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ABSTRACT

Aims. Mapping the interstellar medium in 3D provides a wealth of insights into its inner working. The Milky Way is the only galaxy
for which detailed 3D mapping can be achieved in principle. In this paper, we reconstruct the dust density in and around the local
super-bubble.
Methods. The combined data from surveys such as Gaia, 2MASS, PANSTARRS, and ALLWISE provide the necessary information
to make detailed maps of the interstellar medium in our surrounding. To this end, we used variational inference and Gaussian processes
to model the dust extinction density, exploiting its intrinsic correlations.
Results. We reconstructed a highly resolved dust map, showing the nearest dust clouds at a distance of up to 400 pc with a resolution
of 1 pc.
Conclusions. Our reconstruction provides insights into the structure of the interstellar medium. We compute summary statistics of the
spectral index and the 1-point function of the logarithmic dust extinction density, which may constrain simulations of the interstellar
medium that achieve a similar resolution.
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1. Introduction

Although dust contributes only a small fraction in terms of
mass, it is an important constituent of the interstellar medium
(ISM) that is observable in many wavebands of the electromag-
netic spectrum. Dust efficiently absorbs and scatters ultra-violet
and visible range photons, obscuring large parts of the Galaxy
and hiding star forming regions at these wavelengths. The dust
absorbed energy is re-emitted in the infrared to microwave
bands, offering a diagnostic for physical conditions of the ISM.
The microwave emission of dust is a significant foreground to
the cosmic microwave background (CMB).

Dust plays a role in many processes that drive galactic evolu-
tion. Grain surfaces can adsorb material from interstellar gas and
act as catalytic sites for chemical reactions. Stars, including the
most massive ones, are observed to form from dusty molecular
clouds. Thermal emission from dust grains can be an important
cooling channel for these clouds and grains can drive their chem-
istry, suggesting that dust plays an important role in regulating
the star formation process. Photons absorbed by dust can convey
radiation pressure to interstellar matter, or, if they are energetic
enough, eject electrons, contributing to the heating of inter-
stellar gas.

Finally, the distribution of dust can be used as a tracer of
other quantities. A significant portion of the observed Galactic
gamma rays in the GeV-range originates in dense clouds, where
it is produced by hadronic interactions of cosmic rays with gas.
This can be seen, for example, in the morphology of cosmic

⋆ 3D Galactic extinction catalogue is only available at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/639/A138

rays with hadronic spectrum from Fermi (Selig et al. 2015). Dust
can be used to trace these dense clouds and identify gamma-ray
production sites. Another example is the magnetic field struc-
ture of the Galaxy, which is imprinted in the dust density, as
dust filaments tend to be aligned to the line-of-sight magnetic
field (Panopoulou et al. 2016). Dust also reveals the large scale
dynamics and structure of the Galaxy, as the gravitational and
differential rotation imprints on the filaments of dust.

Studying how dust is distributed in the Galaxy can not only
provide an understanding of its contents and structure, but also
into its inner workings, and aid in the interpretation of observa-
tions in dust-affected wavebands. Most 3D mapping efforts so far
have aimed to reconstruct the distribution of dust in our Galaxy
on large scales. This is interesting as it reveals the structure of
our Galaxy, such as its spiral arms. Some notable recent con-
tribution in this direction was provided by Green et al. (2019),
who mapped three quarters of the sky using Gaia, 2MASS,
and PANSTARRS data using importance sampling on a grid-
ded parameter space and by assuming a Gaussian process prior.
Lallement et al. (2019) reconstructed a map extending out to
3 kpc with a 25 pc resolution based on Gaia and 2MASS data
with Gaussian process regression. Chen et al. (2018) recon-
structed a map extending out to 6 kpc with a 0.2 kpc radial
resolution based on Gaia, 2MASS, and WISE data with random
forest regression.

This paper can be regarded as a follow-up to Leike & Enßlin
(2019). Some derivations are kept short here, and we advise
Leike & Enßlin (2019) as a co-read for the statistically inclined
reader. We focus on reconstructing only the nearby dust clouds,
within ∼400 pc. While this prohibits revealing spiral arms, it
enables us to achieve higher resolution. This way, we hope to
be able to constrain simulations of the ISM, which achieve a
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Table 1. Data columns extracted from Anders et al. (2019).

Name in Anders et al. (2019) Our notation Explanation

Dist16 dist16 16% distance quantile
Dist50 dist50 50% distance quantile
Dist84 dist84 84% distance quantile
ag50 a 50% G-band extinction quantile

SH_PHOTOFLAG ph Photo bands used for data point
SH_GAIAFLAG SH_GAIAFLAG Output flag of Gaia
SH_OUTFLAG SH_OUTFLAG Output flag of the starhorse pipeline

similar resolution. The map might also prove relevant for fore-
ground corrections to the CMB, especially for CMB polarization
studies. It was shown that most of the Galactic infrared polar-
ization at high latitudes (|b| > 60) comes from close-by regions
around 200–300 pc (Skalidis & Pelgrims 2019). Correction maps
have so far been based on infrared observations, and could be
biased through different starlight illumination or differing dust
temperatures.

2. Data

For our 3D reconstruction, we used combined observational data
of Gaia DR2, ALLWISE, PANSTARRS, and 2MASS. These
datasets were combined and processed to yield one consistent
catalog with stellar parameters by Anders et al. (2019). We
used these high-level preprocessed data for our reconstruction.
Table 1 contains a summary of the columns we extracted from
this dataset. We further selected only sources that are inside an
800 pc × 800 pc × 600 pc cube centered on the Sun. To deter-
mine whether a source is inside this cube, we used their 84%

distance quantile dist84. We assumed a Gaussian error on the par-
allax, with mean mω and standard deviation computed from the
distance quantiles as

mω =
1

2
(1/dist16 + 1/dist84) (1)

σω =
1

2
(1/dist16 − 1/dist84) . (2)

Furthermore, we applied the following selection criteria;

SH_OUTFLAG = 00000, (3)

SH_GAIAFLAG = 000, (4)

ph ∈ Table 2, (5)

σω/mω < 0.3, (6)

av05 , av16. (7)

In other words, we selected only stars that have clean starhorse
pipeline flags, a clean Gaia flag, a specific photo flag, and
sufficiently small parallax error. We required the constraint on
the photo flag, because we only derived the noise statistic for
stars with this flag. For details, see Sect. 3.2. Additionally, we
excluded stars for which the 5% V-band extinction quantile is
equal to the 16% quantile, as this suggests that the pipeline had
difficulties for these sources.

These criteria result in the selection of a total of 5 096 642
sources. Figure 1 shows an inverse-noise weighted average of our
data projected onto the sky. To consistently combine the informa-
tion of many data points, it is crucial to know the likelihood of
a data point given the true amount of extinction for that source.

Table 2. SH_PHOTOFLAG values and the corresponding mean and
standard deviations for sources in dustless regions.

ph = SH_PHOTOFLAG Mean mph Standard deviation σph

GBPRP 0.493 0.439
GBPRPJHKs 0.131 0.259

GBPRPJHKs#W1W2 0.315 0.538
GBPRPJHKsW1W2 0.116 0.232
GBPRPgrizyJHKs 0.223 0.209

GBPRPgrizyJHKsW1W2 0.156 0.172
GBPRPiJHKsW1W2 0.101 0.219
GBPRPiyJHKsW1W2 0.165 0.234

Notes. Regions are considered as dustless if the Planck dust map shows
weaker emission than exp(2)µK/rJ.

Fig. 1. A Mollweide projection of the G-band extinction optical depth
a to all sources in the used dataset. For this healpix nside 128 plot, we
average the data sources that are in the same pixel, using the inverse
noise dispersion as weights. Pixels with no data appear in white.

We call this likelihood of one data point given its true extinc-
tion the noise statistic to distinguish it from the likelihood of
the whole dataset given the true 3D dust extinction distribution,
which contains additional operations (see Sect. 3 for details).
Unfortunately, Anders et al. (2019) did not publish a noise statis-
tic for their dataset, and a noise statistic is not readily derivable
from posterior quantiles. This is because posterior quantiles a
give very limited information on the distribution P(a∗|a) of the
true extinction a∗, while a full noise statistic would be given by
P(a|a∗). In particular, there is no natural way to derive an ana-
lytic form of P(a∗|a), inhibiting the calculation of P(a|a∗). We
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thus chose a different approach to infer the noise statistic, which
we describe in Sect 3.2.

3. Likelihood

3.1. Response

If we have the true 3D extinction density s(x), we can compute
the extinction a∗

i
for each source i by computing the line integral

Ri

a∗i = Rω∗i (s) =

∫ 1

ω∗
i

0

s(rθi)dr , (8)

where θi is the position of the ith source projected onto the unit
sphere and ω∗

i
is the true parallax of the source. The true par-

allax ω∗
i

is assumed to be Gaussian distributed, with error and
mean computed from the 16 and 84% percentiles of the starhorse
dataset according to Eqs. (1) and (2):

ω∗i x G (ω∗i |
1

2
(ω84,i + ω16,i),

1

4
(ω84,i − ω16,i)

2) . (9)

Given this uncertainty of the true source distance, we can com-
pute the expected extinction density for the source i as a weighted
line integral Ri

〈
a∗i

〉
P(ω∗

i
|ω16,i,ω84,i)

= Ri(s) =
〈
Rω

∗

i (s)
〉

P(ω∗
i
|ω16,i,ω84,i)

=

∫ 1

ω∗
i

0

s(rθi)(1 − cdf(r|ω16,i, ω84,i))dr, (10)

where cdf denotes the cumulative density function of Eq. (9)
with r = (ω∗)−1. We computed the line integral of Eq. (10) on
the fly for every step, using a parallelized fortran code1.

The uncertainty of the true position of the source intro-
duces a source-dependent supplementary noise contribution
σ̂2

i
. This uncertainty arises due to the uncertainty of the true

source distance, which introduces uncertainty on the line-of-
sight extinction even when given the true extinction density s.
The standard deviation of this supplementary noise contribution
can be computed as

σ̂2
i = Var

[
P

(
a∗i |ω16,i, ω84,i, s

)]

= Var

[∫
dω∗i P

(
a∗i , ω

∗
i |ω16,i, ω84,i, s

)]

= Var

[∫
dω∗i P

(
a∗i |s, ω

∗
i

)
P

(
ω∗i |ω16,i, ω84,i, s

)]

≤ Var

[∫
dω∗i P

(
a∗i |s, ω

∗
i

)
P

(
ω∗i |ω16,i, ω84,i

)]

= Var

[∫
dω∗i δ

(
a∗i − Rω

∗

i (s)
)

P
(
ω∗i |ω16,i, ω84,i

)]
. (11)

The last inequality holds, as P(ω∗
i
|ω16,i, ω84,i) has strictly more

variance than P(ω∗
i
|ω16,i, ω84,i, s). We sampled this additional

noise contribution before every step of our algorithm. We did

this by drawing M = 20 samples j of parallaxes ω
j

i
according to

the statistic given by Eq. (9). We then computed

σ̂2
i =

1

M

∑

j

Rω
j

i (s) (12)

1 https://gitlab.mpcdf.mpg.de/mglatzle/gda_futils

as the sample variance of the extinction estimate using the sam-
ples j and the current reconstructed dust extinction density s.
This error correction was not done in Leike & Enßlin (2019).
However, for this paper, the smaller data uncertainty and slightly
higher parallax error of the sources raises the importance of
computing this error correction, while the use of the new code
for the response enables its calculation.

3.2. Noise statistic

The noise statistic specifies how probable an observed G-band
extinction value is, given that one would know the true amount
of G-band extinction for that source. Since there is no detailed
noise statistic published for the dataset we used, we had to con-
struct it. To do this, we looked at regions of the sky where there
is no significant amount of dust expected. These regions were
identified by using the Planck dust map (Planck Collaboration
I 2020), more specifically the dust map from the COMMAN-
DER pipeline of the 2014 Planck data release. Here, regions with
less than exp(2)µK/rJ were taken to be dustless. This criterion
selects 606 pixels of the healpix nside 256 dust map, corre-
sponding to 0.077% of the sky. For every SH_PHOTOFLAG for
which we have more than 100 values in these dustless regions,
we calculated the mean mph and standard deviation σph of all G-
band extinctions. Using these values, we define the probability
to measure an extinction a given the true extinction a∗ as

P(a|a∗,SH_PHOTOFLAG = ph) = G

(
a|a∗ + mph, σ

2
ph

)
. (13)

Table 2 shows our used means mph and standard deviations σph

for all used photo flags ph. As can be seen by investigating
Table 2, the mean values deviate strongly from zero, and cor-
recting the zero point is vital to our reconstruction. We note that
because we fix the noise statistic for an actual extinction value
of zero, the reconstruction might be biased for high extinction
values. We discuss some biases that could be attributed to this
effect in Sect. 6.2.

4. Prior

We folded our physical knowledge into the prior of the dust
extinction density. We chose the exact same prior model as in
Leike & Enßlin (2019). We assumed the extinction density s
to be positive and spatially correlated. This can be enforced by
assuming a log-normal Gaussian process prior

sx = ρ0 exp(τx) , (14)

τx G (τ|0,T ) , (15)

where ρ0 is the prior median extinction density and T is the
correlation kernel of the Gaussian process τ. The prior median
extinction density is a hyperparameter of our model, and we
chose ρ0 =

1/1000 pc−1. We inferred the kernel T during our
reconstruction. This can be achieved by rewriting s in terms of a
generative model

sx = ρ0 exp
(
F

√
Tk(ξT )ξk

)
, (16)

where all ξ are a-priori standard normal distributed, and Tk(ξT )

is a nonparametric model for the Fourier-transformed correla-
tion kernel Tk, also called the spatial correlation power spectrum.
One should note that this model is degenerate: any change in Tk

can be absorbed into ξk instead, as only the product of these two
fields enters the overall dust extinction density s. Because of this
property, the reconstructed power spectrum Tk does not have to
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be the empirical power spectrum of sx, which can be calculated
by Fourier transforming and binning. To avoid misunderstand-
ings and artifacts from the degenerate model, we mainly report
the empirical power spectrum in this paper, which is computed
from posterior samples of sx. We now focus on our model for
the power spectrum Tk. This model assumes the spatial correla-
tion power spectrum to be a preferentially falling power law, but
allows for arbitrary deviations. It can be written as
√

Tk(ξT ) = Exp∗exp
[
(ms + σsξs)ln(k) + m0 + σ0ξ0

+ Fln(k)tsym(A/
(
1+(t/t0)

2
)
ξφ(t))

]
, (17)

where the first part describes a linear function on log–log scale,
for instance a power law; and the second part describes the non-
parametric deviations that are assumed to be differentiable on
log–log scale. The operation Exp∗ denotes the exponentiation of
the coordinate system. More explicitly, Fln(k)t is Fourier trans-
formation on log–log scale, and the function sym is defined
as

f : [0, 2b]→ R (18)

sym( f )(x) = ( f (x) − f (2b − x))
∣∣∣
[0,b]
, (19)

where f
∣∣∣
M

denotes the restriction of the domain of the function
f to M. The function sym is required to deal with the peri-
odic boundary conditions introduced by the Fourier transform.
Details can be found in the appendix of Arras et al. (2019). The
hyperparameters of the model are (A, t0,ms, σs,m0, σ0), which
we chose to be (11, 0.2,−4, 1,−14, 3) in complete analogy to
Leike & Enßlin (2019).

5. Algorithm

We combined the prior and the likelihood into one genera-
tive model of the data. We computed approximate posterior
samples using metric Gaussian variational inference (MGVI;
Knollmüller & Enßlin 2019). This variational approach alter-
nates between drawing samples around the current estimate for
the latent parameters and optimizing the current estimate using
the average gradient of the samples. The final set of samples was
used to derive an uncertainty estimate on all our maps, as well as
on all derived quantities.

For further parallelization, we split the problem into the eight
octants. Each octant measures 410 pc×410 pc×310 pc, meaning
that they overlap for 20 pc.

We hereby used a threefold parallelization scheme, paral-
lelizing by octants, parallelizing by samples, and a parallelized
response. The latter two parallelizations were enabled by our new
fortran implementation, which computes the arising line inte-
grals (Eq. (10)) on the fly. This is in contrast to our previous
paper Leike & Enßlin (2019), where we computed the line inte-
gral using sparse matrices. Computing the response on the fly
takes approximately the same amount of time, but does not have
any additional memory requirements, and therefore allows for
parallelization and a larger reconstruction.

The total number of degrees of freedom is ≈417 million,
exceeding those of our previous map by a factor of 30. The total
computation time was about two weeks of wall clock time, or
about 0.5 million CPUh on 1920 cores.

The final samples of the independently reconstructed octants
are combined into the full reconstruction using a differen-
tiable variance-preserving interpolation scheme. The details are
described in Appendix A. One noteworthy point is that we cut
away the outer 30 pc due to artifacts from periodic boundary

conditions, resulting in a final map volume of 740 pc × 740 pc ×
540 pc.

6. Results and discussion

6.1. Results

We were able to reconstruct the nearby dust clouds. Figure 2
shows various maps produced from our result and their relative
uncertainty. The maps show tendrils and filaments of dust on
scales as small as 2 pc up to scales of several hundred parsecs, at
which they become disconnected.

All octants inferred similar logarithmic convolution kernels,
as can be seen in Fig. 3. These correlation kernels were computed
by taking a slice out of the reconstructed Fourier-transformed
square root power spectrum.

A comparison of the empirical power spectra of the eight
different octants can be found in Fig. 4. Most octants have very
similar power spectra, only octant three deviates strongly. This
octant, located at 180 < l ≤ 270 and b > 0 (disregarding the
overlap), is strongly devoid of dust, explaining the significantly
lower power spectrum.

For the power of the full-volume extinction density, we find
a power law with spectral index of 2.52 ± 0.015 at scales from 2

to 100 pc. For the logarithmic power, we report a spectral index
of 2.82 ± 0.022 at scales from 2.3 to 125 pc.

Using our reconstruction, we can determine distances to
nearby dust clouds. We derive two distance maps. Figure 5 shows
the distance to the nearest dust clouds in all directions, as well as
an uncertainty on that distance estimate. We note that we com-
puted the distance by checking for the first voxel that exceeds a
the threshold of 0.005 e-folds per pc of extinction density. Some
of our samples do not exclude the existence of nearby dense
clouds, which raises the uncertainty in the corresponding direc-
tions tremendously. Figure 6 shows the distance to the densest
dust clouds in all directions, as well as an uncertainty on that
distance estimate. We note that the uncertainty estimate is quite
high on the boundaries of dust clouds, as the reconstruction is
uncertain which voxel is densest along these lines of sight.

6.2. Comparison

An implicit assumption of the algorithm is that the voxels are
smaller than the achievable resolution. Phrased in physical terms,
an increase in pixel resolution can be regarded as a renormaliza-
tion, and we need to reach the continuous limit, meaning the limit
of negligible discretization effects, for the algorithm to work.
This is a byproduct of the inference of the power spectrum, if the
achieved posterior resolution is of the order of the imposed voxel
resolution, then the reconstruction changes drastically from one
voxel to another, and the extinction of sources behind an affected
voxel also changes dramatically at the boundary. This sudden
change in extinction is not compatible with a falling spatial
correlation power law in Fourier space, thus the reconstructed
power will fall less steeply than the real one. This would signifi-
cantly hamper the ability of the algorithm to extrapolate between
measurements. We avoid this behavior by significantly increas-
ing resolution compared to our previous reconstruction Leike &
Enßlin (2019). However, it is conceivable that the reconstruc-
tion would still benefit from increasing the amount of voxels. We
recommend distrusting the smallest scales of our reconstruction,
only at scales of 2 pc or higher can the result be considered to be
stable. This resolution limit was deduced from the reconstructed
logarithmic correlation kernels as seen in Fig. 3. At this limit, the
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Result of our 3D dust reconstruction. The first column shows dust extinction, the second shows the relative error. The first row shows the
integrated extinction in e-folds in a Mollweide projection of the whole reconstructed box of 740 pc × 740 pc × 540 pc. The second row also shows
integrated extinction in e-folds in the same box, but integrated normally to the Galactic plane instead of radially. The third row shows differential
extinction in e-folds per parsec in a slice along the Galactic plane.
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Fig. 3. Reconstructed correlation kernels for the different octants. We
note that the logarithmic dust extinction in our model is the result of
an a-priori normal distributed field that is folded with these kernels,
dependent on the octant. The octants are arranged such that octant i =
4b2 + 2b1 + b0 (for bi ∈ {0, 1}) extends in positive x-direction if and only
if b0 = 0, in positive y-direction if and only if b1 = 0 and in positive
z-direction if and only if b2 = 0. We note that all kernels fall to about
10% in the first 2 pc.

Fig. 4. Empirical power spectra of the dust extinction density of the
eight octants. The octants are arranged such that octant i = 4b2 + 2b1 +

b0 (for bi ∈ {0, 1}) extends in positive x-direction if and only if b0 = 0,
in positive y-direction if and only if b1 = 0 and in positive z-direction if
and only if b2 = 0.

reconstructed correlation kernels of the logarithmic dust extinc-
tion density have fallen to 10%. A comparison of our results to
Leike & Enßlin (2019) can be found in Fig. 7; see Fig. 8 for a
logarithmic version.

We compare our results to the map of Green et al. (2019).
Figure 9 shows column density comparisons of the two recon-
structions. Figure 10 shows the same column densities, but on
a logarithmic scale. A more detailed comparison to Green et al.
(2019) in angular coordinates can be seen in Fig. 11.

In contrast to our old map, we used the dataset of Anders
et al. (2019), which provides more sources and tighter constraints
on the parallax and G-band extinction than the previously used
Gaia data. The new reconstruction has a volume of 800 pc ×
800 pc × 600 pc, compared to the (600 pc)3 cube in Leike &
Enßlin (2019). Furthermore, using a designated fortran routine
for the computation of the line-of-sight integrals lead to the
necessary speedup to handle the additional data constraints and

significantly more degrees of freedom. Finally, in the new recon-
struction, the parallax error is propagated into the measurement
error, causing extinction values with stars of high parallax error
to be less informative. In Fig. 7, one can see dust column densi-
ties along Galactic x, y, and z coordinates. Both dust maps agree
on the morphology of large dust clouds on large scales. However,
the current dust map contains significantly more dust. Part of the
reason is that the data we use in the reconstruction of this paper
has higher resolution and lower noise, allowing more dust to be
reconstructed. We also believe the data used in Leike & Enßlin
(2019) to be slightly biased toward underestimating the amount
of dust, an effect that accumulates in a reconstruction that uses
many data points. In contrast, the data used in this reconstruc-
tion might have a tendency to overestimate the amount of dust,
despite our efforts to calibrate the zero point (see Sect. 3.2).

Furthermore, we reconstructed our correlation kernel non-
parametrically, which should lead to an unbiased estimate of
the power spectrum. Figure 12 shows power spectra of Leike
& Enßlin (2019), the reconstruction of this paper, and of the
reconstruction of Green et al. (2019). Our new reconstruction
and Leike & Enßlin (2019) seem to have quite consistent power
spectra. The general tendency of the falling power law is also
remarkably consistent with Green et al. (2019), however at scales
of a few parsec the power spectrum of Green et al. (2019) flattens,
which we believe to be an artifact of how we put their recon-
struction on a Cartesian grid. For example, the boundaries of the
reconstructions intrinsic voxels introduce steep cuts that flatten
the resulting power spectrum. However, none of the power spec-
tra are consistent within the uncertainty estimates. While this
seems problematic, one has to bear in mind that all reconstruc-
tions focus on dust in differing regions, potentially explaining
the difference in the power spectrum. In Fig. 13, we show the
power spectra of the logarithmic reconstructions. These seem to
be less consistent in general, however one has to bear in mind
that the logarithmic power spectrum is dominated by regions of
low dust content, as these occur more frequently. Using Gaia
data, our method was found to underestimate low dust regions,
and we anticipated that with the starhorse data, we would tend
to overestimate low dust regions. Nonetheless, we find that the
spectral index of 2.82 ± 0.022 at scales from 2.3 pc to 125 pc is
compatible with the empirical spectral index of Leike & Enßlin
(2019) within a 2σ joint uncertainty margin. The spectral index
of the empirical power spectrum of Leike & Enßlin (2019) is
3.2 ± 0.142. The logarithmic power spectrum of Green et al.
(2019) seems to be inconsistent with our measurements. How-
ever, this effect is probably due to how we treat the missing
values in that map, where a quarter of the sky was not measured.
We have to set these values and every possible choice will impact
the derived power spectra. We chose to set them to 10−7, which
has minimal impact on the power spectrum on a linear scale,
but biases the power spectrum of the logarithmic dust extinction
density and could potentially explain the difference.

Figure 14 shows a histogram of dust extinction density per
voxel. One can see a good agreement between the histogram
of our old and our current reconstruction in the region between
10−3 pc−1 and 10−1 pc−1. A dust extinction density of 10−4 pc−1

integrated to the boundary of our simulation cube yields an inte-
grated extinction of 0.046, which is below our noise level even

2 We note that Leike & Enßlin (2019) reported a spectral index of 3.1
for the reconstructed power spectrum. For this paper, we instead chose to
analyze the power spectrum of the resulting maps, which yields slightly
different values but enables us to derive uncertainty estimates for all
compared maps in the same way.
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Fig. 5. A Mollweide projection showing the distance to the first voxel of our reconstruction that exceeds an extinction estimate of 0.005 e-folds per
parsec (left side) and corresponding uncertainty map (right side). Directions for which the threshold is never reached appear in white.

Fig. 6. A Mollweide projection showing the distance to the voxel with the highest extinction estimate in that direction (left side) and corresponding
uncertainty map (right side).

when pooling the information of many stars. For this reason, we
do not show the histogram below 10−4 pc−1, as its shape is mostly
dependent on how the reconstruction extrapolates into a dustless
region. From the histogram, it can be seen that the dust den-
sity is well described by a log-normal distribution. We note that
since we only show the part of the histogram that has high signal
to noise, this result should be relatively unbiased by our choice
of prior. The fit log-normal model has a standard deviation of
σ = 1.906 ± 0.009 and a mean of m = −9.79 ± 0.04.

6.3. Using the reconstruction

One should note that the reconstruction shows a non-negligible
amount of dust in the local bubble. We believe that the level
found is an artifact of our noise statistic. As described in Sect. 3,
our data model involves some heuristics that might systemati-
cally affect the reconstruction. This causes estimates made with
this data to be biased, and we were not able to fully correct
for this bias. When integrating the reconstructed dust density to
70 pc, we find that the nearby dust looks like a smeared out ver-
sion of farther dust clouds, indicating that it is indeed an artifact
related to systematic data biases.

The posterior samples of the extinction density are avail-
able for download3. When using the reconstruction, we advise
that you beware of systematic overestimations of dust, espe-
cially in the local bubble. When deriving numeric quantities,

3 https://doi.org/10.5281/zenodo.3750926, DOI 10.5281/
zenodo.3750926 or at the CDS http://cds.u-strasbg.fr/

we advise doing so for every sample and then estimating the
mean and standard deviation of the results in order to get an error
estimation.

6.4. Implications

Our map can be used to constrain simulations of the ISM. For
example, in simulations of radiatively cooling dust clouds in hot
winds, it has been shown that dust density power spectra are flat-
ter than was previously thought (Sparre et al. 2019). Our maps
show power spectra compatible with these simulations, and mor-
phologically similar structures. Our reconstructed spectral index
of 2.82± 0.022 at scales from 2.3 to 125 pc could be used to con-
strain parameters of sub-grid models of simulations of the ISM.
Furthermore, we find the density histogram of the logarithm of
the G-band dust extinction density in e-folds per parsec shown in
Fig. 14 is well described by a log-normal distribution with stan-
dard deviation σ = 1.906 ± 0.009 and mean m = −9.79 ± 0.04

on extinction density scales from 10−4 to 1 pc−1.

7. Conclusion

We were able to reconstruct the dust clouds within ∼400 pc
of the Sun down to a resolution of 2 pc, improving in res-
olution and volume on our previous reconstruction (Leike &
Enßlin 2019). The resulting map is public and can be down-
loaded; see Sect. 6.3 for details. Distances to and densities of all
dust clouds larger than 2 pc are expected to be well constrained
by the reconstruction. We report our estimate on the power
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Comparison of column densities of our current reconstruction (left column) and Leike & Enßlin (2019; right column). The rows show
integrated dust extinction for sight lines parallel to the z-, x-, and y-axes, respectively.

A138, page 8 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038169&pdf_id=0


R. H. Leike et al.: Resolving nearby dust clouds

(a) (b)

(c) (d)

(e) (f)

Fig. 8. As Fig. 7 but on logarithmic scale.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Column density comparison of our current reconstruction (left column) and that of Green et al. (2019; right column). The rows show
integrated dust extinction for sightlines parallel to the z-, x-, and y-axes, respectively. We note that for Green et al. (2019), we show the integrated
extinction only if more than 50% of the projected voxels exist in the reconstruction.
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. As Fig. 9 but on logarithmic scale.
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. Comparison of integrated extinction of our reconstruction (left column) and that of Green et al. (2019; right column) in sky projection. The
rows show integrated dust extinction out to the boundary of our 740 pc × 740 pc × 540 pc box in an all sky view (first row), as well as two selected
directions towards the Galactic anti-center (middle row) and center (last row).

Fig. 12. Empirical power spectra of the dust extinction density of
this paper (solid line), Leike & Enßlin (2019; dashed line) and the
reconstruction of Green et al. (2019; dotted line).

Fig. 13. Empirical power spectra of the logarithmic dust extinction den-
sity of this paper (solid line), Leike & Enßlin (2019; dashed line) and
the reconstruction of Green et al. (2019; dotted line).
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Fig. 14. Histogram of dust extinction density per voxel of this paper
(solid line), Leike & Enßlin (2019; dashed line) and the reconstruc-
tion of Green et al. (2019; dotted line). We overplot a log-normal
model that was fit to our reconstructed logarithmic extinction den-
sity (dash-dotted line). The curve of the fit is described by f (x) ∝

exp
(
−0.5σ−2 (ln(x) − m)

)
with σ = 1.906 and m = −9.79 and follows

our empirical distribution function closely.

spectrum of the dust extinction density as well as the logarithmic
density. Furthermore, we provide a histogram of dust densities in
the interstellar medium and find them to be well described by a
log-normal model. We hope that our diverse summary statistics
allow simulations of the ISM to be constrained.
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Appendix A: Interpolation scheme

To parallelize the reconstruction, we reconstructed the eight
octants of the coordinate system independently, with a 20 pc
overlap region. To get one final reconstruction, we have to glue
these reconstructions together and specify how we deal with
the overlap region. We do so using a differentiable, variance-
preserving interpolation scheme, meaning that if the octants are
differentiable then the result is differentiable; and the final sam-
ples have at least the variance that the individual reconstructions
imposed. We compute the uncorrected interpolated logarithmic
extinction samples τ′(x) j from the samples of the eight octants

oi(x) j as

τ′(x) j =

∑

i

wi(x)oi(x) j. (A.1)

Thus, the weights wi(x) can be computed as

wi(x) =

2∏

k=0

∣∣∣∣∣∣bk(i) − f

(
xk − 9 pc

18 pc

)∣∣∣∣∣∣ , (A.2)

where f (x) =



0 x ∈ (−∞, 0]

x2(3 − 2x) x ∈ (0, 1)

1 otherwise,

(A.3)

and bk(i) denotes the kth digit of i in binary format. Noteworthy
properties of this scheme are that the weights sum to one

∀x
∑

i

wi(x) = 1, (A.4)

and the polynomial f is the unique polynomial of degree 3 so
that

f (0) = 0, (A.5)

f (1) = 1, (A.6)

∂ f

∂x
(0) = 0, (A.7)

∂ f

∂x
(1) = 0. (A.8)

By using this interpolation scheme, only voxels that have a coor-
dinate xk of which the absolute value is at most 8 pc get nonzero
contributions from more than one octant. In other words, we cut
away the outermost 2 pc of all reconstructions, which mitigates
artifacts from periodic boundary conditions. From the prelimi-
nary logarithmic extinction density τ′(x) j, we can compute the
logarithmic sample mean τ̄(x) as

τ̄ =
1

N

∑

j

τ′j. (A.9)

Here, N denotes the number of samples. The variance of τ′
j

is

artificially low at overlapping regions, as independent samples
were averaged. We correct for this effect and compute the overall
logarithmic extinction density samples τ(x) j as

τ(x) j =
τ′(x) j − τ̄(x)
√∑

i wi(x)2
+ τ̄(x). (A.10)
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