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ABSTRACT.

A fundanental sub-problem of the task of
interpreting the sonar data gathered by a mobile
subnersible robot vehicle is that of constructing
and maintaining a stationary global reference frame
in which interpretation can take place. Such a
frane nay be established by tracking the movements
of objects in the local environment of the robot
and using the data so obtained to deduce the motion
of the observer. In a marine context, where
currents make it impossible to hold a vehicle sta-
tionary for any extended period, it is important to
track the vehicle and object motion continuously in
real time. In this paper the problem of establish-
ing a stationary reference frame using noisy, spec-
ular, intermittent sonar data is discussed and a
computational method for its solution is presented.
The nethod has been tested by computer simulation
in a two dimensional context and an evaluation of
its performance is given. The solution presented
is not restricted to marine vehicles but is espe-
cially effective for land-based vehicles, where
operating conditions are less severe.

I. INTRODUCTION.

A. Background.

The problem of motion resolution affects all
mobile robotic vehicles to some degree. In essence
it is the problem of determining a robot's proper
motion or position with respect to its 'world'.
This task has been well defined and tackled for
land-based robots where some simplifying assump-
tions may be made. The solution Is exemplified in
lioravec's work with the Stanford CART robot [Mor80]
and takes the form of a 'Move, Stop, Think' para-
digm.  The vehicle estimates its current position,
moves a roughly known distance in an approximate
direction, and then remains stationary while its
position is recalibrated wusing sensory data (in
lioravec's work, nine television images supply this
data). When recalibration is complete, it Is ready
to execute another planned movement. This pro-
cedure is a generalised version of the static cali-
bration that fixed robots undergo before beginning
work. Indeed, If the planned movements can be made
or measured accurately the recalibration with its
time-consuming processing need not be done very
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often, and the vehicle proceeds by dead-reckoning.
Such a paradigm is both simple and effective pro-
vided that it is possible approximately to predict
or estimate the effects of the deliberate movements
and, more importantly, that it is possible to
remain stationary while the position recalibration
is done.

These assumptions are reasonable on land, but
immediately break down in a marine environment. It
is impossible to keep a vehicle stationary for any
extended period since water currents will push it
about, and without expensive navigational equipment
it is impossible to keep track of the vehicle posi-
tion accurately. If motion resolution is to be
done in this context it must be performed continu-
ously, in real time, rather than using a discrete
paradigm like the land-based one.

B. System Input.

This constraint on a motion resolution scheme
allows some of the potential difficulties of marine
acoustic sensing to be turned to advantage. Acous-
tic data, unlike optical data, is strongly specular
and it is difficult to recover anything resembling
an optical image in bulk spatial resolution without
extensive processing and using special techniques
to overcome the specularity. Sonar images natur-
ally contain relatively few data points, but it is
easy to obtain accurate range and bearing (In two
or three dimensions) directly from the data and
most  sonar equipment is capable of measuring
Doppler shift velocity for each data point. This
highly concentrated geometric information is ideal
for driving a motion resolution system.

With these facts in mind, therefore, the input
to the motion resolution system is assumed to
comprise time series of vectors of measurements
describing the data points (targets) in a sequence
of sonar images. Each vector contains the polar
coordinates of its target with respect to the sonar
transducer, and may carry a Doppler velocity if one
is available and reliable. The vector also carries
a flag that informs the system whether the target
has a non-zero absolute velocity — this can be
computed from Doppler data even when the Doppler
velocity cannot be determined exactly.



The number of targets seen in a given sonar
scan is variable and because of specularity and the
relative movement of observer and target a given
target will in general be seen only intermittently.
The geometric measurements obtained for each tar-
get, in polar coordinates, are subject to errors of
constant variance. However, when transformed into
Cartesian coordinates the errors are range depen-
dent -- the volume of uncertainty in which the tar-
get lies is a sector with width dependent on the
sonar beam-width and thickness dependent on the
sonar range resolution (see Figure 1). The errors
are independent in polar coordinates but are cou-
pled, depending on the bearing, in Cartesian coor-
dinates.

Figure 1: Measurement Uncertainty Region

1. A MEHOD FOR MOTION RESOLUTION.

An alternative and more uniform definition of
motion resolution may be formulated in terms of
target tracking. |If the proper motions of all tar-
gets, including the sonar transducer as a special
case target that is never seen, are tracked a glo-
bal frame may be established using the tracking
data. Implicitly it is the frame with respect to
which the transducer is tracked; explicitly, it is
that frame in which stationary targets are fixed.
In fact, although it is known whether a target is
absolutely stationary, only the relative motion of
the target with respect to the observer may be
measured; and further, a stationary target does not
imply a fixed absolute position (consider the sta-
tionary line reflector in Figure 2, which mirrors
observer motion parallel to the line). This
motivates the fundamental insight of the method: if
the relative motion of targets is tracked the
observer movement will appear as a common component
of those relative motions, that may be extracted
and tracked to derive the observer motion.

The basic block of the tracking system is the
Kalman filter. Devised by R. E. Kaman [Ka[60],
this filter is a general and powerful recursive
data processor. It is able to deal with input data
vectors with variable error covariance and variable
inter-sample times. For data with a unimodal error
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distribution with zero mean the Kaman filter is
optimal in the sense that its estimates and predic-

tions of tracked quantities have minimal error
variance, and the filter computes error covariance
matrices for its outputs in the course of its
operation. The filter has been used extensively in

radar tracking applications (for example, Morley
and Wilsdon's multiradar tracking systen [Mor77])
though in these cases there is no observer motion
to extract. It is computationally demanding in
general, but can be simplified considerably in par-
ticular cases.
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Figure 2: Behaviour of a Line Reflector.

The motion resolution algorithm may be divided
into two parts: a set of per-target channels (Fig-
ure 3); and a kernel (Figure A). The kernel tracks
the observer, which has three degrees of freedom —
two translational and one rotational. Transla-
tional tracking maintains the global frame origin
position while rotational tracking compensates for
fluctuations in the vehicle's heading which shift
the sonar transducer's polar origin. The Kkernel
receives inputs from all active channels and may
incorporate navigational data from the vehicle's
control system if available.

Each channel tracks a given target and is
activated when that target is seen. Targets, for
the purpose of tracking, are considered to be
points and so have two degrees of freedom. The
channel contains both relative and absolute motion
data for its target and mechanisms to pass certain
data to the kernel. With this organisation new
targets are accommodated by creating a new channel,
while defunct targets are eliminated by destroying
the associated channel.

Tracking is done in Cartesian coordinates.
The kernel tracking is done with respect to the
global reference frame; channels track their tar-
gets using coordinates in the observer relative
frame. This latter frame is defined as the Carte-
sian reference frame with origin at the current
position of the sonar transducer and with x axis
aligned with the azimuth axis of the transducer.
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The algorithm is cyclic in its operation; each
cycle is initiated by target observation vectors
(event vectors) arriving at their appropriate chan-
nels (the implied segmentation problem is discussed
later). With reference to Figure 3, an arriving
event vector is transformed into Cartesian coordi-
nates in the observer relative frame (ORF), an

error covariance matrix is computed for it, and it
is used as input to wupdate the target relative
state (TRS) vector using the Kaman filter Kr.

This state is a four component vector of position
and velocity in the ORF. The TRS is rotated so
that the ORF and global frame polar axes are
aligned, and three quantities computed from this
transformed TRS (TTRS) provide kernel inputs.

i). the target absolute position less the TIRS
position is used as an observer position estimate;

ii). the TIKS velocity, adjusted for the
current CRF angular velocity estimate (and for tar-
get absolute motion), is used as an observer linear
velocity estimate.

iii). the TIKS velocity is corrected using the
current observer absolute velocity, and for target
absolute motion if necessary, and used to compute
an estimate of the observer (or ORF) angular velo-
city. These three estimates drive the kernel
translational and rotational tracking.

Figure 3 (below): Per-Target Channel Organisation.
The dashed link is used only for moving targets.
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Fipure 4: Rernel Processing.

The next phase of activity takes place in the
kernel (Figure 4). Inputs from all active channels
are collated, and conbined using a non-recursive
minimum variance averaging filter. This filter is
designed to have unit common node gain while
rejecting uncorrelated differential inputs as much
as possible, and is defined by the equations below:
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The position and velocity data are tracked by the
Kalnan filter, Ko, which Maintains the four com-
ponent observer absolute state (OAS) vector. The
angular velocity average is used directly as the
new ORF angular velocity and the polar axis align-
ment is computed by integrating the angular velo-
city estimate.

In the third phase of each cycle the kernel
pauses the new estimate of the OAS to each active
channel which adds the OAS to the TIRS to compute a
new estimate of Its absolute state vector. Each
estimated quantity passed through the system is
accompanied by an appropriate variance or covari-
ance.

[, INPUT SEGVIENTATION.

As noted above, there is an implicit segmenta-
tion problem in matching target observation events
to the appropriate channels. This is dealt with by
using the prediction ability of the Kalnan filters
in the channels. For each arriving, event the set
of potentially Hatching channels is enumerated and
a predicted TKS is computed for each channel in the
set. The potential match set is then pruned as
follows. First, estimates of the radial and angu-
lar distances between the event and TKS are made
and compared, allowing for an unknown observer
rotation, with estimates of the corresponding vari-
ances. Matches with distances that are too large
are rejected at once. Secondly, the filter innova-
tion distance (the distance between the TKS and
event wusing, the filter covariance matrix as a
metric) Is computed for each match. The matches
are classified into 'good' if the distance is less
than 3.5 standard deviations, or ‘poor' if less
than nine. Matches missing, the 'poor' threshold
are discarded. Thirdly, poor members of multiple
match classes that contain a good match are elim-
inated. Lastly, the remaining matches are Imple-
mented: uniquely matched events are passed to their
channels; unmatched events initialise new channels;
multiple good matches of events are dealt with by a
multiple target correlation scheme (developed by
Fortmann et al. [For80], and to be implemented
shortly); multiple poor matches are deferred pend-
ing further data.

A problem that particularly affects segmenta-
tion arises from allowing the CRF to rotate. The
rotation of the ORF appears as common angular velo-
city in the channel relative tracking filters.
However, because these filters have a linear pred-
iction model, an error arises in the TKS due solely
to polar origin shift. This is illustrated in fig-

ure 5. If the filter state is not estimated for a
time t, the state will be predicted at point P,
r(l,wt) where w is the angular velocity. However,

the actual position of the target is point T,
r(cos wt,sin wt). The prediction error is roughly
proportional to r(wt)1 , and must be corrected if
this is large. This error also affects the angular
velocity estimates conputed by the target channels,
since the position estimate in each TKS will be
displaced radially outwards relative to the correct
position. The error is proportional to the rela-
tive distance between observer and target, and
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correction is
estimator.

made for it in the angular velocity
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Figure 5: Rotation-induced Prediction Lrror.

IV. RESULTS.

The method has been tested using simulated
events generated by a modeller program. The
modeller reads initial values for target and
observer position and velocity, and predicts their
positions at future times. Each simulated sighting
of a target causes an event vector to be generated.
The modeller can move targets and observer deter-
ministically, randomly, or in a combination of both
modes of movement, and adds measurement error into
the computed vectors If desired. The random move-
ment and polar measurement errors have Gaussian
distribution.

Two sets of tests were run. In the first set
the angular compensation part of the motion resolu-
tion system was turned off and the observer res-
tricted to translational motion only. The test
world contained four objects positioned at the
corners of a 70m sided square, centred on the ori-
gin, and the sonar scan repetition rate was 2.5Hz,
corresponding to a range limit of 300m. Simula-
tions ran from one hundred to one thousand seconds
of simulated time. Extensive error data were
logged during the runs and the results of four of
the tests arc reproduced in tables one and two. In
the second set, the angular compensation system was
turned on, and tests run for about thirty seconds
simulated time, using the same world model as the
first set of tests. The sonar scan rate remained
25Hz and the angular measurement standard devia-
tion was 0.01 radians (about 0.57 degrees). In
each test the radial measurement error standard
deviation was 0.01 metres (corresponding to a sonar
range resolution of about 40cm).

Table 1 gives the error variance ranges for
the four runs In series one. These figures were
conputed by comparing the filter states with the
modeller states after each cycle of the algorithm,
accumulating the errors in the input measurements,
the TRS position, the target global state for each
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target and the observer global state. The vari-
ances presented are the maximum and minimum in each
category. Note that they are not the data vari-
ances computed by the Kalman filters — the filters
were uniformly more pessimistic about the validity
of their estimates.

Table 2 shows the coordinate origin offset
vectors for the tests. These values are difference
between the target and observer absolute positions
and the corresponding data in the modeller states.
The sizes of these numbers depends upon the differ-
ence between the modeller's initial position for
the observer and the motion resolution system's
starting observer position of (0,0), and on the
amount of drift of the global frame origin which
occurs during the initialisation period of the
filter system. The stability of the global frame
of reference in each test is indicated by the simi-
larity between corresponding displacements for dif-
ferent targets and observer. Note that test Id is
a lengthier run of test le, so that comparison
between these rows of Table 2 shows the time sta-
bility of the global frame; comparison within the
rows' shows the spatial stability of the frame.

Table 3 shows the observer absolute state
variances and the biases in the angular state com-
ponents for each of the tests in series two. These
figures are the means and variances of the differ-
ences between system computed quantities and
modeller generated quantities, as in Table 1.
Table 4 shows the coordinate origin offset vectors
for tests 2a and 2b. Results of this nature for
tests 2c and 2d are not meaningful because of the
large values of the polar axis bias in those tests.
The values in Tables 3 and 4 are inherently less
reliable than those in Tables 1 and 2 because of
the smaller number of samples involved (some
seventy as against two hundred and forty).

V' CONCLUSIONS.

1). The system performs well when presented
with data containing only translational motion. It
rejects object motion satisfactorily and maintains
a stable frame of reference under extreme input
error conditions — the standard deviation of 0.1
radians in test la corresponds to a sonar beam
width of more than ten degrees. The reference
frame is stable over long periods of time, its ori-
gin drifting about 60cm in 800 seconds, and the
movement of the observer with respect to the refer-
ence frame is tracked correctly. Thus under these
conditions the system fulfils its goal of impli-
citly defining a stable stationary frame of refer-
ence.

2). When presented with data containing rota-
tional error the system performs poorly. The cause
of failure Is the consistent low estimate of the
CRF  angular velocity (low by 3.8 milliradians per
second in tests 2c,d) which integrates over the
test period to account for half of the bias in the
polar axis offset (filter initialisation time
accounts for the other half). This gradual drift
in the polar axis offset causes the global frame to
rotate  and interferes severely with absolute
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position and velocity extraction (thus there are no
offset results for these tests). The error appears
to be independent of the observer linear motion
since it is seen identically in the results of
tests 2c and 2d. Further testing will show whether
the angular velocity deficit is due to a biassed
estimator or Is a further rotational non-linearity
error of the type already described.

3). It requires between five and ten activa-
tions of a given channel to initialise the relative
tracking filter successfully. Since the global
reference frame can be established using only four
targets the system will cope with intermittent
sightings of targets easily. For a sonar scan rate
of 2.5llz it may take up to about thirty seconds to
collect the necessary observations (assuming a very
pessimistic rate of appearance for the targets);
with  more sophisticated sonar systems it will take
only a few seconds.

4). While the system is currently inadequate
for marine vehicles, where angular effects cannot
be eliminated easily, it is suitable for wuse in
land based vehicles. The structure of the system
allows it to incorporate position or velocity data
from other sources into the kernel averaging pro-
cess. Thus mechanically obtained estimates of the
motion of a robot vehicle could be used to improve
the settling time of the global frame and increase
the stability of the observer tracking further.
The long term and spatial stability of the refer-
ence frame make it useful for navigation. The
modifications necessary to enable the system to
cope with marine conditions will be done in further
work when the cause of the low angular velocity
estimate has been fully investigated.
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