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Identifying the genetic drivers of adaptation is a necessary step

in understanding the dynamics of rapidly evolving pathogens

and cancer. However, signals of selection are obscured by the

complex, stochastic nature of evolution. Pervasive effects of ge-

netic linkage, including genetic hitchhiking and clonal interfer-

ence between beneficial mutants, challenge our ability to distin-

guish the selective effect of individual mutations. Here we de-

scribe a method to infer selection from genetic time series data

that systematically resolves the confounding effects of genetic

linkage. We applied our method to investigate patterns of selec-

tion in intrahost human immunodeficiency virus (HIV)-1 evo-

lution, including a case in an individual who develops broadly

neutralizing antibodies (bnAbs). Most variants that arise are

observed to have negligible effects on inferred selection at other

sites, but a small minority of highly influential variants have

strong and far-reaching effects. In particular, we found that ac-

counting for linkage is crucial for estimating selection due to

clonal interference between escape mutants and other variants

that sweep rapidly through the population. We observed only

modest selection for antibody escape, in contrast with strong se-

lection for escape from CD8+ T cell responses. Weak selection

for escape from antibody responses may facilitate bnAb devel-

opment by diversifying the viral population. Our results pro-

vide a quantitative description of the evolution of HIV-1 in re-

sponse to host immunity, including selection on the viral popu-

lation that accompanies bnAb development. More broadly, our

analysis argues for the importance of resolving linkage effects in

studies of natural selection.

Evolving populations exhibit complex dynamics. Can-

cers (1–6) and pathogens such as HIV-1 (7–9) and influenza

(10, 11) generate multiple beneficial mutations that increase

fitness or allow them to escape immunity. Subpopulations

with different beneficial mutations then compete with one an-

other for dominance, referred to as clonal interference, re-

sulting in the loss of some mutations that increase fitness

(12). Neutral or deleterious mutations can also hitchhike to

high frequencies if they occur on advantageous genetic back-

grounds (13). Experiments have demonstrated that these fea-

tures of genetic linkage are pervasive in nature (14–16).

Linkage makes distinguishing the fitness effects of individ-

ual mutations challenging because their dynamics are contin-

gent on the genetic background on which they appear. Lin-

eage tracking experiments can be used to identify beneficial

mutations (17), but they cannot readily be applied to evolu-

tion in natural conditions, such as HIV-1 evolution within or

between hosts. Current computational methods to infer fit-

ness from population dynamics ignore linkage or suffer from

serious computational costs (18–23).
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Fig. 1. MPL accurately recovers selection from complex dynamics. A, Sim-

ulated allele frequency trajectories in a model with 10 beneficial, 30 neutral, and

10 deleterious mutant alleles. The initial population is a mix of three subpopula-

tions with random mutations. Selection is challenging to discern from individual

trajectories alone. B, Selection coefficients inferred by MPL are close to their true

values. Error bars denote theoretical standard deviations for inferred coefficients.

Simulation parameters are the same as those defined in Supplementary Fig. 1.

Here we describe a method to infer selection from genetic

time series data and demonstrate its ability to resolve linkage

effects. We apply our method to reveal patterns of selection

in intrahost HIV-1 evolution. Our approach is to efficiently

quantify the probability of an evolutionary ‘path,’ defined by

the set of all mutant allele frequencies at each time, using a

path integral method derived from statistical physics (Meth-

ods). This expression can be analytically inverted to find the

parameters that are most likely to have generated a path.

To define the path integral, we consider Wright-Fisher

population dynamics with selection, mutation, and recombi-

nation, in the diffusion limit (24). Under an additive fitness

model, the fitness of any individual is a sum of selection coef-

ficients si, which quantify the selective advantage of mutant

allele i relative to wild-type. The probability of an evolution-

ary path is then a product of probabilities of changes in mu-

tant allele frequencies at each locus between successive gen-

erations, including the influence of selection at linked loci.

Applying Bayes’ theorem leads to an analytical expression

for the maximum a posteriori vector of selection coefficients

ŝ corresponding to a path (Methods),

ŝ= (Cint +γI)−1 (∆x−µfl) . (1)

The integrated covariance matrix of mutant allele frequencies
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Fig. 2. Patterns of strong selection in within-host HIV

evolution. A, Among the top 1% most beneficial vari-

ants across individuals, mutations to escape from T cell-

mediated immunity are especially common. B, Due to

clonal interference between escape mutants, MPL identi-

fies more escape variants to be strongly beneficial than an

independent model which ignores covariance. C, In con-

trast, the independent model estimates an excess in the

number of strongly beneficial reversions.

Cint accounts for the speed of evolution and linkage effects.

Here γ quantifies the width of a Gaussian prior distribution

for selection coefficients, and I is the identity matrix. Intu-

itively, the net change in mutant allele frequencies ∆x and

the integrated mutational flux µfl determine whether the dy-

namics of a mutant allele appear to be beneficial or deleteri-

ous when linkage is ignored. Because equation (1) emerges

from the likelihood of allele frequency trajectories, a subset

of the full genotype distribution, we refer to it as the marginal

path likelihood (MPL) estimate of the selection coefficients.

To test the ability of MPL to uncover selection, we an-

alyzed data from simulations of a variety of evolutionary

scenarios (Supplementary Information). Even in cases with

strong linkage (Fig. 1A), MPL accurately recovers true selec-

tion coefficients (Fig. 1B). Further tests indicated that perfor-

mance remains strong even when data is limited, an important

practical consideration (Supplementary Fig. 1). Compared to

existing methods of selection inference (18–23), MPL was

the most accurate method in terms of both classification ac-

curacy, measured by AUROC for classifying mutant alleles as

beneficial or deleterious, and in the absolute error in inferred

selection coefficients (Supplementary Fig. 2, Supplementary

Information) across a range of simulated data sets. Due to

the simplicity of equation (1), MPL was fastest among the

methods that we compared, with a running time roughly 6

orders of magnitude faster than approaches that rely on itera-

tive Monte Carlo methods.

Next we applied MPL to study the intrahost evolution of

HIV-1 and to resolve interactions between HIV-1 and the im-

mune system. Identifying selective pressures on HIV-1 gives

insight into the evolutionary dynamics leading to HIV-1 es-

cape from immune control and the development of bnAbs,

both of which are relevant for vaccine design.

We first examined longitudinal HIV-1 half-genome se-

quence data from 13 individuals where early-phase CD8+ T

cell responses were comprehensively analyzed (25). In this

group, 36.6% of the top 1% most beneficial mutations re-

ported by MPL are nonsynonymous mutations in identified

(25) CD8+ T cell epitopes (Fig. 2A). This is a 19-fold en-

richment in mutations in T cell epitopes compared to expec-

tations by chance (Methods). Reversions to clade consensus

are also strongly beneficial. Nonsynonymous reversions out-

side of T cell epitopes are 14-fold enriched in this subset.

Furthermore, nonsynonymous reversions within T cell epi-

topes are 326-fold enriched. These findings are compatible

with past studies that have observed strong selection for T

cell escape (8, 9, 26) and for reversions (9).

Resolving linkage leads to substantial differences in selec-

tion estimates. MPL places 1.76 times as many T cell escape

mutations within the top 1% most beneficial mutations as an

independent model that ignores linkage between mutant al-

leles (Fig. 2B). Conversely, MPL ranks 0.42 times as many

nonsynonymous reversions outside of T cell epitopes to be

strongly beneficial as the independent model does (Fig. 2C).

These differences are explained by the collective resolution

of genetic linkage effects, including clonal interference.

In order to dissect the contributions of linkage to estimates

of fitness, we computed the pairwise effects ∆ŝij of each

variant i on the inferred selection coefficients for all other

variants j (Methods). We defined ∆ŝij as the difference be-

tween the estimated selection coefficient ŝj for variant j us-

ing all of the data and the value of ŝj when variant i is re-

placed by the transmitted/founder (TF) nucleotide at the same

site, thereby removing the contribution to selection from link-

age with variant i. Positive values of ∆ŝij indicate that link-

age with variant i increases the selection coefficient inferred

for variant j (e.g., due to clonal interference between them).

Negative values indicate that variant i decreases the selection

coefficient inferred for variant j (e.g., due to hitchhiking).

Our analysis revealed that the vast majority of observed

variants have essentially no effect on estimates of selection at

other sites, but a small minority of highly influential variants

have dramatic effects (Supplementary Figs. 3-4). Such highly

influential variants are often ones that change rapidly in fre-

quency, sweeping through the population and exerting strong

effects on linked sites (Supplementary Fig. 5). Consistent

with this observation, 40% of highly influential variants are

putative CD8+ T cell escape mutations. Effects on estimated

selection drop off sharply with increasing distance along the

genome for most variants (Supplementary Fig. 6). However,

the effects of highly influential variants routinely span across

long genomic distances (Supplementary Fig. 4). Collectively,

2 | bioRχiv Sohail et al.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/711861doi: bioRxiv preprint 

https://doi.org/10.1101/711861
http://creativecommons.org/licenses/by-nc/4.0/


0 80 160
Time (days)

0

1

V
ar

ia
nt

 fr
eq

ue
nc

y
in

 K
F9

 e
pi

to
pe

A

90
40

C
90

41
C

90
44

G
90

50
A

90
55

A

0

5

10

In
fe

rr
ed

 s
el

ec
tio

n
co

ef
fic

ie
nt

, s
 (%

)

MPL

B

90
40

C
90

41
C

90
44

G
90

50
A

90
55

A

Independent
model

9040C

9041C

9044G

9050A

9055A

90
40

C
90

41
C

90
44

G
90

50
A

90
55

A

60
21

C
72

85
A

87
19

G
88

65
yA

KF9 escape
mutations

Most influential
variants outside

KF9 epitope

Effect of variant i on inferred
selection coefficient sj, sij (%)

Variant i

-2 0 2

Ta
rg

et
 v

ar
ia

nt
 j

C
ACGT pol

vif

vpr

tat exon 1
rev exon 1

vpuenv

tat exon 2
rev exon 2

nef
3' LTR

DI9

TL9
QF9

TW9

DR9
AI9

DG9

KF9

VF9

D

-10 0 10
Inferred selection
coefficient, s (%)

CD8+ T cell
epitope

Fig. 3. Estimates of selection coefficients for viral escape mutations must account for clonal interference. A, Multiple escape mutations appear in the viral population

in the T cell epitope KF9, targeted by individual CH77, exhibiting clonal interference. B, Using the full half-genome-length sequence data as input, MPL infers that all KF9

escape variants are positively selected. In contrast, estimates based solely on the trajectories of individual variants only uncover substantial positive selection for the 9040C

and 9044G variants that coexist at the final time point. Furthermore, the independent model estimates of selection are attenuated because of the failure to account for

competition with other beneficial mutations, including other escape mutations within the same epitope. C, Linkage effects on inferred selection coefficients for KF9 escape

mutations. Effects shown here are due to variants within the KF9 epitope and the top four most influential variants outside the KF9 epitope, defined as the variants i for which
∑

j
|∆ŝij | is the largest. All of these influential variants lie within other T cell epitopes (6021C lies in DI9, 7285A in QF9, 8719G in DR9, and 8865yA in DG9). D, Inferred

selection in the HIV-1 half-genome sequence for CH77. Inferred selection coefficients are plotted in tracks. Coefficients of TF nucleotides are normalized to zero. Tick marks

denote polymorphic sites. Inner links, shown for sites connected to the KF9 epitope, have widths proportional to matrix elements of the inverse of the integrated covariance

(see Eq. (1)).

this data suggests that some highly influential variants are

drivers of selective sweeps. Competition between such vari-

ants results in clonal interference.

A clear example of clonal interference is demonstrated in

escape from a T cell response in individual CH77 targeting

the Nef KF9 epitope (Fig. 3A). MPL infers strong positive

selection for all escape variants. In contrast, when linkage

is ignored escape variants that are lost are inferred to be neu-

tral, and the magnitude of selection for 9040C is substantially

decreased (Fig. 3B). Ignoring linkage thus leads to selection

estimates that are qualitatively and quantitatively suspect. We

observe similar instances of clonal interference in other epi-

topes (Supplementary Figs. 7-8). In the case of KF9, com-

petition between the different escape variants increases the

estimated selection coefficient for each of them (Fig. 3C). In-

ferred selection is also influenced by linkage with other mu-

tations outside the KF9 epitope (Fig. 3C,D). For example,

9040C is inferred to be more beneficial due to its competition

with the DI9 escape mutation 6021C. The selection coeffi-

cient for 9044G, in turn, is somewhat reduced due to positive

linkage with 8719G, which is the dominant escape mutation

in the nearby Env DR9 epitope.

Some strongly selected mutations lie in regions of Env that

are exposed to antibodies, or in N-linked glycosylation mo-

tifs that affect the area of Env that is accessible to antibodies

(Fig. 2A). However, these mutations are infrequent compared

to others in T cell epitopes. One can also observe little posi-

tive selection in Env outside of T cell epitopes in the example

of CH77 (Fig. 3D). Overall, selection for escape from anti-

body responses appears to be weaker or less frequent than

CD8+ T cell-mediated selection.

We then asked whether strong antibody-mediated selection

would be observed in individuals who generate bnAbs. To

explore this question we studied HIV-1 evolution in individ-

ual CAP256, who eventually developed the VRC26 family

of bnAbs (27, 28). This case is particularly challenging for

inference because of a superinfection event 15 weeks after

initial infection (Fig. 4A). This leads to strong and complex

patterns of linkage as the superinfecting strain recombines

and competes with the primary infecting strain (Fig. 4B, Sup-

plementary Fig. 9). For this reason, ignoring linkage leads to

poor selection inferences. Most (6 of 11) of the top 1% most

beneficial mutations inferred by the independent model are

from the background of the superinfecting strain and are syn-

onymous. In contrast, none of the most beneficial mutations

inferred by MPL are synonymous.

We found that selection for known VRC26 resistance mu-

tations (27, 28) is modest (Fig. 4C). The most strongly

selected mutation in the VRC26 epitope region is 6709C

(ŝ = 0.041) in codon 162 in Env, a variant present in the

superinfecting strain that completes an N-linked glycosyla-

tion motif which is absent from the primary infecting virus.

However, this modification makes the virus more sensitive

to VRC26 (27, 28). We observe selection against 6717T
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Fig. 4. Complex patterns of selection in HIV-1 Env following superinfection in

an individual who develops broadly neutralizing antibodies. A, Multiple vari-

ants, including several from the superinfecting strain of the virus, rise and fall in

frequency within the epitope targeted by the VRC26 family of antibodies. B, In-

ferred selection in CAP256 HIV-1 half-genome sequences. Inferred selection coef-

ficients are plotted in tracks. Coefficients of TF nucleotides are normalized to zero.

Tick marks denote polymorphic sites. Inner links, shown for sites connected to the

VRC26 epitope, have widths proportional to matrix elements of the inverse of the

integrated covariance. Linkage is extensive due to the struggle for dominance in the

viral population between the TF, superinfecting, and recombinant strains. C, Map of

inferred selection within the VRC26 epitope, consisting of codons 160-171 in Env.

(ŝ = −0.012), corresponding to the Env 165L variant in the

superinfecting strain. Reversion of this residue to V, the vari-

ant in the primary infecting strain, improves resistance to

early VRC26 antibodies (28). We also observe modest pos-

itive selection for nonsynonymous variation at codon 169 in

Env (maximum ŝ= 0.010), where mutations lead to complete

resistance to VRC26 family antibodies (28). Thus, even the

most strongly selected resistance mutations would fall out-

side of the top 5% most strongly selected mutations in the

larger sample of 13 individuals.

Weak selection on the virus for antibody escape may in fact

facilitate the development of bnAbs. Multiple escape vari-

ants, as well as variants that are sensitive to the antibody, can

readily coexist for long times when escape is weakly selected.

This coexistence increases the diversity of the viral popula-

tion. Pressure on antibodies to bind to multiple variants can

then select for breadth (29). Indeed, viral diversification has

been observed to precede bnAb development (28, 30). In

contrast, stronger pressure on the virus for escape could re-

duce viral diversity due to rapid fixation of beneficial escape

variants and the elimination of sensitive ones.

Overall, our results reveal patterns of HIV-1 adaptation, in-

cluding selection on the virus population accompanying the

development of bnAbs, that were not possible to quantify

using methods that cannot resolve genetic linkage. Further-

more, the scale of the data considered here is far beyond what

existing methods that attempt to account for linkage can an-

alyze. We anticipate that our method can also be widely ap-

plied to investigate selection in other evolving populations.

Given the potential pitfalls of linkage-naive inference, our

results call for a greater focus on resolving linkage effects

in studies of selection.
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Methods

Data and code availability

All data and computer code supporting the find-

ings of this study are available on GitHub in the

repository https://github.com/bartonlab/

paper-MPL-inference.

Evolutionary model

Our inference approach is based on the standard Wright-

Fisher (WF) model of population genetics, which describes

the stochastic dynamics of an evolving population of N in-

dividuals. Each individual is represented by a genetic se-

quence of length L. The population evolves in discrete, non-

overlapping generations subject to the forces of selection,

mutation, and recombination. For simplicity, we begin by

describing the model with two alleles per locus, wild-type

(WT) and mutant. Thus there are M = 2L unique genotypes.

Later we show that our approach readily generalizes to con-

sider multiple alleles per locus.

The state of the population at a generation t is given by the

genotype frequency vector z(t) = (z1(t), . . . ,zM (t)), where

za(t) denotes the frequency of individuals with genotype a.

Conditioned on z(t), the probability that the genotype fre-

quency vector in the next generation is z(t+ 1) is multino-

mial (31):

P
(

z(t+1)
∣

∣

∣
z(t)

)

=N !
M
∏

a=1

(

pa(z(t))
)Nza(t+1)

(Nza(t+1))!
, (2)

with

pa(z(t)) =
ya(t)fa +

∑

b 6=a (µbayb(t)fb −µabya(t)fa)
∑M

b=1 yb(t)fb

.

(3)

Here fa denotes the fitness of genotype a, and µab is the

probability of genotype a mutating to genotype b. For sim-

plicity we will assume at first that the mutation probability

µ is the same at all loci, and that the probability of mutating

from WT to mutant is the same as that from mutant to WT.

In Eq. (3),

ya(t) = (1− r)L−1za(t)+
(

1− (1− r)L−1
)

ψa(t) (4)

is the frequency of genotype a after recombination. Here

r is the probability of recombination per locus per genera-

tion, and ψa(t) is the probability that randomly recombining

any two individuals in the population results in an individ-

ual of genotype a (see Supplementary Information). Though

Eq. (3) and Eq. (4) appear complex, they have an intuitive

interpretation. The first term in Eq. (3) reflects the fact that

fitter individuals reproduce more efficiently and are therefore

more likely to be observed in future generations. Mutations,

captured through the second term, lead to conversions from

genotype a to other genotypes, and vice versa. The denom-

inator in Eq. (3) provides an overall normalization and indi-

cates that relative fitness is important: in order for a particular

genotype to reliably grow in frequency, its fitness should be

higher than the average fitness of all individuals in the popu-

lation. The first term of Eq. (4) gives the proportion of indi-

viduals of genotype a not undergoing recombination, while

the second term accounts for the net inward flow due to re-

combination from all other genotypes to genotype a.

For a population evolving under the WF model for T gen-

erations, the probability that the genotype frequency vector

follows a particular evolutionary path (z(1),z(2), . . . ,z(T )),

conditioned on the initial state z(0), is

P
(

(z(t))T
t=1 |z(0)

)

=

T −1
∏

t=0

P (z(t+1)|z(t)) . (5)

This expression is difficult to work with for parameter infer-

ence. This is due in part to the high dimensionality of the

vector z, which scales exponentially with the length of the

genetic sequence. Thus, in the vast majority of real data sets,

the sequence space is dramatically under-sampled. The func-

tional form of Eq. (2) is also complex.

Our approach circumvents these issues by employing two

approximations. First, we obtain a simplified version of

Eq. (5) by using a path integral. Path integral expressions

for evolutionary models have also been derived under differ-

ent assumptions in past work (32–34), but they have not been

widely applied for inference. We also assume that fitness is

additive, such that the total fitness of each genotype a is just

given by the sum of the selection coefficients si for mutant

alleles at each locus i,

fa = 1+
L
∑

i=1

ga
i si .

Here ga
i is 1 if genotype a has a mutant allele at locus i and 0

otherwise. These assumptions will substantially simplify the

expression for Eq. (5).

Path integral for mutant allele frequencies

In this section we will develop a simplified version of Eq. (5)

defined at the level of allele frequencies rather than genotype

frequencies. Later we will demonstrate that, if the fitness

effects of mutations are additive as assumed above, this ap-

proach will lead to no loss of information for estimating the

selection coefficients from data. We begin by using the WF

dynamics above, which are defined for genotype frequencies,

to compute the expected changes in frequency of mutant al-

leles. The mutant allele frequency xi at locus i is

xi(t) =
M
∑

a=1

ga
i za(t) .

Following the assumptions above, and in the WF diffusion

limit (31), one can show (Supplementary Information) that

the probability density for mutant allele frequencies x(t) =
(x1(t),x2(t), . . . ,xL(t)) follows a Fokker-Planck equation
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with a drift vector di and diffusion matrix Cij/N given by

di(x(t)) =µ(1−2xi(t))+xi(t)(1−xi(t))si (6)

+
∑

j 6=i

(xij(t)−xi(t)xj(t))sj

and

Cij(x(t)) =

{

xi(t)(1−xi(t)) i= j

xij(t)−xi(t)xj(t) i 6= j .
(7)

Here xij is the frequency of individuals in the population

with mutant alleles at both loci i and j. The drift vector

describes the expected change in mutant allele frequencies

in time. Note that the last term in Eq. (6) quantifies linked

selection, i.e., how the dynamics of mutant allele frequencies

are affected by the average genetic background on which they

appear. The drift vector should not be confused with genetic

drift, the fluctuation in allele frequencies due to the inher-

ent stochasticity of replication, which is instead described by

the diffusion matrix. The diffusion matrix is simply the co-

variance matrix of mutant allele frequencies divided by the

population size N . It therefore depends on the double mu-

tant frequencies xij , but we will use the shortened notation

Cij(x(t)) for brevity.

Applying standard methods from statistical physics (35),

the Fokker-Planck equation can be converted into a path inte-

gral that quantifies the probability density for ‘paths’ of mu-

tant allele frequencies (x(1),x(2), . . . ,x(T )). This expres-

sion will allow us to efficiently estimate the parameters that

are most likely to have generated a specific path (see Supple-

mentary Information for details). The probability for a path is

P
(

(x(t))T
t=1 |x(0)

)

≈

[

T −1
∏

t=0

1
√

detC(x(t))

(

N

2π

)L/2 L
∏

i=1

dxi(t+1)

]

exp

(

−
N

2
S
(

(x(t))T
t=0

)

)

,

S
(

(x(t))T
t=0

)

=
T −1
∑

t=0

L
∑

i=1

L
∑

j=1

[xi(t+1)−xi(t)−di(x(t))]
(

C−1(x(t))
)

ij
[xj(t+1)−xj(t)−dj(x(t))] .

(8)

In the language of physics, S
(

(x(t))T
t=0

)

is referred to as

the action. The population size N is analogous to the in-

verse temperature in statistical physics. The action penal-

izes deviation of the change in mutant frequencies between

generations from the expectation given by the drift vector at

the previous generation. This is normalized by the diffusion

matrix, which quantifies the magnitude of typical changes in

mutant frequencies due to random replication alone (i.e., ge-

netic drift). The path integral equation in Eq. (8) follows the

Itô convention.

Marginal path likelihood (MPL) estimate of the selec-

tion coefficients

Given an observed path of mutant allele frequencies, we

can employ Bayesian inference to determine the maximum a

posteriori selection coefficients ŝ corresponding to the data,

assuming that the population size N and mutation proba-

bility µ are known. In practice, our data consists of sets

of genetic sequences obtained from a population at multi-

ple time points tk,k ∈ {0,1, . . . ,K}. These sequences can

be used to compute the path of mutant allele frequencies

(x(t0),x(t1), . . . ,x(tK)) as well as the double mutant fre-

quencies xij(tk), which also appear in Eq. (8). We will as-

sume that the observed mutant allele frequencies are equal to

the true ones, which simplifies the inference procedure. Our

tests indicate that our results are robust to errors in the fre-

quencies due to finite sampling (see Supplementary Fig. 1).

Future work will relax this assumption.

In total, the posterior probability of the selection co-

efficients s = (s1,s2, . . . ,sL) given the observed path

(x(t0),x(t1), . . . ,x(tK)) is

P
(

s|(x(tk))K
k=0

)

= P
(

(x(tk))K
k=0 |x(0)

)

×Pprior(s),

(9)

where P
(

(x(tk))K
k=0 |x(0)

)

is the probability of the path

(given by Eq. (8), but extended to arbitrary sampling times

as shown in Supplementary Information) and Pprior(s) is

the prior probability for the selection coefficients. Eq. (9)

is a complicated expression of the mutant allele frequencies.

However, solving for the selection coefficients that maximize

the posterior probability is straightforward because Eq. (8)

is a Gaussian function of the selection coefficients. Taking

Pprior(s) to be a Gaussian distribution with mean zero and

covariance matrix σ2I , where I is the identity matrix, the

selection coefficients that maximize Eq. (9) are given by

ŝi =
L
∑

j=1

[

K−1
∑

k=0

∆tkC(x(tk))+γI

]−1

ij

(10)

×

[

xj(tK)−xj(t0)−µ
K−1
∑

k=0

∆tk
(

1−2xj(tk)
)

]

.

Here γ = 1/Nσ2, and ∆tk = tk+1 − tk. We refer to Eq. (10)

as the MPL estimate of selection coefficients. Because of

the Gaussian form of Eq. (9), the maximum a posteriori esti-

mates of the selection coefficients are the same as their pos-
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terior means.

Eq. (10) can be readily interpreted. Let us start by consid-

ering the vector term in the “numerator” of Eq. (10) that mul-

tiplies the matrix inverse. Here the first terms quantify how

the frequency of each mutant allele has changed between the

initial and final generations. Naturally, alleles that increase

in frequency over time are more likely to be beneficial. The

remaining terms quantify the integrated mutational flux, i.e.,

population flow from mutant to WT (or vice versa) due to

mutation. Net mutational flux from mutant to WT is also

associated with higher fitness for the mutant allele. This is

because this indicates that the mutant state maintained higher

frequency than the WT over the trajectory, despite the force

of mutation that drives the frequencies toward the same value.

Together, these terms in the numerator of Eq. (10) determine

whether a mutant allele is inferred to be beneficial or delete-

rious, at least when the off-diagonal elements of the matrix

that it multiplies are zero.

While the numerator of Eq. (10) roughly determines the

sign of selection, the denominator determines the strength

of the inferred selection coefficient. Let us refer to
∑K−1

k=0 ∆tkC(x(tk)) as the integrated covariance matrix.

From Eq. (7) we see that the entries of Cij(x(t)) are small

when the mutant frequency is near the boundaries (0 or 1).

Thus, the dominant contribution to the integrated covariance

matrix comes from points on the path where the mutant fre-

quency is far from the boundaries. If selection is strong, so

that the mutant allele is much fitter than the WT (or vice

versa), then we expect that a large portion of the path will be

spent with the mutant allele frequency close to the boundary.

In such cases the diagonal part of the integrated covariance

will be small, and we correctly infer strong selection. The

prior distribution for the selection coefficients simply adds a

constant to the diagonal of the integrated covariance, which

both shrinks selection estimates toward zero and ensures that

the matrix is invertible. The off-diagonal terms of the inte-

grated covariance matrix capture linkage effects, that is, how

much of the change in the mutant frequency at a locus can be

attributed to the average sequence background on which the

mutant appears.

Equivalence of genotype- and allele-level analyses

In the preceding section we derived an estimate for the selec-

tion coefficients most likely to have generated an observed

evolutionary path. To do this we used an expression for

the likelihood of a path of mutant allele frequencies that de-

pended on the mutant frequencies xi(t) and their pairwise

correlations xij(t), but not on higher order correlations of

the full genotype distribution. However, the WF dynamics is

defined at the level of genotypes.

It can be shown that the use of Eq. (8) does not result in

any loss in information beyond the approximations inherent

in the WF diffusion limit. In the WF diffusion limit, the same

steps as those applied to derive Eq. (8) can be performed for

the genotype frequencies (see Supplementary Information).

This results in a path integral expression that quantifies the

probability density of genotype frequency paths. As in the
allele-level analysis, the estimated selection coefficients are

those that maximize

P
(

s|(z(tk))K
k=0

)

= P
(

(z(tk))K
k=0 |z(0)

)

×Pprior(s),

where P
(

(z(tk))K
k=0 |z(0)

)

is the probability density of the

genotype frequency path. The full expression is more com-

plicated, and less transparent, than the allele-level equivalent.

Nonetheless, one can show that the expression for the se-

lection coefficients that maximize the posterior probability

above is exactly the same as Eq. (10). Full details of this

derivation are given in the Supplementary Information. This

result is important because it shows that, following the as-

sumptions of the WF diffusion limit and assuming that the

fitness effects of mutations are additive, higher order muta-

tional correlations contain no further information about the

fitness effects of mutations.

Extension to multiple alleles per locus and asymmet-

ric mutation probabilities

The MPL framework extends readily to models with ℓ alleles

per locus, as well as asymmetric mutation probabilities. Let

xi,α(t) denote the frequency of allele α at locus i at genera-

tion t, and denote µαβ as the mutation probability per locus

from allele α to allele β. Now, the trajectory of allele fre-

quency vectors is (x(t0),x(t1), . . . ,x(tK)), where x(tk) =
(

x1,1(tk),x1,2(tk), . . . ,x1,ℓ(tk),x2,1(tk), . . . ,xL,ℓ(tk)
)

.

Following parallel arguments to before (see Supple-

mentary Information), the MPL estimate of the se-

lection coefficient ŝi,α for allele α at locus i is

ŝi,α =
L
∑

j=1

ℓ
∑

β=1

[

K−1
∑

k=0

∆tkC(x(tk))+γI

]−1

ij,αβ

×

[

xj,β(tK)−xj,β(t0)−
K−1
∑

k=0

∆tk

ℓ
∑

δ=1

(

µδαxj,δ(tk)−µαδxj,α(tk)
)

]

, (11)
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where γ = 1/Nσ2 as before. Off-diagonal entries of the

covariance matrix C(x(tk)) are given by

Cij,αβ(x(tk)) = xij,αβ(tk)−xi,α(tk)xj,β(tk),

where xij,αβ(tk) is the frequency of sequences with alleles

α and β at loci i and j, respectively, at time tk.

Data and code

Raw data and code used in our analysis is available in

the GitHub repository located at https://github.com/

bartonlab/paper-MPL-inference. This repository

also contains Jupyter notebooks that can be run to reproduce

the results presented here.

Simulation data

We implemented the Wright-Fisher model with discrete gen-

erations in Python. We used this program to record 100 evo-

lutionary histories each for three different choices of the un-

derlying parameters. Parameter values are detailed in Sup-

plementary Figs. 1 and 2. For all simulations we assumed

only two alleles per site. The simulation code, code for anal-

ysis, and original simulation data are contained in the GitHub

repository.

Other time-series inference methods

The independent model that we compared MPL against in the

main text is a single locus (SL) variant of MPL in which the

off-diagonal elements of the integrated covariance matrix are

set to zero.

The seven additional time series-based inference meth-

ods that we compared MPL against are FIT (36), LLS (37),

CLEAR (38), EandR (39), ApproxWF (40), WFABC (41),

and IM (42). Where available, we used the scripts provided

by the authors. Some of these methods required preprocess-

ing of the time-series data to obtain valid estimates of se-

lection coefficients. See Supplementary Information for full

details on implementation and data processing.

Patient cohort

We studied HIV-1 sequence data obtained from a 14 indi-

viduals recruited under the CHAVI 001 and CAPRISA 002

studies in the United States, Malawi, and South Africa. The

locations of CD8+ T cell epitopes were experimentally (43)

or computationally (44) determined in 13 of the 14 individu-

als. In the remaining individual, CAP256, experimental stud-

ies identified the VRC26 family of antibodies and mapped

the epitope location on Env (45).

HIV-1 sequence data

Multiple sequence alignments of HIV-1 nucleotide se-

quences for all individuals were obtained from the Los

Alamos National Laboratory HIV Sequence Database

(www.hiv.lanl.gov; accessed October 19, 2018). Sequences

labeled as problematic were not downloaded. For the 13 indi-

viduals with identified T cell epitopes, sets of 3′ and 5′ half-

genome sequences were obtained, which were approximately

4500 bp in length. Only Env sequences were available for

CAP256 (approximately 2500 bp in length). All sequences

were aligned with the HXB2 reference sequence (GenBank

accession number K03455) for numbering, and with clade

consensus sequences to determine reversions, using the Los

Alamos National Laboratory HIVAlign tool (46).

In order to assure sequence quality, we 1) removed se-

quences with ≥200 gaps with respect to clade consensus, 2)

removed sites with >95% gaps in the alignment, 3) imputed

ambiguous nucleotides, and 4) removed time points where <4

sequences were sampled, or where the time gap between suc-

cessive samples exceeded 300 days. During this process we

also determined the number of reading frames in which each

substitution was nonsynonymous, whether it occurred within

an identified CD8+ T cell epitope that was actively targeted

during the time for which sequence samples were available,

whether it occurred within the exposed surface of Env (using

surface residues as identified in ref. (47)), and whether it may

have plausibly affected Env glycosylation by completing or

disrupting an N-linked glycosylation motif. These analyses

were performed using custom Python scripts available in the

GitHub repository.

Variant indices were labeled relative to the standard HXB2

reference sequence of HIV-1. Insertions relative to HXB2 are

labeled with lowercase alphabetical indices per standard con-

ventions (48). For example, if three nucleotides were inserted

relative to HXB2 after site 1, these would be labeled 1a, 1b,

and 1c, respectively.

Enrichment analyses

We used fold enrichment values to determine the relative ex-

cess or lack of particular types of mutations among the HIV-1

variants that were inferred to be the most beneficial. For a

given set of Nsel selected mutations (e.g., corresponding to

the top 1% most beneficial), we computed the number nsel

of these mutations that have a particular property. This may

represent, for example, the number of nonsynonymous muta-

tions within identified CD8+ T cell epitopes, or the number

of nonsynonymous reversions. The ratio nsel/Nsel then rep-

resents the fraction of the selected mutations having the spec-

ified property. This number was compared with nnull/Nnull,

where Nnull is the total number of non-TF variants across all

individuals and sequencing regions of the HIV-1 genome, and

nnull is the number of these variants that share the specified

property.

The fold enrichment of the selected set for a specified prop-

erty is then naturally defined as (nsel/Nsel)/(nnull/Nnull).

A fold enrichment value greater than one indicates a larger

proportion of mutants in the selected set that have the given

property than expected by chance, while a value less than one

indicates a smaller proportion than expected by chance.

Selection inference with MPL

We implemented the MPL method as described above in C++

and applied it to infer selection coefficients from the HIV-1

sequence data and from simulations. The original code used

for inference is included in the GitHub repository. For the

HIV-1 data, we assumed a regularization strength of γ = 5.
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We also used mutation probabilities estimated in (49) as in-

put. Mutation probabilities to and from gap states, repre-

senting deletions and insertions, respectively, were assumed

to be very small
(

µ= 10−9
)

. For the simulated data, we

used a smaller regularization strength of γ = 1 due to the

greater sampling depth. In order to increase robustness, we

assumed that the true underlying allele frequency trajecto-

ries were piecewise linear and replaced the sums over time in

Eq. (11) with integrals. Following the assumption of piece-

wise linearity, these integrals can be computed analytically.

Specifically, the contribution of the mutational term to the

numerator is then

−
K−1
∑

k=0

∆tk

ℓ
∑

δ=1

(

µδα
xj,δ(tk)+xj,δ(tk+1)

2

−µαδ
xj,α(tk)+xj,α(tk+1)

2

)

,

the diagonal terms of the integrated covariance matrix are

K−1
∑

k=0

∆tk

(

(3−2xi,α(tk+1))(xi,α(tk)+xi,α(tk+1))

6

−
xi,α(tk)xi,α(tk+1)

3

)

,

and the off-diagonal terms of the integrated covariance matrix

are

K−1
∑

k=0

∆tk
xij,αβ(tk)+xij,αβ(tk+1)

2

−
K−1
∑

k=0

∆tk

(

xi,α(tk)xj,β(tk)

3
+
xi,α(tk+1)xj,β(tk+1)

3

+
xi,α(tk)xj,β(tk+1)

6
+
xi,α(tk+1)xj,β(tk)

6

)

.

After selection coefficients were inferred, we normalized

them such that the transmitted/founder (HIV-1) or wild-type

(simulation) allele had a selection coefficient of zero.

Calculation of effects of linkage on inferred selection

Due to the inverse of the integrated covariance matrix in

Eq. (10), the selection coefficients estimated by MPL are af-

fected by linkage. In order to quantify the effects of linkage

on inferred selection during HIV-1 evolution, we computed

the pairwise effects ∆ŝij of each variant i on selection for

other variants j, as described in the main text. Here, for ease

of notation, each effective index i or j represents a single

non-TF nucleotide at a particular site on the genome. That is,

the indices incorporate both the label for the locus and for the

allele.

To compute ∆ŝij , we iteratively select each nucleotide at

each site, which together are represented by the index i, and

generate a modified version of the sequence data in which

variant i is replaced by the TF nucleotide at the same site. In

this way, linkage between the masked variant i and all other

variants j is eliminated. We then infer the selection coeffi-

cients again for all variants j using the data where variant i

has been replaced by TF, denoted as ŝ
\i
j . Then we define

∆ŝij = ŝj − ŝ
\i
j .

Positive values of ∆ŝij thus indicate that linkage with vari-

ant i increases the selection coefficient inferred for variant

j. This may be due, for example, to clonal interference be-

tween variants i and j. Negative values indicate that variant i
decreases the selection coefficient inferred for variant j. This

may occur, for example, if variant j hitchhikes on a beneficial

genetic background that includes variant i.
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Supplementary Fig. 1. MPL accurately recovers selection coefficients from complex simulated evolutionary trajectories. A, Trajectories of mutant allele frequencies

over time exhibit complex dynamics in a WF simulation with a simple fitness landscape. B, Separate views of individual trajectories for beneficial, neutral, and deleterious

mutants (left panel) and inferred selection coefficients (right panel). Note that many neutral mutations exhibit temporal variation similar to beneficial or deleterious mutations.

MPL estimates the underlying selection coefficients used to generate these trajectories and distinguishes between beneficial, neutral, and deleterious mutations, using

equation (10). Dashed lines mark the true selection coefficients. C, Distributions of selection coefficient estimates across 100 replicate simulations with identical parameters

in the special case of perfect sampling. MPL is also robust to finite sampling constraints, accurately classifying beneficial (D) and deleterious (E) mutants even when the

number of sequences sampled per time point ns is low, and the spacing between time samples ∆t is large. Simulation parameters. L = 50 loci with two alleles at each

locus (mutant and WT): 10 beneficial mutants with s = 0.025, 30 neutral mutants with s = 0, and 10 deleterious mutants with s = −0.025. Mutation probability µ = 10−3,

population size N = 103. Initial population composed of approximately equal numbers of three random founder sequences, evolved over T = 400 generations.
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Supplementary Fig. 2. MPL compares favorably with state-of-the-art methods. We compared the ability of MPL and existing methods to infer selection from simulated

test data that was rich with interference patterns and linkage, as shown in representative allele frequency trajectories (A). In order to evaluate robustness to finitely sampled

data, we selected ns = 100 sequences per time point for inference, with sampling time points separated by ∆t = 10 generations. Performance was evaluated by comparing

the successful classification of beneficial (B) and deleterious (C) mutations, error in the estimated selection coefficients (D), and run time (E), averaged over 100 replicate

simulations with identical parameters. MPL achieves the highest performance in terms of classification and estimation accuracy, and in run time. Note that FIT does not

specifically estimate selection coefficients. Simulation parameters. L = 50 loci with two alleles at each locus (mutant and WT): 10 beneficial mutants (s = 0.1 for Complex,

s = 0.025 for Simple), 30 neutral mutants (s = 0 for both scenarios), and 10 deleterious mutants (s = −0.1 for Complex, s = −0.025 for Simple). Mutation probability

µ = 10−4, population size N = 103. For the Complex case, the initial population is composed of equal numbers of five random founder sequences, evolved over T = 310

generations. Recorded trajectory used for inference begins at generation 10. For the Simple case, the initial population begins with all WT sequences, evolved over T = 1000

generations.
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Supplementary Fig. 3. Most genetic variants have little effect on inferred selection at other sites, but a small minority have strong effects. After computing the

pairwise effects ∆ŝij of each variant i on the inferred selection coefficient for each other variant j, referred to as the target, we summed the absolute value of the ∆ŝij

values over all target variants j to quantify the influence of each variant i on selection at other sites. One histogram is shown for each sequencing region, for each individual.

For the vast majority of variants, the total effect on selection at other sites is near zero. However, a small minority have strong effects. We defined a variant to be ‘highly

influential’ if the sum of the absolute values of the ∆ŝij over all targets j was larger than 0.4 (= 40%).
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Supplementary Fig. 4. Variants that strongly influence inferred selection at other sites often act across large genomic distances. Plot of all linkage effects on

inferred selection coefficients ∆ŝij for which |∆ŝij | >0.004. One plot is shown for each sequencing region, for each individual. These strong effects of linkage on inferred

selection coefficients can act at long range across the genome. Approximately 40% of highly influential variants, characterized by strong effects on inferred selection at other

sites, lie within identified CD8+ T cell epitopes. The 5′ region for individual 700010607 is not shown because no ∆ŝij values are larger than the cutoff.
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Supplementary Fig. 5. Highly influential variants are far more likely than other variants to change rapidly in frequency. For all genetic variants across all individuals

and genomic regions considered in this study, we computed the maximum change in frequency per day between successive sequence samples. For most variants (those for

which
∑

j
|∆ŝij | ≤0.4), the maximum change in frequency per day is less than 1%. Highly influential variants, which have large effects on inferred selection coefficients at

other sites (
∑

j
|∆ŝij | >0.4), are much more likely than other variants to change rapidly in frequency.
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Supplementary Fig. 6. For most variants, effects on inferred selection coefficients for other variants are stronger at smaller genomic distances. Histogram of the

absolute value of linkage effects on inferred selection coefficients for other variants |∆ŝij |, divided into subgroups based on the distance along the genome between variant

i and target variant j. Consistent with intuition, the large effects on inferred selection coefficients occur most frequently for different variants that occur at the same site on the

genome (i.e., distance equal to zero). “Interactions” between such variants are necessarily perfectly competitive, because only a single nucleotide is allowed at each position

in the genetic sequence. For most variants, stronger linkage effects on inferred selection coefficients are more frequently observed for other variants within a distance of 10

base pairs (bp). Large linkage effects for pairs of variants within a distance of 30 bp, the approximate length of a linear T cell epitope, occur appreciably more frequently than

for pairs of variants at greater genomic distances. However, there is little difference in the distribution of linkage effect sizes for pairs of variants that are between 31 bp and

100 bp apart compared to pairs of variants that are more than 100 bp apart. Nonetheless, some strong linkage effects on inferred selection are observed at long genomic

distances (see Supplementary Fig. 4).
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Supplementary Fig. 7. Estimates of selection coefficients in a simple example of clonal interference. A, Two escape mutations arise in the TW10 epitope targeted by

individual CH58 and compete for dominance. B, MPL infers that both TW10 escape variants are positively selected. Estimates based on trajectories of individual variants

only infer substantial positive selection for the 1514A variant that fixes. The magnitude of selection inferred with the independent model is also smaller than that inferred by

MPL. C, Inferred selection in the HIV-1 5′ half-genome sequence for CH58. Inferred selection coefficients are plotted in tracks. Coefficients of transmitted/founder nucleotides

are normalized to zero. Tick marks denote polymorphic sites. Inner links, shown for sites connected to the TW10 epitope, have widths proportional to matrix elements of the

inverse of the integrated covariance. Linked sites affect selection estimates within the epitope.
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Supplementary Fig. 8. Estimates of selection coefficients in a complex example of clonal interference. A, Multiple escape variants for the Nef epitope EV11, targeted

by individual CH131, interfere with one another over the course of nearly two years. Here we have omitted the trajectories for transient variants with a deletion at sites

8988a-8988c, which are insertions with respect to the HXB2 reference sequence. B, MPL infers that all nonsynonymous EV11 escape variants are positively selected.

Variants 9000C and 9006T are both synonymous, and are inferred to be nearly neutral by MPL. As in previous examples, inferences using only the trajectories of individual

variants only infer substantial positive selection for variants that are polymorphic at the final time point, or where the transmitted/founder (TF) allele at the same site appears

strongly selected against. In the latter case, positive selection is inferred because all selection coefficients are normalized such that the selection coefficient for the TF

variant is zero. This is why the independent model infers 8988T to be beneficial despite its low frequency at the final time point. Note that the independent model also

infers one of the synonymous mutations to be beneficial. C, Inferred selection in the HIV-1 3′ half-genome sequence for CH131. Inferred selection coefficients are plotted in

tracks. Coefficients of TF nucleotides are normalized to zero. Tick marks denote polymorphic sites. Inner links, shown for sites connected to the EV11 epitope, have widths

proportional to matrix elements of the inverse of the integrated covariance. Linked sites affect selection estimates within the epitope.
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Supplementary Fig. 9. Extensive recombination between CAP256 primary and superinfecting strains. Individual CAP256 was infected by a distinct superinfecting

strain of HIV-1 15 weeks after the primary infection (45). Each row represents a sequence, with nucleotide variants different from the primary infecting strain highlighted. Soon

after superinfection, by 164 days after initial infection, recombinants between the primary and superinfecting strains dominate the viral population. Recombination continues

throughout infection, introducing substantial variation into the VRC26 epitope region by 240 days after initial infection.
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Supplementary Information

1. Derivation of the Wright-Fisher path integral

This section presents the steps used to derive the path integral approximation for the probability of the mutant allele frequencies

following a path (x(1),x(2), . . . ,x(T )) conditioned on x(0), as described in Methods. While we recall that the result was

presented for a biallelic model with symmetric mutation probabilities, the technique is by no means limited by this model and

can be extended to incorporate other model complexities, some of which are considered subsequently.

To summarize Section 1, we first describe the WF model in Section 1.1 in more detail, followed by presenting conditional

moment expansions of the mean frequency vector in Section 1.2. These expansions will then be used in Section 1.3 to derive

(S15), the path integral expression for the probability of a path of genotype frequencies (z(1),z(2), . . . ,z(T )), conditioned

on z(0). In Section 1.4, this genotype-level path integral will be used to derive (S22), the path integral expression for the

probability of a path of allele frequencies (x(1),x(2), . . . ,x(T )), conditioned on x(0).

1.1. Wright Fisher model

We start with some brief comments on the WF model. At generation t, denote Z(t) = (Z1(t), . . . ,ZM (t)) as the random

genotype frequency vector, and thus z(t) = (z1(t), . . . ,zM (t)) corresponds to an observed realization of this random vector.

(These vectors, as well as all other vectors that we define, are taken as column vectors.) The stochastic dynamics of the genotype

frequencies are governed by the transition probabilities reported in (2)-(4) of Methods. At generation t+1, ya(t) recombination

occurs, and as a consequence of this action, the mean frequency of genotype a, conditioned on Z(t) = z(t), is given by

ya(t) = (1− r)L−1za(t)+
(

1− (1− r)L−1
)

ψa(z(t))

where the factor (1 − r)L−1 represents the probability of an individual not undergoing recombination, and ψa(z(t)) the prob-

ability of forming genotype a after recombination from individuals in generation t. This latter quantity is given by

ψa(z(t)) =
M
∑

c=1

M
∑

d=1

Ra,cdzc(t)zd(t)

with Ra,cd denoting the probability that genotypes c and d recombine to form genotype a. The probability Ra,cd is a com-

plicated function of the number of breakpoints and the particular genotypes a, c and d; however as we will show, we do not

require the exact form of Ra,cd for our derivations. After recombination, the mean genotype frequencies at generation t+1 are

further shaped through selection and mutation. Specifically, after recombination, selection and mutation, the mean frequency

of genotype a, conditioned on Z(t) = z(t), admits

pa(z(t)) := E

[

Za(t+1)

∣

∣

∣

∣

Z(t) = z(t)

]

=
ya(t)fa +

∑M
b=1,b 6=a (µbayb(t)fb −µabya(t)fa)

∑M
b=1 yb(t)fb

.

Then, the WF dynamics, specified by the transition probability

P
(

z(t+1)
∣

∣

∣z(t)
)

=N !

M
∏

a=1

(

pa(z(t))
)Nza(t+1)

(Nza(t+1))!
,

simply results from performing random multinomial sampling (of N individuals) with these mean frequencies.

Further, we recall the assumption that µab = µdab , with dab the Hamming distance between genotypes a and b, and the

additive model for genotype fitness, such that the selection coefficient of genotype a admits

ha = fa −1 =
L
∑

j=1

ga
j sj . (S1)

We may then write

pa(z(t)) =

(1+ha)ya(t)+
M
∑

b=1

µdab ((1+hb)yb(t)− (1+ha)ya(t))

M
∑

b=1

(1+hb)yb(t)

. (S2)
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We work under the assumption that the population size N is large, and that as N → ∞,

si =
s̄i

N
+O

(

1

N2

)

, µ=
µ̄

N
+O

( 1

N2

)

, r =
r̄

N
+O

( 1

N2

)

, (S3)

and consequently

ha =
h̄a

N
+O

( 1

N2

)

, (S4)

where r̄, h̄a, s̄i and µ̄ are constants that are independent of N .

1.2. Conditional moment expansions

The diffusion approximation, and the path integral expression, depends on the asymptotic properties of the mean frequency

vector pa(z(t)), as well as those of higher order moments. For large N , under the parameter scalings above,

ya(t) = za(t)− r(L−1)
(

za(t)−ψa(z(t))
)

+O

(

1

N2

)

= za(t)+O

(

1

N

)

and thus (S2) can be expressed as

pa(z(t)) = ya(t)

(

1+ha −
M
∑

b=1

hbyb(t)

)

+µ



−Lya(t)+
M
∑

b=1,dab=1

yb(t)



+O

(

1

N2

)

(S5)

= za(t)

(

1+ha −
M
∑

b=1

hbzb(t)

)

+µ



−Lza(t)+
M
∑

b=1,dab=1

zb(t)



− r(L−1)
(

za(t)−ψa(z(t))
)

+O

(

1

N2

)

= za(t)+O

(

1

N

)

.

The conditional covariance of the genotype frequencies can also be expressed as

Covar

(

Za (t+1) ,Zb (t+1)

∣

∣

∣

∣

Z(t) = z(t)

)

=

{

pa(z(t))(1−pa(z(t)))
N = za(t)(1−za(t))

N +O
(

1
N2

)

a= b

−pa(z(t))pb(z(t)))
N = −za(t)zb(t)

N +O
(

1
N2

)

a 6= b
. (S6)

These expansions will be used in the following subsection.

For the subsequent analysis with incomplete temporal sampling (Section 2), we will also require the following expansions:

E

[

Z2
a(t+1)

∣

∣

∣

∣

Z(t) = z(t)

]

= z2
a(t)+O

(

1

N

)

(S7)

E

[

Za(t+1)Zb(t+1)

∣

∣

∣

∣

Z(t) = z(t)

]

= za(t)zb(t)+O

(

1

N

)

Var

[

Za(t+1)Zb(t+1)

∣

∣

∣

∣

Z(t) = z(t)

]

=O

(

1

N

)

.

These results are easily obtained by computing the moment generating function of Z(t+1) conditioned on Z(t) = z(t),

M(w,z(t)) = E

[

exp
(

wTZ(t+1)
)

∣

∣

∣

∣

Z(t) = z(t)

]

=

(

M
∑

k=1

pk(z(t))exp
(wk

N

)

)N

,

where w = (w1, . . . ,wM ), and then evaluating relevant derivatives at zero in the standard way.
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1.3. Genotype-level path integral

The moment expansions above give rise to a diffusion approximation and subsequently a path integral representation for

the probability of genotype frequencies following a particular trajectory. The diffusion approximation is a continuous-time

continuous-frequency approximation to the discrete-time discrete-frequency WF process. It is valid under the large-N param-

eter scalings (S3) and (S4), and corresponds to the continuous process

Ž(τ) =
(

Ž1(τ), . . . , ŽM (τ)
)

:=Z(⌊Nτ⌋), τ ≥ 0 (S8)

taken in the limitN → ∞, where ⌊·⌋ denotes the floor function. Here τ is a continuous time variable with units ofN generations,

with one generation in discrete time (i.e., from t to t+1) thus taking

δτ =
1

N
(S9)

continuous time units. The diffusion process is described by the probability density function φ, the solution to

∂φ

∂τ
=

[

−
M
∑

a=1

∂

∂ža
d̄a(ž(τ))+

M
∑

a=1

M
∑

b=1

∂

∂ža

∂

∂žb
C̄ab(ž(τ))

]

φ. (S10)

This is characterized by the drift vector d̄(ž(τ)), which describes the rate of expected changes in genotype frequencies at time

τ , and the diffusion matrix C̄(ž(τ)), which describes the scaled covariance of the genotype frequency changes.

The drift vector has ath entry (see equation 4.99 of Risken(1))

d̄a(ž(τ)) = lim
δτ→0

1

δτ
E

[

Ža (τ + δτ)− Ža(τ)

∣

∣

∣

∣

Ž(τ) = (ž1(τ), . . . , žM (τ))

]

(S11)

= lim
N→∞

N



ža(τ)

(

ha −
M
∑

b=1

hbžb(τ)

)

+µ



−Lža(τ)+
M
∑

b=1,dab=1

žb(τ)



− r(L−1)
(

ža(τ)−ψa (ž(τ))
)





= ža(τ)

(

h̄a −
M
∑

b=1

h̄bžb(τ)

)

+ µ̄



−Lža(τ)+
M
∑

b=1,dab=1

žb(τ)



− r̄(L−1)
(

ža(τ)−ψa (ž(τ))
)

where the second line follows from (S9), (S8), and (S5). (As a technical point, we note that upon making the replacement

t= ⌊Nτ⌋, the variable t is considered fixed when taking limits over N . That is, we may write

1

δτ
E

[

Ža (τ + δτ)− Ža(τ)

∣

∣

∣

∣

Ž(τ) = (ž1(τ), . . . , žM (τ))

]

=NE

[

Za (t+1)−Za(t)

∣

∣

∣

∣

Z(t) = (z1(t), . . . ,zM (t))

]

and the limit of the left-hand side as δτ → 0 coincides with that of the right-hand side as N → ∞. The same arguments will

also be employed, although not explicitly stated, when taking limits in the subsequent derivations of drift vectors and diffusion

matrices.) The diffusion matrix has (a,b)th entry (see equation 4.100 of Risken(1))

C̄ab(ž(τ)) =
1

2
lim

δτ→0

1

δτ
E

[

(

Ža (τ + δτ)− Ža(τ)
)(

Žb (τ + δτ)− Žb(τ)
)

∣

∣

∣

∣

Ž(τ) = (ž1(τ), . . . , žM (τ))

]

(S12)

=
1

2
lim

δτ→0

1

δτ
Covar

(

Ža (τ + δτ) , Žb (τ + δτ)

∣

∣

∣

∣

Ž(τ) = (ž1(τ), . . . , žM (τ))

)

=
1

2

{

ža(τ)(1− ža(τ)) a= b

−ža(τ)žb(τ) a 6= b

where the second line follows from noting that

Covar

(

Za (t+1) ,Zb (t+1)

∣

∣

∣

∣

Z(t) = z(t)

)

(S13)

= E

[(

Za (t+1)−E

[

Za (t+1)

∣

∣

∣

∣

Z(t) = z(t)

])(

Zb (t+1)−E

[

Zb (t+1)

∣

∣

∣

∣

Z(t) = z(t)

])∣

∣

∣

∣

Z(t) = z(t)

]

= E

[(

Za (t+1)−Za (t)+O

(

1

N

))(

Zb (t+1)−Zb (t)+O

(

1

N

))∣

∣

∣

∣

Z(t) = z(t)

]
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along with (S8) and (S9), while the last line of (S12) follows from (S6).

The path integral (see equation 4.109 of Risken(1)) approximates the transition density of a diffusion process over a small

time period. Specifically, applying this approach to the process described by (S10), for small δτ (equivalently large N ), we

obtain for the transition probability density over a single generation,

φ(ž(τ + δτ)|ž(τ)) ≈
exp

(

− 1
4δτ

(

ž(τ + δτ)− ž(τ)− d̄(ž(τ))δτ
)T
C̄(ž(τ))−1

(

ž(τ + δτ)− ž(τ)− d̄(ž(τ))δτ
)

)

(4πδτ)M/2

√

det(C̄(ž(τ)))
. (S14)

From this result, the transition probability for a single generation of the original discrete-time discrete-frequency WF process

can (for large N ) be approximated by

P (z(t+1)|z(t)) ≈ φ(z(t+1)|z(t))dz(t+1)

where the dz(t+ 1) =
∏M

a=1 dza(t+ 1) represent small frequency differences accounting for the quantization of the con-

tinuous genotype frequency space at each time point. The probability of observing a trajectory of genotype frequencies

(z(1),z(2), . . . ,z(T )) is then given by

P
(

(z(t))T
t=1 |z(0)

)

=
T −1
∏

t=0

P (z(t+1)|z(t)) (S15)

≈
T −1
∏

t=0





1
√

det C̄(z(t))

(

N

4π

)M/2

dz(t+1)



exp

(

−
N

4
S
(

(z(t))T
t=0

)

)

where

S
(

(z(t))T
t=0

)

=
T −1
∑

t=0

M
∑

a=1

M
∑

b=1

[

za(t+1)−za(t)−
d̄a(z(t))

N

]

(

C̄−1(z(t))
)

ab

[

zb(t+1)−zb(t)−
d̄b(z(t))

N

]

(S16)

which is the desired path integral expression. In the language of physics, S
(

(z(t))T
t=0

)

is referred to as the action.

1.4. Mutant allele-level path integral

Based on the genotype transition probability density (S14), we now provide an approximation for the mutant allele transition

probability density. Let x(t) = (x1(t), . . . ,xL(t)), for which

xi(t) =
M
∑

a=1

ga
i za(t) (S17)

is the mutant frequency at locus i during generation t. Also, define the random mutant allele frequency vector X(t) =
(X1(t), . . . ,XL(t)), which from (S17) is related to the random genotype frequency vector by

Xi(t) =
M
∑

a=1

ga
i Za(t). (S18)

The observed frequency vector x(t) is thus a realization of this random vector. The continuous process which characterizes the

mutant allele frequencies is

X̌(τ) =
(

X̌1(τ), . . . , X̌L(τ)
)

:=X(⌊Nτ⌋), τ ≥ 0

taken as N → ∞, which satisfies

X̌i(τ) =
M
∑

a=1

ga
i Ža(τ).

This allele frequency process is a diffusion process, whose probability density evolution is described by a solution to

∂φ

∂τ
=



−
L
∑

i=1

∂

∂x̌i
di(x̌(τ))+

L
∑

i=1

L
∑

j=1

∂

∂x̌i

∂

∂x̌j
Cij(x̌(τ))



φ, (S19)
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characterized by the drift vector d(x̌(τ)) and diffusion matrix C(x̌(τ)). Note that the drift and the diffusion equations given

in the Methods are the same as here in the Supplementary Information, but those in the Methods use simpler notation by not

explicitly distinguishing between continuous-time and discrete-time processes.

In the genotype case, the transition probability density was approximated to have a Gaussian form (S14). As the mutant

allele frequencies are linear combinations of the genotype frequencies (S17), this implies that the transition probability density

of mutant alleles also has a Gaussian form. Therefore, the allele-level drift and diffusion terms in (S19) are also a linear

combination of the genotype drift and diffusion terms. The drift vector thus has ith entry

di(x̌(τ)) :=
M
∑

a=1

ga
i d̄a(ž(τ)) (S20)

=
M
∑

a=1

ga
i



ža(τ)

(

h̄a −
M
∑

b=1

h̄bžb(τ)

)

+ µ̄



−Lža(τ)+
M
∑

b=1,dab=1

žb(τ)



− r̄(L−1)
(

ža(τ)−ψa (ž(τ))
)





= x̌i(τ)(1− x̌i(τ)) s̄i +
L
∑

j=1,j 6=i

(x̌ij(τ)− x̌i(τ)x̌j(τ)) s̄j + µ̄(1−2x̌i(τ))

with

x̌ij(τ) := xij(⌊Nτ⌋), τ ≥ 0,

and the last line follows by applying (S1)

M
∑

a=1

ga
i g

a
j ža(τ) = x̌ij(τ),

and by noting that
∑M

a=1 g
a
i (ža(τ)−ψa (ž(τ))) = 0. To see why the latter holds, first define

θcd
i :=

M
∑

a=1

ga
i Ra,cd,

which is the probability that genotypes c and d recombine to form a genotype which has a mutation at locus i. Since the model

is biallelic, the recombination event could involve allele pairs (0,0), (0,1), (1,0), or (1,1) at locus i of genotypes c and d. We

thus have

M
∑

a=1

ga
i ψa (ž(τ)) =

M
∑

a=1

ga
i

M
∑

c=1

M
∑

d=1

Ra,cdžc(τ)žd(τ)

=
M
∑

c=1

M
∑

d=1

θcd
i žc(τ)žd(τ)

=
M
∑

c=1

(

M
∑

d=1

θcd
i gc

i g
d
i žc(τ)žd(τ)+

M
∑

d=1

θcd
i gc

i (1−gd
i )žc(τ)žd(τ)

)

+
M
∑

c=1

(

M
∑

d=1

θcd
i (1−gc

i )gd
i žc(τ)žd(τ)+

M
∑

d=1

θcd
i (1−gc

i )(1−gd
i )žc(τ)žd(τ)

)

.

Now by noting that

θcd
i gc

i g
d
i = gc

i g
d
i

θcd
i gc

i (1−gd
i ) =

1

2
gc

i (1−gd
i )

θcd
i (1−gc

i )gd
i =

1

2
(1−gc

i )gd
i

θcd
i (1−gc

i )(1−gd
i ) = 0

Sohail et al. bioRχiv | 5

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/711861doi: bioRxiv preprint 

https://doi.org/10.1101/711861
http://creativecommons.org/licenses/by-nc/4.0/


where the factor of 1
2 arises because there is a 50% chance that genotype c (d) with a mutant at locus i and genotype d (c) with

WT at locus i will recombine to a genotype with a mutant at locus i, we have

M
∑

a=1

ga
i ψa (ž(τ)) =

M
∑

c=1

(

M
∑

d=1

gc
i g

d
i žc(τ)žd(τ)+

1

2

M
∑

d=1

gc
i (1−gd

i )žc(τ)žd(τ)

)

+
1

2

M
∑

c=1

M
∑

d=1

(1−gc
i )gd

i žc(τ)žd(τ)

= x̌2
i (τ)+

1

2
x̌i(τ)(1−xi(τ))+

1

2
x̌i(τ)(1− x̌i(τ))

= x̌i(τ),

thus implying that
∑M

a=1 g
a
i (ža(τ)−ψa (ž(τ))) = 0.

(Note that above and also in the subsequent derivations, since we are focused on the mutant allele frequency dynamics, we

adopt notation which only explicitly demonstrates dependencies on the mutant allele frequencies. It should be recognized,

however, that these dynamics also depend on the pairwise mutational frequencies. We do not explicitly show this, for the sake

of notational convenience.) Considering now the diffusion matrix, this has (i, j)th entry

Cij(x̌(τ)) :=

M
∑

a=1

M
∑

b=1

ga
i g

b
j C̄ab(ž(τ))

=
1

2

M
∑

a=1

ga
i g

a
j ža(τ)(1− ža(τ))−

1

2

M
∑

a=1

M
∑

b=1,b 6=a

ga
i g

b
j ža(τ)žb(τ)

=
1

2

M
∑

a=1

ga
i g

a
j ža(τ)−

1

2

(

M
∑

a=1

ga
i ža(τ)

)(

M
∑

b=1

gb
j žb(τ)

)

=
1

2
(x̌ij(τ)− x̌i(τ)x̌j(τ)) .

Note that if we concatenate the infinitesimal drift for all loci in vector form, it yields

d(x̌(τ)) = 2C(x̌(τ))s̄+ µ̄(1−2x̌(τ)) (S21)

where 1 is the vector of ones.

As for the genotype case, equation 4.109 of Risken (1) may be applied, which approximates the transition probability density

of this diffusion process over a single generation by a Gaussian distribution, given as

φ(x̌(τ + δτ)|x̌(τ)) ≈
exp

(

− 1
4δτ (x̌(τ + δτ)− x̌(τ)−d(x̌(τ))δτ)T [C(x̌(τ))]−1 (x̌(τ + δτ)− x̌(τ)−d(x̌(τ))δτ)

)

(4πδτ)L/2
√

det(C(x̌(τ)))
.

From this result, and recalling that δτ = 1/N , the transition probability for a single generation of the original discrete-time

discrete-frequency WF process can (for large N ) be approximated by

P (x(t+1)|x(t))

≈ φ(x(t+1)|x(t))dx(t+1)

=

(

N
4π

)L/2
dx(t+1)

√

detC(x(t))
exp



−
N

4

L
∑

i=1

L
∑

j=1

[

xi(t+1)−xi(t)−
di(x(t))

N

]

(

C−1(x(t))
)

ij

[

xj(t+1)−xj(t)−
dj(x(t))

N

]





=

(

N
2π

)L/2
dx(t+1)

√

detC(x(t))
exp



−
N

2

L
∑

i=1

L
∑

j=1

[

xi(t+1)−xi(t)−di(x(t))
]

(

C−1(x(t))
)

ij

[

xj(t+1)−xj(t)−dj(x(t))
]





where the dx(t+1) =
∏L

i=1 dxi(t+1) represents small frequency differences accounting for the quantization of the continuous

mutant allele frequency space, and we have made the replacements di(x(t)) =Ndi(x(t)) and (C(x(t)))ij = (1/2)C(x(t))ij .

The path integral expression then follows by noting that the probability of observing a trajectory of mutant allele frequencies
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(x(1),x(2), . . . ,x(T )) is given by

P
(

(x(t))T
t=1 |x(0)

)

=
T −1
∏

t=0

P (x(t+1)|x(t))

≈

(

T −1
∏

t=0

[

1
√

detC(x(t))

(

N

2π

)L/2

dx(t+1)

])

exp

(

−
N

2
S
(

(x(t))T
t=0

)

)

(S22)

where

S
(

(x(t))T
t=0

)

=
T −1
∑

t=0

L
∑

i=1

L
∑

j=1

[xi(t+1)−xi(t)−di(x(t))]
(

C−1(x(t))
)

ij
[xj(t+1)−xj(t)−dj(x(t))] .

As in (S16), S
(

{x(t)}T
t=0

)

is referred to as the action in physics.

2. Derivation of the MPL estimator of allele selection coefficients

This Section first presents a proof of the MPL estimate (10) of the selection coefficients. As stipulated in Methods, this is

obtained as the MAP estimate of the selection coefficients, which is the solution to

ŝ= arg max
s

L

(

s|N,µ,(x(tk))K
k=0

)

Pprior(s), (S23)

where

L

(

s|N,µ,(x(tk))K
k=0

)

= P
(

(x(tk))K
k=1 |x(t0),N,µ,s

)

(S24)

=
K−1
∏

k=0

P (x(tk+1)|x(tk),N,µ,s)

is the likelihood function, while (x(t0),x(t1), . . . ,x(tK)) is the observed trajectory of mutant allele frequencies.

The main challenge in solving (S23) is that it requires computing the likelihood (S24), which is complicated. This is

simplified by adopting the path integral approach outlined in Section 1; but now extending the analysis to account for sampling

times t0, . . . , tK spanning multiple generations. Other than this difference, we may follow the same approach, starting by giving

asymptotic moment expansions in Section 2.1. These expansions will then be used in Section 2.2 to derive (S32), the probability

of a path of genotype frequencies (z(t1),z(t2), . . . ,z(tK)), conditioned on z(t0), and subsequently (S33), the probability of a

path of allele frequencies (x(t1),x(t2), . . . ,x(tK)), conditioned on x(t0). This allele-level path integral will then be used to

derive the MPL estimate (10) in Section 2.3. We then show in Section 2.4 that this MPL estimate can also be derived based on

the genotype-level path integral, demonstrating no loss of optimality from derivations based on an allele-level representation.

Finally, we extend the biallelic and symmetric mutation modelling assumptions to account for multiple alleles per locus and

asymmetric mutation probabilities in Section 2.5. This will be required to analyze the HIV data in the main text.

2.1. Conditional moment expansions

The mean frequency of genotype a at generation t+∆t, conditioned on Z(t) = z(t), admits

pa(z(t),∆t) := E

[

Za (t+∆t)

∣

∣

∣

∣

Z(t) = z(t)

]

= E

[

E

[

Za (t+∆t)

∣

∣

∣

∣

Z (t+∆t−1)

]∣

∣

∣

∣

Z(t) = z(t)

]
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where the second line follows from the law of total expectation. Note that pa(z(t),1) ≡ pa(z(t)), with pa(z(t)) defined in

(S2). Now applying (S5), we further obtain

pa(z(t),∆t) = E



Za(t+∆t−1)

(

1+ha −
M
∑

b=1

hbZb(t+∆t−1)−µL

)

+µ
M
∑

b=1,dab=1

Zb(t+∆t−1)

−rL(Za(t+∆t−1)−ψa (Z(t+∆t−1)))

∣

∣

∣

∣

Z(t) = z(t)

]

+O

(

1

N2

)

= pa(z(t),∆t−1)(1+ha)+µ



−Lpa(z(t),∆t−1)+
M
∑

b=1,dab=1

pb(z(t),∆t−1)





−
M
∑

b=1

hbE

[

Za (t+∆t−1)Zb (t+∆t−1)

∣

∣

∣

∣

Z(t) = z(t)

]

− rLE

[

Za(t+∆t−1)−ψa (Z(t+∆t−1))

∣

∣

∣

∣

Z(t) = z(t)

]

+O

(

1

N2

)

.

By iterating the above procedure ∆t times, applying the expansions in (S5) and (S7), and recalling (S3) and (S4), we arrive at

the explicit expansion

pa(z(t),∆t) (S25)

= za(t)+∆t



za(t)

(

ha −
M
∑

b=1

hbzb(t)

)

+µ



−Lza(t)+
M
∑

b=1,dab=1

zb(t)



− rL
(

za(t)−ψa (z(t))
)



+O

(

1

N2

)

.

Next, we turn to deriving corresponding expansions for the conditional variance and covariance. Using the law of total

variance, the conditional variance of the frequency of genotype a at generation t+∆t, conditioned on Z(t) = z(t), is given by

Var

(

Za (t+∆t)

∣

∣

∣

∣

Z(t) = z(t)

)

= E

[

Var

(

Za (t+∆t)

∣

∣

∣

∣

Z (t+∆t−1) ,Z(t) = z(t)

)∣

∣

∣

∣

Z(t) = z(t)

]

(S26)

+Var

(

E

[

Za (t+∆t)

∣

∣

∣

∣

Z (t+∆t−1) ,Z(t) = z(t)

]∣

∣

∣

∣

Z(t) = z(t)

)

= E

[

Var

(

Za (t+∆t)

∣

∣

∣

∣

Z (t+∆t−1)

)∣

∣

∣

∣

Z(t) = z(t)

]

+Var

(

E

[

Za (t+∆t)

∣

∣

∣

∣

Z (t+∆t−1)

]∣

∣

∣

∣

Z(t) = z(t)

)

where the second line follows from the Markov property of the WF process. The first term in (S26) can be written as

E

[

Var

(

Za (t+∆t)

∣

∣

∣

∣

Z (t+∆t−1)

)∣

∣

∣

∣

Z(t) = z(t)

]

= E

[

pa(Z(t+∆t−1))(1−pa (Z(t+∆t−1)))

N

∣

∣

∣

∣

Z(t) = z(t)

]

=
za(t)(1−za(t))

N
+O

(

1

N2

)

which was obtained by iteratively applying the expansions (S5) and (S7). Moreover, the second term in (S26) admits

Var

(

E

[

Za (t+∆t)

∣

∣

∣

∣

Z (t+∆t−1)

]∣

∣

∣

∣

Z(t) = z(t)

)

(S27)

= Var



Za(t+∆t−1)

(

1+ha −
M
∑

b=1

hbZb(t+∆t−1)−µL

)

+µ
M
∑

b=1,dab=1

Zb(t+∆t−1)

−rL(Za(t+∆t−1)−ψa (Z(t+∆t−1)))

∣

∣

∣

∣

Z(t) = z(t)

)

+O

(

1

N2

)

= Var

(

Za(t+∆t−1)

∣

∣

∣

∣

Z(t) = z(t)

)

+O

(

1

N2

)
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where the second line follows from (S5) and the last line follows from first noting that for arbitrary random variables {Xi}
n
i=1,

we have

Var

(

n
∑

i=1

aiXi

)

=
n
∑

i=1

a2
i Var(Xi)+2

∑

1≤i≤j≤n

aiajCov(Xi,Xj)

recalling again (S3) and (S4), and applying the expansions (S6) and (S7). Substituting (2.1) and (S27) into (S26), and iterating,

we arrive at

Var

(

Za (t+∆t)

∣

∣

∣

∣

Z(t) = z(t)

)

= ∆t
za(t)(1−za(t))

N
+O

(

1

N2

)

. (S28)

The expansion for the conditional covariance is obtained by following a similar procedure. For a 6= b, it leads to

Covar

(

Za (t+∆t) ,Zb (t+∆t)

∣

∣

∣

∣

Z(t) = z(t)

)

= −∆t
za(t)zb(t)

N
+O

(

1

N2

)

. (S29)

2.2. Path integral representation of the likelihood function

Based on the above conditional moment expansions, for the observed set of time points t0 < t1 < .. . < tK , we can present a

path integral expression for the likelihood function (S24). The proof follows a similar procedure to that in Sections 1.3 and

1.4, with basic modifications to the drift vector and covariance matrix to account for frequency vector observations being taken

multiple generations apart.

First, we consider genotype frequency evolution, and assume that genotype frequencies are observed at generations t and

t+ ∆t, with no observations in-between. Then, after mapping from discrete-time to continuous-time and taking N → ∞
as before (i.e., in equation S8), the modified drift vector now characterizes the expected infinitesimal change in genotype

frequencies between continuous time points τ and τ+∆tδτ , and the covariance matrix characterizes the second moment of the

change in genotype frequencies between the two time points. Specifically, using (S25), the ath element of the modified drift

vector can be written as (see equation 4.99 of Risken(1))

d̄a(ž(τ),∆t) = lim
δτ∆t→0

1

δτ∆t
E

[

(

Ža (τ + δτ∆t)− Ža(τ)
)

∣

∣

∣

∣

Ž(τ) = (ž1(τ), . . . , žM (τ))

]

= lim
N→∞

N



ža(τ)

(

ha −
M
∑

b=1

hbžb(τ)

)

+µ



−Lža(τ)+
M
∑

b=1,dab=1

žb(τ)



− r(L−1)
(

ža(τ)−ψa (ž(τ))
)





which turns out to be equivalent to (S11), and hence

d̄a(ž(τ),∆t) = d̄a(ž(τ)).

An analogous equivalence also holds for the modified diffusion matrix. Specifically, this has (a,b)th entry (see equation 4.100

of Risken (1))

C̄ab(ž(τ),∆t) (S30)

=
1

2
lim

δτ∆t→0

1

δτ∆t
E

[

((

Ža (τ + δτ∆t)− Ža(τ)
))((

Žb (τ + δτ∆t)− Žb(τ)
))

∣

∣

∣

∣

Ž(τ) = (ž1(τ), . . . , žM (τ))

]

=
1

2
lim

δτ∆t→0

1

δτ∆t
Covar

(

Ža (τ + δτ∆t) , Žb (τ + δτ∆t)

∣

∣

∣

∣

Ž(τ) = (ž1(τ), . . . , žM (τ))

)

= C̄ab(ž(τ))

where the second line follows via the same arguments as in (S13), while the last line was obtained by applying the expansions

(S28) and (S29).

As before, the transition density can then be approximated for small δτ∆t as

φ(ž(τ + δτ∆t)|ž(τ),N,µ,h)

≈
exp

(

− 1
4δτ∆t

(

ž(τ + δτ∆t)− ž(τ)− d̄(ž(τ))δτ∆t
)T
C̄(ž(τ))−1

(

ž(τ + δτ∆t)− ž(τ)− d̄(ž(τ))δτ∆t
)

)

(4πδτ∆t)M/2

√

det(C̄(ž(τ)))
.
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Here we show explicit dependence on N , µ and h. From this result, and recalling that δτ = 1/N , the transition probability for

a single generation of the original discrete-time discrete-frequency WF process can (for large N ) be approximated by

P (z(tk+1)|z(tk),N,µ,h)

≈ φ(z(tk+1)|z(tk),N,µ,h)dz(tk+1)

=

(

N

2π∆tk

)M/2
dz(tk+1)

√

detC(z(tk))

× exp

(

−
N

2

M
∑

a=1

M
∑

b=1

[

za(tk+1)−za(tk)−da(z(tk))
]

(

C−1(z(tk))
)

ab

[

zb(tk+1)−zb(tk)−db(z(tk))
]

)

where ∆tk = tk+1 −tk, the dz(tk+1) =
∏M

a=1 dza(tk+1) represent small frequency differences accounting for the quantization

of the continuous genotype frequency space, and where we have defined da(z(tk)) := d̄a(z(tk))
N and

(C(z(tk)))ab := 2(C̄(z(tk)))ab. (S31)

The path integral expression then follows by noting that the probability of observing a trajectory of genotype frequencies

(z(t1),z(t2), . . . ,z(tK)) is given by

P
(

(z(tk))K
k=1 |z(t0),N,µ,h

)

=
K−1
∏

k=0

P (z(tk+1)|z(tk),N,µ,h)

≈

(

K−1
∏

k=0

[

1
√

detC(z(tk))

(

N

2π∆tk

)M/2

dz(tk+1)

])

exp

(

−
N

2
S
(

(z(tk))K
k=0

)

)

(S32)

where

S
(

(z(tk))K
k=0

)

=
K−1
∑

k=0

1

∆tk

M
∑

a=1

M
∑

b=1

[za(tk+1)−za(tk)−∆tkda(z(tk))]
(

C−1(z(tk))
)

ab
[zb(tk+1)−zb(tk)−∆tkdb(z(tk))] .

Based on these results, a corresponding path integral approximation for the probability of observing a trajectory of mutant

allele frequencies (x(t1),x(t2), . . . ,x(tK)), and hence for the likelihood function (S24), is then obtained by mirroring the steps

in Section 1.4, giving

P
(

(x(tk))K
k=1 |x(t0),N,µ,s

)

≈

(

K−1
∏

k=0

1
√

detC(x(tk))

(

N

2π∆tk

)L/2 L
∏

i=1

dxi(tk+1)

)(

K−1
∏

k=0

exp

(

−
N

2
S
(

(x(tk))K
k=0

)

)

)

(S33)

where

S
(

(x(tk))K
k=0

)

=

K−1
∑

k=0

1

∆tk

L
∑

i=1

L
∑

j=1

[xi(tk+1)−xi(tk)−∆tkdi(x(tk))]
(

C−1(x(tk))
)

ij
[xj(tk+1)−xj(tk)−∆tkdj(x(tk))] .

2.3. The MPL estimator solution

Returning to the MAP problem (S23), we note that this is equivalent to

ŝ= arg max
s

(

log L

(

s|N,µ,(x(tk))K
k=0

)

+log Pprior(s)
)

. (S34)

The likelihood L

(

s|N,µ,(x(tk))K
k=0

)

is given by (S24) and is approximated (S33). Assuming a conjugate-prior distribution

Pprior(s) =
1

(2πσ2)L/2
exp

(

−
1

2σ2
sTs

)

,
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we take the vector derivative of the right-hand side of (S34) with respect to s (see equation 10, Chapter 10.2.1 of Lutkepohl(2)),

equate to zero, and then solve for s. This yields

ŝi =
L
∑

j=1

[

K−1
∑

k=0

∆tkC(x(tk))+γI

]−1

ij

[

xj(tK)−xj(t0)−µ
K−1
∑

k=0

∆tk
(

1−2xj(tk)
)

]

(S35)

for i= 1, . . . ,L, where γ = 1/Nσ2. This is the desired MPL estimate of the selection coefficients, reported in (10) of Methods.

Here, we note that γ can also be viewed as a parameter that regularizes the covariance matrix prior to inversion.

2.4. Equivalence of genotype- and allele-level analyses

While the MPL estimator was derived using a path integral expression for the probability of mutant allele frequency trajectories,

the WF evolutionary process is defined for genotypes. Hence, one may naturally ask whether there is any loss in information in

considering only the marginal frequency dynamics. As we now show, the answer is no. Specifically, we show that the estimate

of the selection coefficients based on genotype frequencies is equivalent to the derived MPL estimate.

We begin by defining G as a M×L matrix with (a,j)th entry Gaj = ga
j . Let h= (h1,h2, . . . ,hM ) denote the column vector

of genotype selection coefficients, which relates to the mutant allele selection coefficients via

h=Gs. (S36)

Given the observed genotype frequencies (z(t0),z(t1), . . . ,z(tK)), the MAP estimator of the selection coefficients admits

ŝ= arg max
s

(

log L

(

s|µ,N,(z(tk))K
k=0

)

+log Pprior(s)
)

,

where the likelihood function is given as

L

(

s|N,µ,(z(tk))K
k=0

)

= P
(

(z(tk))K
k=1 |z(t0),N,µ,h

)

(S37)

Note that the right-hand side of (S37) is approximated by (S32). Expressing the genotype selection coefficients in (S32) in

terms of mutant allele selection coefficients using (S36) gives the likelihood of the mutant allele selection coefficients s for an

observed genotype frequency path and parameters N , µ. Differentiating the resulting expression with respect to s and equating

to zero leads to

0 =
K−1
∑

k=0

(

GTz(tk+1)−GTz(tk)−GTC(z(tk))Gs−µGTEz(tk)− rL
(

GTz(tk)−GTψ (z(tk))
))

+
1

Nσ2
s, (S38)

where ψ (z(tk)) = {ψa (z(tk))}M
a=1 and C(z(tk)) is the genotype covariance matrix as given by (S30) and (S31), i.e., with

elements

Cab(z(tk)) =

{

za(tk)(1−za(tk)) a= b

−za(tk)zb(tk) a 6= b,

while matrix E has elements

Eab =











−L a= b

0 dab > 1

1 dab = 1.

Noting that the relation between allele and genotype frequencies (S18) can be expressed in vector form as x(tk) = GTz(tk),

and that C(x(tk)) = GTC(z(tk))G and GTψ (z(tk)) = x(tk), we can solve (S38) to obtain the MAP estimate of the allele

selection coefficients

ŝ=

[

K−1
∑

k=0

∆tkC(x(tk))+γI

]−1[

x(tK)−x(t0)−µ
K−1
∑

k=0

∆tk (1−2x(tk))

]

, (S39)

where γ = 1/Nσ2. This is the same as the MPL estimator (S35).

This equivalence is important. It implies that under the additive fitness model, only the single and pairwise mutational

frequencies are needed for optimally estimating the selection coefficients, and higher order information (e.g., three-locus mu-

tational frequencies) are irrelevant. The same equivalences can also be shown for extensions of the MPL estimator presented in

the following section. Further extensions will be explored in future work.
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2.5. Extension to multiple alleles per locus and asymmetric mutation probabilities

Here we demonstrate the extension of our inference framework to incorporate multiple alleles per locus and asymmetric muta-

tion probabilities. The same notation and definitions introduced in Section 1 and 2 will also be used, unless stated otherwise, but

will be interpreted in terms of the extended model. For example, Ž(τ) was introduced in (S8) to refer to the binary genotype

continuous process with symmetric mutation probabilities. This notation will also be used here, but it will now refer to the

non-binary genotype continuous process with asymmetric mutation probabilities. We first describe the model in detail.

We assume there are ℓ alleles per locus, thus resulting in M = ℓL genotypes, with the multi-allelic sequence for genotype

a denoted by ga = (ga
1 ,g

a
2 , . . . ,g

a
L), where ga

i is the allele at locus i. Nucleotide sequences, for example, will have ga
i ∈

{A,C,G,T}. For convenience, we denote each allele with an integer representation, and consider the fitness of each genotype

with respect to a reference sequence comprising of allele ℓ at each locus, i.e., the reference sequence is a sequence of ℓs. For

example, if ℓ= 4 and L= 3, then the reference sequence is represented by (4,4,4). We assume, once again, an additive model

of fitness, and that the reference genotype has a fitness of one. Under these assumptions, the selection coefficient for genotype

a is given by

ha = fa −1 =
L
∑

i=1

ℓ−1
∑

α=1

δ(ga
i ,α)si,α ,

where si,α is the selection coefficient of allele α at locus i, and where δ(·, ·) is the Kronecker-delta function,

δ(x,y) :=

{

1 x= y

0 otherwise.

Note that the assumptions above imply that si,ℓ = 0 for all i= 1, . . . ,L.

The allele frequency vector, describing the frequency of all alleles except (the reference) allele one, is given by x(t) =
(x1,1(t), . . . ,x1,ℓ−1(t), . . . ,xL,1(t), . . . ,xL,ℓ−1(t)), where xi,α(t) denotes the observed frequency of allele α at locus i during

generation t, and is related to the genotype frequencies by

xi,α(t) =
M
∑

a=1

δ(ga
i ,α)za(t). (S40)

Finally, we denote µαβ as the mutation probability per generation from allele α to allele β and µab as the mutation probability

per generation from genotype a to genotype b. These are related by

µab =
L
∏

i=1





ℓ
∑

α=1

ℓ
∑

β=1

µαβδ(g
a
i ,α)δ(gb

i ,β)



 .

Given this model, the MAP estimate of the selection coefficients is the solution to

ŝ= arg max
s

L

(

s|µ,N,(x(tk))T
k=0

)

Pprior(s), (S41)

where

L

(

s|µ,N,(x(tk))T
k=0

)

= P
(

(x(tk))K
k=1|x(t0),N,µ,s

)

(S42)

=
K−1
∏

k=0

P (x(tk+1)|x(tk),N,µ,s)

is the likelihood of the selection coefficients s= (s1,1, . . . ,s1,ℓ−1, . . . ,sL,1, . . . ,sL,ℓ−1) and Pprior(s) their prior distribution.

As with the simpler biallelic and symmetric mutation probability scenario, the main challenge in solving (S41) is that it re-

quires computing the likelihood (S42), which is complicated. This is simplified as before, by adopting the path integral approach

outlined in Section 1; but now extending the analysis to account for sampling times spanning multiple generations, multiple al-

leles per locus and asymmetric mutation probabilities. Other than these differences, we may follow the same approach, starting

by giving asymptotic moment expansions. By direct analogy to (S3) and (S4), we will work under the assumption that N is

large, and that as N → ∞,

si,α =
s̄i,α

N
+O

( 1

N2

)

, ha =
h̄a

N
+O

( 1

N2

)

, µβα =
µ̄βα

N
+O

( 1

N2

)

, µab =
µ̄ab

N
+O

( 1

N2

)

, r=
r̄

N
+O

( 1

N2

)

(S43)

where s̄i,α, h̄a, µ̄βα, µ̄ab and r̄ are constants independent of N .
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2.5.1. Conditional moment expansions

The mean frequency of genotype a at generation t+1, conditioned on Z(t) = z(t), admits

pa(z(t)) := E

[

Za(t+1)

∣

∣

∣

∣

Z(t) = z(t)

]

(S44)

=

(1+ha)ya(t)+
M
∑

b=1

(µba(1+hb)yb(t)−µab(1+ha)ya(t))

M
∑

b=1

(1+hb)yb(t)

,

where recall that

ya(t) = (1− r)Lza(t)+
(

1− (1− r)L
)

ψa(z(t)).

Utilizing (S44) along with (S43), and applying a similar proof to that described in Section 2.1, the mean frequency of genotype

a at generation t+∆t, conditioned on Z(t) = z(t), then admits

pa(z(t),∆t) = za(t)+∆t

(

za(t)

(

ha −
M
∑

b=1

hbzb(t)

)

(S45)

+
M
∑

b=1,dab=1

(µbazb(t)−µabza(t))− r(L−1)(za(t)−ψa(z(t)))



+O

(

1

N2

)

= za(t)+O

(

1

N2

)

,

where dab here denotes the number of loci for which the allele identity at genotypes a and b differ, i.e.,

dab :=
L
∑

i=1

(

1− δ(ga
i ,g

b
i )
)

.

The corresponding expressions for the variance and covariance of the frequency of genotype a at generation t+∆t, conditioned

on Z(t) = z(t) are obtained analogously to (S28) and (S29) as

Var

(

Za (t+∆t)

∣

∣

∣

∣

Z(t) = z(t)

)

= ∆t
za(t)(1−za(t))

N
+O

(

1

N2

)

, (S46)

and

Covar

(

Za (t+∆t) ,Zb (t+∆t)

∣

∣

∣

∣

Z(t) = z(t)

)

= −∆t
za(t)zb(t)

N
+O

(

1

N2

)

. (S47)

2.5.2. Path integral representation of the likelihood function

Based on the above conditional moment expansions, we can derive a path integral representation for the likelihood function

(S42). Starting by considering genotype evolution, the drift vector and diffusion matrix in this case are given respectively by

d̄a(ž(τ),∆t) = lim
δτ∆t→0

1

δτ∆t
E

[

Ža (τ + δτ∆t)− Ža(τ)

∣

∣

∣

∣

Ž(τ) = (ž1(τ), . . . , žM (τ))

]

(S48)

= ža(τ)

(

h̄a −
M
∑

b=1

h̄bžb(τ)

)

+
M
∑

b=1,dab=1

(µ̄bažb(τ)− µ̄abža(τ))− r̄(L−1)(ža(τ)−ψa (ž(τ)))

and

C̄ab(ž(τ),∆t) =
1

2

{

ža(τ)(1− ža(τ)) a= b

−ža(τ)žb(τ) a 6= b
, (S49)
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which follow from (S45), (S46), (S47), and by adopting the procedure described in Section 2.2. From these results, and

again following the procedure in Section 2.2, the conditional probability of observing a trajectory of genotype frequencies

(z(t1),z(t2), . . . ,z(tK)) is obtained as

P
(

(z(tk))K
k=1|z(t0)

)

=
K−1
∏

k=0

P (z(tk+1)|z(tk))

≈





K−1
∏

k=0





1
√

det C̄(z(tk))

(

N

4π∆tk

)M/2 M
∏

a=1

dza(tk+1)







exp

(

−
N

4
S
(

(z(tk))K
k=0)

)

)

where ∆tk = tk+1 − tk and

S
(

(z(tk))K
k=0

)

=
K−1
∑

k=0

1

∆tk

M
∑

a=1

M
∑

b=1

[

za(tk+1)−za(tk)−
∆tkd̄a(z(tk))

N

]

×
(

C̄−1(z(tk))
)

ab

[

zb(tk+1)−zb(tk)−
∆tkd̄b(z(tk))

N

]

.

In this last equation we have dropped the second argument of the drift vector and diffusion matrix, as both quantities turn out

to be independent of ∆t, as seen from (S48) and (S49).

Now turn to mutant allele evolution. By noting the linearity of expectation and the genotype-to-allele mapping (S40), the

mean frequency of allele α at locus i during time τ + δτ∆t, conditioned on X̌(τ) = x̌(τ), is given by

M
∑

a=1

δ(ga
i ,α)ža(τ)+di,α(x̌(τ))δτ∆t= x̌i,α(τ)+di,v(x̌(τ))δτ∆t

where

di,α(x̌(τ)) =
M
∑

a=1

δ(ga
i ,α) d̄a(ž(τ),∆t)

=
M
∑

a=1

δ(ga
i ,α)



ža(τ)

(

h̄a −
M
∑

b=1

h̄bžb(τ)

)

+
M
∑

b=1,dab=1

(µ̄bažb(τ)− µ̄abža(τ))− r̄(L−1)(ža(τ)−ψa (ž(τ)))





= I1 + I2 + I3

with the second line following from (S48). For I1, we have

I1 =

M
∑

a=1

δ(ga
i ,α)ža(τ)

(

h̄a −

M
∑

b=1

h̄bžb(τ)

)

=
M
∑

a=1

δ(ga
i ,α)ža(τ)

L
∑

j=1

ℓ−1
∑

β=1

δ(ga
j ,β)s̄j,β −

M
∑

a=1

δ(ga
i ,α)ža(τ)

M
∑

b=1

L
∑

j=1

ℓ−1
∑

β=1

δ(gb
j ,β)s̄j,β žb(τ)

=
L
∑

j=1

ℓ−1
∑

β=1

(

x̌ij,αβ(τ)− x̌i,α(τ)x̌j,β(τ)
)

s̄j,β

where x̌ij,αβ(τ) denotes the frequency of allele α and β occurring respectively at loci i and j during time τ , and given by

x̌ij,αβ(τ) =
M
∑

a=1

δ(ga
i ,α)δ(ga

j ,β)ža(τ).
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For I2, we have

I2 =
M
∑

a=1

δ(ga
i ,α)

M
∑

b=1,dab=1

(µ̄bažb(τ)− µ̄abža(τ))

=
M
∑

a=1

δ(ga
i ,α)

M
∑

b=1,dab=1

(

δ(gb
i ,α)+1− δ(gb

i ,α)
)

(µ̄bažb(τ)− µ̄abža(τ))

= I2a + I2b

where

I2a =
M
∑

a=1

M
∑

b=1,dab=1

δ(ga
i ,α)δ(gb

i ,α)(µ̄bažb(τ)− µ̄abža(τ))

I2b =
M
∑

a=1

M
∑

b=1,dab=1

δ(ga
i ,α)

(

1− δ(gb
i ,α)

)

(µ̄bažb(τ)− µ̄abža(τ)) .

Consider now I2a, where we observe that (i) δ(ga
i ,α)δ(gb

i ,α) is non-zero only when genotypes a and b both have allele α at

locus i, while (ii) the summation
M
∑

b=1,dab=1

is over all genotypes b which have a different allele from genotype a at only one

locus. These two observations imply that δ(ga
i ,α)δ(gb

i ,α) is non-zero, for b = 1, . . . ,M, with dab = 1, only if a and b have a

different allele at a single locus, but where the position of this locus is different from i. To illustrate this, consider a simple

example with L= 2 and ℓ= 3, in which case

g1 =

(

1
1

)

, g2 =

(

1
2

)

, g3 =

(

1
3

)

,

g4 =

(

2
1

)

, g5 =

(

2
2

)

, g6 =

(

2
3

)

,

g7 =

(

3
1

)

, g8 =

(

3
2

)

, g9 =

(

3
3

)

.

Then if i = 1 and α = 1, the only genotype-pairs (a,b) which result in a non-zero δ(ga
i ,α)δ(gb

i ,α) (subject to the condition

dab = 1) are (1,2), (2,1), (1,3), (3,1), (2,3) and (3,2), as these genotype-pairs differ only at the second locus, while having

allele one at locus i= 1.

Observe that every genotype-pair which result in a non-zero δ(ga
i ,α)δ(gb

i ,α) (subject to the condition dab = 1) occur in

conjugates, i.e., if (1,2) is such a genotype-pair, then so is (2,1). This implies that I2a = 0, as for every genotype pair (a,b)
resulting in a non-zero δ(ga

i ,α)δ(gb
i ,α)µ̄bažb(τ), there always exist one other conjugate pair (b,a) which cancels this term

through the −δ(ga
i ,α)δ(gb

i ,α)µ̄abža(τ) term.

Consider now I2b, and observe that the δ(ga
i ,α)

(

1− δ(gb
i ,α)

)

term is non-zero only when genotype a, but not genotype b,
has allele α at locus i. Combining the above, we can thus write I2 as

I2 = I2b =
ℓ
∑

β=1,β 6=α

(

µ̄βαx̌i,β(τ)− µ̄αβ x̌i,α(τ)
)

=

ℓ
∑

β=1

(

µ̄βαx̌i,β(τ)− µ̄αβ x̌i,α(τ)
)

=
ℓ−1
∑

β=1

µ̄βαx̌i,β(τ)+ µ̄ℓα



1−
ℓ−1
∑

β=1

x̌i,β(τ)



−
ℓ
∑

β=1

µ̄αβ x̌i,α(τ)

= µ̄ℓα +
ℓ−1
∑

β=1

(

µ̄βα − µ̄ℓα

)

x̌i,β(τ)− x̌i,α(τ)
ℓ
∑

β=1

µ̄αβ .

Note that in the third line above we have used the fact that the frequency of the reference allele is one minus the sum of the

frequency of all other alleles.
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Finally, we have

I3 = −r̄(L−1)

M
∑

a=1

δ(ga
i ,α)(ža(τ)−ψa (ž(τ))) .

Similar to the biallelic case, we define

θcd
i,α :=

M
∑

a=1

δ(ga
i ,α)Ra,cd

where θcd
i,α is the probability that genotypes c and d recombine to form a genotype which has an allele α at locus i. Next we

split this summation into four summations, one for each of the four possible recombination scenarios. Namely, when both

genotypes c and d have allele α at locus i, when both do not have allele α at locus i and when only of the genotypes has allele

α at locus i. We thus have

M
∑

a=1

δ(ga
i ,α)ψa (ž(τ)) =

M
∑

a=1

δ(ga
i ,α)

M
∑

c=1

M
∑

d=1

Ra,cdžc(τ)žd(τ)

=
M
∑

c=1

M
∑

d=1

θcd
i,αžc(τ)žd(τ)

=
M
∑

c=1

(

M
∑

d=1

θcd
i δ(gc

i ,α)δ(gd
i ,α)žc(τ)žd(τ)+

M
∑

d=1

θcd
i δ(gc

i ,α)(1− δ(gd
i ,α))žc(τ)žd(τ)

)

+
M
∑

c=1

(

M
∑

d=1

θcd
i (1− δ(gc

i ,α))δ(gd
i ,α)žc(τ)žd(τ)+

M
∑

d=1

θcd
i (1− δ(gc

i ,α))(1− δ(gd
i ,α))žc(τ)žd(τ)

)

.

Moreover, noting that

θcd
i δ(gc

i ,α)δ(gd
i ,α) = δ(gc

i ,α)δ(gd
i ,α)

θcd
i δ(gc

i ,α)(1− δ(gd
i ,α)) =

1

2
δ(gc

i ,α)(1− δ(gd
i ,α))

θcd
i (1− δ(gc

i ,α))δ(gd
i ,α) =

1

2
(1− δ(gc

i ,α))δ(gd
i ,α)

θcd
i (1− δ(gc

i ,α))(1− δ(gd
i ,α)) = 0

where the factor of 1
2 arises because there is a 50% chance that genotype c (d) with allele v at locus i and genotype d (c) which

does not have allele α at locus i will recombine to a genotype with allele α at locus i, we have

M
∑

a=1

δ(ga
i ,α)ψa (ž(τ)) =

M
∑

c=1

(

M
∑

d=1

δ(gc
i ,α)δ(gd

i ,α)žc(τ)žd(τ)+
1

2

M
∑

d=1

δ(gc
i ,α)(1− δ(gd

i ,α))žc(τ)žd(τ)

)

+
1

2

M
∑

c=1

M
∑

d=1

(1− δ(gc
i ,α))δ(gd

i ,α)žc(τ)žd(τ)

= x̌2
i,α(τ)+

1

2
x̌i,α(τ)(1− x̌i,α(τ))+

1

2
x̌i,α(τ)(1− x̌i,α(τ))

= x̌i,α(τ)

thus implying that
∑M

a=1 δ(g
a
i ,α)(ža(τ)−ψa (ž(τ))) = 0 and hence I3 = 0.

The final expression for the drift vector is thus

di,α(x̌(τ),∆t) =
L
∑

j=1

ℓ−1
∑

β=1

(

x̌ij,αβ(τ)− x̌i,α(τ)x̌j,β(τ)
)

s̄j,β + µ̄ℓα +
ℓ−1
∑

β=1

(

µ̄βα − µ̄ℓα

)

x̌i,β(τ)− x̌i,α(τ)
ℓ
∑

β=1

µ̄αβ . (S50)

As expected, we observe that when there are two alleles, the mutation probability is symmetric and the reference allele is the

WT, the expression in (S50) reduces to the expression in (S20).
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We now move on to the diffusion matrix. This can be partitioned into L2 blocks each of size (ℓ− 1) × (ℓ− 1), where the

(i, j)th block has (α,β)th entry

Cij,αβ(x̌(τ)) =
M
∑

a=1

M
∑

b=1

δ(ga
i ,α)δ(gb

j ,β)C̄ab(ž(τ))

=
1

2

M
∑

a=1

δ(ga
i ,α)δ(ga

j ,β)ža(τ)(1− ža(τ))−
1

2

M
∑

a=1

M
∑

b=1,b 6=a

δ(ga
i ,α)δ(gb

i ,β)ža(τ)žb(τ)

=
1

2

M
∑

a=1

δ(ga
i ,α)δ(ga

j ,β)ža(τ)−
1

2

(

M
∑

a=1

δ(ga
i ,α)ža(τ)

)(

M
∑

b=1

δ(gb
i ,β)žb(τ)

)

=
1

2

(

x̌ij,αβ(τ)− x̌i,α(τ)x̌j,β(τ)
)

.

Following along the lines of the proof in Section 1.4, the probability of observing mutant allele frequencies

(x(t1),x(t2), . . . ,x(tK)), and hence the likelihood function (S42), is approximated by the path integral representation

L

(

s|µ,N,(x(tk))K
k=0

)

≈

[

K−1
∏

k=0

1
√

detC(x(tk))

(

N

2π∆tk

)L(ℓ−1)/2

dx(tk+1)

]

exp

(

−
N

2
S
(

(x(tk))K
k=0)

)

)

(S51)

where dx(tk+1) =
∏L

i=1

∏ℓ−1
α=1 dxi,α(tk+1) and

S
(

(x(tk))K
k=0

)

=
∑

1

[xi,α(tk+1)−xi,α(tk)−∆tkdi,α(x(tk))]
(

C−1(x(tk))
)

ij,αβ

[

xj,β(tk+1)−xj,β(tk)−∆tkdj,β(x(tk))
]

∆tk
.

Here we have adopted the shorthand notation
∑

1 =
∑K−1

k=0

∑L
i=1

∑ℓ−1
α=1

∑L
j=1

∑ℓ−1
β=1, while (X)ij,αβ indicates the (α,β)th

entry of the (i, j)th block, with each block having dimension (ℓ−1)× (ℓ−1). Moreover, we have

di,α(x(tk)) =

L
∑

j=1

ℓ−1
∑

β=1

(

xij,αβ(tk)−xi,α(tk)xj,β(tk)
)

sj,β +µℓα +
ℓ−1
∑

β=1

(

µβα −µℓα

)

xi,β(tk)−xi,α(tk)
ℓ
∑

β=1

µαβ

and

Cij,αβ(x(tk)) = xij,αβ(tk)−xi,α(tk)xj,β(tk).

2.5.3. The MPL estimator solution

Substituting the likelihood approximation (S51) and the prior

Pprior(s) =
1

(2πσ2)L(ℓ−1)/2
exp

(

−
1

2σ2
sTs

)

into the equivalent MAP problem

ŝ= arg max
s

(

log L

(

s|µ,N,(x(tk))K
k=0

)

+log Pprior(s)
)

,

we take the vector derivative with respect to s and equate to zero. This yields the MPL estimate

ŝi,α =
L
∑

j=1

ℓ−1
∑

β=1

[

K−1
∑

k=0

∆tkC(x(tk))+γI

]−1

ij,αβ

×

[

xj,β(tK)−xj,β(t0)−
K
∑

k=1

∆tk

(

µℓα +
ℓ−1
∑

l=1

(

µlα −µℓα

)

xj,l(tk)−xj,α(tk)
ℓ
∑

l=1

µαl

)]

for i= 1, . . . ,L and α= 1, . . . , ℓ−1, which is the result quoted in (11) in Methods.
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3. Data analysis

This section provides details about the synthetic data and its analysis used to obtain results presented in the paper.

3.1. Simulated data generation and performance analysis

The results in Figure 1, Supplementary Figures 1 and 2 were obtained for a 50-locus biallelic system. We generated a population

of N = 1000 sequences, each of length L = 50, and evolved the population according to the WF model with selection and

mutation. We assumed loci to be biallelic with 0 representing the WT and 1 representing the mutant allele. Parameters for the

simulations are included in the captions of Supplementary Figures 1 and 2. Scripts for generating and analyzing these data are

located in the GitHub repository.

We compared MPL with seven methods from the literature: WFABC (3), FIT (4), ApproxWF (5), LLS (6), CLEAR (7),

EandR (8), and IM (9). We compared the accuracy of these methods by measuring the AUROC for classification of beneficial

and deleterious selection coefficients, as well as the normalized root-mean-squared error (NRMSE) of the inferred selection

coefficients,

NRMSE :=

√

√

√

√

∑L
i=1 (ŝi −si)

2

∑L
i=1 s

2
i

.

We also recorded the run time of all algorithms in the same computational environment. All values were averaged over samples

from 100 WF simulations with the same underlying parameters.

3.2. Implementation and data preprocessing specifications

We wrote custom codes for the FIT and IM methods, while for the remaining methods we used software implementations

provided by the respective authors. Scripts used to generate the comparison results in the paper are available at the GitHub

repository.

Preprocessing: Some methods required the input sequence or allele frequency data to be modified in order to produce

reasonable results. This pre-processing was performed according to one or two rules, as indicated below. In describing these,

we define a trajectory as a set of mutant allele frequencies at consecutively sampled time points. The start of a trajectory is

marked by the first observation of a polymorphism, while the end is marked by either the fixation or loss of the mutant allele,

or by the last sampled time point. Thus, over an entire observation period, it is possible to observe multiple “trajectories” at the

same locus.

1. Pre-filtering: Trajectories were filtered such that (a) the minimum length of a trajectory was two time points and (b) the

maximum (minimum) frequency was at least 0.05 (0.95) for a trajectory that started from a frequency of zero (one).

2. Bit-flipping: The definitions of WT and mutant were reversed at loci for which trajectories had initial frequency greater

than 0.95.

MPL and SL. MPL and its single locus variant, the independent model described in the main text, were implemented in C++.

No preprocessing of the sequence data was required for MPL and SL.

WFABC. Trajectories were converted to WFABC’s format using custom Matlab scripts and then analyzed using the code

provided at http://jjensenlab.org/software (accessed on September 16, 2017). Initial tests revealed that we

had to pre-process the raw sampled trajectories before applying the WFABC method in order to get meaningful results. All

trajectories were pre-filtered except the ones that were rendered monomorphic due to pre-filtering. Bit-flipping was also applied.

These processing steps removed spurious noisy blips from the trajectories and redefined WT/mutant, resulting in improved

performance of the WFABC method.

ApproxWF. Trajectories were converted to an input format compatible with ApproxWF using custom Matlab scripts and

then analyzed using the code provided at https://bitbucket.org/wegmannlab/approxwf/wiki/Home (commit

fcc7964 dated: 2016-10-04 accessed on September 26, 2017). All trajectories were pre-filtered as outlined above, except the

ones that were rendered monomorphic due to filtering. Bit-flipping was not used.

IM. We developed a custom MATLAB script to implement the IM method (9). Trajectories were pre-filtered, but not flipped.

We used the filtering threshold of 0.1 (0.9) as specified by the authors of this method. The method was implemented according

to the description given in ref. (9), which applies a simulated annealing algorithm to estimate the selection coefficients. We

used the simulated annealing algorithm implementation provided in the Global Optimization Toolbox of MATLAB 2017a. We

let the algorithm run for a maximum of 100,000 iterations and stopped the algorithm when the average change in value of the

objective function in the previous 10,000 iterations was less than a tolerance value (default value of 10−8).

In all simulation runs, the optimization stopped in less than 100,000 iterations, indicating that the algorithm had converged.

To further validate our in-house implementation of IM, we applied it to data sets generated using the system parameters as in

ref.(9) and under the same simulation setup; e.g., continuous long runs of several hundred thousand generations. The results

were qualitatively similar to those reported in ref. (9). We found that IM’s procedure of calling trajectories (described in ref. (9)),
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was sensitive to the evolutionary parameters used, e.g., population size, mutation probability (N = 10,000 and µ = 5 × 10−7

were used in ref. (9)), as well as to the simulation condition of not allowing a locus to mutate after it has reached fixation (in the

simulation setup of IM, a locus that reaches fixation remains at fixation for the next 3200 generations). For the simulation results

presented in this paper, where N = 1000, µ= 10−4 and there are no restrictions on mutations at a locus reaching fixation, we

had to change the parameters of the procedure for calling trajectories so that the algorithm returned meaningful results. Using

the default parameters of ref. (9) for calling trajectories resulted in the IM method missing the start/end of trajectories. The

modified parameters are specified in Matlab scripts in the GitHub repository.

LLS. Trajectories were fed directly into the LLS code provided by the authors at https://github.com/ThomasTaus/

poolSeq. A small number of loci resulted in a “N/A" selection coefficient estimate, which occurred when the loci had a

frequency of zero or one for the vast majority of time points, and having a frequency close to zero or one for the other (small

number of) time points. These loci were excluded from the analysis.

FIT. No additional preprocessing was required. The trajectories were analyzed using custom Matlab scripts.

CLEAR. Simulation data was converted into a format readable by CLEAR using custom Python scripts. No preprocessing of

the data was necessary.

EandR. Simulation data was converted into a format readable by EandR using custom Python scripts. No preprocessing of the

data was required.
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