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Time-of-flight (ToF) cameras calculate depth maps by reconstructing phase shifts of amplitude-modulated
signals. For broad illumination or transparent objects, reflections from multiple scene points can illuminate a
given pixel, giving rise to an erroneous depth map. We report here a sparsity-regularized solution that separates
K interfering components using multiple modulation frequency measurements. The method maps ToF imaging
to the general framework of spectral estimation theory and has applications in improving depth profiles and
exploiting multiple scattering. c© 2014 Optical Society of America
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Time-of-flight (ToF) sensing offers solutions for several
optical ranging and surface profiling applications, such as
image-guided surgery [1], gesture recognition [2], remote
sensing [3], and shape [4] and phase [5] measurements.
Although ToF sensors can be impulse-based, commercial
versions often rely on the continuous wave approach [6]:
the source intensity is modulated at radio frequencies
(∼10s of MHz), and the detector reconstructs the phase
shift between the reflected and emitted signals. Distance
is calculated by scaling the phase by the modulation fre-
quency (Fig. 1(a)). This method, amplitude modulated
continuous wave (AMCW) ToF, offers suitable SNR for
real-time, consumer applications [7–9].
However, AMCW ToF suffers from multi-path in-

terference (MPI) [10–17]. Consider the scenes in
Figs. 1(b,c). Light rays from multiple reflectors scatter
to the observation point. Each path acquires a differ-
ent phase shift, and the measurement consists of the
sum of these components. The recovered phase, there-
fore, is incorrect. Such “mixed” pixels contain depth er-
rors and arise in global lighting conditions, when an ob-
servation point is illuminated indirectly by, e.g., inter-
reflections, translucent sheets, and subsurface scattering
[18]. In some cases (Fig. 1(d)), MPI comprises a con-
tinuum of scattering paths. Previous suggested solutions
include structured light or mechanical scanning [19, 20],
but these are limited by the source resolution. Computa-
tional optimization schemes [21, 22] rely on radiometric
assumptions and have limited applicability.
Here, we resolve MPI via sparse regularization of mul-

tiple modulation frequency measurements. The formu-
lation allows us to recast this problem into the general
framework of spectral estimation theory [23]. This contri-
bution generalizes the dual-frequency approach [13–15]
to account for more than two components. Thus, our
method here has two significant benefits. First, we sepa-
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Fig. 1. (a) ToF principle: the phase delay of an emitted
AMCW wave proportionally encodes the distance of the
object. (b) Mirror-like and (c) semi-transparent reflec-
tions produce MPI and yield an incorrect phase. (c) A
complicated scene with continuous MPI.

rate MPI from direct illumination to produce improved
depth maps. Second, we resolve MPI into its compo-
nents, so that we can characterize and exploit multi-
ple scattering phenomena. The procedure has two steps:
(1) record a scene with multiple modulation frequencies
and (2) reconstruct the MPI components using a spar-
sity constraint. We also discuss the possible extension to
continuous scattering (e.g., Fig. 1(d)).
Consider first the single-component case. Mathemati-
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cally, the camera emits the normalized time-modulated
intensity s(t)1 and detects a signal r(t):

s (t) = 1 + s0 cos (ωt) , t ∈ R (1a)

r (t) = Γ(1 + s0 cos (ωt− φ)). (1b)

Here, s0 and Γ ∈ [0, 1] are the signal modulation am-
plitude and the reflection amplitude, respectively, ω is
the modulation frequency, and φ is the phase delay be-
tween the reference waveform s (t) and the delayed ver-
sion r (t). For a co-located source and detector, the dis-
tance to the object from the camera is given by the re-
lation d = cφ/2ω, where c is the speed of light.

Electronically, each pixel acts as a homodyne detector
and measures the cross-correlation between the reflected
signal and the reference [6]. Denoting the complex con-
jugate of f ∈ C by f∗, the cross-correlation of two func-
tions f and g is

Cf,g (τ)
def
= lim

T→∞

1

2T

∫ +T

−T

f∗ (t+ τ) g (t) dt. (2)

Note that infinite limits are approximately valid when
the integration window 2T is such that T ≫ ω−1. A
shorter time window produces residual errors, but this
is avoidable in practice. The pixel samples the cross-
correlation at discrete times τq:

mω [q]
def
= Cs,r (τq)

(2)
= Γ

(
1 +

s20
2
cos(ωτq + φ)

)
. (3)

Using 4-Bucket Sampling [7], we calculate the esti-

mated reflection amplitude and phase, Γ̃, φ̃, with four
samples τq = πq/2ω with q = 0, ..., 3:

Γ̃ =

√
(mω [3]−mω [1])

2
+ (mω [0]−mω [2])

2
/s20, (4a)

tan φ̃ =

(
mω [3]−mω [1]

mω [0]−mω [2]

)
. (4b)

Therefore, we associate a complex value, zω, with a pixel
measurement:

zω = Γ̃eφ̃(ω). (5)

Note that these results are formally equivalent to phase
reconstruction via phase-shifting digital holography [24].
When multiple reflections contribute to a single

measurement, the return signal comprises a sum. In pha-
sor notation, for K components,

r (t) = C0 +
∑K−1

k=0
Γke

(ωt−φk(ω)), (6)

where C0 is a constant, φk (ω) = 2dkω/c, and {dk}
K−1
k=0

are K depths at which the corresponding reflection takes
place. The reflection amplitude of the kth surface is Γk.
Each pixel records

mK
ω [q] = C0 +

s20
2
eωτq

∑K−1

k=0
Γke

φk(ω). (7)

1Here, we consider sinusoidal imaging, but the discussion is
applicable to any periodic function.

Importantly, for a given modulation frequency ω0 (ig-
noring a constant DC term), mK

ω0
[τq] ∝ exp (ω0τq), i.e.,

there is no variation with respect to individual depth
components {Γk, φk}

K−1
k=0 [16], regardless of the sampling

density. Equivalently, the camera measurement,

z(K)
ω = Γ̃(ω)eφ̃(ω) =

∑K−1

k=0
Γke

φk(ω) (8)

is now a complex sum of K reflections, which cannot
be separated without independent measurements. Thus,
at a given frequency, the measured phase, and hence the
depth, is a nonlinear mixture of all interefering compo-
nents.

Our method separates these components by recording
the scene with equi-spaced frequencies ω = nω0 (n ∈ N)
and acquiring a set of measurements z:

z =
(
z(K)
ω0

, z
(K)
2ω0

, . . . , z
(K)
Nω0

)⊤

. (9)

The forward model can be written compactly in vector-
matrix form as z = Φg+σ, where Φ ∈ C

N×K is identi-
fied as a Vandermonde matrix,

Φ =




eω0φ0 eω0φ1 · · · eω0φK−1

e2ω0φ0 e2ω0φ1 · · · e2ω0φK−1

...
...

. . .
...

eNω0φ0 eNω0φ1 · · · eNω0φK−1


 , (10)

g = [Γ0, . . . ,ΓK−1]
⊤

∈ R
K×1, and σ represents zero-

mean Gaussian i.i.d. noise, which controls the error ε0 in
our reconstruction algorithm. Our goal is to estimate the
phases φ = [φ0, . . . , φK−1]

⊤
∈ R

K×1 and the reflection
amplitude vector g.

To recover these quantities, first note the similar-
ity between Φ and an oversampled N × L discrete
Fourier transform (DFT) matrixΨ, with elements Ψnl =
exp(nl/L). If L ≫ K, the discretization of Ψ is small
enough to assume that the columns of Φ are contained
in Ψ. We can also define a vector g′ ∈ R

L×1, whose
elements are zero except for K reflection amplitudes
{Γk}

K−1
k=0 , such that z = Ψg′. We use the (K-)sparsity

of g′ to regularize the problem:

‖z−Ψg′‖
2
ℓ2︸ ︷︷ ︸

Data-Fidelity

< ε0 such that ‖g′‖ℓ0 = K
︸ ︷︷ ︸

Sparsity

, (11)

where the ℓp-norm is ‖x‖
p

ℓp

def
=

∑
n |xn|

p
. The limit p → 0

is used to define ‖g′‖ℓ0 as the number of nonzero el-
ements of g′. Eq. 11 demands a least-squares solution
to the data-fidelity problem ‖z−Ψg′‖

2
ℓ2

up to some
error tolerance ε0, with the constraint that we accom-
modate up to K nonzero entries of g′. For three com-
ponents (K = 3), we choose Ψ to have L = 62832
columns. Therefore, the resulting discretization error is
±2π/2L = ±0.05 mrad (though the total error includes
contributions from other sources, such as sensor noise).
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Fig. 2. Left: experimental setup. Two transparencies
block the left side of the camera (three components),
and one transparency blocks the right (two components).
Right: measured amplitude and depth at ω = 3ω0.
Dashed line indicates edge of second transparency.

The sparsity of g′ arises from two assumptions. First,
we ignore the inter-reflections between scattering lay-
ers, as their amplitudes fall off quickly. Second, we do
not consider volumetric scattering, which precludes dis-
crete reflections and requires a different parameteriza-
tion (e.g., diffusion coefficients). However, even in the
continuum case (e.g., Fig. 1d), there is potential for rela-
tive improvement using our method: we can approximate
the continuum by a finite number of reflections, with the
discretization set by the system resolution and the total
number limited by the falloff in amplitude. This approx-
imate model then can be applied here.
We solve Eq. 11 via orthogonal matching pursuit

(OMP) [25], which iteratively searches for the best-fit
projections (in the least-squares sense) of the coeffi-
cients onto an over-complete dictionary. We input Ψ and
measurements z into the algorithm. The outputs are the
set of reflection coefficients Γk and their positions, lk, in
g′. With the position of each Γk recovered, the corre-
sponding phases φk are recovered through the elements
of each non-zero Ψ: φk = (n)−1 log(Ψnlk) = lk/L.
We verify this theory with the experimental setup

shown in Fig. 2. A PMD19k-2 160 × 120 sensor ar-
ray is controlled by a Stratix III FPGA. Analog pixel
values are converted to 16-bit unsigned values by an
ADC during the pixel readout process. Eight 100 mW
Sony SLD 1239JL-54 laser diodes illuminate the scene.
The lasers are placed symmetrically around the detector
for a coaxial configuration. The base frequency modu-
lation is f0 = ω0/2π = 0.7937 MHz, and the integra-
tion time is 47 ms. The scene consists of three layers.
Farthest, at 8.1 m, is an opaque wall with gray-scale
text (“MIT”) printed on it. Closest, at 0.3 m, is a semi-
transparent sheet. Between the two layers is another
semi-transparent sheet that covers only the left half of
the field of view. Therefore, the left-hand side records

Fig. 3. Reconstructed amplitudes and depths via sparse
regularization. Dashed lines indicate edge of second
transparency.

three bounces and the right only two. All layers are
within the camera’s depth of field to avoid mixed pix-
els from blurring.
Depth and amplitude maps acquired at a specific fre-

quency are shown in Fig. 2. Due to MPI, the measured
depths do not correspond to any physical layer in the
scene. All depth and amplitude information from the
three scene layers is mixed nonlinearly into a set of com-
posite measurements (pixels) and cannot be recovered.
A total of 77 modulation frequencies, spaced

0.7937 MHz apart, are acquired and input into the OMP
algorithm with K = 3. The reconstruction, shown in
Fig. 3, shows each depth correctly recovered. The clos-
est depth map (Fig. 3(a), first transparency) is constant.
The second map (Fig. 3(b)) contains two depths: the sec-
ond transparency on the LHS and the wall on the RHS.
The third depth map contains the wall depth on the
LHS (Fig. 3(c)). The third-bounce amplitude (Fig. 3(f))
is zero where there are only two layers (RHS). The depth
here is therefore undefined, though we set the distance to
be 10 m for visual clarity. Further, the text is recovered
properly in the amplitude maps corresponding to the
correct depths (Figs. 3(e,f)). Note that accurate depths
are recovered even in the presence of strong specularity
(Fig. 3(e)).
Fig. 4 shows a histogram of reconstructed distances.

Distances in the mixed-pixel measurement (Fig. 2) vary
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Fig. 4. Depth histogram for reconstructed and measured
depth maps. Reconstructed distances cluster around the
correct depths, whereas the MPI depth map has a wide
variance across the entire range.

continuously across a 30 m range. (A fixed 18.56 m global
offset, due to differences in cable lengths and electronic
timing, yields negative depths in mixed pixel histogram.)
The reconstructed distances are 0.19 m, 3.6 m, and 8.1
m, which agree with the ground truth values in Fig. 2
to within the experimental accuracy. The relative differ-
ences are within 3% of the true values. The third-phase
variance is wider because OMP computes the first two
components, leaving little residual energy, so that several
columns in Ψ can minimize the least-squares error.
In principle, the technique can be extended to any

number of bounces, provided enough modulation fre-
quencies are used (though a first-principles derivation
is beyond the scope of this contribution). In practice,
however, the reflected amplitudes decrease with increas-
ing component number, so that higher-order components
diminish in importance. Furthermore, OMP need not as-
sume a number of components that is the same as that
of the physical implementation. If the assumed number
is greater than the physical number, OMP will recon-
struct all the physical components, with higher-order
ones having an amplitude on order of the system noise.
Conversely, if the assumed number is less than the phys-
ical number, OMP will recover the strongest reflections.
Therefore, the method is a generalization of

global/direct illumination separation and can decompose
different elements of global lighting. This is useful not
only for improved depth accuracy, but also imaging in
the presence of multiple scatterers such as diffuse lay-
ers, sediment, turbulence, and turbid media, as well as
in places where third-component scattering must be ex-
tracted [26]. Furthermore, because it is based on phase
measurements, this technique can be mapped to multi-
ple scattering in holography [27] by substituting optical
frequency for the modulation frequency.
In conclusion, we implemented a multi-frequency ap-

proach for decomposing multiple depths for a ToF cam-
era. The result is general and holds for any number of
bounces, and it can be extended to non-harmonic sig-
nals [17]. Future work includes calculating bounds on
measurements and resolution. The method can be incor-
porated with structured illumination and pixel correla-
tions for edge detection and refocusing. The result holds
promise for mitigating and exploiting MPI for a wide
variety of scenes.

This work was supported by NSF grant 1115680,
Charles Stark Draper grant SC001-744, and ISN grant
6927356. R.W. was supported by a University of Waikato
Doctoral Scholarship.
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