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Abstract

The transcriptome is a powerful proxy for the physiological state of a cell, healthy or dis-

eased. As a result, transcriptome analysis has become a key tool in understanding the

molecular changes that accompany bacterial infections of eukaryotic cells. Until recently,

such transcriptomic studies have been technically limited to analyzing mRNA expression

changes in either the bacterial pathogen or the infected eukaryotic host cell. However, the

increasing sensitivity of high-throughput RNA sequencing now enables “dual RNA-seq”

studies, simultaneously capturing all classes of coding and noncoding transcripts in both the

pathogen and the host. In the five years since the concept of dual RNA-seq was introduced,

the technique has been applied to a range of infection models. This has not only led to a bet-

ter understanding of the physiological changes in pathogen and host during the course of an

infection but has also revealed hidden molecular phenotypes of virulence-associated small

noncoding RNAs that were not visible in standard infection assays. Here, we use the knowl-

edge gained from these recent studies to suggest experimental and computational guide-

lines for the design of future dual RNA-seq studies. We conclude this review by discussing

prospective applications of the technique.

Introduction

The application of high-throughput sequencing–based transcriptomic technologies has deliv-

ered major advances in our understanding of biological processes in essentially every organism

analyzed [1]. The high resolution of RNA-seq down to the single nucleotide level, however,

also allows for a parallel analysis of different organisms interacting with each other—for exam-

ple, during infection processes (Fig 1A). Simultaneous RNA-seq of host–pathogen models was

initiated in the fields of viral [2,3], fungal [4], and parasite infection [5–7], in which the tran-

scriptome structure of the pathogen resembles that of its host. In contrast, bacterial transcrip-

tomes differ dramatically from their eukaryotic counterparts in terms of both the quantity and

composition of their RNA (summarized in [8]), which necessitated the use of dedicated proto-

cols to capture bacterial or eukaryotic transcriptomes in isolation. Typically, to profile bacterial

gene expression during infection, the overwhelming host material was depleted prior to analy-

sis (Fig 1B). Consequently, until recently transcriptome analyses of bacterial infections were
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necessarily one-sided, limiting our ability to understand the interactions between pathogen

and host.

Five years ago, we coined the term “dual RNA-seq” to refer to the simultaneous RNA-seq

analysis of a bacterial pathogen and its infected host (Fig 1A) and theoretically evaluated its

feasibility [8]. The key technical issue we identified was the different nature and content of

RNA between bacterial and eukaryotic cells. For example, a typical mammalian cell contains

on the order of 20 picograms of RNA, which is roughly two orders of magnitude more than a

single bacterial cell [9]. Accounting for the prevalence of rRNA transcripts and variable infec-

tion rates, this would leave a minute fraction of informative bacterial transcripts in a mixed

RNA pool, compromising accurate quantification. This hurdle has now been overcome in a

variety of ways (Table 1): by sequencing cDNA libraries to high depth [10], by partially enrich-

ing bacterial transcripts prior to sequencing [10,11], by enriching for invaded host cells by

fluorescence-activated cell sorting (FACS) [12,13] or laser capture microdissection [14], by

depleting rRNA of the bacterium and host either in series or in parallel [10–13,15,16], and by

combinations thereof. As a result, most of the current dual RNA-seq protocols [12–15] can

provide informative data with as few as ~25 million reads per sample of mixed pathogen–host

RNA, making them practical on current sequencing platforms. Importantly, dual RNA-seq of

total mixed RNA following double rRNA depletion (see Fig 2) has now become an affordable,

straightforward approach that can be generically applied to any bacterial infection model [13].

This newfound feasibility has led to a variety of emerging applications of dual RNA-seq to

bacterial infection models, including the direct correlation of bacterial gene activity with a spe-

cific host response and the identification of “molecular phenotypes” of pathogen genes that are

invisible in standard virulence assays [13]. Here, we update our earlier theoretical consider-

ations [8] based on the biological insights gained from recent dual RNA-seq studies of diverse

Fig 1. Methods for RNA sequencing of bacterial infections. A. Concept of dual RNA-seq. Total RNA is extracted from
infected cells and analyzed by RNA-seq. The mixed sequencing reads are assigned to their originating genomes in silico.B.
Different approaches to quantify gene expression of bacteria in context with mammalian host cells. Traditionally, host material
was depleted prior to analysis, either by detergent-mediated lysis of host cells (left) or by sequence-specific removal of host
transcripts (middle). Instead, dual RNA-seq omits host depletion (right) and analyzes pathogen and host gene expression in
parallel.

doi:10.1371/journal.ppat.1006033.g001
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bacterial infection models, aiming to provide experimental and biocomputational guidelines

for future dual RNA-seq assays.

Emerging Applications of Dual RNA-seq

Most dual RNA-seq analyses so far have been exploratory, characterizing the transcriptional

dynamics of a particular infection system. An early dual RNA-seq study of HEp-2 epithelial

carcinoma cells infected with the obligate intracellular pathogen Chlamydia trachomatis [10]

revealed the induction of numerous metabolic mechanisms early after invasion—for example,

riboflavin biosynthesis genes (ribBA) responding to extracellular reduction of iron (Fig 3).

These changes previously escaped detection because of the few individual Chlamydia cells in

the infected culture. Host transcripts, on the other hand, revealed an active response to invad-

ing Chlamydia (albeit with a currently unexplained dampening of immune signaling), in

Fig 2. A generic dual RNA-seq workflow analyzing total mixed RNA after double rRNA depletion that discovered the
role of PinT small regulatory RNA (sRNA) during Salmonella infection of host cells [13]. Salmonella having gfp stably
integrated in their chromosome and expressed from a constitutive promoter were used to infect cultures of HeLa cells. RNA-
seq of the bacterial input (1) or mock-infected HeLa cells (2) served as reference controls for Salmonella or human gene
expression analysis, respectively. Infection was carried out in parallel with wild-type and sRNAmutant Salmonella strains,
and samples were taken over a time-course of infection. The resulting cell samples constituted a mixed population consisting
of both invaded (GFP-positive) and uninfected bystander (GFP-negative) cells (3). To obtain a homogeneous population of
invaded cells, the samples were sorted based on the emitted GFP fluorescence (4). Total RNA was extracted from the thus
enriched cells, rRNA from both infection partners was depleted (5), and rRNA-free samples were converted into cDNA
libraries and sequenced. The resulting sequencing reads were mapped in parallel against the Salmonella and human (core
and mitochondrial) genome. Differential expression analysis of the time course revealed the strong induction over time of a
novel Salmonella sRNA, PinT, and comparative analysis unraveled the molecular footprint of this sRNA in the bacterial
transcriptome (6). Likewise, comparison of the host transcriptome between wild-type and ΔpinT infections revealed PinT-
dependent changes in the immune response, including a differential activation of Janus kinase-Signal Transducer and
Activator of Transcription (JAK-STAT) signaling as well as changes with respect to the expression of host long noncoding
RNAs (lncRNAs) and microRNAs (miRNAs) (7). In addition, the pinT status of the infecting bacterium influenced mitochon-
drial gene expression, and infection with ΔpinT Salmonella led to the relocalization of mitochondria in invaded host cells (8).

doi:10.1371/journal.ppat.1006033.g002
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contrast to an earlier microarray-based report in which only few changes in host transcription

were observed during early infection [25].

This exploratory concept has been expanded into higher-resolution time-courses covering

longer periods of infection. A study following host and pathogen gene expression over 72 hours

in primary airway epithelial cells infected with nontypeableHaemophilus influenzae [16] revealed

a strong early induction in the host of the extracellular pathogen recognition receptor Spondin 2

(SPON2), which acts as an opsonin that promotes macrophage phagocytosis of bacteria in the

extracellular matrix [26]. The bacterial transcriptome reflected defined stress responses such as

the induction of the dipeptide transport system permease protein (dpp) operon, whose gene prod-

ucts contribute to the protection against oxidative stress (Fig 3).

A comparative dual RNA-seq approach was taken to study two isolates of uropathogenic

Escherichia coli (UPEC) strains—one being replication-competent and the other susceptible to

killing by the host—in primary murine bone marrow–derived macrophages [11]. While the

Fig 3. Illustration of biological insights obtained from dual RNA-seq studies in four different bacterial infectionmodels.
HEp-2 cells infected with obligate intracellularChlamydia trachomatis [10], primary airway epithelial cells with nontypeable
Haemophilus influenzae [16], primary murine bonemarrowmacrophages with uropathogenic E. coli (UPEC) [11], and diverse
human, mouse, and porcine cell lines with Salmonella Typhimurium [13]. Seemain text for details.

doi:10.1371/journal.ppat.1006033.g003
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host transcriptome was broadly similar, bacterial gene expression varied markedly between the

two isolates. Several genes were induced exclusively in the replicating isolate, suggesting that

some of these might encode for essential virulence factors. Indeed, deletion of one of these

genes, phage shock protein A (pspA), led to a survival defect compared to the cognate wild-type

strain (Fig 3).

Defining “Molecular” Phenotypes by Dual RNA-seq

Our recent dual RNA-seq profiling of Salmonella Typhimurium infection of human epithelial

cells and porcine macrophages [13] combined these above two strategies of exploratory and

hypothesis-driven comparative design (Fig 2). This study, for the first time, also analyzed all

major coding and noncoding RNA classes of the bacterial pathogen and its host cell. Within

the class of Salmonella small noncoding RNAs (sRNAs), the previously uncharacterized Salmo-

nella PinT sRNA was consistently and highly induced during infection of 14 distinct cell types.

Biocomputational clustering of expression kinetics along a high-resolution time-course of

infected HeLa cells predicted that PinT is activated by the PhoP/Q two-component system,

which regulates intracellular virulence (Fig 3). Subsequently, a comparative dual RNA-seq

time-course with a pinT deletion mutant unraveled the function of PinT as a posttranscrip-

tional regulator of the expression of important virulence genes of Salmonella inside both

human and porcine cell lines. The activity of PinT has widespread effects on the host response,

with ~10% of all detected human mRNAs as well as various noncoding transcripts being differ-

entially expressed between the two infections.

Importantly, the generic dual RNA-seq protocol used in this study also detects mitochon-

drial transcripts, which are typically neglected in host RNA profiling. Analysis of this “third

transcriptome” showed that mitochondrial transcripts were hyperexpressed in HeLa cells

infected with ΔpinT compared to wild-type Salmonella. This observation guided the discovery

of altered subcellular distributions of mitochondria (Fig 2), an sRNA phenotype that would

have likely been missed in standard analyses.

Intriguingly, while PinT does not produce a robust “macroscopic” replication phenotype in

cell culture, the dual RNA-seq results show that PinT activity times Salmonella virulence gene

expression shortly after invasion. We refer to this transcriptional signature as a “molecular

phenotype” [27], which may represent a new approach to characterizing the role of gene prod-

ucts in infection. Of note, previous transposon mutagenesis studies in large animal models,

including pigs, showed that pinT disruption is attenuating [28] despite the absence of an obvi-

ous phenotype in cell culture, illustrating the relevance of molecular phenotypes to studying

disease in the absence of accessible model systems.

On Designing a Dual RNA-seq Experiment

While the technical feasibility of dual RNA-seq has now been firmly established, a near-infinite

variety of infection models wait to be explored. The complexity of these systems introduces

significant challenges for the analysis of the resulting datasets. Next, we will review challenges

in planning and analyzing dual RNA-seq experiments.

(a) Obtaining RNA

Dual RNA-seq requires sufficient starting material for sequencing, particularly for the infect-

ing bacterium. Current protocols are based on at least 10,000 infected cells [12,13,29]. Fre-

quently, only a minor fraction of eukaryotic cells in a sample will be infected, approximately

2%–5% in our study of HeLa cells infected with green fluorescent protein (GFP)-expressing

Salmonella [13]. Therefore, to enrich for bacterial RNA and to distinguish the host response of

PLOS Pathogens | DOI:10.1371/journal.ppat.1006033 February 16, 2017 7 / 19



infected from noninfected bystander cells, these populations must be separated before analysis.

Of the six current dual RNA-seq studies of intracellular bacteria (Table 1), three enriched

invaded cells either by laser capture microdissection [14] or via FACS [12,13] using endoge-

nously expressed fluorescent markers and/or cell wall–binding dyes. To minimize unwanted

transcriptomic changes during sample acquisition, cells should be kept at low temperature

(e.g., sorted under continuous cooling to 4˚C [12,29]) until they are lysed. However, when

many time points or strains are being compared, it may be challenging to sort the cells imme-

diately upon harvest. In such cases, the transcriptomes should be “frozen” by fixation (Box 1).

For example, we have optimized fixation conditions for Salmonella infections that leave cells

physically intact and do not bleach fluorescent signals or interfere with RNA isolation [13],

and recently a similar approach has been used for pneumococcal infections [22].

Once the infected cells are collected, they must be lysed to extract RNA. Importantly, many

standard commercial lysis buffers are optimized only for particular organisms and may, for

example, fail to break the thick envelope of gram-positive pathogens. In a study of human

THP-1 cells infected with gram-positiveMycobacterium bovis [15], total RNA was obtained

after mechanically breaking the cells with beads in a benchtop homogenizer. After lysis, a

number of RNA isolation methods have been successfully used for dual RNA-seq (Table 1).

Before sequencing, it is advisable to first estimate the relative concentration of bacterial and

host RNA in the sample (for instance, by quantitative real-time PCR [qRT-PCR] [13]); this can

inform decisions about required read depth or whether changes need to be made to the infec-

tion protocol to increase bacterial counts, such as increasing the multiplicity of infection.

Box 1. RNA Preservation

To minimize unwanted transcriptomic changes during sample processing, the RNA

content of infected cells may be stabilized. Two preservation strategies exist: Alcohol- or

ammonium sulfate–based preservatives inactivate RNases and RNA polymerases by

denaturing cellular proteins through the removal of water. In contrast, formaldehyde-

containing fixatives induce intra- and intermolecular cross-links between amino groups

and thereby block de novo transcription or RNA decay. In the context of dual RNA-seq,

besides leaving cells physically intact to enable cell sorting, transcriptome stabilization

must avoid quenching fluorescent signals (as is typically the case for phenol- or alcohol-

containing reagents) or interfering with high-quality RNA isolation (which is problem-

atic with cross-linked samples). In our recent study of Salmonella-infected HeLa cells,

we evaluated eight commonly used transcriptome stabilization techniques (see supple-

mentary material of [13]). For this model system, the ammonium sulfate–based RNAla-

ter reagent (Qiagen), previously been used to fix infected tissue samples [17,19,21]

(Tab. 1) or prokaryotic cells alone [30], performed best. However, this is unlikely to rep-

resent a generic protocol. For example, we have seen ex vivo that primary cells, which

are more fragile than immortalized cell lines, tend to lyse in RNAlater. Therefore, tran-

scriptome stabilization should be optimized empirically for any infection model. Prom-

ising recent studies have demonstrated the compatibility of paraformaldehyde-based

fixation with cell sorting and, importantly, high-quality RNA isolation [31,32]. Detailed

discussions of transcriptome fixation are available in the literature [33–35].
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This naturally raises the question: how many cDNA reads are enough? Differential expres-

sion power analyses universally favor biological replication over sequencing depth, particularly

once a minimum depth threshold has been attained. For eukaryotes, increasing sequencing

depth appears to have diminishing returns after around 10–20 million nonribosomal RNA

reads [36,37]—though accurate quantification of low-abundance transcripts may require>80

million reads [38]—while for bacteria this threshold seems to be 3–5 million nonribosomal

reads [39]. With current technology, this number of bacterial reads may necessitate specific

enrichment, particularly at early time points before intracellular bacteria have undergone rep-

lication. However, analysis of subsampled RNA-seq data from a Vibrio cholera infection in a

juvenal rabbit model [17] showed that differential expression of major virulence and coloniza-

tion factors could already be detected with as few as 40,000–60,000 nonribosomal RNA reads,

in agreement with results for Salmonella at early time points of infection [13]. Thus, while low

read depth is not ideal, low-coverage data still have value, particularly in the case of poorly

characterized pathogens for which basic virulence mechanisms are largely unknown. Clearly,

more subtle effects, such as adaptation of bacterial metabolism to the intracellular environ-

ment, demand greater sequencing depth.

(b) Mapping and Normalization

The broad strokes of dual RNA-seq analysis differ little from conventional RNA-seq [40,41]:

sequencing reads must be cleaned, mapped, and normalized; differentially expressed tran-

scripts must be identified; and then further functional analyses must be performed to aid in

interpretation of the data (Fig 4). However, the complexity of dual RNA-seq designs intro-

duces additional complications at each step as well as entirely new analytical problems.

Much complexity derives from working simultaneously with multiple genome

sequences. Although this can be done easily by including all replicons of both organisms as

references during mapping, it is important to determine the selectivity of read mapping to

both genomes, as cross-mapping reads will affect transcript quantification. In practice, with

standard Illumina read lengths of 75–150 bases, we observe negligible cross-mapping in the

case of Salmonella and mammalian hosts [13], with most of this originating from rRNA and

tRNA loci. However, since genome composition varies tremendously across the bacterial

phylogeny, potential cross-mapping should be a routine quality control step. The READ-

emption RNA-seq analysis pipeline [42], which relies on the segemehl read mapper [43],

contains alignment subcommands implementing such cross-mapping analysis. In principle,

any read mapper capable of spliced alignment [44] can be used for read alignment, though

some studies have chosen to use separate spliced and nonspliced aligners for mapping to the

eukaryotic and bacterial genomes, respectively.

Once mapping has been completed, normalization and quantification are required.

Within-sample normalization methods, such as transcripts per million (TPM) [45], often

suffice to obtain a qualitative overview of transcriptional dynamics [12,20,46] but should

be interpreted with caution since methods are currently lacking for incorporating replicate

measurements in these analyses. Most analyses of interest require robust comparisons bet-

ween samples. The most commonly used (and best performing [47]) RNA-seq normaliza-

tion techniques address this problem by attempting to scale read counts by a factor derived

from a set of putatively invariant genes identified through excluding genes with extreme

differences in expression [48], the use of robust median statistics [49], or comparisons of

quantiles [50]. These normalization methods make the common assumption that a core set

of genes are not differentially expressed and may fail when this assumption is violated. Sce-

narios violating this assumption have been observed in eukaryotes [51] and can similarly
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be expected to occur in bacteria after major regulatory transitions, such as that from expo-

nential growth to stationary phase. This may be particularly important in certain infections

in which dormant or persister cells develop [52,53]. The use of RNA spikes calibrated to

cell counts may enable a robust estimation of differences in expression in such cases

[51,54–56]. However, the use of spike-ins presents its own problems: a large multicenter

study [57] using External RNA Controls Consortium (ERCC) spike-in controls [58] found

that biases introduced in library preparation made absolute transcript quantification unre-

liable, even when identical protocols and platforms are used. The factors driving these

biases are unclear, though they appear to be both sequence- and protocol-dependent [57]

and thus may be challenging to correct. This also suggests spike-ins should be added as

early as possible in sample processing so that any biases from steps such as ribosomal

depletion can be captured. These difficulties notwithstanding, ratios between spike-ins in

libraries prepared within the same batch are highly reproducible [57,59], indicating that

spike-ins should be sufficient for calibrating most differential expression analyses. New

spike-in sets have recently been developed that can be used to assess various aspects of

Fig 4. Bioinformatic analysis pipeline for dual RNA-seq datasets.Quality-filtered RNA-seq reads are
aligned in parallel against the respective host and pathogen replicons. Reads mapping equally well to both
reference organisms (“cross-mappings”) are quantified and discarded from downstream analyses. Reads
unequivocally mapped to either the bacterial or host reference are used for quantification and functional
analyses. Dual RNA-seq enables a wide range of downstream analyses, discussed in detail in the text. “MT,”
mitochondrial genome.

doi:10.1371/journal.ppat.1006033.g004
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RNA sample processing and analysis [60], such as transcript assembly and isoform quanti-

fication, which may be informative in advanced analyses. Alternatively, since dual RNA-

seq provides access to two transcriptomes within each pool, if only the host or the bacte-

rium is affected by a global shift in gene expression, a scale factor could be determined for

the organism which meets the assumption of the scaling normalization and applied to the

other, adjusting for relative population size.

Scaling normalization techniques address differences in sequencing depth between RNA-

seq experiments. However, there are many other factors besides read depth which can intro-

duce unwanted variation in high-throughput experiments and lead to reduced power in down-

stream analyses, commonly referred to as “batch effects” (Box 2). Within the context of dual

RNA-seq experiments, myriad opportunities for the introduction of such effects exist: hetero-

geneity in cell populations and infection, differences in media and reagent batches, variation

in laboratory and incubator temperature and oxygen, inaccuracy in cell sorting, and differ-

ences in transcriptome stabilization, RNA extraction, library preparation, and sequencing. The

prevalence of such effects in high-throughput data has been well documented [61], with les-

sons to be learned from other fields studying subtle effects in complex model systems, such as

stem cell biology and neuroscience [62,63]. We observed similar effects in our study of PinT

when comparing wild-type and mutant time-courses [13] and were able to correct for these

using recently developed techniques (Box 2).

(c) Differential Expression Analysis

Differential expression analysis forms the backbone of most RNA-seq analyses, most frequently

done in the R statistical programming language with packages available through the Bioconduc-

tor framework [65]. Popular analysis packages include edgeR [66], DESeq2 [67], and limma/

voom [68]. These three packages perform well, with slightly different characteristics in bench-

marks [69–72]: DESeq generally appears to be more conservative and edgeRmore liberal in its

p-value calculations. While these tools work with predefined annotations and ignore differential

isoform usage, RNA-seq also raises the possibility of directly defining boundaries of eukaryotic

transcripts, which are typically subject to regulated alternative splicing [73]. A range of algorithms

Box 2. How to Deal with Batch Effects

Traditionally, batch effects were accounted for by incorporating date as a nuisance factor

in differential expression analysis [64]. While this may work for simple experiments, in

complex experiments (such as dual RNA-seq), samples are likely exposed to many treat-

ments that may vary slightly in their effect, and these will not necessarily be constant

even within a single “batch.” To solve this problem, recent methods such as RUV-seq

and SVA-seq have been developed that perform factor analyses, similar to principal

component analysis (PCA), to identify nuisance factors uncorrelated with the experi-

mental factors of interest [54,55]. Nuisance factors can then either be “cleaned” from the

read counts directly for the purposes of clustering or other qualitative analyses or incor-

porated directly as covariates in differential expression analyses. Two excellent case stud-

ies provide detailed guidelines for applying methods for evaluating the presence of such

confounding batch effects [62,63].
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offer isoform discovery, quantification, and differential analysis [74], though generally dedicated

pipelines such as the Tuxedo suite [75] have been standard. The recently developed Ballgown util-

ity allows for the easy importation of transcript assemblies and quantifications into R [76] and

therefore integration of these methods into the Bioconductor RNA-seq analysis ecosystem.

Most of the published dual RNA-seq experiments have involved a time-course and analyzed

differential expression by pairwise comparisons; however, this effectively ignores the temporal

relationship between samples. Changes in transcript expression can be assumed to be smooth

for most genes over time, and this assumption can be used to increase the power of analyses: in

effect, contiguous samples act as partial replicates for one another, allowing for more accurate

estimation of expression variance. While this does not remove the need for replication, it does

raise the possibility of more informative designs than simple replication. For instance, rather

than repeatedly sampling the same time points, replicate experiments could be staggered in

time so as to provide higher temporal resolution while also demonstrating reproducibility.

While not frequently used in the literature, such analyses are possible in analysis packages sup-

porting generalized linear models, such as edgeR and limma/voom, by performing differential

expression analysis along fitted curves (see the developmental time-course analysis in Drosoph-

ila embryos [68]). We hope additional dedicated approaches to time-course analysis will be

forthcoming.

(d) Aiding Interpretation: Functional Analyses

The outcome of differential expression analysis is a long list of genes for both bacteria and

host, which must be interpreted in terms of gene function to produce testable hypotheses. Sev-

eral databases provide suits for this purpose, though none provide complete information for

either eukaryotic cells or bacteria. Popular databases include the Gene Ontology (GO) [77]

and the Kyoto Encyclopedia of Genes and Genomes (KEGG) [78] databases, which provide

general resources for gene functions and interactions in diverse organisms. More specialized

knowledge bases also exist—for example, BioCyc [79], which attempts to reconstruct meta-

bolic networks primarily from genomic information. The innate immunity resource InnateDB

is of particular interest for the host response part of dual RNA-seq data [80]; it incorporates

interaction data from a variety of sources—complemented with manually curated human,

murine, and bovine innate immunity pathways and interactions—and provides a number of

tools for analyzing and visualizing functional assays in the context of these data. Furthermore,

molecular signatures may be reconstructed from relevant high-throughput experiments as col-

lected by MSigDB [81] from eukaryotic microarray and RNA-seq data. The increasing avail-

ability of RNA-seq data for bacteria exposed to simple stress conditions raises the possibility

that similar signatures could be constructed for them: for instance, by mining resources like

the “Salmonella Gene Expression Compendium,” which collects expression data for 22 infec-

tion-relevant conditions [46].

Dual RNA-seq crucially depends on proper statistical analysis in order to determine gene

sets significantly differentially expressed during infection. Originally developed for microarray

experiments, many of these techniques remain poorly tested on RNA-seq datasets. Technical

issues, such as biases towards detecting differential expression in longer transcripts in sequenc-

ing data as compared to array data [82], have made it unclear how applicable these approaches

are to RNA-seq. The first benchmarks of gene set enrichment methods on RNA-seq data have

recently been published [83] and can provide preliminary guidance.

Dual RNA-seq can also be directly used to infer links between genes through so-called net-

work inference (NI) approaches which are popular in reconstructing global regulatory net-

works from large collections of expression data in diverse conditions [84,85]. NI methods
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frequently use measures of coexpression, such as correlation or mutual information, to predict

interactions between, for instance, transcriptional regulators and their regulons. With dual RNA-

seq time-course gene expression data, a time lag can be introduced in coexpression calculations,

allowing for the prediction of potentially causal interactions. This approach was pioneered in

studies of the cyanobacterium Synechocystis and its response to varying light intensities to identify

putative directional interactions [86]. We applied such a correlational analysis to a dual RNA-seq

time-course of Salmonella infection of HeLa cells, linking virulence gene expression in Salmonella

to the induction of host immune signaling through the Janus kinase-Signal Transducer and Acti-

vator of Transcription (JAK-STAT) pathway [13]. More complex NI models utilizing ordinary

differential equations (ODEs) with dual RNA-seq data have successfully predicted host–pathogen

interactions between the fungal pathogen Candida albicans and murine host cells [4,87]. While

ODEs are preferable in that they can explicitly model the dynamics of changes in gene expression

and incorporate prior information in a principled fashion, they are also computationally

demanding, limiting their use to modeling small subnetworks of genes [88].

Future Directions

While the potential of dual RNA-seq in cell culture–based infection models has clearly not yet

been exhausted, the next steps in the development of this technique are already on the horizon.

For example, “Multi RNA-seq” was applied to characterize the human airway epithelium in con-

junction with the commensal bacteria populating it [24]; similarly, a recent study profiling Yersi-

nia pseudotuberculosis gene expression in the mouse cecum was able to discriminate between

various intestinal bacterial species [21] (Table 1). In the future, such approaches could address

frequently occurring coinfections of human hosts with bacterial and viral pathogens, including

those of Streptococcus spp. and influenza virus [89] or Chlamydia spp. and human herpes virus

[90,91]. As coinfections are a major risk factor for human health [92], such “Triple RNA-seq”

experiments would be of direct medical relevance. Likewise, robotic systems have enabled previ-

ously prohibitively laborious applications, such as comprehensive chemical–genetic screens [93]

and mapping of large transposon mutant libraries [94]. In combination with ongoing improve-

ments in cDNA library preparation and sequencing technologies, these could provide a founda-

tion for high-throughput dual RNA-seq designs. For instance, with efficient multiplexing techni-

ques [29], systematic virulence screens could be imagined that compare expression changes bet-

ween infections with defined deletion strains of, say, every gene identified as a hit in transposon

mutagenesis screens and the isogenic wild-type strain. Combining such ultra-high-throughput

approaches will be a powerful strategy to define the molecular phenotypes of hundreds of patho-

gen genes in parallel, providing a rich basis for dissecting host–microbe interactions [27].

Two more intermediate and exciting possibilities are the expansion to infected tissue (and

eventually animal models), and the development of single-cell dual RNA-seq. With respect to

the former, several studies suggest widespread differences in bacterial behavior during the

infection of two-dimensional monocultures compared to that of three-dimensional tissue

[95,96] and whole animal models [97]. Adapting dual RNA-seq to these more realistic models

will require numerous innovations. Simple homogenization of the tissue, as has been done for

in vivo bacterial RNA-seq studies [19,21] (Table 1), may provide a first step along this path.

While this review was in production, two studies were published that report the successful

application of dual RNA-seq to in vivo models of infection with extracellular pathogens. Host

and pathogen gene expression was analysed in a murine model of acute pneumonia caused by

Pseudomonas aeruginosa [98] and in a murine gastroenteritis model with Yersinia pseudotuber-

culosis [99]. In both cases, infected tissues (lungs or Peyer’s patches, respectively) were isolated

and homogenized prior to total RNA extraction, rRNA depletion, and sequencing. However,
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since these complex samples do not consist of a single cell type, dissociation of tissues into sin-

gle-cell suspensions and the enrichment of defined cell types of interest would provide a more

complete picture of this complex environment. As dissociation and antibody staining are time

consuming, the transcriptomes of host and pathogen must be stabilized immediately after har-

vest. Ongoing progress in sample preservation provides a foundation on which to build (Box 1)

if these treatments can be made compatible with, say, enzymatic treatment to disrupt cell junc-

tions. Additionally, current in vitro dual RNA-seq studies have been performed with 10,000–

50,000 sorted cells. Cell numbers will likely be limiting in tissue and animal models, requiring

technical advances in cDNA library preparation. Such advances may come in the development

of dual RNA-seq protocols for single cells.

Single-cell dual RNA-seq promises to be a game changer in the study of those many bacte-

rial pathogens that are known to form specific, phenotypically distinct subpopulations during

infection [100], often associated with distinct disease outcomes [101]. Eukaryotic single-cell

RNA-seq studies have already shown that individual immune cells stimulated with the same

concentration of the bacterial cell wall component lipopolysaccharide (LPS) mount disparate

responses to the challenge [102,103]. In addition, single-cell RNA-seq has revealed heterogeneity

in the host mRNA response as the result of pathogen variability [12]. However, current protocols

are unable to sample the bacterial transcriptome, as they generally rely on poly(A)-dependent

priming of reverse transcription [104,105]. The literature suggests several solutions to poly(A)

dependency, such as direct adapter ligation, which unfortunately currently requires approxi-

mately10,000 cells [12,13,29]. Priming with random hexamers or—to selectively deplete rRNAs

—“not-so-random” primers [106] may provide a more efficient solution. Finally, a thermostable

group II intron reverse transcriptase (TGIRT) has recently been described as a highly sensitive

(down to 1 ng input RNA), poly(A)-independent enzyme with template-switching activity that

can be used to add sequencing adapters, directly avoiding inefficient ligation steps [107,108].

Dedicated bacterial single-cell RNA-seq protocols have also recently been described [109,110]

that rely on rolling circle amplification and have been demonstrated to generate large amounts

of double-stranded cDNA product from small amounts of input template. Since reverse tran-

scription in these protocols is mediated by random primers, it might be adopted for single-cell

dual RNA-seq, though the efficiency of this remains to be tested.

In summary, dual RNA-seq is an emerging technique to profile gene expression changes

that accompany infection of mammalian cells by bacterial pathogens. Unlike traditional

approaches, dual RNA-seq has proven capable of capturing host and pathogen transcriptomes

simultaneously, providing direct insight into host–pathogen interplay. However, dual RNA-

seq is still in its infancy, and future efforts—with respect to both experimental aspects and bio-

informatics—will be required to exploit its full potential.
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