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AbstractÐThis paper studies the motion correspondence problem for which a diversity of qualitative and statistical solutions exist. We

concentrate on qualitative modeling, especially in situations where assignment conflicts arise either because multiple features compete

for one detected point or because multiple detected points fit a single feature point. We leave out the possibility of point track initiation

and termination because that principally conflicts with allowing for temporary point occlusion. We introduce individual, combined, and

global motion models and fit existing qualitative solutions in this framework. Additionally, we present a new efficient tracking algorithm

that satisfies theseÐpossibly constrainedÐmodels in a greedy matching sense, including an effective way to handle detection errors

and occlusion. The performance evaluation shows that the proposed algorithm outperforms existing greedy matching algorithms.

Finally, we describe an extension to the tracker that enables automatic initialization of the point tracks. Several experiments show that

the extended algorithm is efficient, hardly sensitive its few parameters, and qualitatively better than other algorithms, including the

presumed optimal statistical multiple hypothesis tracker.

Index TermsÐMotion correspondence, feature point tracking, target tracking, algorithms.

æ

1 INTRODUCTION

MOTION correspondence has a number of applications in
computer vision, ranging from motion analysis, object

tracking and surveillance, to optical flow and structure from
motion [11], [24], [25], [27]. Motion correspondence must be
solved when features are to be tracked that appear identical
or that are retrieved with a simple feature detection scheme
which loses essential information about their appearance.
Hence, the motion correspondence problem deals with
finding corresponding points from one frame to the next in
the absence of significant appearance identification (see
Fig. 1a). The goal is to determine a path or track of the
moving feature points from entry to exit from the scene or
from the start to the end of the sequence. During presence
in the scene, a point may be temporarily occluded by some
object. Additionally, a point may be missed and other
points may be falsely detected because of a failing detection
scheme, as in Fig. 1b and Fig. 1c.1

A candidate solution to the correspondence problem is a

set of tracks that describes the motion of each point from

scene entry to exit. We adopt a uniqueness constraint

stating that one detected point uniquely matches one

feature point. When 2D projections from a 3D scene are

analyzed, this is not trivial because one feature point may

obscure another. If we further assume that all M points are

detected in all n frames, the number of possible track sets is
�M!�nÿ1. Among these solutions, there is a unique track set
that describes the true motion of the M points. In order to
identify the true motion track set, we need prior knowledge
about the point motion because, otherwise, all track sets are
equally plausible. This knowledge can range from general
physical properties, like inertia and rigidity, to explicit
knowledge about the observed objects, like the possible
movements of a robot arm in the case that points on a robot
arm are to be tracked. Clearly, generic motion correspon-
dence algorithms cannot incorporate scene information.
Moreover, they do not differentiate between the points in
the scene, i.e., all points are considered to have similar
motion characteristics.

When many similar points are moving through a scene,
ambiguities may arise because a detected point may well fit
correctly to the motion model of multiple features points.
Additional ambiguities are caused by multiple detected
points that fit correctly to the model of a single feature.
These correspondence ambiguities can be resolved if
combined motion characteristics are modeled, like least
average deviation from all individual motion models.
Besides resolving these ambiguities, we also have to
incorporate track continuation in order to cope with point
occlusion and missing detections. Other events that we may
need to model are track initiation and track termination so
that features can enter and leave the scene, respectively.

The available motion knowledge is usually accumulated
in an appropriate model. Then, a specific strategy is needed
to find the optimal solution among the huge amount of
candidate solutions defined by the model. When the
nearest-neighbor motion criterion is used (see also
Section 3) and there are neither point occlusions nor
detection errors, track set optimality only depends on the
point distances between any two consecutive frames. Then,
it is legitimate to restrict the scope of the correspondence
decision to one frame ahead, which we call a greedy
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matching solution to the correspondence problem. In other
cases in which velocity state information is involved,
correspondence decisions for one frame influence the
optimal correspondence for the next frames and the
problem becomes increasingly more complex. In such cases,
only a global matching over all frames can give the optimal
result. In this paper, we consider the more difficult cases,
i.e., dense and fast moving points, which makes the use of
velocity state information essential. Because there are no
efficient algorithms to find the optimal track set by global
matching, only approximation techniques apply. Several
statistical [2] and qualitative approximation techniques
have been developed both in the field of target tracking
and computer vision.

1.1 Statistical Methods

The two best known statistical approaches are the Joint
Probabilistic Data-Association Filter (JPDAF) [9] and the
Multiple Hypothesis Tracker (MHT) [20]. The JPDAF
matches a fixed number of features in a greedy way and
is especially suitable for situations with clutter. It does not
necessarily select point measurements as exact feature point
locations, but, given the measurements and a number of
corresponding probability density functions, it estimates
these positions. The MHT attempts to match a variable
number of feature points globally while allowing for
missing and false detections. Quite a few attempts have
been made to restrain the consequent combinatorial explo-
sion, such as [3], [4], [5], [6], [15], [16]. More recently, the
equivalent sliding window algorithms have been developed
which match points using a limited temporal scope. Then,

these solve a multidimensional assignment problem, which
is again NP-hard, but real-time approximations using
Lagrangian relaxation techniques are available [7], [8],
[17], [18], [23].

A number of reasons make the statistical approaches less
suitable as a solution to the motion correspondence
problem. First, the assumptions that the points move
independently and, more strongly, that the measurements
are distributed normally around their predicted position
may not hold. Second, since statistical techniques model all
events as probabilities, these techniques typically have quite
a number of parameters, such as the Kalman filter
parameters, and a priori probabilities for false measure-
ments and missed detections. In general, it is certainly not
trivial to determine optimal settings for these parameters. In
Section 6.3, we show that the best-known statistical method
(MHT) is indeed quite sensitive to its parameter setting.
Moreover, the a priori knowledge used in the statistical
models is not differentiated between the different points. As
a consequence, the initialization may be severely hampered
if the initial point speeds are widely divergent because the
state of the motion models only gradually adapts to the
measurements. Finally, the statistical methods that optimize
over several frames are, despite their approximations,
computationally demanding since the complexity grows
exponentially with the number of points.

1.2 Heuristic Methods

Alternatively, a number of attempts has been made to solve
the motion correspondence problem with deterministic
algorithms [1], [12], [14], [19], [22]. These algorithms are
usually conceptually simpler and have fewer parameters.
Instead of probability density functions, qualitative motion
heuristics are used to constrain possible tracks and to
identify the optimal track set. By converting qualitative
descriptions like smoothness of motion and rigidity into
quantitative measures, a distance from the optimal motion
can be expressed (where a zero distance makes a corre-
spondence optimal). The most commonly known algorithm
is the conceptually simple greedy exchange algorithm [22],
which iteratively optimizes a local smoothness of motion
criterion averaged over all points in a sequence of frames.
The advantage of such deterministic algorithms is that it is
quite easy to incorporate additional constraints, like
(adaptive) maximum speed and a maximum deviation
from smooth motion, while this a priori knowledge can
restrain the computational cost and improve the qualitative
performance, e.g., [1], [10].

The main contributions of this paper are the presentation
of a 1) qualitative motion modeling framework for the motion
correspondence problem. We introduce the notion of
individual motion models, combined motion models, and
a global motion model and we differentiate between
strategies to satisfy these models. Further, we propose 2) a
new efficient algorithm that brings together the motion
models, an optimal strategy, and an effective way to handle
detection errors and occlusion. Finally, we present 3) an
extensive comparative performance evaluation of a number of
different qualitative methods.

The outline of the paper is as follows: We start by giving
a formulation of the motion correspondence problem in the

VEENMAN ET AL.: RESOLVING MOTION CORRESPONDENCE FOR DENSELY MOVING POINTS 55

Fig. 1. Three moving points are measured at three time instances. The
lines represent the point correspondences in time. In (a), all points are
measured at every time instance. In (b), there is an extra or false
measurement at tk�1, and, in (c), there is a missing measurement at tk�1.



next section. Then, in Section 4, we present our qualitative
motion model and show how existing deterministic motion
correspondence algorithms can be fit into it. Additionally,
we present a new algorithm that effectively resolves motion
correspondence using the presented model in Section 5. In
Section 6, we compare the qualitative performance, the
efficiency, and the parameter sensitivity of the described
algorithms. Further, we show how the proposed algorithm
can be extended with self-initialization and evaluate it with
synthetic data experiments in Section 7. We broaden this
evaluation in Section 8 with real-data experiments. We
finish the paper with a discussion on possible extensions
and some conclusions.

2 PROBLEM STATEMENT

In this section, we describe the motion correspondence
problem as treated in this paper. In motion correspon-
dence, the goal is tracking points that are moving in a
2D space that is essentially a projection of a 3D world.
The positions of the points are measured at regular times,
resulting in a number of point locations for a sequence of
frames. For the moment, we assume that we have initial
motion information of all points, which is given by point
correspondences between the first two frames. From
Section 7 onward this restriction is lifted. Since the
measured points are projections, points may become
occluded and, thus, missing. Moreover, the point detec-
tion may be imperfect, resulting in missing and false point
measurements. Because long occlusion, on the one hand,
and scene entrance and exit, on the other hand, are
conflicting requirements, we leave out the possibility of
track initiation and track termination so the number of
features to be tracked is constant. Applications using this
problem definition range from object tracking in general,
like animal tracking to perform behavior analysis, particle
tracking, and cloud system tracking, to feature tracking
for motion analysis. In the remainder of this paper, we
abbreviate the moving points to ªpointsº and their
measured 2D projections to ªmeasurements.º

More formally, there are M points, pi, moving around in
a 3D world. Given is a sequence of n time instances for
which, at each time instance tk, there is a set Xk of mk

measurements xxkj , with 1 � j � mk, and 1 � k � n, of points
pi. The measurements xxkj are vectors representing 2D
coordinates in a 2D space, with dimensions Sw (width)
and Sh (height). The number of measurements,mk, at tk, can
be either smaller (occlusion) or larger (false measurements)
than M. At t1, the M points (M � m1) are identified among
the m1 measurements. Moreover, the corresponding
M measurements at t2 are given. The task is to return a
set of M tracks that represent the (projected) motion of the
M points through the 2D space from t1 to tn using the
movements between t1 and t2 as initial motion character-
istics. A track Ti, with 1 � i � M, is an ordered n-tuple of
corresponding measurements: hxx1j1 ; xx

2
j2
; . . . ; xxn

jn
i, with

1 � jk � mk. It is assumed that points do not enter or leave
the scene and that the movement can be modeled
independently. A track that has been formed up to tk is
called a track head and is denoted as T k

i , where 1 � i � M.

3 QUALITATIVE MOTION MODELING

The assumption underlying the qualitative model that we
advocate is that points move smoothly from time instance to
time instance. That is, besides that individual points move
smoothly, also the total set of points moves smoothly
between time instances as well as over the whole sequence.
We define a qualitative model in which these qualitative
statements are explicitly represented by a composition of
motion models, that we have called the global motion model,
the combined motion model and the individual motion model.
The individual motion model represents the motion of
individual points. To embed the motion smoothness
constraints, we can make use of well-known general
physical properties like rigidity and inertia. Without loss
of generality, we only consider first-order motions and,
thus, leave out acceleration-state information. Conse-
quently, the motion vector of a feature point can be
estimated from only two consecutive measurements. On
the basis of the motion vector and the adopted individual
motion model, the position of the point at the next time
instance can be predicted. The measurement that is closest
to this prediction can then be selected as corresponding
measurement. In reality, however, the points do not move
exactly according to their predictions because of short-
comings of the adopted individual motion model. These
are, among others, caused by the limited order of the
motion model, the fact that measurements are 2D projec-
tions of 3D movements, and by noise in the system.

To express the misfit between a measurement and the
predicted position, the candidate motion vector between the
candidate measurement and the last measurement in the
track is calculated. Using the inertia argument, the cost
representing the misfit is expressed in terms of the
candidate motion and the previous true motion vector.
This cost can be used to select the appropriate candidate
measurement to make a correspondence. When points are
moving far apart from each other or when they move
reasonably according to their models, their measurements
can easily be assigned to the corresponding feature point.
With densely moving point sets, however, assignment
conflicts can easily occur. That is, one measurement fits
correctly multiple individual motion models or multiple
measurements correctly fit one motion model. To resolve
these ambiguities, the motion smoothness constraint is also
imposed on the complete set of points. To this end, we
introduce the combined motion model that expresses the
deviation from this motion constraint. As an example, we
could enforce that the average deviation from the indivi-
dual motion models is minimal.

Even with the use of the combined motion model, it is not
always possible to decide on point correspondences. For that
reason, the motion smoothness constraint is additionally
extended over the whole sequence in the global motion model.

In the remainder of this section, we present some

individual motion models, combined motion models, and

a global motion model and we give quantitative expressions

for each of them. To simplify expressing the criteria that

lead to the point tracks Ti, we introduce the assignment

matrix Ak � akij

h i

, where the entries akij have the following

meaning: akij � 1 if and only if measurement xxk�1
j is

assigned to track head T k
i and, otherwise, zero. Because

56 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 1, JANUARY 2001



some measurements are false and others are missing, there

can be some measurements that are not assigned to a track

head (all zeros in a column in Ak) and some track heads that

have no measurement assigned to them (all zeros in a row

in Ak). Or, more formally:

X

M

i�1

akij � 1; 1 � j � mk�1;

X

mk�1

j�1

akij � 1; 1 � i � M; akij 2 f0; 1g:

�1�

We use two alternative notations for a correspondence
between a measurement and a track head. First, we define
�k
j as:

�k
j � i , akij � 1: �2�

Second, we use ordered pairs �i; j� to indicate that

measurement xxk�1
j has been assigned to track head T k

i . Z
k

then contains all assignment pairs from tk to tk�1

according to:

Zk � f�i; j� j akij � 1g: �3�

Tracks Ti can now be derived from A, which is the

concatenation of the assignment matrices Ak. We introduce

a deviation matrix Dk � ckij

h i

to denote all individual

assignment costs ckij between track heads T k
i and measure-

ments xxk�1
j .

The assignment matrix identifies all correspondences

from frame to frame, while the deviation matrix quantifies

the deviation from the individual motion track per

correspondence. The matrices Ak and Dk both have

M rows and mk�1 columns. The rows represent the

M track heads, T k
i , and the columns represent the mk�1

measurements, xxk�1
j , that have been detected at tk�1.

3.1 Individual Motion Models

We now formulate three individual motion models,

together with an expression to compute a deviation from

the optimal track. The first model uses only one previous

measurement to predict the new position. We have

indicated the dependence of only one previous measure-

ment by the order of the individual model: Oim � 1. The

other two individual models depend on two measurements

and consequently have order Oim � 2. The following

motion criteria coefficients ckij are all defined from track

head T k
i to a measurement xxk�1

j .

. im1. The nearest-neighbor model does not incorporate
velocity information. It only states that a point
moves as little as possible from tk to tk�1.

ckij �k xxk�1
j ÿ xxk

i k; where 0 � ckij �
�����������������

S2
w � S2

h

q

: �4�

. im2. The smooth motion model as introduced by Sethi
and Jain [22] assumes that the velocitymagnitude and

direction change gradually. The smooth motion is
formulated quantitatively in the following criterion:

ckij �0:1 1ÿ
xxk
i ÿ xxkÿ1

�k
i

� �

� xxk�1
j ÿ xxk

i

� �

xxki ÿ xxkÿ1
�k
i











 xxk�1
j ÿ xxk

i













2

6

4

3

7

5

� 0:9 1ÿ 2

���������������������������������������������������

xxk
i ÿ xxkÿ1

�k
i











 xxk�1
j ÿ xxk

i













r

xxk
i ÿ xxkÿ1

�k
i











� xxk�1
j ÿ xxk

i













2

6

6

4

3

7

7

5

;

�5�

where 0 � ckij � 1.
. im3. The proximal uniformity model by Rangarajan

and Shah [19] assumes little motion in addition to
constant speed. The deviation is quantified in the
following criterion:

ckij �
xxk
i ÿ xxkÿ1

�k
i

� �

ÿ xxk�1
j ÿ xxk

i

� �












PM
p�1

Pmk�1

q�1 xxk
p ÿ xxkÿ1

�k
p

� �

ÿ xxk�1
q ÿ xxk

p

� �












�
xxk�1
j ÿ xxk

i













PM
p�1

Pmk�1

q�1 xxk�1
q ÿ xxk

p













; where 0 � ckij � 1:

�6�

3.2 Combined Motion Models

Combined motion models serve to resolve correspondence

conflicts between two successive frames in case of dense

moving point sets, making the individual model errors

dependent on each other. Next, we give two combined

model criterions Ck as a function of Ak and Dk that are

defined at tk over all established track heads.

. cm1. The average deviation model. This is a typical
combined model which usually is realistic. It
accounts for the average deviation from the optimal
track according to the individual model [21], [22],
[27]. Quantitatively, we use the generalized mean,
which has a z parameter, to differentiate between
emphasis on large and small deviations from the
optimal individual track (see Fig. 2).

Ck�Ak; Dk� �
1

M

X

M

i�1

X

mk�1

j�1

akij ckij

� �z
" #1

z

: �7�

. cm2. The average deviation conditioned by competition
and alternativesmodel is derived from [1], [19]. In this
combined model, measurements are assigned to that
track head that gives low deviation from the optimal
track, while both the other tracks are less attractive
for this measurement and the other measurements
are less attractive for this track.

Ck�Ak; Dk� �
1

M

X

M

i�1

X

mk�1

j�1

akijc
k
ij ÿ w1Ra�i� ÿ w2Rc�j�

� �

;

�8�
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where

Ra�i� �
1

mk�1 ÿ 1

X

mk�1

q�1

1ÿ akiq

� �

ckiq;

Rc�i� �
1

M ÿ 1

X

M

p�1

1ÿ akpj

� �

ckpj

�9�

Ra�i� represents the average cost of alternatives for

T k
i and Rc�j� the average cost for competitors of xxk�1

j .

3.3 Global Motion Model

To find the optimal track set (over all frames) according to a

certain combined model, we need to compute the accumu-

lated global motion deviation S�D� as in the following

expression:

S�D� � min
A2U

X

nÿ1

k�Oim

Ck�Ak; Dk�; �10�

where U is the set of matrices A that satisfy (1).
That is, the overall minimum of averaged combined

criterions defines the optimal track set. Because finding this

minimum is computationally expensive, a greedy matching is

considered in this paper. This means that, instead of finding

correspondences over all frames, we establish optimal

correspondences between two successive frames, given

the state of the individual motion models and the combined

model up to that moment. After these suboptimal corre-

spondences have been established, the states of the

individual models are adjusted and the next frame is

considered. In other words, (10) is approximated by

minimizing Ck�Ak; Dk� separately, i.e.:

Ŝ�D� �
X

nÿ1

k�Oim

Ck
min�D

k�; where Ck
min�D

k� � min
Ak2Uk

Ck�Ak; Dk�:

�11�

This approximation approach reduces the complexity of

the problem considerably, although at the cost of greedy,

possibly less plausible, correspondence decisions (see, for

example, Fig. 3). In the remainder, we leave out the D and

Dk parameter for S, Ŝ, and Ck
min, respectively.
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Fig. 2. Three moving points that are matched with im1 and cm1 using either (a) z � 1 or (b) z � 2. As a consequence, larger deviations are penalized

more in (b).

Fig. 3. Two moving points at four time instances. When the smooth motion model (im2) with the average deviation model (cm1) are assumed,

(b) gives a two times lower deviation from the optimal path than (a). However, (a) is decided for when greedy matching is used.



3.4 Model Constraints

The motion models we have described so far allow for any
point speed and for any deviation from smoothness. The
models only state that those assignments are preferred that
have little deviation from the individual model. There are,
however, situations in which there is more knowledge
available about the point motions, like the minimum speed
(dmin) and the maximum speed (dmax) [1], [12], [14], [21],
maximum violation of smoothness (�max) [1], [14], [21], and
spatial or temporal adaptive speed and smoothness viola-
tion constraints [10]. When imposed on the individual
motion models, these constraints enable the recognition of
impossible assignments, which can be both qualitatively
and computationally beneficial. These constraints can for
instance, be implemented by setting the individual criterion
to a very high value when some constraint is violated. The
strategy (see Section 3.5) that satisfies the models can
exploit these constraints more adequately by leaving out of
consideration those correspondences that violate the motion
constraints.

3.5 Strategy

To find the optimal track set, we compute the global motion
deviation. However, we are not interested in the actual
value of S, but in the assignment matrix A that results in the
minimal global motion deviation. In the next section, we
first show how existing algorithms approximate the mini-
mization of Ck and consequently deliver a suboptimal
solution Ak. In Section 5, we present an optimal as well as
efficient algorithm to find that Ak that minimizes Ck.

4 ALGORITHMS

Having modeled the feature point motion and having
described quantitative expressions that can be used to
identify the optimal track set, we now review a number of
existing algorithms and fit them in our motion framework
using our concept of individual and combined motion
models. Further, we describe the strategy they use to find
the optimal correspondences. Because all algorithms per-
form greedy matching, their task is to find Ck

min.

4.1 S&S Algorithm (im2/cm1/z = 1)

The first algorithm we looked at was originally developed
by Sethi and Jain [22]. The original algorithm assumes a
fixed number of feature points to be tracked and does not
allow for occlusion and detection errors. Here, we describe
the adjusted algorithm by Salari and Sethi [21] that partially
fixes these shortcomings. The algorithm adopts a smooth
motion model for individual motion (im2). The combined
motion model is an average deviation model (cm1/z = 1).
To find an optimum of the global motion, the algorithm
iteratively exchanges measurements between tracks to
minimize the criterion on average.

Initially, the tracks are led through the nearest-neighbor-
ing measurements in the sequence. In this stage, conflicts
are ªresolvedº on a first-come-first-served basis. That is, at
tk�1, measurements are assigned to the closest track parts T k

i

that have been formed up to tk to which no point was
assigned yet. Consequently, the initialization procedure is a
greedy im1/cm1 approximation.

Then, each iteration step modifies at most two assign-
ment pairs somewhere in the sequence by exchanging the
second entry of the pair. The algorithm considers all
possible exchanges within the dmax range of two track
heads in the whole sequence and the exchange that gives
the highest gain by decreasing the average criterion
deviation is executed. The iteration phase stops when gain
can no longer be obtained. The exchange gain between
assignment pairs �i; p� and �j; q� (see (3)) is defined in the
following way:

gkij � ckip � ckjq ÿ �ckiq � ckjp�: �12�

To achieve even better tracking results, the algorithm
first optimizes correspondences over all frames in forward
direction and then (after this iteration phase stops) it
optimizes correspondences in backward direction. Only
when the optimization process did not change anything in
either direction the algorithm stops. This bidirectional
optimization process can indeed increase the tracking
quality, but, unfortunately, this process is not guaranteed
to converge, especially with densely moving points [19].

In contrast with what we said before, this algorithm
seems to optimize over the whole sequence. However,
when we look carefully at the optimization process within
one iteration phase, we see that this is only partially true. As
long as the tracks are wrong at the start, exchanges in the
remainder of the track will mostly be useless. This is due to
the fact that the tracks were initialized using another
criterion than the one that is considered in the iteration
phase. Consequently, the optimization is only effective at
the initial measurements of the tracks. This problem is most
severe when the sequence is long and when the difference
between the initialization criterion (nearest-neighbor) and
the optimization criterion (smooth motion) is large, i.e.,
with high speeds and high densities. We tested this
statement by feeding to the S&S algorithm the example
shown in Fig. 3. If we do not optimize in both directions, the
S&S algorithm indeed makes greedy correspondences as in
Fig. 3a, which supports the statement that S&S is a greedy
matching algorithm.

The Salari and Sethi version of this so-called greedy
exchange algorithm additionally proposes a way to resolve
track continuation, initiation, and termination. They intro-
duce a number of phantom points to the set of measurements
in each frame. These phantom points serve as replacements
of missing measurements, while satisfying local constraints.
By imposing the maximum allowed local smoothness
criterion and a maximum speed, missed measurements
are recognized and filled in with phantom points. More-
over, the constraints also allow the detection of false
measurements. Effectively, false measurements are replaced
by phantom points if the introduction of a phantom point
results in a lower criterion value.

This approach generally works fine except that missing
measurements (represented by a phantom point) always
have the maximum criterion and displacement. For in-
stance, if point pi has not been measured at tk, the algorithm
can easily associate a measurement of pi at tk�1 to another
point which is within the criterion range �max. It is
important to remark that the phantom points only enforce
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that the local movement constraints are satisfied, but when

a phantom point is put in a track, the track is in fact divided

up into two tracks. In other words, this maximum criterion

approach solves the correspondence problem up to the

maximum criterion. Choosing a low maximum criterion

leads to many undecided track parts and a higher

maximum criterion leads to possibly wrong correspon-

dences. This is where the track initiation/termination and

occlusion events become conflicting requirements, as al-

ready mentioned in Section 2.

4.2 R&S Algorithm (im3/cm2)

A different approach to the correspondence problem is

chosen by Rangarajan and Shah [19]. They have a different

combined motion model and do not use an iterative

optimization procedure. The R&S algorithm assumes a

fixed number of feature points and it allows for temporary

occlusion or missing point detections, but not for false

detections. It uses the proximal uniformity model (im3) as

the individual motion model and cm2 as the combined

motion model. This algorithm does not constrain the

individual point motion, i.e., it does not have a dmax or

�max parameter.
To find the minimum of the combined model (8), the

authors use a greedy noniterative algorithm. In each step of

the algorithm, that particular point xxk�1
j is assigned to track

head T k
i that has a low deviation from the optimal motion

(low individual deviation) while, on average, all alternative

track heads have a larger deviation with respect to xxk�1
j and,

on average, all other measurements have a worse criterion

with respect to T k
i .

We continue the description of the algorithm in terms

that fit the proposed motion framework as established in

Section 3. The algorithm selects that assignment pair �i; j�
that maximizes R0

a�i� �R0
c�j� among all minimal track head

extensions, where R0
a�i� and R0

c�j� are derived from (9)

according to:

R0
a�i� �

1

mk�1 ÿ 1

X

mk�1

q�1;q 6�j

ckiq; R0
c�j� �

1

M ÿ 1

X

M

p�1;p 6�i

ckpj:

�13�

Then, an optimal assignment pair g�Xt; Xm� is repeatedly

selected in the following way:

g�Xt; Xm� �

�i; j� j i � argmax
p2Xt

R0
a�p� �R0

c�j�
ÿ �

; j � arg min
q2Xm

ckpq

� �

;

�14�

where Xt is the set of track head indices that have not yet

been assigned a measurement and Xm is the set of

measurement indices that have not yet been assigned to a

track head. After an assignment has been found, the track

head and measurement are removed from the respective

index sets Xt and Xm. The algorithm accumulates the

assignment costs and eventually stops when Xt is empty.

The criterion computation can be summarized in the

recurrence relation as follows:

C0�Xt; Xm� �

0; if Xt � ;

ckij�C0�Xtÿfig;Xmÿfjg�j�i;j��g�Xt;Xm�� �; otherwise:

(

�15�

The matching assignment pairs are collected similarly:

Z0�Xt; Xm� �

;; if Xt � ;

�i;j�[Z0�Xtÿfig;Xmÿfjg�j�i;j��g�Xt;Xm�� �; otherwise:

�

�16�

Consequently, this strategy results in the following approx-
imation of Ck

min:

Ĉk
min � C0� i j 1 � i � Mf g; j j 1 � j � mk�1f g� �17�

and the set of assignment pairs as defined in (3):

Zk � Z0� i j 1 � i � Mf g; j j 1 � j � mk�1f g�: �18�

Additionally, the algorithm differentiates between two
cases: 1) all measurements are present and 2) some
measurements are missing, by occlusion or otherwise. In
the first case, the algorithm works as described above.
Otherwise, because there is a lack of measurements at tk�1,
the problem is not which measurement should be assigned
to which track head, but which track head should be
assigned to which measurement. Then, the assignment
strategy is similar to the above. When all track head
assignments T k

i to measurements xxk�1
j are found, it is clear

for which tracks a measurement is missing. The R&S
algorithm directly fills in these points with extrapolated
points. The disadvantage of this track continuation scheme
becomes apparent when the point occlusion lasts for a
number of frames. Direct extrapolation results in a straight
extension of the last recognized motion vector, which, in the
long term, can deviate much from the true motion track so
that recovering becomes increasingly difficult (see the
experiments in Section 6.2.4).

4.3 C&V Algorithm (im2/cm2)

The third and last scheme we describe, has been developed
by Chetverikov and Verestoy [1]. Their method allows for
track initiation, track termination, and occlusion only
during two time instances. C&V assume the smooth motion
model (im2) and cm2 as the combined motion model. The
algorithm extends track heads T k

i by first collecting all
candidate measurements xxk�1

j in the circle with radius dmax

around xxk
i whose criterion does not exceed �max. The

candidate measurements are considered in optimal criterion
order with respect to the track head. Then, for each
measurement, all competing track heads are collected. The
candidate measurement will be rejected if it is the best
alternative for any of the competing track heads. When
there are no candidates left, the track head will not be
connected. Remaining unconnected track parts, caused by
occlusion or otherwise, are handled in a postprocessing
step, which we leave out of the discussion.

This scheme does not maximize the cost of the alter-
natives (i.e., w1 � 0 in (8)) and track heads are only then
considered as competitors if they are within the dmax as well
as �max range. Moreover, their cost is not averaged as in (8):
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Any competitor that fits a measurement best prevents that
the measurement is assigned to T k

i .
The basics of this algorithm can be summarized as

follows:2 Let Xa�i� be the set of alternative track head
extensions for track head T k

i as defined below:

Xa�i� �

j 2 Xm j i 2 Xc�j�; 8p 2 Xc�j� j � arg min
q2Xm

ckpq�)p � i

� �� �

;

�19�

where each measurement xxk�1
j has a set of competing track

heads Xc�j� according to:

Xc�j� � i 2 Xt j xxk�1
j ÿ xxk

i











 < dmax; c
k
ij < �max

n o

: �20�

The algorithm selects a measurement from Xa�i� for a track
head from Xt according to:

g�Xt; Xm� � �i; j� j i 2 Xt; j � arg min
q2Xa�i�

ckiq

� �

: �21�

Substituted into (15), (16), (17), and (18), this leads to the
minimal combined criterion approximation and corre-
sponding set of assignment pairs Zk.

The advantage of this scheme is that the dmax parameter
is exploited very efficiently. With low point densities, there
is usually just one candidate point and there are no
competing track heads for that point. However, higher
point densities or large dmax values can reveal the
inadequacy of the strategy to find the minimal combined
motion model deviation. Because the deviation is not
averaged over competitors and alternatives, greedy assign-
ment decisions are the result.

5 OPTIMAL ALGORITHM TO MINIMIZE Ck

In the previous section, we saw that known algorithms
adopt a suboptimal search strategy to minimize Ck. In this
section, we propose an algorithm that finds the minimum of
the combined motion models efficiently. To this end, we use
the Hungarian algorithm, which efficiently finds the
solution of the classical assignment problem [13]. Danchick
and Newman [6] first used it in a similar context, to find
hypotheses for the Multiple Hypothesis Tracker. In general,
the algorithm minimizes the following expression:

C �
X

m

i�1

X

m

j�1

aijwij �22�

subject to:

X

m

i�1

aij � 1; 1 � j � m;

X

m

j�1

aij � 1; 1 � i � m; aij 2 f0; 1g:

It typically finds the minimal cost assignment, which can be
represented in a weighted bipartite graph consisting of two
sets of vertices, X and Y . The m vertices from X are
connected to all m vertices of Y with weighted edges wij.
The algorithm then assigns every vertex from X to a
separate vertex in Y in such a way that the overall cost is
minimized.

In order to be able to apply the Hungarian algorithm and
to handle detection errors and occlusion, we prepare the
measurement data such that the problem becomes squared.
We propose handling the false detection problem by
introducing false tracks, as proposed earlier in [27]. False
tracks do not have to adhere to any motion criterion so that
measurements that do not fit the motion model of any true
track will be moved to these false tracks. By associating a
maximum cost deviation (�max) to assignments to false
tracks, we even recognize false measurements if other
measurements are missing.

We propose implementing track continuation by intro-
ducing the concept of slave measurements (Fig. 4a), similar to
the interpolation scheme in [27]. Slave measurements have
two states: free and bound. A free slave is not willing to be
assigned to a track. Consequently, it has a maximum
deviation cost from the optimal motion track. Free slave
measurements serve similar goals as the phantom points in
[21]. A slave measurement is bound when it has been
assigned to a track, despite its high deviation. Bound slaves
imitate the movements of their neighboring measurements.
Their position is calculated by interpolating the positions of
preceding and succeeding measurements in the track
established so far (Fig. 4b). The interpolated positions
enable more accurate calculation of the motion criterion. In
this way, we retain as much motion information as possible
and we are therefore able to make plausible correspon-
dences. Additionally, we assign high cost (> �max) to
correspondences that have dmax exceeded. This ensures
that, in such cases, a slave measurement is preferred over a
measurement that does not fit the model constraints.
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2. We describe the algorithm in our own terms, assuming a fixed number
of points and verification depth = 2, see [1] for details.

Fig. 4. (a) Shows a true measurement, a false measurement, and a free slave measurement at tk�1. The slave measurement is on the border of the

dotted circle. (b) Shows possible bound slave measurement positions related to possible track head extensions.



5.1 Greedy Optimal Assignment (GOA) Tracker:
Formal Description

To properly handle missing and false measurements, we

extend the assignment matrices Ak. That is, we want to be

able to assign false measurements to false tracks and slave

measurements to true track heads that have no measure-

ment at tk�1. Since all measurements can be false and all

track heads may miss their measurement, we addmk�1 rows

to allow for mk�1 false tracks and we add M columns to

allow for M slave measurements, resulting in the definition

of the square matrix Ak
� (resembling the dummy rows and

columns in the validation matrix as proposed in [9]).
The size of the individual criterion matrix is adjusted

similarly. The entries in the mk�1 extra rows and in the

M extra columns all equal the maximum cost resulting in

cost matrix Dk
�.

Having defined these square matrices, the linear assign-

ment problem can be solved for one frame after the other,

assuming that the correspondences between the first two

frames are given (in case Oim > 1) to be able to compute the

initial velocity vector.

In order to calculate the motion criterion, the individual

motion models with Oim � 2 need the vector �xxk
i ÿ xxkÿ1

�k
i

�

and all need �xxk�1
j ÿ xxk

i �. If either of xxkÿ1
�k
i

or xxki is a slave

measurement, we estimate these vectors by scanning back

in T k
i to collect two true measurements in the nearest past

being xxp

�k!p
i

and xxq

�k!q
i

, respectively, with 1 � p < q � k and

�k!q
i means kÿ q times recursive application of �k

i .

Consequently, the vector estimates are defined as follows:

xxk
i ÿ xxkÿ1

�k
i

�
xxq
�k!q
i

ÿ xxp

�k!p
i

q ÿ p
;

xxk�1
j ÿ xxk

i �
xxk�1
i ÿ xxq

�k!q
i

k� 1ÿ q
:

�23�

Having obtained these velocity vector estimates, we can

now compute the individual motion criteria ckij. We trans-

form the criterion matrix to a bipartite graph and prune all

edges with weights that exceed �max. Then, to satisfy the

combined motion model, we adjust the edge weights wij as

defined below.

. cm1 average deviation model:

wij � ckij

� �z
: �24�

. cm2 average deviation conditioned by competition
and alternatives, using (13);

wij � ckij ÿ w1R
0
a�i� ÿ w2R

0
c�j�: �25�

As mentioned before, the actual value of the minimized

Ck is not important. Therefore, in cm1, the 1=z power can be

ignored because the 1=z power function is monotonic

increasing.

Algorithm

1. Starting with k � Oim compute all costs ckij in the cost

matrix Dk
� as follows:

a. true tracks to true measurements, i.e., 1 � i � M,

1 � i � mk�1:

If the maximum speed (dmax) constraint is violated,

then ckij � �max � �.

Otherwise, ckij is according to the individual motion

model.
b. all other entries: ckij � �max

2. Construct a bipartite graph based on the criterion

matrix Dk
�.

3. Prune all edges that have weights exceeding �max.

4. Adjust the edge weights according to the combined

motion model in (24) and (25).

5. Apply the Hungarian algorithm to this graph which

results in the minimal cost assignment. The resulting
edges (assignment pairs) correspond to an output

Ak
�, from which the first M rows and mk�1 columns

represent the assignment matrix Ak.

6. Increase k; if k < n, go to 1, otherwise, done.

6 PERFORMANCE EVALUATION

To evaluate the performance of the different algorithms, we
compared them qualitatively and quantitatively. In
Section 6.1, we start by looking at their correspondence
quality by using a specially constructed example that (also)
tests the algorithm's track continuation capabilities. Then, in
Section 6.2, we explore the sensitivity of the algorithms to
some problem parameters like point density and the total
number of points, and algorithm parameters like dmax. In all
experiments in this section, the correspondences between
the first two frames are known and passed to all algorithms
(even to those that are capable of self-initialization, avoiding
favoring one of the methods).

6.1 Constructed Example

The carefully constructed example shows two crossing
feature points with a missing measurement at t4 for the first
and at t5 for the second point (see Fig. 5a). The difficulty of
this data set is that, in two consecutive frames, a
measurement is missing, but for different points. With all
algorithms, we used the smooth motion model (im2). For
algorithms that have a �max parameter, we varied its value
from 0.05 to 1 (lower values do not allow the initial motion
of p2). Further, we fixed the dmax value to 20.

6.1.1 S&S Results

The S&S algorithm either leads to wrong correspondences
or to disconnected track parts. We used two different
settings of �max to show the shortcomings of S&S. First, with
a high �max (0:1 � �max � 1), the algorithm makes wrong
correspondences (Fig. 5b). When assigning measurements
to track heads T k

i , the algorithm prefers track heads that
have a true measurement at tk over track heads that have a
phantom point at tk. Of course, the motion criterion for that
true measurement assignment may not exceed the max-
imum criterion. On the other hand, if �max is lower (e.g.,
0.05), the algorithm separates four track parts, while
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correspondences between the track parts have to be made

afterward (see Fig. 5c).

6.1.2 R&S Results

The R&S algorithm, which has no parameters, chooses the

right correspondence when one measurement lacks at t4.

Then, it estimates the missing measurement by extrapola-

tion and continues with the next frame. With point

extrapolation for one frame only, the deviation is limited.

In the next frame (t5), the situation is similar to the previous

frame. The algorithm connects the single present measure-

ment to the right track head and extrapolates the missing

measurement. The processing of the last three frames is

straightforward (see Fig. 5d).

6.1.3 C&V Results

At t4, C&V assigns the single measurement to the right track

head (T 3
2 ). Then, at t5, only one track head T 4

2 remains to

which the measurement can be assigned. If it wouldn't fit

because the distance was too great, this measurement could
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Fig. 5. (a) Two input measurements at eight time instances. At t4, a measurement for point p1 is missing and, at t5, a measurement of point p2 is

missing. The figures show the results of (b) S&S using 0:1 � �max � 1, (c) S&S using �max � 0:05, (d) R&S, (e) C&V, and (f) the GOA tracker,

respectively. In the figures, the estimated points are shown as nonfilled boxes and crosses indicate the true positions of the missing points.



start a new track. Since it is not too far away, the only point
at t5 is also assigned to T2. The two track parts that belong to
p1 are not connected in the postprocessing step (Fig. 5e).

6.1.4 GOA Tracker Results

When the algorithm proposed in this paper is applied to
this data set with the smooth motion and average deviation
model, all correspondences are made correctly. Moreover,
the algorithm interpolates the missing measurements better
than R&S and, hence, forms the most plausible tracks (see
Fig. 5f).

6.2 Performance with Generated Data

In this section, we describe the tests we did to evaluate
various aspects of the described algorithms. To this end, we
used a data set generator that is able of creating data sets of
uncorrelated random point tracks of various densities and
speeds. Among the described algorithms, only the
R&S algorithm does not exploit the dmax parameter to
improve quality and efficiency. For the experiments, we
added the dmax parameter to R&S (now called R&S*)3

similar as in the GOA tracker. Then, we tuned all
algorithms to find the optimal dmax setting for each of them
and used that setting in all experiments. For C&V, R&S*,
and the GOA tracker the true maximum is optimal and for
S&S a very high value, dmax � 50, is optimal. In Section 6.2.6,
we consider the sensitivity of the algorithms for the dmax

parameter setting. We did not test the �max sensitivity,
because it constrains the motion similarly. Other experi-
ments evaluate the performance for increasingly difficult
data sets, an increasing number of missing point detections,
and the efficiency of the algorithms.

For the generation of the uncorrelated tracks, we used
the data set generator called Point Set Motion Generator
(PSMG) according to [26] (see example in Fig. 6). Because
this data generator model allows feature points to enter and
leave the 2D scene, which we do not consider in this paper,
we modified the model to prevent this by replacing invalid
tracks until all tracks are valid. The PSMG has the following
parameters (defaults in brackets):

1. number of feature point tracks (M � 50),
2. number of frames per point track (n � 8),
3. size (Sw � Sh) of the square space (S � 100).

4. uniform distributions for both dimensions of initial
point positions between 0 and S,

5. normal distribution for the magnitude of the initial
point velocity vector: v0i � N��v0 � 5; �v0 � 0:5�,

6. uniform distribution for the angle of the initial
velocity vector, between 0 and 2�,

7. normal distribution for the update of the
velocity vector magnitude vki , from tk to tk�1:
vk�1
i � N�vki ; �vu � 0:2�,

8. normal distribution for the update of the velocity
vector angle�k

i from tk to tk�1:�
k�1
i � N��k

i ; ��u � 0:2�,
9. probability of occlusion (po � 0, i.e., no occlusion).

A number of different measures have been proposed to

quantify the quality of performance, like the distortion

measure [19] and the link-based error and track-based error [26].

We use the track-based error as in [26], which is defined as

follows:

Etrack � 1ÿ
Tcorrect

Ttotal
; �26�

where Ttotal is the total number of true tracks and Tcorrect is

the number of completely correct tracks.
Some remarks about the experiments: First, in all cases,

the shown results are an average of 100 runs. We did not

incorporate significance levels because the minimal possible

track error depends on the actual presented data, hence, the

appropriateness of the individual motion model. Never-

theless, the ranking and relative quality were, for each

experiment, the same as illustrated in the figures. Second, in

this section, we ran the S&S algorithm only with a forward

optimization loop because, otherwise, the algorithm would

not converge (see also Section 4).

6.2.1 Tuning Individual and Combined Models

To find an optimal combination of individual and combined

motion models, we assume that the individual models and

combined models are independent. In order to find the best

individual model for the PSMG generated data, we ran

experiments with the individual models im1, im2, and im3,

together with the combined model cm1=z � 1 implemented

in the GOA tracker. In Fig. 7a, we show the results of this

experiment. Clearly, the model im2 fits this generated data

set best.
In order to identify the best combined model for this

data set, we ran tests with cm1=z � 1, cm1=z � 2,

cm2=w1 � w2 � 0:3, and cm2=w1 � w2 � 0:2, as shown

in Fig. 7b. We chose w1 equal to w2 because we want to

express that the lack of alternatives is equally important

as the absence of competing track heads. With even lower

w1 and w2 values, cm2 becomes better until it finally

equals cm1=z � 1 when w1 � w2 � 0. From these tests, we

conclude that the smooth motion model ��max � 0:2� with

average deviation model �z � 1� is the best combined

modeling for PSMG data. Hence, we used these models

in the remaining experiments, if possible. That is, only the

GOA tracker allows for combined model settings and can

be adjusted in that sense.
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3. When dmax is very high, then R&S* behaves like the original R&S, i.e.,
unconstrained speed.

Fig. 6. Example PSMG data set with 15 points during eight time steps.



6.2.2 Variable Density Performance

To show how the algorithms perform with an increasing

number of conflicts, we applied them to several data sets

with an increasing point density. To this end, we generated

the data in a fixed sized 2D space and varied the number of

point tracks. In Fig. 8a, we display the results of all

algorithms. The figure clearly shows that the GOA tracker

performs best.

6.2.3 Variable Velocity Performance

Another experiment to test the tracking performance of the

algorithms is varying the mean velocity and keeping the

number of points constant. In order to have reasonable

speed variances with all mean velocities, we scaled both �v0
and �vu with the mean values according to �v0 � 0:1�v0 and

�vu � 0:04�v0 . In addition, we enlarged the space in which

the point tracks are generated to S � 200 to prevent having

mainly diagonal tracks allowed. The ranking of the

algorithms is similar to the variable density experiment

and, again, the GOA tracker performs better than all other

schemes (see Fig. 8b).

6.2.4 Track Continuation Performance

In this experiment, we compared the track continuation

performance of the R&S extrapolation scheme and the slave

measurements interpolation, as proposed in this paper. We

left out the other two algorithms because S&S does not

really handle track continuation and C&V only allows very

limited occlusion. In order to properly compare the track

extrapolation and the slave measurements interpolation, we

implemented them both in the GOA tracker. We tested the

track continuation performance in a variable occlusion

experiment, with 0 � po � 1. In Fig. 9a, we display the track

error results of the GOA tracker with both track continua-

tion schemes with either 50 or 100 points.
As illustrated in this figure, the slave measurements

approach proposed in this paper clearly achieves better

track continuation results than the track extrapolation

scheme as proposed by Rangarajan and Shah [19]. The

difference is larger with higher probability of occlusion (po),

because then there will be occlusion more often during a

number of consecutive frames, in which case the difference

between interpolation and extrapolation becomes apparent.
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Fig. 7. (a) Track error of the GOA tracker with the average deviation model (cm1), in combination with the nearest-neighbor, smooth motion, or

proximal uniformity model. (b) Track error of the GOA tracker with the smooth motion model in combination with cm1 and cm2.

Fig. 8. (a) Results of the algorithms applied to increasingly dense point sets. (b) Track error as a function of the mean velocity.



6.2.5 Variable Volume Performance

This test is directed toward measuring the computational
efficiency of the different algorithms. We keep the point
density constant while increasing the number of point
tracks (and, thus, enlarging the size of the 2D space
proportionally). Consequently, the correspondence problem
remains equally difficult, but the problem size grows. In
Fig. 9b, we show the results with logarithmically scaled
axes. The figure shows that, with optimal dmax, C&V is the
fastest. Further, the computation time of the algorithms is
widely divergent, but all algorithms have polynomial
complexity. We list the polynomial orders in the summary
of the experiments in Section 6.3.

6.2.6 Sensitivity for dmax Parameter Setting

As mentioned, so far all algorithms used the tuned and
optimal settings of the dmax parameter. In this sensitivity
experiment, we show the importance of a priori knowledge
about a reasonable value for this parameter. To this end, we
varied the dmax parameter from the known true value up to
a high upper limit, dmax � 50 (lower values than the true

maximum speed are clearly not sensible). Fig. 10a clearly

shows that both S&S and R&S* are most sensitive to

variations in this parameter. Remarkably, S&S performs

better when dmax is set far too high. We expect that the poor

initialization, together with the exchange optimization,

causes this effect because every point exchange must obey

the dmax constraint. Both C&V and the GOA tracker are

hardly sensitive to dmax variations (which implies that they
do not take advantage of it either). Computationally,

especially the C&V algorithm is hampered by an incorrect

or ignorant dmax value, as Fig. 10b illustrates. Consequently,

the GOA tracker is the fastest when dmax is over five times

the true maximum speed.

6.3 Summary of Experiments

In conclusion, for tracking a fixed number of points, the

GOA tracker is qualitatively the best algorithm among the

algorithms we presented, according to its track continuation

handling in the first test and its performance in all

PSMG experiments. Moreover, it is hardly sensitive to the

dmax parameter setting. S&S performs only slightly worse
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Fig. 9. (a) Track error of the GOA tracker with either slave interpolation (Inter) or the R&S extrapolation scheme (Extra) in a variable occlusion

experiment with 50 or 100 points. (b) Illustration of the efficiency of the algorithms in a variable volume experiment.

Fig. 10. Illustrates the sensitivity of the algorithms to dmax variations. (a) Shows the track error performance and (b) shows the computational

performance.



when we used the optimal dmax setting (dmax � 50), but it is
an order of magnitude slower than the GOA tracker.
Moreover S&S did not perform well on the specially
constructed example nor does it give interpolated positions
of the missed points. The version of R&S*, with added dmax

parameter and modified individual model, is efficient and
qualitatively good as long as it has an accurate estimate of
dmax. The sensitivity experiment shows that R&S* performs
worst of all if this value is not known (or not used as in the
original R&S implementation). With (near) optimal max-
imum velocity setting, C&V is the fastest. If this optimal
value is not known (which is usually the case), then the
efficiency of C&V degrades rapidly. We should also note
that, in our experiments, S&S performed consistently better
than C&V, which does not agree with the results reported in
[26]. This is probably because, in [26], a different dmax

setting for S&S is used for which we showed in Section 6.2.6
that the S&S algorithm is quite sensitive. This implies that
S&S cannot exploit the dmax parameter effectively to handle
missing and spurious measurements. Finally, the variable
occlusion experiment clearly showed that the slave mea-
surements implement track continuation better than the
point extrapolation scheme [19]. In Table 1, we summarize
the PSMG experiments. The last column shows the
polynomial order of complexity of the algorithms as
derived from the variable volume experiment.

7 ALGORITHM EXTENSION WITH

SELF-INITIALIZATION

In the problem statement in Section 2, the correspondences
between the first two frames were assumed to be known. In
this section, we generalize the problem by lifting this
restriction and elaborating on how self-initialization is
incorporated in the GOA tracker.

Two algorithms we discussed have an integrated way of
automatically initializing the point tracks. That is, both S&S
and C&V only use the measurement positions for the
initialization. R&S, on the other hand, use additional
information, i.e., the optical flow field, which is computed
between the first two frames. We advocate the integrated
approach because it is more generally applicable and it
allows for optimizing the initial correspondences using a
number of frames, as we proposed in the global motion model
in Section 3. Here, we propose to extend the GOA tracker
with features of the S&S algorithm. After that, we
demonstrate the appropriateness of this extension and

again analyze the parameter sensitivity of the algorithms
that support self-initialization.

7.1 Up-Down Greedy Optimal Assignment Tracker
(GOA/up-down)

The S&S algorithm has a number of shortcomings, of which
its computational performance has been shown to be the
most apparent. Also, as mentioned, we deliberately left out
the bidirectional optimization which quite often does not
converge. However, for self-initialization, the bidirectional
optimization is essential.

We propose to modify the GOA tracker in the spirit of
[21] and [22] by initializing the correspondences between
the first two frames using the described optimal algorithm
to minimize Ck with im1/cm1. After these correspondences
are made, we continue the optimization of the remaining
frames (up) in the normal way and additionally optimize
the same frames backward (down). Further forward and
backward optimization proved to be useless because the
optimization process already converged. The reason for this
fast convergence is that both the initial correspondences
and the optimization scheme have been improved con-
siderably compared to S&S.

7.2 Self-Initialization Experiments

To test the performance of the algorithms that are capable of
self-initializing the tracks, together with the just-described
extended GOA/up-down tracker, we did another variable
density experiment and a sensitivity experiment using the
PSMG track generator. The individual models need not be
tuned again because the parameter settings of the PSMG are
the same as in Section 6.2. This time, we left out S&S
because of serious convergence problems with their
bidirectional optimization scheme, which is essential for
self-initialization. R&S does not implement self-initializa-
tion using only point measurements, so it cannot be applied
within these experiments.

Although we did not discuss statistical motion corre-

spondence techniques in detail in this paper, we included

the multiple hypothesis tracker (MHT) as described and

implemented by Cox andHingorani [3] in this experiment in

order to see how it relates to nonstatistical greedy matching

algorithms. We should note that this MHT implementation

is not the most efficient (for improvements, see, e.g., [15])

though qualitatively equivalent to the state of the art of the

statistical motion correspondence algorithms.

7.2.1 Variable Density Experiment

For this experiment, we tuned the algorithms optimally for

the given data sets. That is, both C&V and GOA/up-down

use the true dmax. The (eight) parameters of the MHT (like

the Kalman filter and Mahalanobis distances) were tuned

with a genetic algorithm for which we used the track error

as fitness function.
Actually, the only difference with the variable density

experiment in Section 6.2.2 is that, here, the initial
correspondences are not given. Fig. 11a shows the perfor-
mance of the algorithms. Clearly, GOA/up-down performs
best and, remarkably, almost as well as when the initial
correspondences were given. The performance of the MHT
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TABLE 1
Summary of the PSMG Experiments



is similar to the GOA tracker until it seriously degrades,
when the number of points exceeds 50, see Fig. 11a. This can
be explained from the fact that the parameters for the MHT
were trained for (only) 50 points. We did not include more
points because the training was already very time consum-
ing (> 2 days on a Silicon Graphics Onyx II). It is, however,
striking to see that the GOA tracker also performs
consistently better than the MHT even with less than
50 points, although the latter optimizes over several frames.
Among others, this may be caused by the effective self-
initialization scheme of the GOA tracker. The up-down
scheme can be said to optimize the initial correspondences
over the whole sequence when optimizing up. Then, the
remaining correspondences are established in the down
phase.

7.2.2 Sensitivity Experiment

When the correspondences for the initial frames are not
given, we expect the algorithms to be more sensitive to the
dmax setting. Namely, when the initial velocity is uncon-
strained, the greedy matching algorithms easily make
implausible initial choices from which they cannot recover.
To study this behavior, we did another sensitivity experi-
ment for C&V and the GOA tracker and, additionally, an
experiment to test the sensitivity of the MHT. We studied
the MHT separately because is has different parameters
(and no dmax). First, Fig. 11b indeed shows that for, C&V, a
good estimate of dmax is essential. GOA/up-down, how-
ever, hardly suffers from lack of a priori knowledge
concerning dmax, which is partially because the global cost
was optimized for the initial frames. Moreover, the
up-down optimization scheme can no longer be considered
purely greedy because correspondences are reconsidered in
backward direction. Since both algorithms were computa-
tionally influenced similarly as when the initial correspon-
dences were given, we did not include the figure here. We
have to mention, however, that the computation time of
C&V increased even 10 times faster (11 sec. when dmax � 50)
because, in this experiment, the number of alternatives
becomes much higher in the first frame. As a consequence,

the GOA tracker was already the fastest when dmax was set
over three times the true maximum speed.

In order to fairly test the sensitivity of the MHT and to
show the results for all parameters in the same figure, we
tested the performance in the range from 1/5 of the optimal
setting to 10 times the optimal setting of all essential
parameters (10 runs per setting). Consequently, the results
in Fig. 12a can easily be compared in relation to Fig. 11a in
which 5 (dmax) is also optimal. The figure clearly shows that
there is a small parameter range in which the performance
is (sub)optimal. Especially, increasing or decreasing the
Mahalanobis distance or the initial state variance parameter
with 1/5th results in a performance penalty of roughly a
factor two. Also, the computation time increases dramati-
cally if the parameters are not properly set, as Fig. 12b
shows. We plotted the names of the essential parameters in
the figures, but refer to [3], [20] for a complete description.

8 REAL DATA EXPERIMENT: TRACKING SEEDS ON

A ROTATING DISH

Our final experiment is based on real image data. In this
experiment, we put 80 black seeds on a white dish and
rotated the dish with more or less constant angular velocity,
which implies the use of the smooth motion model
�im2=�max � 0:1�. The scene was recorded with a 25 Hz
progressive scan camera using 4 ms shutter speed, resulting
in a 10 image video sequence with very little motion blur.4

The segmentation of the images was, consequently, rather
straightforward, i.e., in all 10 images all 80 seeds were
detected and there were no false measurements. There was
a large difference in speed of the seeds ranging from
1 pixel/s in the center to 42 pixel/s at the outer dish
positions. As in Section 7, we tested only those algorithms
that have self-initialization capability and, again, we
included the MHT. Clearly, in contrast with Section 7, in
this experiment, the point motion is strongly dependent.
Since all algorithms are hampered equally, this experiment
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4. The rotating dish sequence is available for download at http://
www-ict.its.tudelft.nl/tracking/datasets/sequences/rotdish80.tgz.

Fig. 11. (a) Shows the track error as a function of the number of points in a variable density experiment with self-initialization and (b) shows the track

error as a function of the dmax setting.



actually tests the general applicability of the algorithms.5 To
be able to run the MHT properly, we tuned its main
parameters by applying a genetic algorithm (the ground
truth was established by manual inspection). For this
experiment, we also added the S&S algorithm, because this
time it converged consistently, that is, with different
dmax settings.

Fig. 13 shows the resulting tracks overlaid on the first
image of the sequence. Only the GOA/up-down tracker
was able to find all the true seed tracks, while the dmax

setting did not influence the results. Even GOA/up (not
down!) was able to track the 80 seeds correctly over all
10 frames, regardless of the dmax value. Not surprisingly,
the C&V algorithm that already proved to be sensitive to
dmax suffers severely from the divergent seed speeds. The
S&S algorithm, which is also sensitive to dmax, again makes
fewer errors when dmax is relaxed. In general, the behavior
of S&S turned out to depend greatly on the dmax and
�max settings. Although the MHT is extensively tuned and it
optimizes over several frames simultaneously, the MHT
still makes a few errors. Besides, the MHT is substantially
slower than the other algorithms.

9 DISCUSSION

Throughout this paper, we introduced a framework for
motion modeling and we presented the greedy optimal
assignment (GOA) tracker that we extended with self-
initialization. In this section, we discuss some potential
other extensions and improvements.

Although the tracking of a variable number of points
conflicts with occlusion handling, it is certainly a feature
that should be considered as an extension to the GOA
tracker. Among the described algorithms we have seen two
ways to approach this conflict of requirements, either by
actually not implementing track continuation (S&S) or by
only allowing occlusion during a very limited number of
frames (C&V). First, the GOA tracker can support track

initiation and termination by replacing the slave measure-
ments with the phantom points as in S&S. Alternatively, the
GOA scheme can be incorporated in the C&V algorithm.
The idea is that, at each time instance, the GOA scheme is
applied first to find corresponding measurements for all
point tracks that have been established so far. Then, the
original C&V scheme links the remaining measurements if
possible. As a result, the tracking features of C&V still apply
and its performance increases.6

Further, to deal more effectively with the underlying
physical motion, the order of the individual motion models
could be increased, e.g., by modeling point acceleration.
Clearly, extending the scope of the individual models
implies difficulties for the model initialization and the track
continuation capabilities.

Finally, the scope over which the global matching is
approximated can be extended. In this paper, we approxi-
mated S�D� in a greedy sense, i.e., we only minimized the
combined model over two successive frames. We already
illustrated in Fig. 3 that extending the scope for this
minimization would yield more plausible tracking results.
Extending the scope, however, implies that we need to cope
with an increasingly complex problem, to which the
efficient Hungarian algorithm as such cannot be applied
anymore.

10 CONCLUSION

In this paper, we showed an adequate way to model the
motion correspondence problem of tracking a fixed number
of feature points in a nonstatistical way. By fitting existing
algorithms in this motion framework, we showed which
approximations these algorithms make. An approximation
that all described algorithms have in common is that they
greedily match measurements to tracks. For this approx-
imation, we proposed an optimal algorithm, the Greedy
Optimal Assignment (GOA) tracker, which obviously
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5. One could, of course, argue that for this data set a rotational individual
model or polar coordinates for the measurement positions would fit better.

6. We have already implemented this idea, but we did not include it in
the experiments for the sake of clarity. With a fixed number of points, its
performance indeed rated in between GOA/up-down and the original C&V
algorithm.

Fig. 12. Parameter sensitivity experiment for the MHT. (a) Shows the track error as function of parameter variations and (b) shows the computation

time.
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Fig. 13. Results of applying the self-initializing algorithms to the rotating dish sequence, consisting of 10 frames with each 80 seeds; true dmax � 42

pixels/sec. (a) S&S: dmax � 42 p=s : 25 errors, 7.4 sec. (b) S&S: dmax � 50 p=s : 18 errors, 13 sec. (c) C&V: dmax � 42 p=s : 18 errors, 44 msec.

(d) C&V: dmax � 50 p=s : 31 errors, 58 msec. (e) MHT: 3 errors, 86 msec. (f) GOA/up-down: 0 errors, 90(160) msec.



qualitatively outperforms all other algorithms. The way the
proposed algorithm handles detection errors and occlusion
turned out to be effective and more accurate than the other
described algorithms. Moreover, the experiments show
clearly that its computational performance is among the
fastest. Also, the self-initializing version of the GOA tracker
turned out to be adequate and hardly sensitive to the
maximum speed constraint (dmax) setting. Briefly, for the
tracking of a fixed number of feature points, the proposed
tracker has proven to be efficient and qualitatively best.

Among the described algorithms, the R&S algorithm is
completely surpassed because it operates under the same
conditions, while the GOA tracker outperforms R&S both
qualitatively and computationally. The S&S algorithm,
which does not support track continuation, is computation-
ally very demanding. The major drawbacks of the
C&V algorithm are its relatively poor performance, espe-
cially with respect to the initialization, its restricted
track continuation capability, and its sensitivity to the
dmax setting. Still, S&S and C&V may be considered because
both support the tracking of a variable number of points
and C&V can be very fast. In the previous section, we
indicated how their performance can be improved by
incorporating GOA features in these algorithms. In a
number of experiments, we included the statistical multiple
hypothesis tracker. Even though the MHT optimizes over
several frames, which makes it computationally demand-
ing, it turned out that it does not perform better than the
GOA tracker. Possible causes are the effective initialization
of the GOA tracker and the fact that the MHT models the
tracking of a varying number of points, although we set the
respective probabilities as to inform that the number of
points is fixed. Most importantly, the MHT has quite a few
parameters for which the tuning proved to be far from
trivial.

In conclusion, the proposed qualitative motion frame-
work has proven to be an adequate modeling of the motion
correspondence problem. As such, it reveals a number of
possibilities to achieve qualitative improvements, ranging
from more specialized individual models to S�D� approx-
imations with an extended temporal scope.
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