the code feature that will
always appear is “javascript:”.

(3) On_Event

HTMLS allows browsers to trigger scripts through various events. For example, in the
malicious code “", the attacker deliberately
sets the src attribute of the img tag to be wrong and then uses the onerror event (run the
script when an error occurs) to trigger the malicious script. Therefore, the alert function is
triggered here, causing the cookie to be leaked. The features of the event attribute are the
form of the on-event followed by an equal sign, such as “onerror=".

(4) Function_Body

Attackers can use some “dangerous functions” in JavaScript to steal sensitive informa-
tion. For example, the “alert()” function is often used to pop up a dialog box. If an attacker
combines it with the document object, the purpose of stealing cookies can be achieved. The
code feature of the JavaScript function body is “alert()”, which is obviously different from
ordinary characters.

(5) Document_Object

The document object is the root node of the HTML document. An attacker can use
the “document.write” property to write JavaScript code to the document or use “docu-
ment.cookie” to return all cookies associated with the current document. Its code feature
is “document.”

(6) Third_Party_Links

In order to better conceal cross-site scripting attacks, experienced attackers will build
an XSS attack server to receive and store the stolen sensitive information. As a result,
there will be third-party links in the attack traffic, which are mostly characterized by a
combination of src or href and third-party links.

(7) Delimiter

Delimiters, such as spaces, are unavoidably used within HTML tags due to the gram-
matical nature of HTML. Therefore, attackers must use delimiters to construct attack
statements when exploiting cross-site scripting vulnerabilities. “space”, “/”, and“+” are
known to be used as delimiters for malicious code.

In this paper, we have added 7 new features to the 30 features extracted by Zhou and
Wang (2019) [1], totaling 37 attribute features of the XSS payloads. Table 5 shows the seven

new attribute features added in this paper:

3.4. Fusion Verification

Both the traffic detection module and the XSS payload detection module can present
the malicious or normal status of the current stream or payload in binary form. In this paper,
we have adopted the fusion verification method. If either of the two detection modules

Mathematics 2022, 10, 3787

8 of 14

declares that the current detection sample is malicious, it is considered to be malicious. In
addition, if both of them declare that it is normal, it is considered to be normal.

In this paper, Boolean variables F, and P, are used to represent the detection results
of the traffic detection module and the detection results of the XSS payload detection
module, respectively. The Boolean variable R is used to represent the final result of fusion
verification, and its calculation formula is as follows:

Rs = FvV Pv D

It is easy to know from Formula (1) that there are four cases in total. In these four
cases, the final result is normal only when the traffic detection determines that it is normal
and the payload detection determines that it is normal. In other cases, the result is judged
to be malicious.

3.5. Random Forest

The research of a large number of scholars shows that the ensemble method has
good performance in classification performance and robustness in the face of overfitting.
Therefore, these kinds of algorithms are very popular in the field of machine learning. In
this paper, the random forest algorithm has been used as the classification technique of the
experiment. Random forest is an ensemble algorithm based on decision tree, which not
only has good scalability but is also easy to use. The principle of random forest is to build
a strong model with better generalization performance and less overfitting by separately
averaging multiple decision trees affected by large variance.

In this paper, the random forest algorithm has been used as the classifier. The random
forest algorithm does not need to worry about the choice of hyperparameter values, and
pruning it is usually not necessary because of its strong resistance to noise from a single
decision tree. In this experiment, we have taken the size of the training dataset as the size,
n, of the bootstrap samples in order to obtain a better bias-variance tradeoff. We set the
number of features, d, in each split to a value less than the total number of features in
the training dataset. We have used the random forest classifier already implemented by
scikit-learn with relatively reasonable parameter settings. The default value is d = /m,
where m represents the total number of features in the training dataset. Additionally, we
have chosen entropy as the criterion used for splitting nodes. We have set the value of
the n_estimators parameter of the number of decision trees to 100. Because when the
n_estimators parameter reaches 100, the accuracy of the model no longer increases. We
have set the number of parallel computations, n_jobs, to 10 to use the multi-core computer
parallel computing model.

4. Experiments and Discussions
4.1. Experimental Dataset

This paper has formed a traffic dataset containing normal traffic and XSS attack
traffic by simulating the CVE. This dataset is called “CVE traffic”. “CVE traffic” contains
1747 normal traffic and 200 XSS attack traffic. Then we used Scapy’s rdpcap function to
extract the XSS payload dataset, referred to as “CVE payloads”. It contains 10083 normal
records and 231 XSS payloads.

XSS payloads [24] have been collected from GitHub and used as a training dataset
with a total of 151,658 records, including 135,507 normal records and 16,151 XSS payloads.
The testing dataset has been extracted from the traffic dataset above through the rdpcap
function of the Scapy library.

The specific information on the experimental datasets is shown in Table 6

Mathematics 2022, 10, 3787

9of 14

Table 6. Experimental dataset.

Datasets Normal XSS

CVE traffic 1747 200

CVE payloads 10,083 231
XSS payloads [24] 135,507 16,151

4.2. Experimental Results

This experiment uses twenty-fold cross-validations to assess the performance of the
model. In this method, 19 of the 20 CVE traffic datasets are used as training datasets, and
the remaining one is used as the test dataset. Additionally, each of the 20 subsets is only
used once as a test dataset. The cross-validation process has been repeated 20 times, and
the average of the twenty results for each CVE are taken as the result of this experiment.
Then, we used the fusion verification method mentioned in Section 3.4 of this paper to take
the average of 20 results for each CVE traffic detection result and XSS payload detection
result as the final result of our method.

This experiment aimed to solve a typical binary classification problem. As shown in
Table 7, we use a confusion matrix to represent the results.

Table 7. Confusion matrix.

Actual XSS Actual Normal
Predicted XSS TP FP
Predicted Normal FN TN

The confusion matrix is divided into four categories. TP (True Positive) means the
number of correctly classified as attack samples, and FP (False Positive) means the number
of normal samples classified as attack samples. In addition, TN (True Negative) means
the number of correctly classified as normal samples, and FN (False Negative) means the
number of attack samples classified as normal samples. This paper evaluates the accuracy,
precision, recall, and F1 score of the experimental results. The calculation formulae are
as follows:

Accuracy = TP+ TN 2)
Y= TP¥TN T FP+FN
.. TP
Precision = TP+ FP T EP 3)
TP
Recall = m—m (4)
Fl— 2 X Precision x Recall 5)

Precision + Recall
The experimental results are shown in Figure 2.

m Traffic detection ~ mFusion verification m Traffic detection ~ mFusion verification
0° 09
o 0379 100.0% 100% 96.5% 100.0%
87.3% 83.2% 90.8% 85.7%
0% %
h 713% 80 75.0%
0, 0, ,
60% 58.7% 57.9% 58.1% 60% —
41. 5%
40% 40% ?5 0%)
20%
0%
Accuracy Precision Recall Fl1 Accuracy Precision Recall Fl1
CVE-2021-25067 (a) CVE-2021-24234 (b)
(a) (b)

Figure 2. Cont.

Mathematics 2022, 10, 3787

10 of 14

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

u Traffic detection

u Fusion verification

100.0%
81.8%
11.1% ‘4i'/|
Recall F1

CVE-2021-24180 (c)

93.9%
82.1%)
69.2%
20‘0%I
Accuracy Precision
()
u Traffic detection
o1 4‘]/98‘5%
=N 88.4%
I 81.0%
Accuracy Precision

u Fusion verification

100.0%
93.8%
69.6%
62.9% I
Recall F1

CVE-2021-24436 (e)

(e)

u Traffic detection
97.4%

u Fusion verification

100.0%
92.9%
52.6%
41.0% I
Recall F1

CVE-2021-24452 (g)

89.6% 36.8%
I 737'/.|
Accuracy Precision

(8)
m Traffic detection
94.8007%
81.5%
I7i%
Accuracy Precision

u Fusion verification

100.0%
84.5%
62.9%
52.5% I
Recall Fl

CVE-2021-25047 (i)

(i)
m Traffic detection ~ ® Fusion verification
100.0%
89.3%
85.1%,
74.1%
58.9%
5OiA)I 1 47i
Accuracy Precision Recall F1
CVE-2021-25046 (k)
(k)

Figure 2. Cont.

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

u Traffic detection

u Fusion verification

100.0%
74.6%
62i 59.1%
Recall F1

CVE-2021-24225 (d)

u Fusion verification

100.0%
88.9%
o
51.3% 56i
Recall F1

CVE-2021-24437 (f)

94.39,05-5%
0,
I I Sizgls&
Accuracy Precision
(d)
u Traffic detection
98.0%
0,
85.2% 80.0%
Accuracy Precision
()
u Traffic detection
96.5%
92.7%;
0,
I I 75i/.8i |
Accuracy Precision

u Fusion verification

100.0%
89.5%
72.5% 73.9%
Recall Fl1

CVE-2021-25041 (h)

(h)
m Traffic detection ™ Fusion verification
0,
9439,941% 100.0%
85.0%
66.7%, 0.0%
55.3%s54 0, I I
Accuracy Precision Recall F1
CVE-2021-25065 (j)
()
m Traffic detection ~ ®Fusion verification
100.0%
92.2%
86.8% 85.0%
T4.7%74.5%
I I 60.0% 62.8%
Accuracy Precision Recall Fl
CVE-2021-24988 (1)
@

Mathematics 2022, 10, 3787

11 0f 14

m Traffic detection ™ Fusion verification

m Traffic detection mFusion verification

97.6% 100.0% 0
100% g5 popmy™ 87.8% 100% 9340l B 86.3%
.. o
80% N 80% 76.0%
60% 52.9% 60% 310 48.8%
o, 42.6% 42.9%
40% 38.0% 40%
20% 20%
0% 0%
Accuracy Precision Recall Accuracy Precision Recall
CVE-2021-24315 (m) CVE-2021-24528 (n)
(m) (n)
m Traffic detection ~ mFusion verification m Traffic detection ~ ®mFusion verification
o
100% ~95.3%94.7% 100% g1 40 100.0%
86.4% 84, 0‘784 9% 8. 30/84 9% 86.5%
80% 74.8% 80%
60% 60% 39.5% 57.0%
01% 45.0% 48.6%
40% 40% :
20% 20% I I I
0% 0%
Accuracy Precision Recall Accuracy Precision Recall
CVE-2021-24658 (0) CVE-2021-24518 (p)
(0) (p)
m Traffic detection ~ mFusion verification m Traffic detection ~ mFusion verification
0, 98.0% 100.0% o 100.0%
100% g7 0.3 94.3% 100% g1 70500 1o:
82.6%)
80% 70.5% 80%)
62.5% 64.0% 66.4%
60% 60% 6.0% 56.7%
49.8%
40% 40%
20% 20%
0% 0%
Accuracy Precision Recall Fl1 Accuracy Precision Recall
CVE-2021-24505 (q) CVE-2021-24504 (r)
(9) (1)
m Traffic detection ~ mFusion verification m Traffic detection ™ Fusion verification
100% 6.7% 100% 0,95.2%
° 9 88.1% B 87.3%
80% T4.4% 80%
64.6% 63.3%
60% 60% 19,67,
40% nateil 40% i
() 0, o
25.7% 3120 25 0%)
o o
20% I I 20% 100% 1430/
0% 0%
Accuracy Precision Recall Fl1 Accuracy Precision Recall
CVE-2022-1915 (s) CVE-2022-1896 (t)
(s) ®

Figure 2. Experimental results (at).

As can be seen from Figure 2, in 17 out of 20 CVE experiments, the recall of our
fusion verification method can reach an astonishing 100%. We can know from Figure 3 that
under such a high recall rate, our accuracy is an average of 94.9%, which also remains at
a high level. Therefore, the fusion verification method can effectively defend against XSS
attacks. In addition, as shown in Figure 3, the average accuracy, precision, recall, and F1
score of this method are significantly improved compared to the single traffic detection
model. Among them, the average improvement in the recall rate is as high as 48%, the
average increase in F1 score is as high as 27.94%, the average increase in precision is 9.29%,
and the average increase in accuracy rate is 3.81%. The results show that our proposed
fusion verification model outperforms the single traffic detection model. However, the
number of experimental samples in the load detection process is relatively small. Therefore,
the performance of a few fusion validation models is slightly lower than that of a single

Mathematics 2022, 10, 3787 12 of 14

detection model. In this regard, we consider using multi-fidelity classification algorithms
in future research and experiments to solve the problem caused by fewer training samples.

m Traffic detection ® Fusion verification
100% 98.0%
94.9%
91.1%
90%
0% 81.0%
b
70% 69.8%
60% 60.5%
53.0%

50% 50.0%
40%
30%
20%
10%

0%

Accuracy Precision Recall Fl

Figure 3. Average performance comparison.

In addition, taking XSS payloads [24] as the dataset, with a ratio of 7:3 between the
training set and test set, random forest is used to evaluate the importance of 37 features
of the payload detection link used in this paper. Among them, there are 30 features
whose contribution rate is larger than 0.01%, as shown in Figure 4. The first is the feature
“Function_Body” proposed in this paper, whose contribution rate is as high as 23.95%.
Moreover, the total contribution rate of the seven features in this paper is as high as 34.12%.
This means that it is feasible to extract detection features by summarizing XSS attack
methods in this paper, and it has better generalization and can detect variations in attacks
more effectively.

10% 15% 20% 25%

R
X
2
X

Function_Body
alert
input size
expression
leftAngleBracket
doubleQuoteMark
HTML_Tags
rightAngleBracket
script
JavaScript
Delimiter
On_Event o
href OD2% u New features
singleQuoteMark [l77%
httpAndFile [l.65%
coma [D.61%
sie [lD.48%
window [0.48%
onmouseover [10.45%
javascript - [0.40%
onerror | 0.22%
prompt 1 0.21%
img | 0.14%
eval | 0.09%
backslant | 0.04%
iframe 0.04%
plus 0.03%
Third Party Links 0.03%
confirm 0.02%
Document_Object | 0.02%

® Zhou and Wang(2019)

Figure 4. Assess the importance of the features of Zhou and Wang (2019) [1] and the newly proposed
features in this paper.

Mathematics 2022, 10, 3787 13 of 14

5. Conclusions

We propose a fusion verification method that combines traffic detection with XSS
payload detection to effectively detect XSS attacks. The results show that the method
proposed in this paper has significant advantages for reducing the false negative rate of
the model. Under the premise of uniform sample distribution, there will be almost no
false negatives. Therefore, the fusion verification method can effectively defend against
XSS attacks. Moreover, compared with the traditional single-flow detection model, the
average recall rate of this method, F1 score, precision, and accuracy rate is increased by
48%, 27.94%, 9.29%, and 3.81%, respectively. Further, the seven new features of the XSS
payloads proposed in this paper account for 34.12% of the total contribution rate of the
37 features.

However, the method proposed in this paper has certain limitations. The cost of
keeping the false negative rate low is that the false positive rate of the entire model will
increase. In the follow-up research, we will try to solve the existing problem.

Author Contributions: Data curation, Z.Q.; Resources, Y.C.; Software, Z.W.; Writing—original draft,
S.Z.; Writing—review & editing, J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant
No. 62102049). Secondly, thanks to the Key Research and Development Project of Sichuan Province
(No. 2022YFS0571, No. 2021YFSY0012, No. 2020YFG0307).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could appear to influence the work reported in this paper.

References

1. Zhou, Y,; Wang, P. An ensemble learning approach for XSS attack detection with domain knowledge and threat intelligence.
Comput. Secur. 2019, 82, 261-269. [CrossRef]

2. Open Web Application Security Project. OWASP Top Ten. Available online: https:/ /owasp.org/www-project-top-ten/ (accessed
on 25 September 2022).

3. Medeiros, I.; Neves, N.; Correia, M. Detecting and removing web application vulnerabilities with static analysis and data mining.
IEEE Trans. Reliab. 2015, 65, 54-69. [CrossRef]

4. Choi, H.,; Hong, S.; Cho, S.; Kim, Y.-G. HXD: Hybrid XSS detection by using a headless browser. In Proceedings of the 2017 4th
International Conference on Computer Applications and Information Processing Technology (CAIPT), Kuta Bali, Indonesia,
8-10 August 2017; pp. 1-4.

5. Mohammadi, M.; Chu, B.-T.; Lipford, H.R. Automated detecting and repair of cross-site scripting vulnerabilities. arXiv
2018, arXiv:1804.01862.

6. Yan, X.-X.; Wang, Q.-X.; Ma, H.-T. Path sensitive static analysis of taint-style vulnerabilities in PHP code. In Proceedings of
the 2017 IEEE 17th International Conference on Communication Technology (ICCT), Chengdu, China, 27-30 October 2017;
pp. 1382-1386.

7. Parameshwaran, I; Budianto, E.; Shinde, S.; Dang, H.; Sadhu, A.; Saxena, P. Dexter]S: Robust testing platform for DOM-based
XSS vulnerabilities. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, Bergamo, Italy,
30 August—4 September 2015; pp. 946-949.

8. Wang, R.; Xu, G.; Zeng, X,; Li, X.; Feng, Z. TT-XSS: A novel taint tracking based dynamic detection framework for DOM Cross-Site
Scripting. J. Parallel Distrib. Comput. 2018, 118, 100-106. [CrossRef]

9. Khalaf, O.I; Sokiyna, M.; Alotaibi, Y.; Alsufyani, A.; Alghamdi, S. Web attack detection using the input validation method: Dpda
theory. Comput. Mater. Contin. 2021, 68, 3167-3184.

10. Zuhair, H.; Selamat, A.; Salleh, M. Selection of Robust Feature Subsets for Phish Webpage Prediction Using Maximum Relevance
and Minimum Redundancy Criterion. J. Theor. Appl. Inf. Technol. 2015, 81, 188-205.

11. Rathore, S.; Sharma, PX,; Park,].H. XSSClassifier: An efficient XSS attack detection approach based on machine learning classifier
on SNSs. J. Inf. Process. Syst. 2017, 13, 1014-1028. [CrossRef]

12. Hosseini, N.; Fakhar, F,; Kiani, B.; Eslami, S. Enhancing the security of patients’” portals and websites by detecting malicious web

crawlers using machine learning techniques. Int. J. Med. Inform. 2019, 132, 103976. [CrossRef] [PubMed]

http://doi.org/10.1016/j.cose.2018.12.016
https://owasp.org/www-project-top-ten/
http://doi.org/10.1109/TR.2015.2457411
http://doi.org/10.1016/j.jpdc.2017.07.006
http://doi.org/10.3745/JIPS.03.0079
http://doi.org/10.1016/j.ijmedinf.2019.103976
http://www.ncbi.nlm.nih.gov/pubmed/31606554

Mathematics 2022, 10, 3787 14 of 14

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

Hu, L.; Chang, J.; Chen, Z.; Hou, B. Web application vulnerability detection method based on machine learning. J. Phys. Conf. Ser.
2021, 1827, 012061. [CrossRef]

Malviya, V.K.; Rai, S.; Gupta, A. Development of web browser prototype with embedded classification capability for mitigating
Cross-Site Scripting attacks. Appl. Soft Comput. 2021, 102, 106873. [CrossRef]

Mokbal, EM.M.; Dan, W.; Xiaoxi, W.; Wenbin, Z.; Lihua, F. XGBXSS: An extreme gradient boosting detection framework for
cross-site scripting attacks based on hybrid feature selection approach and parameters optimization. J. Inf. Secur. Appl. 2021,
58,102813. [CrossRef]

Soltani, M.; Siavoshani, M.].; Jahangir, A.H. A content-based deep intrusion detection system. Int. J. Inf. Secur. 2022, 21, 547-562.
[CrossRef]

Pawar, S.; San, O.; Vedula, P; Rasheed, A.; Kvamsdal, T. Multi-fidelity information fusion with concatenated neural networks. Sci.
Rep. 2022, 12, 5900. [CrossRef]

Yang, C.-H.; Pokuri, B.S.S; Lee, X.Y.; Balakrishnan, S.; Hegde, C.; Sarkar, S.; Ganapathysubramanian, B. Multi-fidelity machine
learning models for structure—property mapping of organic electronics. Comput. Mater. Sci. 2022, 213, 111599. [CrossRef]

Guo, M.; Manzoni, A.; Amendt, M.; Conti, P.; Hesthaven, J.S. Multi-fidelity regression using artificial neural networks: Efficient
approximation of parameter-dependent output quantities. Comput. Methods Appl. Mech. Eng. 2022, 389, 114378. [CrossRef]

Lu, J.; Lv, F; Zhuo, Z.; Zhang, X.; Liu, X.; Hu, T.; Deng, W. Integrating traffics with network device logs for anomaly detection.
Secur. Commun. Netw. 2019, 2019, 5695021. [CrossRef]

Wa3Techs. Usage Statistics of Content Management Systems. Available online: https://w3techs.com/technologies/overview/
content_management (accessed on 25 September 2022).

National Institute of Standards and Technology. National Vulnerability Database. Available online: https://nvd.nist.gov/
(accessed on 25 September 2022).

Wireshark. Available online: https://www.wireshark.org/ (accessed on 25 September 2022).

duoergun0729. XSS Payloads. Available online: https://github.com/duoergun0729/1book/tree/master/data (accessed on
25 September 2022).

http://doi.org/10.1088/1742-6596/1827/1/012061
http://doi.org/10.1016/j.asoc.2020.106873
http://doi.org/10.1016/j.jisa.2021.102813
http://doi.org/10.1007/s10207-021-00567-2
http://doi.org/10.1038/s41598-022-09938-8
http://doi.org/10.1016/j.commatsci.2022.111599
http://doi.org/10.1016/j.cma.2021.114378
http://doi.org/10.1155/2019/5695021
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/overview/content_management
https://nvd.nist.gov/
https://www.wireshark.org/
https://github.com/duoergun0729/1book/tree/master/data

	Introduction
	Related Work
	Proposed Methodology
	CVE Vulnerability Set
	Traffic Features Extraction
	Payload Features Extraction
	XSS Attack Methods
	Attribute Features

	Fusion Verification
	Random Forest

	Experiments and Discussions
	Experimental Dataset
	Experimental Results

	Conclusions
	References

