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ABSTRACT. 

A fundanental sub-problem of the task of 
interpreting the sonar data gathered by a mobile 
subnersible robot vehicle is that of constructing 
and maintaining a stationary global reference frame 
in which interpretation can take place. Such a 
frane nay be established by tracking the movements 
of objects in the local environment of the robot 
and using the data so obtained to deduce the motion 
of the observer. In a marine context, where 
currents make it impossible to hold a vehicle sta­
tionary for any extended period, it is important to 
track the vehicle and object motion continuously in 
real time. In this paper the problem of establish­
ing a stationary reference frame using noisy, spec­
ular, intermittent sonar data is discussed and a 
computational method for i t s solution is presented. 
The nethod has been tested by computer simulation 
in a two dimensional context and an evaluation of 
i t s performance is given. The solution presented 
is not restricted to marine vehicles but is espe­
c ia l l y effective for land-based vehicles, where 
operating conditions are less severe. 

I. INTRODUCTION. 

often, and the vehicle proceeds by dead-reckoning. 
Such a paradigm is both simple and effective pro­
vided that it is possible approximately to predict 
or estimate the effects of the deliberate movements 
and, more importantly, that it is possible to 
remain stationary while the position recalibration 
is done. 

These assumptions are reasonable on land, but 
immediately break down in a marine environment. It 
is impossible to keep a vehicle stationary for any 
extended period since water currents w i l l push it 
about, and without expensive navigational equipment 
it is impossible to keep track of the vehicle posi­
t ion accurately. If motion resolution is to be 
done in this context it must be performed continu­
ously, in real time, rather than using a discrete 
paradigm l ike the land-based one. 

B. System Input. 

This constraint on a motion resolution scheme 
allows some of the potential d i f f i c u l t i e s of marine 
acoustic sensing to be turned to advantage. Acous­
t ic data, unlike optical data, is strongly specular 
and it is d i f f i c u l t to recover anything resembling 
an optical image in bulk spatial resolution without 
extensive processing and using special techniques 
to overcome the specularity. Sonar images natur­
a l l y contain re lat ively few data points, but it is 
easy to obtain accurate range and bearing ( In two 
or three dimensions) d i rect ly from the data and 
most sonar equipment is capable of measuring 
Doppler sh i f t velocity for each data point. This 
highly concentrated geometric information is ideal 
for driving a motion resolution system. 

With these facts in mind, therefore, the input 
to the motion resolution system is assumed to 
comprise time series of vectors of measurements 
describing the data points (targets) in a sequence 
of sonar images. Each vector contains the polar 
coordinates of i t s target with respect to the sonar 
transducer, and may carry a Doppler velocity if one 
is available and re l iab le . The vector also carries 
a flag that informs the system whether the target 
has a non-zero absolute velocity — this can be 
computed from Doppler data even when the Doppler 
veloci ty cannot be determined exactly. 

A. Background. 

The problem of motion resolution affects a l l 
mobile robotic vehicles to some degree. In essence 
it is the problem of determining a robot's proper 
motion or position with respect to i t s 'wor ld ' . 
This task has been well defined and tackled for 
land-based robots where some simplifying assump­
tions may be made. The solution Is exemplified in 
lioravec's work with the Stanford CART robot [Mor80] 
and takes the form of a 'Move, Stop, Think' para­
digm. The vehicle estimates i t s current posit ion, 
moves a roughly known distance in an approximate 
di rect ion, and then remains stationary while i t s 
position is recalibrated using sensory data ( in 
lioravec's work, nine television images supply this 
data). When recalibration is complete, it Is ready 
to execute another planned movement. This pro­
cedure is a generalised version of the stat ic c a l i ­
bration that fixed robots undergo before beginning 
work. Indeed, If the planned movements can be made 
or measured accurately the recalibration with i t s 
time-consuming processing need not be done very 
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The number of targets seen in a given sonar 
scan is variable and because of specularity and the 
relative movement of observer and target a given 
target w i l l in general be seen only intermit tent ly. 
The geometric measurements obtained for each tar­
get, in polar coordinates, are subject to errors of 
constant variance. However, when transformed into 
Cartesian coordinates the errors are range depen­
dent -- the volume of uncertainty in which the tar­
get l ies is a sector with width dependent on the 
sonar beam-width and thickness dependent on the 
sonar range resolution (see Figure 1). The errors 
are independent in polar coordinates but are cou­
pled, depending on the bearing, in Cartesian coor­
dinates. 

Figure 1: Measurement Uncertainty Region 

I I . A METHOD FOR MOTION RESOLUTION. 

An alternative and more uniform def in i t ion of 
motion resolution may be formulated in terms of 
target tracking. If the proper motions of a l l tar­
gets, including the sonar transducer as a special 
case target that is never seen, are tracked a glo­
bal frame may be established using the tracking 
data. Impl ic i t ly it is the frame with respect to 
which the transducer is tracked; exp l i c i t l y , it is 
that frame in which stationary targets are f ixed. 
In fact , although it is known whether a target is 
absolutely stationary, only the relat ive motion of 
the target with respect to the observer may be 
measured; and further, a stationary target does not 
imply a fixed absolute position (consider the sta­
tionary l ine reflector in Figure 2, which mirrors 
observer motion parallel to the l i ne ) . This 
motivates the fundamental insight of the method: if 
the relat ive motion of targets is tracked the 
observer movement w i l l appear as a common component 
of those relative motions, that may be extracted 
and tracked to derive the observer motion. 

The basic block of the tracking system is the 
Kalman f i l t e r . Devised by R. E. Kalman [Ka[60], 
this f i l t e r is a general and powerful recursive 
data processor. It is able to deal with input data 
vectors with variable error covariance and variable 
inter-sample times. For data with a unimodal error 

d istr ibut ion with zero mean the Kalman f i l t e r is 
optimal in the sense that i t s estimates and predic­
tions of tracked quantities have minimal error 
variance, and the f i l t e r computes error covariance 
matrices for i t s outputs in the course of i t s 
operation. The f i l t e r has been used extensively in 
radar tracking applications ( for example, Morley 
and Wilsdon's multiradar tracking systen [Mor77]) 
though in these cases there is no observer motion 
to extract. It is computationally demanding in 
general, but can be simplif ied considerably in par­
t icu lar cases. 

Figure 2: Behaviour of a Line Reflector. 

The motion resolution algorithm may be divided 
into two parts: a set of per-target channels (Fig­
ure 3); and a kernel (Figure A). The kernel tracks 
the observer, which has three degrees of freedom — 
two translational and one rotat ional. Transla-
tional tracking maintains the global frame origin 
position while rotational tracking compensates for 
fluctuations in the vehicle's heading which shi f t 
the sonar transducer's polar or ig in. The kernel 
receives inputs from a l l active channels and may 
incorporate navigational data from the vehicle's 
control system if available. 

Each channel tracks a given target and is 
activated when that target is seen. Targets, for 
the purpose of tracking, are considered to be 
points and so have two degrees of freedom. The 
channel contains both relative and absolute motion 
data for i t s target and mechanisms to pass certain 
data to the kernel. With this organisation new 
targets are accommodated by creating a new channel, 
while defunct targets are eliminated by destroying 
the associated channel. 

Tracking is done in Cartesian coordinates. 
The kernel tracking is done with respect to the 
global reference frame; channels track their tar­
gets using coordinates in the observer relat ive 
frame. This la t te r frame is defined as the Carte­
sian reference frame with or ig in at the current 
position of the sonar transducer and with x axis 
aligned with the azimuth axis of the transducer. 
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The algorithm is cyclic in i t s operation; each 
cycle is in i t ia ted by target observation vectors 
(event vectors) arr iving at their appropriate chan­
nels (the implied segmentation problem is discussed 
l a te r ) . With reference to Figure 3, an arriving 
event vector is transformed into Cartesian coordi­
nates in the observer relative frame (ORF), an 
error covariance matrix is computed for i t , and it 
is used as input to update the target relat ive 
state (TRS) vector using the Kalman f i l t e r Kr. 
This state is a four component vector of position 
and velocity in the ORF. The TRS is rotated so 
that the ORF and global frame polar axes are 
aligned, and three quantities computed from this 
transformed TRS (TTRS) provide kernel inputs. 

i ) . the target absolute position less the TTRS 
position is used as an observer position estimate; 

i i ) . the TTKS veloci ty, adjusted for the 
current ORF angular velocity estimate (and for tar­
get absolute motion), is used as an observer linear 
velocity estimate. 

i i i ) . the TTKS velocity is corrected using the 
current observer absolute veloci ty, and for target 
absolute motion if necessary, and used to compute 
an estimate of the observer (or ORF) angular velo­
c i t y . These three estimates drive the kernel 
translational and rotational tracking. 

Figure 3 (below): Per-Target Channel Organisation. 
The dashed l ink is used only for moving targets. 

The next phase of ac t iv i ty takes place in the 
kernel (Figure 4). Inputs from a l l active channels 
are col lated, and conbined using a non-recursive 
minimum variance averaging f i l t e r . This f i l t e r is 
designed to have unit common node gain while 
rejecting uncorrelated d i f fe rent ia l inputs as much 
as possible, and is defined by the equations below: 
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The position and velocity data are tracked by the 
Kalnan f i l t e r , Ko, which Maintains the four com­
ponent observer absolute state (OAS) vector. The 
angular velocity average is used di rect ly as the 
new ORF angular velocity and the polar axis a l ign­
ment is computed by integrating the angular velo­
c i ty estimate. 

In the third phase of each cycle the kernel 
pauses the new estimate of the OAS to each active 
channel which adds the OAS to the TTRS to compute a 
new estimate of I ts absolute state vector. Each 
estimated quantity passed through the system is 
accompanied by an appropriate variance or covari-
ance. 

I I I . INPUT SEGMENTATION. 

As noted above, there is an impl ic i t segmenta­
t ion problem in matching target observation events 
to the appropriate channels. This is dealt with by 
using the prediction ab i l i t y of the Kalnan f i l t e r s 
in the channels. For each arriving, event the set 
of potential ly Hatching channels is enumerated and 
a predicted TKS is computed for each channel in the 
set. The potential match set is then pruned as 
follows. F i rs t , estimates of the radial and angu­
lar distances between the event and TKS are made 
and compared, allowing for an unknown observer 
rotat ion, with estimates of the corresponding var i ­
ances. Matches with distances that are too large 
are rejected at once. Secondly, the f i l t e r innova­
t ion distance (the distance between the TKS and 
event using, the f i l t e r covariance matrix as a 
metric) Is computed for each match. The matches 
are classif ied into 'good' if the distance is less 
than 3.5 standard deviations, or 'poor' if less 
than nine. Matches missing, the 'poor' threshold 
are discarded. Thirdly, poor members of multiple 
match classes that contain a good match are elim­
inated. Lastly, the remaining matches are Imple­
mented: uniquely matched events are passed to their 
channels; unmatched events i n i t i a l i se new channels; 
multiple good matches of events are dealt with by a 
multiple target correlation scheme (developed by 
Fortmann et a l . [For80], and to be implemented 
short ly) ; multiple poor matches are deferred pend­
ing further data. 

A problem that part icular ly affects segmenta­
tion arises from allowing the ORF to rotate. The 
rotation of the ORF appears as common angular velo­
c i ty in the channel relative tracking f i l t e r s . 
However, because these f i l t e r s have a linear pred­
ic t ion model, an error arises in the TKS due solely 
to polar or igin sh i f t . This is i l lust rated in f i g ­
ure 5. If the f i l t e r state is not estimated for a 
time t, the state w i l l be predicted at point P, 
r ( l ,w t ) where w is the angular veloci ty. However, 
the actual position of the target is point T, 
r(cos wt,sin wt) . The prediction error is roughly 
proportional to r(wt)1 , and must be corrected if 
this is large. This error also affects the angular 
velocity estimates conputed by the target channels, 
since the position estimate in each TKS w i l l be 
displaced radial ly outwards relat ive to the correct 
posit ion. The error is proportional to the rela­
t ive distance between observer and target, and 

correction is made for it in the angular velocity 
estimator. 

IV. RESULTS. 

The method has been tested using simulated 
events generated by a modeller program. The 
modeller reads i n i t i a l values for target and 
observer position and veloci ty, and predicts their 
positions at future times. Each simulated sighting 
of a target causes an event vector to be generated. 
The modeller can move targets and observer deter-
min is t ica l ly , randomly, or in a combination of both 
modes of movement, and adds measurement error into 
the computed vectors If desired. The random move­
ment and polar measurement errors have Gaussian 
d is t r ibu t ion . 

Two sets of tests were run. In the f i r s t set 
the angular compensation part of the motion resolu­
t ion system was turned off and the observer res­
tr icted to translational motion only. The test 
world contained four objects positioned at the 
corners of a 70m sided square, centred on the o r i ­
g in , and the sonar scan repeti t ion rate was 2.5Hz, 
corresponding to a range l im i t of 300m. Simula­
tions ran from one hundred to one thousand seconds 
of simulated time. Extensive error data were 
logged during the runs and the results of four of 
the tests arc reproduced in tables one and two. In 
the second set, the angular compensation system was 
turned on, and tests run for about th i r t y seconds 
simulated time, using the same world model as the 
f i r s t set of tests. The sonar scan rate remained 
2.5Hz and the angular measurement standard devia­
t ion was 0.01 radians (about 0.57 degrees). In 
each test the radial measurement error standard 
deviation was 0.01 metres (corresponding to a sonar 
range resolution of about 40cm). 

Table 1 gives the error variance ranges for 
the four runs In series one. These figures were 
conputed by comparing the f i l t e r states with the 
modeller states after each cycle of the algorithm, 
accumulating the errors in the input measurements, 
the TRS posit ion, the target global state for each 
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target and the observer global state. The va r i ­
ances presented are the maximum and minimum in each 
category. Note that they are not the data va r i ­
ances computed by the Kalman f i l t e r s — the f i l t e r s 
were uniformly more pessimistic about the va l id i ty 
of their estimates. 

Table 2 shows the coordinate or igin offset 
vectors for the tests. These values are difference 
between the target and observer absolute positions 
and the corresponding data in the modeller states. 
The sizes of these numbers depends upon the d i f fe r ­
ence between the modeller's i n i t i a l position for 
the observer and the motion resolution system's 
start ing observer position of (0,0), and on the 
amount of d r i f t of the global frame or ig in which 
occurs during the i n i t i a l i sa t i on period of the 
f i l t e r system. The s tab i l i t y of the global frame 
of reference in each test is indicated by the simi­
l a r i t y between corresponding displacements for d i f ­
ferent targets and observer. Note that test Id is 
a lengthier run of test le, so that comparison 
between these rows of Table 2 shows the time sta­
b i l i t y of the global frame; comparison within the 
rows' shows the spatial s tab i l i t y of the frame. 

Table 3 shows the observer absolute state 
variances and the biases in the angular state com­
ponents for each of the tests in series two. These 
figures are the means and variances of the d i f fe r ­
ences between system computed quantities and 
modeller generated quantit ies, as in Table 1. 
Table 4 shows the coordinate origin offset vectors 
for tests 2a and 2b. Results of this nature for 
tests 2c and 2d are not meaningful because of the 
large values of the polar axis bias in those tests. 
The values in Tables 3 and 4 are inherently less 
rel iable than those in Tables 1 and 2 because of 
the smaller number of samples involved (some 
seventy as against two hundred and fo r ty ) . 

V CONCLUSIONS. 

1). The system performs well when presented 
with data containing only translational motion. It 
rejects object motion sat isfactor i ly and maintains 
a stable frame of reference under extreme input 
error conditions — the standard deviation of 0.1 
radians in test la corresponds to a sonar beam 
width of more than ten degrees. The reference 
frame is stable over long periods of time, i t s o r i ­
gin d r i f t i ng about 60cm in 800 seconds, and the 
movement of the observer with respect to the refer­
ence frame is tracked correct ly. Thus under these 
conditions the system f u l f i l s i t s goal of impl i ­
c i t l y defining a stable stationary frame of refer­
ence. 

2). When presented with data containing rota­
t ional error the system performs poorly. The cause 
of fa i lure Is the consistent low estimate of the 
ORF angular velocity (low by 3.8 mil l iradians per 
second in tests 2c,d) which integrates over the 
test period to account for half of the bias in the 
polar axis offset ( f i l t e r i n i t i a l i sa t i on time 
accounts for the other ha l f ) . This gradual d r i f t 
in the polar axis offset causes the global frame to 
rotate and interferes severely with absolute 

position and velocity extraction (thus there are no 
offset results for these tests) . The error appears 
to be independent of the observer linear motion 
since it is seen ident ical ly in the results of 
tests 2c and 2d. Further testing w i l l show whether 
the angular velocity def ic i t is due to a biassed 
estimator or Is a further rotational non-linearity 
error of the type already described. 

3). It requires between five and ten activa­
tions of a given channel to i n i t i a l i se the relative 
tracking f i l t e r successfully. Since the global 
reference frame can be established using only four 
targets the system w i l l cope with intermittent 
sightings of targets easi ly. For a sonar scan rate 
of 2.5Ilz it may take up to about th i r ty seconds to 
collect the necessary observations (assuming a very 
pessimistic rate of appearance for the targets); 
with more sophisticated sonar systems it w i l l take 
only a few seconds. 

4). While the system is currently inadequate 
for marine vehicles, where angular effects cannot 
be eliminated easi ly, it is suitable for use in 
land based vehicles. The structure of the system 
allows it to incorporate position or velocity data 
from other sources into the kernel averaging pro­
cess. Thus mechanically obtained estimates of the 
motion of a robot vehicle could be used to improve 
the sett l ing time of the global frame and increase 
the s tab i l i t y of the observer tracking further. 
The long term and spatial s tab i l i t y of the refer­
ence frame make it useful for navigation. The 
modifications necessary to enable the system to 
cope with marine conditions w i l l be done in further 
work when the cause of the low angular velocity 
estimate has been fu l l y investigated. 
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