
Resolving Packaging Mismatch

Robert DeLine

Thesis Committee:

Mary Shaw, Chair
David Garlan
Daniel Jackson
Gregor Kiczales, Xerox parc

Submitted in partial fulfillment of
the requirements for the degree of
Doctor of Philosophy

CMU-CS-99-141

Copyright © 1999 by Robert DeLine
School of Computer Science
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA

The following agencies sponsored the research in this dissertation: the Defense Advanced
Research Project Agency (darpa) under contract n66001-95-c-8623; the United States Air Force
(usaf) and Rome Laboratory under contract f30602-97-2-0031; the usaf, Wright Laboratory,
and Air Force Materiel Command under contract f33615-93-1-1330; and the National Science
Foundation (nsf) under grant ccr-9357792. The views and conclusions contained in this docu �
ment are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of Carnegie Mellon University, the United States government, or any
of the sponsoring agencies.

Abstract

To integrate a software component into a system, the component must
interact properly with the system’s other components. Unfortunately, the
decisions about how a component is to interact with other components
are typically committed long before the moment of integration and are
difficult to change. As a result, system integrators often face mismatches
between their system’s interaction commitments and those of a compo �
nent to be integrated. How a component interacts with other compo �
nents is called its packaging; hence these mismatches are called
packaging mismatches. Packaging mismatches are typically resolved by
introducing so-called glue code, which is costly to produce and main �
tain.

In this dissertation, I introduce a software development method,
called Flexible Packaging, which allows a component developer to defer
many decisions about component interaction until system integration.
Using this method, a system integrator first selects a component, called a
ware, with few interaction commitments and then writes a packaging
description, which captures how the ware is to interact with other com �

ponents. Given a ware and a packaging description, the Flexible Packag �
ing system automatically produces the source code, non-code artifacts,
and construction and installation steps needed for the component to
exhibit the described form of interaction. By writing a packaging
description, the system integrator tailors the component’s interaction to
the system at hand, and the component can be readily integrated. I have
validated the feasibility of the Flexible Packaging method and its tools
with several case studies, which involve a wide range of interaction: com

servers (ActiveX controls); com clients; Netscape plug-ins; Windows
applications with guis; odbc-based database accessors; filters; cgi

scripts; and tcp socket clients.

Contents

1 1 Introduction
2 1.1 A component provider makes packaging choices
4 1.2 A system architect makes packaging choices
6 1.3 Two participants, one decision
7 1.4 A new approach to component development and assembly
9 1.5 A demonstration of Flexible Packaging

13 1.6 Organization of the dissertation

17 2 Packaging & Packaging Mismatch
17 2.1 Aspects of component packaging
21 2.2 A catalog of mismatch resolution techniques
32 2.3 A space of techniques
33 2.4 Flexible Packaging in this space of techniques
33 2.5 Related catalogs and classifications

35 3 Separating Functionality from Packaging
36 3.1 Shifting and abstracting packaging decisions
42 3.2 Mixing wares and packagers to produce components
57 3.3 Work related to Flexible Packaging
60 3.4 Flexible Packaging at a glance

63 4 Tools for Flexible Packaging
63 4.1 Tools for the ware provider
69 4.2 Tools for the packaging specialist
89 4.3 Tools for the system architect

97 5 Experiments
97 5.1 Experimental wares

101 5.2 Experimental packagings
118 5.3 Experimental components

151 6 Evaluation
151 6.1 Handling packaging complexity
157 6.2 Handling modules from multiple authors
159 6.3 Flexible Packaging, aspect by aspect
162 6.4 Validation of the thesis claim
165 6.5 Toward Flexible Packaging in practice
168 6.6 Future directions
173 6.7 Summary

175 References

Acknowledgements

The fundamental success factor in earning a PhD is always the advisor/
student relationship – a rule for which my experience is no exception.
When I first began working with Mary Shaw, meeting with her was like
swimming in the Sea of Abstraction. I’d take a deep breath, dive under,
and enjoy the sights for as long as I could. But my terrestrial need for the
Concrete would eventually send me back to the surface. Over time, with
Mary’s patient training, I could stay down longer and longer to hunt for
pearls. The skills that I’ve learned from Mary – finding the real problem
buried in the domain details, applying results from seemingly different
fields, distilling my own experience to guide others – will sustain me for
the rest of my career. For these skills I am truly grateful to her.

Skills alone, however, would never have gotten me through the pro �
gram. There were many times when I felt discouraged, if not incompet �
ant. I mistakenly thought that learning to do research is like learning to
drive or to cook – that after an initial phase of learning and practice, the
ability would become routine, second-nature, effortless. Mary’s nicest
gift to me was to dispel this myth: at no point does research become
easy; struggle is part of the job. For this lesson, too, I am deeply thankful.
Thanks also to my friends who helped me through the discouraging
times, especially to Kip Walker and Sasha Wood, without whom I simply
never would have made it.

The inherently solitary nature of PhD research often made me long
for the esprit de corps that comes from teamwork. Many thanks to Greg
Zelesnik for providing that spirit. Creating demos with Greg for our
sponsors and customers was truly a lot of fun. Thanks also to Greg and
to Margaret Weigand for insulating me (and many others) from the
more mundane aspects of keeping our sponsors happy. I much appreci �
ate the frustrations they bore on behalf of everyone. I am, naturally, also
grateful to the sponsors themselves, who enabled the work altogether.

Finally, I could never have done this research in the absence of great
colleagues. My thanks to Gregor Kiczales for providing the summer
internship that proved so pivotal. My exposure to his group’s ideas was
just the kick in the pants I needed to find a thesis. I am also grateful to
Daniel Jackson and to David Garlan for helpfully commenting on my
ideas, whether half-baked or utterly raw. (Thanks also to Daniel for
encouraging my typography fetish and for providing excellent examples
to follow.) Big thanks to Bob Monroe for logging so many whiteboard
hours with me and for thoughtfully considering even my dumbest ideas.
Thanks also to the Software Systems Study Group and to our colleagues
from the Software Engineering Institute for many lively discussions.

RAD

Every program is a part of some other program and rarely fits.

a l a n j. per lis

1

 Introducion

Software developers have long wanted to build systems from reusable
parts. At the 1968 nato workshop for which the term “software engi �
neering” was coined, McIlroy gave a keynote speech that called for a
market of “software components,” his forward-looking name for rou �
tines.³³ He noted that “software production in the large would be enor �
mously helped by the availability of spectra of high quality routines,
quite as mechanical design is abetted by the existence of families of
structural shapes, screws or resistors.” Inspired by this analogy with
assembly line production, reuse enthusiasts reason that assembling sys �
tems from well tested, off-the-shelf parts reduces both development time
and the cost of system development and validation.⁵

Unfortunately, this dream of building software systems from compo �
nents remains largely unrealized, in part due to technical barriers. Put �
ting aside the difficulty of finding and acquiring components,⁵⁴ a host of
problems can arise when a developer assembles components into a sys �
tem. One problem is that a component’s functionality may be similar to
the desired functionality, but insufficient in some regard. For example,
Garlan, Allen, and Ockerbloom, in a study on building systems from
reusable parts, needed to create a new transaction mechanism for their
system because the off-the-shelf database that they used did not support
sharing transactions across multiple address spaces.¹⁹ Similarly, when
Sullivan and Knight used a commercial drawing package to build a fault
tree analysis tool, they found that the drawing package announced the
addition, but not the deletion, of shapes. This missing functionality
made it difficult for them to keep the internal state of the fault tree analy �
sis consistent with the fault tree’s depiction.⁵⁰ It is also not uncommon
for a component’s functionality to differ significantly from its docu�
mented functionality. This can mean that a component that appears on
paper to be suitable may in fact be unusable.

Other problems arise during system assembly. One such problem is
that components that perform well in isolation may together overtax a
shared resource. In the same study, Garlan, Allen, and Ockerbloom
found that their system, assembled from several libraries with large
memory footprints, exhausted their workstation’s memory resources.
Similarly, a system assembled from several computationally intensive
components might overwhelm the processor. A more subtle problem is
semantic mismatch, which arises when components to be integrated dis �
agree about the exact meaning of a shared concept. In an example due to
Al Despain, several military inventory databases are united into an
aggregate database. The inventory databases differ both in how items are

2

counted (single items versus units of items) and on how the number of
items “on hand” is counted (the number in stock versus the number in
stock minus the number committed). Such semantic mismatches are
often not discovered until the databases are united and produce bogus
inventory counts.

Finally, components may be difficult to integrate because they differ
in how they exchange data and control with one another. For instance, a
Unix filter cannot readily interact with a procedure. A filter incremen�
tally accepts data from an input text stream, computes over them, and
incrementally reports its results to an output text stream; whereas, a pro �
cedure accepts data once through the procedure arguments, computes
over them (with no constraint on access order), and reports its results
once through the procedure return value. A filter and a procedure differ
both in the mechanics of the data exchange (text streams versus the run �
time stack and registers) and in the overall data access protocol (incre �
mental versus batch); hence, they will not readily interact with one
another. The style in which a component interacts (exchanges data and
control) with other components is called its packaging; hence this last
problem is called packaging mismatch. Packaging mismatch and tech �
niques to resolve it are the subject of this dissertation.

To understand how packaging mismatch arises in practice, one must
examine the two roles that are played in a software component’s develop �
ment and deployment: the component provider develops a component
and makes it available for use; the system architect acquires components
and assembles them to form a system. These roles may be played by the
same person, by different members of a development team, or by two
people separated in time and space. The heart of the packaging mis �
match problem is that the participants playing both of these roles choose
a component’s packaging, which allows the possibility of conflict in their
choices. This insight is the foundation for a new approach to component
development and deployment, called Flexible Packaging.

1.1 a component provider makes packaging choices

At the time a component provider develops a component, he chooses
how it interacts with other components. He may make this decision by
appealing to a component standard, which determines a given type of
interaction. For example, he may choose to package his component as a
procedure library (interaction through procedure calls), a batch system
(interaction through file access), an ActiveX control (interaction
through remote procedure calls), a filter (interaction through text
streams), or an internet server (interaction through tcp sockets). Addi �
tionally, he may choose different sources of data over which the compo�
nent computes, for example, a relational database, an event, a message,
or shared memory.

Although technology exists to allow the component provider to defer
some decisions about the component’s interaction (discussed in Chapter
2), a component provider typically makes all decisions about a compo �

3

nent’s interaction at the time he develops the component. There are two
key reasons for this. First, making at least some of these decisions at
development time is inevitable given today’s technology: to invoke a
component’s functionality, either for unit testing or for integration,
requires the ability to interact with the component through some means.
Second, choosing a particular packaging for a component is also neces �
sary for targeting component markets. A component provider interested
in selling to Visual Basic developers, for example, will package his com �

ponent as an ActiveX control; one interested in selling to average con �
sumers will package his component as an application with a graphical
user interface.

The choices that a component provider makes about interaction are
often difficult to change because they affect both the component’s source
code and its construction steps. The effects on the component’s source
code range from localized to pervasive. For example, a decision about a
component’s data source is often expressed as calls to procedures in an
input/output library, like a text stream library, a socket library, or a rela �
tional database library. Such localized choices can often be encapsulated
behind an abstract i/o interface, as was done, for example, in the well
known A-7 project.⁴⁰ Other choices about interaction are pervasive,
affecting for example the component’s overall control structure. For
instance, when the number and order of interactions is relatively con �
strained and known at development time, the code is typically organized
using the “internal control” paradigm: the source code spells out the
number and order of interactions through its sequencing of statements.
When the number and order of interactions are relatively unconstrained,
as is often the case with event or message interactions, the code is typi �
cally structured using the “external control” paradigm: the source code
associates computations with the different kinds of interactions and
then yields control to a dispatch mechanism. Whether the developer
chooses the internal or external control paradigm affects the overall
structure of the code. Further, the choice of interaction may allow the
developer to use packaging-specific tools to develop parts of the source
code. For example, a developer may use a parser generator like Yacc to
implement text stream interactions; a stub generator, remote procedure
call interactions; and a graphical user interface builder, event interac �
tions. In short, choices about a component’s interactions can have pro �
found implications for its source code.

In addition to the source code, choices about a component’s interac �
tions also affect its construction and installation steps. For example, in
order for a component to be packaged as a Netscape plug-in, the follow �

ing construction and installation steps apply: the component’s source
code must be compiled into a dynamic library; a resource file with two
particular text resources must be compiled (using a resource compiler)
and associated with the dynamic library (through a linker option); the
library must appear in the “plugins” subdirectory of the directory con�
taining the Netscape application; and the library’s name must be in dos

8.3 format and begin with the letters NP. Although byzantine, these rules

4

contain elements typical of many packagings,: the production of non �
code artifacts (the resource file); the use of packaging-specific tools and
tool options; and need for packaging-specific installation steps after
compiling and linking. Hence, a component provider’s choices about
packaging affect not only the content of the component’s source code,
but how that source code is processed to form the final component.

Because the component provider’s decisions about interaction affect
both the component’s source code and its construction and installation
steps, these decisions are often difficult to change, especially once the
component is made available for deployment. If the component is avail �
able as compiled code, then its packaging-specific construction process
ossifies the component provider’s decisions, rendering them unchange�
able. When the component is available as source code with a construc �
tion script, as it is before deployment, the pervasive affects of some
interaction decisions make changing these decisions difficult. Even when
the decisions about interaction could be encapsulated within, say, an
abstract input/output library, such encapsulation is rare in practice; the
portions of source code that achieve the component’s functionality are
commonly intertwined with those that achieve the component’s interac�
tions.

In summary, a component provider typically makes most or all of the
decisions about a component’s interaction when he develops the compo �
nent. After development, such decisions are difficult to change.

1.2 a system architect makes packaging choices

Historically, two terms have been used to describe a software developer
who builds a system from parts. When the developer oversees the entire
system and has free reign over system-wide decisions, she is traditionally
called a software architect or system architect; when she builds the system
from pre-existing parts, so-called legacy components, and is therefore
saddled with many previously made commitments, she is traditionally
called a system integrator. This historical contrast represents two ends of
a spectrum. Whether she has many or few previous commitments to
contend with, the system architect’s job is to acquire software compo �
nents (by building or buying them) and to assemble them to form a sys �
tem. Hence I will use the same term, system architect, to describe this
role, wherever it falls along this spectrum.

A key decision that the system architect faces is the selection of the
system’s architectural style, which determines how the components
interact with one another. Several factors influence this choice. First, she
may choose an architectural style for its influence on such overarching
system properties as performance, security, and reliability. Consider, for
example, the task of integrating several components that share data.
Selecting a relational database to house the data provides specific guar �
antees against mutual interference among the components at the cost of
relatively slow access to the data. In contrast, selecting shared memory to
house the data provides no guarantee against mutual interference but

To help distinguish the various
development roles throughout

the dissertation, I use
feminine pronouns for the

system architect and
masculine pronouns for the

component provider and,
later, the packaging specialist.

5

allows relatively fast access to the data. Choosing the system’s architec �
tural style allows the architect to make trade-offs among global system
properties.

A second factor is the system architect’s personal experience or the
collective experience at the architect’s development organization. Many
architectural styles involve specialized skills, like database schema
design or security protocol design, and detailed knowledge, like under �
standing the use of packaging-specific tools. Once an architect has made
the investment of acquiring the skills and knowledge associated with a
given architectural style, she may sensibly opt to amortize the cost of that
investment over the construction of many systems in that style.

These first two factors come into play when the architect is relatively
unconstrained by inherited commitments. When the system architect
uses legacy components, these components also influence her choice of
architectural style. As discussed earlier, components are typically com �

mitted to a particular style of interaction, and these commitments are
difficult to change. As such, the architect may choose to let these com �

mitments drive her choice of architectural style. For example, a system
architect’s customer may insist that she use the customer’s existing rela �
tional database in the system to be built. Because of this constraint, the
architect may choose to use a database-centered architectural style. In
general, each legacy component to be integrated places its own con �
traints on the architectural style, and the architect seeks a style that
satisfies the constraints, if one exists. In practice, an architect’s desired
system properties, experience, and legacy components may all influence
her choice of architectural style.

Once a system architect has selected an architectural style for her sys �
tem, the components incorporated into the system must be reconciled
with this choice. Different strategies for ensuring that the components
adhere to the architectural style come at different costs. One strategy is
for the architect herself to oversee development of the components to
ensure that they use the necessary interaction mechanism. This means
that the architect and her development team incur the components’
development cost.

Another possibility is for the architect to select components only from
a pool of candidate components that adhere to the architectural style.
This is the basis of today’s component market. For instance, if a system
architect selects the Corba architectural style for her system, then she
may choose to shop for components only in the Corba market to ensure
compatibility. The cost of this strategy is the opportunity cost of shop �
ping only within a niche market. Using this strategy, an architect com �

mitted to Corba will miss the opportunity to use com or JavaBeans com �

ponents that have the functionality she needs. The dual of this strategy –
limiting the selection of an architectural style to those styles that are con �
sistent with the components to be used – incurs an analogous opportu �
nity cost at the architectural level.

A final strategy to ensure compatibility between a system’s compo �
nents and its architectural style is to select components based only on

6

their functionality and then to resolve whatever packaging mismatch
results. Although there is a spectrum of techniques to resolve packaging
mismatches (which I catalogue in Chapter 2), two techniques dominate.
The first is to re-implement the component to have the necessary pack �
aging. As previously explained, identifying and isolating those parts of
the source code and construction and installation steps that need to be
changed can be quite difficult, which can make this an expensive option.
The second technique is to interpose a new component that overcomes
the mismatch between the reused component and the rest of the system.
Such components are often referred to as wrappers, adaptors, mediators,
bridges, or glue code. For example, a system architect committed to
Corba may decide to use a com component, introducing a com/Corba
bridge to overcome the mismatch. To produce such glue code requires a
full understanding of the interaction mechanisms involved, which can
be a considerable amount of knowledge. For instance, both com and
Corba are complicated mechanisms on their own, and a full understand �
ing of both is needed to build a com/Corba bridge. Even when the archi �
tect avoids the learning cost by using off-the-shelf glue code, the glue
code adds new complexity to the system (for example, new points of fail �
ure) and often degrades system performance. Further, like any other sys �
tem component, the glue code must be maintained over the system’s life �
time. Hence, the glue code technique, too, is often an expensive option.

In summary, when a system architect builds a system from reused
parts, the benefits of reuse come at a cost: either the opportunity cost of
limited choices or the direct cost of resolving packaging mismatch.

1.3 two participants, one decision

Fundamentally, packaging mismatch arises because two participants in
the system development are making the same design decision, namely
how a given component in the system interacts with other components.
The component developer makes this decision at the time he develops
the component. The system architect makes this decision when he
selects an architectural style for his system, which determines how the
system components will interact.

To the extent that their decisions agree, packaging mismatch is
avoided. To ensure this agreement, either the component provider can
accept the system architect’s decision (the top-down or historic “system
architect” approach) or conversely the architect can accept the compo �
nent provider’s decision (the bottom-up or historic “system integrator”
approach). This agreement is most readily accomplished when the com �

ponent provider and the system architect are the same person or mem �

bers of the same team, namely when there is the opportunity for explicit
collaboration between them. However, in our desired scenario in which
a system architect builds a system from reused parts, the component
provider and system architect may in fact work for different companies
at different times, which prevents explicit collaboration between them.
In the absence of this collaboration, the system architect may either limit

7

her choice of components to those that agree with his choice of architec �
tural style (the niche market approach) or may limit his choice of archi �
tectural styles to those that agree with the component providers’ deci �
sions (the legacy component approach). In short, to avoid packaging
mismatch, today’s software development technology either requires up �
front collaboration between the component provider and system archi �
tect or limits the system architect’s choices.

1.4 a new approach to component development and assembly

This dissertation introduces a new software development method, called
Flexible Packaging, which neither requires up-front collaboration
between the component provider and the system architect nor severely
limits the system architect’s choice of components or architectural styles.
Because the packaging mismatch problem stems from two participants
making the same decision, the fundamental strategy of Flexible Packag �
ing is to reduce the number of decision makers from two to one, thereby
eliminating the potential for conflicting decisions. To do this, broadly
speaking, the Flexible Packaging method takes decisions about a com �

ponent’s interactions out of the hands of the component provider and
puts them into the hands of the system architect. The remainder of this
chapter makes the nature of this decision making more precise.

As previously mentioned, when a component provider uses current
technology to develop a component, he chooses the component’s pack �
aging, which affects both the component’s source code and its construc�
tion and installation steps. In order for the Flexible Packaging method to
take these packaging decisions out of his hands, the method supports a
separation between a component’s functionality and its packaging. With
these concerns separated, the component provider makes the decisions
about the component’s functionality; the system architect, those about
its packaging.

However, a component’s functionality and packaging are not orthog �
onal concerns. A component’s functionality affects the interactions in
which the component participates and vice versa. For example, to
achieve its functionality, a component performs some computations.
Unless it performs those computations over a fixed data set, the data
over which it computes must arise through interaction with other com �

ponents, whatever form that interaction takes. Hence a component’s
functionality influences the interactions in which it takes place. Con �
versely, if a component is to support some standard form of interaction
(like painting to a window), then its functionality must support that
interaction (by implementing the painting). Hence a component’s inter �
actions influence its functionality.

Because of the mutual influence between functionality and packag�
ing, these concerns cannot be wholly separated. To address this, the
Flexible Packaging technique distinguishes essential decisions about a
component’s interactions from incidental decisions. In particular, the
computation that implements a component’s functionality must be able

8

to accept the input over which it computes and to report results as it pro �
duces them. When the computation needs input (and of what kind) and
when its results are ready (and of what kind) are intrinsic to the func �
tionality. Hence, the number, types, and order of inputs and outputs that
the functionality consumes and produces constitute the essential deci �
sions about interaction; the mechanics of how the component interacts
with other components to acquire the needed input and to report the
produced output are incidental. Given this distinction, the Flexible
Packaging method couples the essential decisions about interaction with
the decisions about functionality, but decouples the incidental decisions
about interaction. Hence, to clarify an earlier remark, the Flexible Pack �
aging method takes the incidental decisions about a component’s inter�
actions out of the hands of the component provider and puts them into
the hands of the system architect. Because of this distinction, in the
remainder of the dissertation I use the word packaging to refer only to
the incidental decisions about interaction.

Because of the mutual influence of functionality and interaction, it is
impossible to achieve perfectly the strategy of reducing the number of
packaging decision-makers from two to one. Because the component
provider makes the essential decisions about interaction and the system
architect makes the incidental decisions, there remains the possibility
that their decisions will be incompatible. As described in Chapter 3, a
major thrust in the design of the Flexible Packaging method is to maxi �
mize the likelihood of compatibility between their decisions and to
ensure that this compatibility can be automatically checked.

In summary, here is the claim that this dissertation demonstrates:

It is possible to separate a software component’s functionality from its
packaging so that the following properties hold:

1 The system architect can independently choose a software compo�
nent’s functionality and packaging at the time the component is to be
integrated into a system.

2 She can readily determine whether her choices of functionality and
packaging are compatible.

3 If her choices of functionality and packaging are compatible, she can
automatically produce a software component based these choices. This
component’s performance is comparable to the equivalent component
developed by hand.

4 Her functionality and packaging choices are compatible often enough
to allow her to produce a useful variety of components.

5 The component provider and system architect expend less develop�
ment effort on the whole using this approach than they would using
traditional development methods.

9

Given a development method that exhibits these properties, the system
architect is able to select an architectural style for her system, then to
choose a packaging for each component that is consistent with this style.
Because an off-the-shelf component produced with this method is rela �
tively free of packaging decisions, in many cases the system architect is
able to tailor the component to the interaction requirements of her sys �
tem. She no longer has to limit herself to packaging-based niche markets
nor to create glue code to shoehorn components into the system.

1.5 a demonstration of flexible packaging

The remainder of the dissertation discusses the Flexible Packaging
method in detail. To introduce the method in brief, consider a program �

mer building an application in Microsoft’s Visual Basic. Visual Basic is a
development environment geared toward the reuse of software compo �
nents called ActiveX controls. Today, Visual Basic programmers repre �
sent one of the few communities in which software reuse regularly and
systematically occurs. Briefly, an ActiveX control is a library exporting a
collection of interfaces, called com interfaces, each of which is a collec �
tion of procedures and properties. Many com interfaces are standard
and represent such common capabilities as windowing, painting, data
exchange (copy and paste), and interface reflection; other com interfaces
represent control-specific capabilities. Today’s most common ActiveX
controls implement user interface elements, like buttons, sliders, and
dialog boxes; other controls are utility libraries for common tasks, like
mathematical calculations, calendar management, or html parsing.

The Visual Basic programmer in our scenario has a picture of her cor �
porate logo in the png image format. To insert this image into a dialog
box for her application’s “About…” menu item, she needs an ActiveX
control capable of parsing and painting images in the png format. In a
world in which the Flexible Packaging method is widely used, she per �
forms the following steps. First, she needs a software component that has
the desired functionality and is free of packaging commitments; such a
component is called a ware. Her first step is to search software reposito �
ries, similar to those on the web today, for a ware capable of handling
png images. Having found one, she inspects its channel signature and
documentation to learn about its capabilities.

A channel signature summarizes and abstracts the interactions in
which a ware participates and forms a basis for describing the services
that the ware provides. In this way, a channel signature is analogous to an
interface in such module-based languages as Standard ml, Modula 3,
and Ada or such interface description languages as Microsoft’s idl,
which describes com interfaces. A channel signature represents the ware
provider’s essential decisions about interaction and consists of two parts:
a list of channels through which the ware interacts and an expression
summarizing how the ware uses those channels. The following is the
channel signature of the png ware that the Visual Basic developer finds:

For an example repository
of ActiveX controls, see
www.activex.com.

The png image format is a
technical successor to the
popular gif image format. For
details, see www.cdrom.com/
pub/png.

10

Ware = in(Initialize) → Loop.

Loop= in(NewFile) → Loop
[] in(Paint) → Loop
[] in(Finalize) → done.

channel in int Initialize;
channel in char* NewFile;
channel in struct { struct { long left, bottom, top, right; }* rect;

void* hdc; } Paint;
channel in int Finalize;
channel out char* ErrorMessage;

Each channel in the channel list has a parity (in or out), a type (in the
type system of the C programming language), and a name (a legal C
identifier). For example, the first channel has parity in, type int, and
name Initialize. A ware uses in channels to request the data over which it
computes and out channels to report the results of its computations.

The first part of the channel signature is an expression in a subset of
Hoare’s Communicating Sequential Processes (csp) notation.²⁵ This
expression describes the possible orders in which the ware might request
or report data over the channels. The description of a ware’s behavior
always begins at the first rule, in this case the rule Ware. This rule states
that the png ware first requests data over the channel Initialize and then
behaves according to the second rule, Loop. The rule Loop states that the
ware is willing to accept input on any one of three channels: NewFile,
Paint, or Finalize. The use of square brackets ([]) to record this condi �
tional means that the choice of which channel the ware will use is left up
to the “outside world” rather than the ware itself. (The computation that
constitutes the “outside world” is discussed shortly.) These so-called
external choices are common among wares that provide services. The
png ware can be thought of as providing three services – parsing
(NewFile), painting (Paint), and quitting (Finalize) – which may be
invoked in any order. (As it happens, if the painting service is invoked
before the parsing service, the ware paints a while rectangle.) According
to the rule Loop, if the ware receives input over the channel NewFile, it
subsequently behaves according to the rule Loop. The same is true for
the channel Paint. Finally, if the ware receives input on the channel Final �
ize, it successfully terminates, as the keyword done specifies.

This csp description specifies the interactions in which the ware par �
ticipates, but is silent on what computations are performed around those
interactions. For example, although the ware presumably paints pixels to
the screen after receiving input on the channel Paint, such functional
behavior is not included in the channel signature and would have to
appear in the accompanying documentation.

After the Visual Basic developer acquires the png ware, she writes a
packaging description that specifies the packaging that she would like the
ware to have. Because she is working in Visual Basic, she would like the

This and the subsequent
packaging description have

been simplified to ease
discussion in this

introductory chapter. The
complete versions of these

signatures are shown in
Chapter 5.

The subset of csp consists of
process prefixing (→),

internal (non-deterministic)
choice among processes (),

external choice among
processes ([]), and the

successfully terminating
process (skip). In the syntax

of channel signatures, internal
choice is written with a

question mark (?), and skip is
called done.

11

png ware to be an ActiveX control and therefore writes the following
packaging description:

PNGViewerControlInterface: interface ActiveXControlPackaging with
library_iid: UUID{7cf18aa0-36ff-11d2-9fd5-00104b33709d};
coclass_iid: UUID{7cf18aa1-36ff-11d2-9fd5-00104b33709d};
name: "PNGViewerControl";
help_string: "PNG Image Control for DeLine’s Thesis";
IPNGViewerControl: player com_Interface with

iid: UUID{7cf18aa2-36ff-11d2-9fd5-00104b33709d};
help_string: "PNG Image Interface";
FileName: player COM_Property with

id: 1;
signature: "BSTR";

end
end

end

A packaging description is a structured collection of parameters, where
each parameter has a name and a value. Values, shown underlined
above, are either simple datatypes like strings (the value of the name
parameter) or integers (the value of the id parameter) or are the result of
running a packaging-specific tool, like ActiveX’s Genguid (the value of
the library_iid parameter). These parameters capture high-level deci �
sions about the particular packaging. For an ActiveX control, these
include: machine-readable names for the control (library_iid, co�
class_iid); a human-readable name of the control (name); documenta�
tion describing the control (help_string); and the com interfaces that the
control exports. The com interfaces that are common to most ActiveX
controls, like those for windowing and painting, are implicit in this
packaging description; only those com interfaces that are specific to this
control are explicitly listed. The described ActiveX control exports one
com interface (IPNGViewerControl) in addition to these implicit com �

mon interfaces. The parameters to this com interface include: a
machine-readable name for the interface (iid); documentation describ�
ing the interface (help_string); and a description of the property that this
com interface exports (FileName). In turn, the description of this com

property includes two parameters: an identification number for the
property (id); and type of the com property’s value (signature). In this
way, a packaging description can be highly nested, structuring the nec �
essary parameters into bundles convenient to the type of packaging
being described. This packaging description is derived from a definition,
named ActiveXControlPackaging, that describes the parameters that
must be included (their names and types) and how the parameters are
grouped into bundles.

Once our Visual Basic developer writes this packaging description,
her next step is to run a tool called Packgen on it. From this packaging
description, Packgen automatically produces the source code and con�

The definition of
ActiveXControlPackaging is
given on page 106

12

struction and installation steps necessary to achieve the described pack �
aging. The source code that Packgen creates is called the packager, and,
like the ware, the packager is summarized by a channel signature. Pack �
gen generates both the packager’s source code and its channel signature.
The channel signature of the described ActiveX control packager is the
following:

Pack = out(Begin) → Calls.
Calls = out(SetFileName) → Calls

[?] out(Paint) → Calls
[?] out(Finalize) → done.

channel out int Begin;
channel out BSTR SetFileName;
channel out struct {struct { long left, bottom, top, right; }* rect;

void* hdc;} Paint;
channel out int Quit;

This packaging description is similar to the previous one, but uses one
new feature. The rule Calls states that the packager can report data to any
one of three channels: SetFileName, Paint, and Finalize. In this case, the
use of the bracketed question mark ([?]) indicates that it is up to the
packager to determine which of these three behaviors occurs. Whereas a
ware’s channel signature represents the essential interaction commit �
ments needed to support the ware’s functionality, a packager’s channel
signature represents the essential interaction commitments engendered
in the described packaging.

Our Visual Basic developer’s final task is to show the correspondence
between the ware’s channel signature and the packager’s, in order to link
them together. To do this, she creates the following table, called a channel
map:

Initialize Begin

NewFile SetFileName channel in BSTR windows_string;
channel out char* c_string;
BSTR bstr;
char* cstr = (char*)malloc(100);
in(windows_string, bstr);
sprintf(cstr, \"%S\", bstr);
out(c_string, cstr);

Finalize Quit

Each row of the channel map specifies the correspondence between a
channel in the ware’s signature and one in the packager’s. If the two
channels do not share a common data representation, the third column
contains a fragment of code that converts between the two data repre �

The current Ciao tools do not
support channels of type void,
i.e. dataless channel . Instead, I

use integer channels with
dummy values as an

approximation. The channels
Begin and Quit are examples

of this convention.

13

sentations. When the corresponding channels in the ware and the pack �
ager share the same name and data representation (for example, the
channel Paint), the correspondence can be omitted from the channel
map. In this channel map, Initialize/Begin and Finalize/Quit differ only
in their names. NewFile and SetFileName differ both in their names and
data representations. The channel NewFile communicates strings in the
standard C representation (char*); the channel SetFileName, in a com �

specific string representation (bstr). The code above translates between
these two string representations.

Once she creates the channel map, our Visual Basic developer runs
the Flexible Packaging system on the ware, the packager, and the channel
map. The ware and the packager should be thought of as two halves of a
final run-time behavior: the ware achieves the functionality; the pack �
ager, the interactions. Only when they are linked together do they form a
whole component. Given the ware, the packager, and the channel map,
the Flexible Packaging system first uses the ware’s and packager’s chan �
nel signatures to test whether they are compatible. Although an exact
definition of compatibility appears in Chapter 3, an intuition for why the
png ware and packager are compatible can be gained by inspecting their
conditionals. The packager wants to choose which service is invoked,
and the ware wants the “outside world” to choose which service is
invoked. Their compatibility stems from an agreement about which
module will drive the computation. If both wanted to drive the computa �
tion or if each wanted the other to drive the computation, they could not
be sensibly combined. Once the Flexible Packaging system ensures com �

patibility between the ware and packager, it then uses packaging-specific
construction and installation steps to produce the final component: an
ActiveX control that parses and paints png images.

Figure 1.1 summarizes the process that our Visual Basic developer fol-
low to create the png ActiveX control. Traditionally, a Visual Basic pro �
grammer who wants to reuse a png ActiveX control faces two choices:
looking for the component in ActiveX repositories in the hope of finding
one; or finding a png component with a different packaging and creat�
ing the necessary glue code to integrate it. Instead, with Flexible Packag �
ing, she looks for a ware in component repositories (which are no longer
packaging-specific niche markets) and then tailors the found ware to be
packaged as an ActiveX control to suit her specific integration needs.

1.6 organization of the dissertation

The remainder of the dissertation discusses the Flexible Packaging
method in detail. Chapter 2 makes the notion of packaging more precise
by decomposing it into a set of constituent aspects. This decomposition
allows a discussion, in Chapter 6, of those aspects of packaging that
Flexible Packaging does and does not address. Chapter 2 also catalogues
the various techniques that practitioners have traditionally used to over �
come packaging mismatch. Each of the eight techniques is described as a
pattern (problem/solution pair). This use of a common framework

The Flexible Packaging
method originally appeared in
the 1999 International
Conference on Software
Engineering.¹²

14

PackGen

packagerpackaging
description

ware

channel map
final component

systemfinal component

Ciao compiler

figure 1.1 The process by
which the system architect

tailors a ware’s interactions to
suit the integration context.

The architect selects a ware
that implements her desired

functionality. The ware is
characterized by a channel

signature.

channel signature

The architect writes a
packaging description that

captures the packaging that
she wants the final component
to have. She runs PackGen on

the description to produce the
packager. The packager is also

characterized by a channel
signature.

The architect creates a
correspondence between the

ware’s and packager’s
channels, called a channel

map. She runs the Ciao
compiler on the ware,

packager, and channel map to
produce the final component.

Because the architect tailors
the component’s packaging to

the requirements of the
integration context, the final

component is ready for direct
integration.

15

allows the techniques to be seen, not as an ad hoc collection, but as ele�
ments in a space of possible techniques. Flexible Packaging is shown as
an element in this space.

Chapter 3 introduces the two major ideas underlying Flexible Packag�
ing. First, in order to prevent the system architect from being overbur �
dened with the details of a given type of packaging, the Flexible Packag �
ing method introduces a new role into the system’s development: the
packaging specialist. The packaging specialist is responsible for knowing
all about a given type of packaging (say, ActiveX controls) and for
encapsulating his knowledge in the form of a software generator. Sec �
ond, Chapter 3 discusses how the mix-and-match relationship between
wares and packagers challenges today’s modularity mechanisms and
motivates the need for channels as a new modularity mechanism. With
these main ideas established, Chapter 4 then describes the tools and
skills that the ware provider, the packaging specialist, and the system
architect each need to play his or her role in system development.

The last two chapters describe how I evaluated the Flexible Packaging
method. Chapter 5 describes a series of experiments in which I com �

bined three wares and nine packaging generators to produce thirteen
different components. Chapter 6 analyses these experimental results: it
describes how the packagings chosen for experimentation represent the
complexities that hinder today’s practitioners; it describes those aspects
of packaging that the method addresses and those it does not; and it
describes, property by property, how the experimental results validate
the thesis claim. The chapter concludes with ideas for future research
directions and a review of the major contributions of Flexible Packaging.

16

17

 Packaging & Packaging Mismatch

For decades, system developers have faced and surmounted various
forms of packaging mismatch. As mentioned in the previous chapter, a
common solution is to interpose “glue code” (sometimes called wrap �
pers, bridges, mediators, or adaptors) between the component being
integrated and the rest of system to compensate for differences in pack�
aging. Another typical solution, often used when the “glue code” solu �
tion is inapplicable, is to modify the component’s source code to change
its packaging in order to integrate it into a new system. Unfortunately,
the collective experience about resolving packaging mismatch currently
exists only as unrecorded folklore and as technique-specific technical
papers scattered throughout the computer science literature. As wit �
nessed by the number of different words for “glue code,” we even lack a
consistent, precise vocabulary to describe the problem and its solutions.

In order to allow system integrators to attack packaging mismatches
systematically, what is known about the problem and its solutions
should be assembled and organized, in much the same vein as the pat �
terns community is organizing object-oriented design.¹⁸ This chapter
takes a step in that direction. First, I introduce a more precise vocabulary
for describing a component’s packaging by decomposing the notion of
packaging into a set of identifiable aspects. I then present a catalog of
packaging mismatch resolution techniques, with examples of each tech �
nique drawn from a variety of architectural styles and classified accord�
ing to the new vocabulary. The emphasis of this catalog is not to present
any given technique in enough detail to form a ready recipe for solving a
given integration problem. Instead, the emphasis is to gather and orga �
nize a wide variety of techniques and to highlight their relationships and
to allow ready comparison among them. The chapter concludes with a
discussion of related classification efforts. In the next chapter, after I
introduce a more complete picture of how Flexible Packaging works, I
show how Flexible Packaging fits into the space of techniques that this
catalog defines.

2.1 aspects of component packaging

A common way to describe a packaging mismatch problem is by refer �
ence to a difference in interaction mechanism: “I’d like to reuse this
module written in C, but the components in my system interact by
announcing events, not by making procedure calls.” Describing the dif �
ference this way, however, gives no feel for how different the two packag�
ings really are, for example, how different procedure call is from event

18

announcement. In order to be more precise about the nature of a pack �
aging mismatch, it is useful to decompose a component’s packaging into
a set of aspects. An instance of packaging mismatch can then be
described as a difference in one or more of those aspects. This section
provides such a set of aspects, each of which is described in a subsection
below. This new vocabulary is used in Section 2.2 to describe examples
of various techniques in the catalog and later in Chapter 6 to evaluate the
Flexible Packaging method.

2.1.1 Data representation

In order for two components to transfer or share a data item without
mismatch, they need to agree on its representation. For small-scale data
items, like basic data types, this agreement commonly means either that
(1) the components share a common type system and agree on the data
item’s type or that (2) the components agree on a bit-level representation
of the data item, for example, the ieee floating point standard represen�
tation. For large-scale data items, like files and databases, this agreement
commonly means that the components agree on the data item’s format
or syntax. For these larger data items, whether the components agree
about data representation is not necessarily a black and white issue. For
example, one vendor’s word processor may be capable of editing docu �
ments created with another vendor’s word processor, but the document
may lose some of its formatting when opened in the foreign word pro �
cessor. Whether such a loss constitutes a data representation mismatch is
context-dependent and hence up to the system integrator. Also, although
the differences in data representation may reflect deeper semantic mis �
matches, semantic mismatch is outside the scope of packaging mismatch
and is not discussed here. This distinction between semantic and pack �
aging mismatch is useful since the former problem requires human
understanding to solve, whereas the latter is amenable to automatic solu �
tions.

2.1.2 Data and control transfer

Components interact by sending each other data or by transferring con �
trol between them (the thread of control leaves one component and
enters another, as with remote procedure call). In order for two compo �
nents to transfer data or control without mismatch, they must agree on
the mechanism to use and the direction of the transfer. When two com �

ponents do not agree on the mechanism by which to exchange data/con �
trol, we would like a way to judge how bad the mismatch is. To do this,
we can consider three facets of the transfer: what is transferred, data or
control; the direction of the transfer; and whether the transfer occurs at
the sender’s request (often called “push”) or at the receiver’s request
(often called “pull”). Popular mechanisms by which a components pulls
data include:

19

• environment variable;
• text stream;
• socket (stream style);
• file;
• shared variable;
• shared memory; and
• database access (through queries).

Popular mechanisms by which a component is pushed data and control
include:

• procedure call;
• remote procedure call;
• event;
• message;
• socket (message style);
• property set; and
• database access (through update triggers).

Finally, popular mechanisms by which a component is pushed control
include:

• exception; and
• interrupt.

This push/pull distinction can be used to judge the degree to which
mechanisms differ. Overcoming a difference between mechanisms is
easier for those mechanisms that agree about whether data/control is
pushed or pulled. For example, getting an environment variable and
fetching from shared memory are similar because they agree on direc �
tion (transfer in), on what is transferred (data), and on reception request
(pull). However, reading from a data stream is different from being
notified of an event. Although both mechanisms involve transferring
data into the component, the former is done at the receiver’s request
(pull); the latter, at the sender’s request (push).

2.1.3 Transfer protocol

In order for two components to interact without mismatch, they must
agree on the overall protocol for transferring data and control. At mini �
mum, this means agreeing on the number and order of individual trans �
fers of data or control. For example, for message-based data exchanges,
this may take the form of both components agreeing on a standard mes �
sage-passing protocol. For procedure-based interaction, it may take the
form of each procedure caller upholding the called procedure’s precon �
ditions. For communication styles where communication speed is a fac�
tor, like modem or satellite communication, the transfer protocol aspect
may include timing considerations.

2.1.4 State persistence

A component may vary in the degree to which it retains state between
interactions. As an example of state scope, consider two versions of the

20

interactive fiction game, called Adventure. The original version of this
game is played on a terminal. The game iteratively prints text that
reports the state of the game, prompts for a move, and then uses the
move to update the state of the game. This iteration repeats until the
players wins, loses, or quits the game. Starting with the orginal version,
Wu reimplemented the game to be played through the web.⁵² With his
version, a player reads a web page to learn the state of the world, enters
text in a form, and clicks a button to submit his command to a cgi

script. The cgi script uses the player’s move to produce a web page with
the new state of the game.

The chief difference between the game’s terminal-based packaging
and its cgi-based packaging is in state persistence. The terminal version
runs continuously and retains the game state in memory. The cgi script
is executed anew each time a player makes a move. For the cgi script to
have access to the game state, the web form passes the cgi script both
the player’s move and an encoding of the current game state. In short, in
terminal-based interaction, the state persists for an arbitrary number of
moves; whereas, in cgi-based interaction, the state persists for only a
single move.

2.1.5 State scope

A component may vary in the amount of its internal state it allows other
components to affect. For example, a document editor with a program �

mable interface may allow interactions that affect the entire state of the
editor component (e.g. a “quit application” operation), or a whole docu �
ment (“save”, “print”), or a portion of a document (“delete paragraph”).
If a component interacts with several other components simultaneously
(for example, a server that interacts with multiple clients), then it may
divide its internal state into individual pieces of state for each component
with which it interacts. When two components disagree over the amount
of state to be affected during an interaction, this is an instance of state
scope mismatch.

2.1.6 Failure

Components vary in the degree to which they tolerate interactions that
fail. For example, a component that reads from a file is typically designed
to expect the data from the file to be delivered reliably and accurately;
whereas, a component that uses unreliable network message passing is
typically written to tolerate missing or garbled data. Component also
vary in the extent to which they themselves fail. This aspect captures
whether individual transfers of data or control may fail. How these fail �
ures fit into the overall ordering of transfers is part of the Transfer Proto �
col aspect.

21

2.1.7 Connection establishment

A component’s packaging consists not just of the details of the interac �
tion mechanisms it uses but also in how those mechanisms are set up
and torn down. Consider a component that is packaged to read a file.
The architectural connection between the component and the file it
reads could be established in a variety of ways: the component may open
and close a file with a hard-coded name; the component may open and
close a file whose name is given through interaction with a user; another
component in the system may provide the name of a file or a file descrip �
tor. For two components to interact without mismatch, they must agree
on how the interaction mechanism they use is set up and torn down.

2.2 a catalog of mismatch resolution techniques

Following the lead of the patterns community, this section provides a
catalog of techniques for resolving packaging mismatch, where each
technique is described in a template form. The template provides the fol �
lowing information: a short name for the technique; a schematic dia �
gram that captures the gist of the technique; a more detailed prose
explanation of the technique; and a set of examples of the technique in
use. While many pattern languages are intended to be highly situated to
allow specific guidance to be given, the patterns here are intentionally
abstract to promote comparison among the techniques described.

In the catalog’s characterization, what principally distinguishes one
technique from another are the set of packaging commitments that are
made, the binding time when the commitments are made, and the archi �
tectural elements that embody the commitments. To illustrate the notion
of a packaging commitment, consider a developer who, when imple �
menting a module, chooses to report errors that occur in the module’s
functions by setting a global integer variable called errno and by return �
ing zero from the function. He has made several commitments about
interaction, including: a data representation commitment (the variable is
an integer); a data transfer commitment (shared variable is the mecha �
nism); a transfer protocol commitment (the variable can be read after
every call to a function that returns zero); and a state scope commitment
(the variable is global). We would say that these commitments are made
when the module is developed and that they are embodied in the mod �
ule.

The template uses a schematic diagram to show at a glance how the
system architecture is transformed to resolve the packaging mismatch
and to allow ready comparison of the techniques. Each diagram is a
series of rows representing significant times during the development of
the system, when either commitments are made or the architecture
changes. Borrowing from architectural description languages (adls)⁴⁸,
a system is described as a configuration of components and connectors.
Connectors, like pipes, procedure calls, and message passing, mediate
the interaction among components. In the diagrams, components are

This catalog originally
appeared in the 1999
Symposium on Software
Reusability.¹³

22

depicted as labeled, round-cornered boxes; connectors, as labeled dia �
monds. Because a component may interact in multiple ways (for exam �

ple, by both reading a file and sending a message), the diagrams use a
black square, called a port, to depict each of the ways a component inter �
acts. Similarly, a connector provides multiple roles for the components’
ports to play, which are also depicted with black squares. For example, a
pipe has a data source role and a data sink role. Here is a picture of an
isolated component, an isolated connector, and a configuration of two
components interacting through a connector:

For simplicity and uniformity, these diagrams depict only binary con �
nectors, although the diagrams could be generalized to n-ary connectors
by depicting the connectors with more arms. Whereas adls typically
use different shapes to discriminate among different types of compo �
nents and connectors, this notation intentionally uses the same shape
regardless of type because the strategies that follow are applicable to
more than one type of component and connector. Instead, these dia �
grams use annotations to highlight the commitments that the compo �
nents and connectors make about interaction.

To show the commitments that are embodied in these architectural
elements, the pictures of ports and roles are annotated with labels. A
lowercase d, often subscripted, is used to denote a particular decision
about interaction; a capital D is used to denote a set of alternatives for a
decision. Here are some examples of these annotated elements:

The component A above interacts through one port and is committed to
some decision dA on that port. For example, if A’s port represents the
reading of a shared variable, then dA might stand for a commitment
about the data representation of that variable. Component W above
interacts through two different ports, where a different commitment has
been made about interaction through each of the ports. Using the same
label on multiple ports, as with A’s and W’s use of dA, means that the
components agree about this commitment. Component B’s decision
about interaction is limited to some set of alternatives DB, but B is free to
choose any one of those alternatives for its final commitment. For exam �

ple, if component B were a word-processing application with a port for
reading document files, the set DB could stand for the set of document
formats that the application is capable of reading, like MacWrite versus
WordPerfect versus rtf. Finally, connector C has made a different com�

mitment about interaction through each of its roles. It is very common
for a connector to be indifferent about a commitment, so long as the
same commitment is made for each of its roles. These commitment �

A C BA C

A dA W dBdA BDB dA C dB

23

invariant connectors are depicted with equal signs at the roles:

For example, a procedure call connector is indifferent about the number,
order, and types of arguments passed from the procedure caller to the
procedure definer, so long as the commitment is the same for the caller
and definer.

I organize these commitment diagrams into a series of steps, which
represent how the system architect transforms the architecture in order
to resolve the packaging mismatch. The steps in the transformation are
given generic labels (s1, s2, s3) to convey the order of the steps while
abstracting away from the time at which the step is performed. For
instance, for a given technique in the catalog, step s2 may correspond to
system integration time in one of its examples; in another example of the
same technique, s2 may correspond to run time.

The examples that appear in the templates were chosen, not because
they are the best or most representative examples of the technique, but
because sufficiently detailed documentation about them is available.
Because much of this documentation consists of research papers, there is
a bias toward automated solutions. This in turn means that many of the
examples are about data representation mismatch, a problem that lends
itself more readily to automated solutions.

= C =

24

On-line Bridge

Schematic

Problem

To integrate components A and B that have commitments made at the time of their
development that conflict with one another (s1). Connector C cannot arbitrate the
difference in those commitments.

Solution

Introduce a new component Br that is capable of interacting in two ways: one way that is
compatible with A’s commitment dA; one that is compatible with B’s commitment dB

(s2). Interpose this component between A and B (s3). The component Br’s computation
makes up for the differences between the commitments dA and dB. Although the exam �

ples below involve bridges that a tool generates, bridges are quite often developed by
hand to suit the details of a particular mismatch. The bridge here is “on-line” in that it is
part of the system’s final control structure.

Variation

Component A is developed to interact through connector C; component B, through
connector C. The introduced bridge Br interacts with A through C and with B through
C.

Examples

• Nimble⁴¹

Aspect of packaging: data representation, namely the number, order, and types of argu �
ments and results passed between a procedure caller and definer
Component A: a procedure caller
Component B: a procedure definer
Connector C: procedure call
Component Br: a Nimble-generated bridge, which accepts the parameters that A passes,
calls B with the parameters B expects, accepts the result from B, and returns the result
that A expects

• Yellin and Strom adaptor⁵³

Aspect of packaging: data representation and transfer protocol, namely the number and
order of method calls between an object and a client of that object
Component A: an object calling another object’s methods
Component B: the object whose methods are being called
Connector C: method call
Component Br: a generated “adaptor” (bridge) object, which accepts method calls from
A and makes method calls on B

(s1)

(s2)

(s3)

A dA BdB= C =

Br dBdA

BrA C BCdA dA dB dB

25

Off-line Bridge

Schematic

Problem
Same as for the On-line Bridge technique, with the restriction that component B is some
form of persistent data (s1). The mismatch between A and B is about data representation.

Solution

Introduce a new component Br that is capable of reading data with representation dB and
writing data with representation dA (s2). Component Br is typically a stand-alone tool.
Run component Br to transform B into a new component B’ (s3). Integrate B’ with A
(s4). Unlike the On-line Bridge technique, where the bridge is typically developed to suit
the needs of a particular system, off-line bridges are often available as separate tools and
can hence be acquired rather than developed. When dA and dB are about an aspect other
than data representation, use the On-line Bridge technique so that the bridge can be part
of the control structure of the final system. To automate the step of executing the off-line
bridge and/or to select the bridge at run time, use the Mediator technique.

Examples

• Debabelizer
Aspect of packaging: data representation, namely image format
Component A: MacPaint, committed to MacPaint format
Component B: an image in Photoshop format
Connector C: file access
Component Br: the tool Debabelizer, which can convert among many image formats,
including MacPaint and Photoshop

• Word for Word
Aspect of packaging: data representation, namely document format
Component A: Microsoft Word application, committed to Word format
Component B: a document in FrameMaker format
Connector C: file access
Component Br: the tool Word for Word, capable of converting among a variety of docu �
ment formats, including Word and FrameMaker

(s1)

(s2)

(s3)

(s4)

A dA BdB= C =

Br dBdA

BBr CB’ CdA dA dB dB

B’A C
dA dA

26

Wrapper

Schematic

Problem

Same as for the On-line Bridge Technique (s1).

Solution

The solution is the same as with the On-line Bridge technique, with one additional step.
Before the final integration, encapsulate the wrapper W (the analogue of bridge Br), the
component B, and the connector between them within a new component B’ (s4). This
encapsulation step, depicted with the striped lines above, is about both abstraction and
access: the component B’ hides the commitment dB inside its implementation; and com�

ponent B can only be accessed through component W. Both these aspects of the encapsu�
lation step simplify reasoning about the final integrated system. (Note that whether A or
B is encapsulated with W is arbitrary in this chapter’s formulation. In an actual system,
system-specific considerations determine this choice. Typically, if B is encapsulated with
W, it is because dB represents a “legacy” commitment to be denigrated in favor of dA in
the system’s future life.)

Examples

• Hardware emulator
Aspect of packaging: data representation, namely instruction set. This data representation
difference reflects significant semantics differences (e.g. risc vs. cisc, different mem �

ory models), which must also be addressed but are not packaging mismatch problems.
Component A: Intel x86 executable, committed to x86 instruction set
Component B: Sun Sparc processor, committed to Sparc instruction set
Connector C: Instruction fetch and execution
Component W: program that runs on a Sparc and emulates the x86 processor

• Database wrapper³⁸

Aspects of packaging: data transfer and transfer protocol
Component A: database accessing program, committed to sql query language
Component B: file formatted with newline-separated records, committed to linear access
(no query language)
Connector C: data access
Component W: automatically generated component that accepts an sql query and per�
forms linear access to fulfil the query

• MacLink
Aspect of packaging: data representation, namely floppy disk format (dos vs. Macintosh)
Component A: Macintosh application, committed to Mac formatted files
Component B: a file on a dos-formatted disk
Connector C: file access
Component W: MacLink, which makes a file on a dos-formatted floppy disk appear to
be a Mac-formatted file

(s1)

(s2)

(s3)

(s4)

(s5)

A dA BdB= C =

W dBdA

BW CdA

B’dA

B’A C

27

Mediator

Schematic

Problem

To integrate components A and B that have commitments made at the time of their
development that conflict with one another (s1). Connector C is simultaneously capable
of supporting several alternatives for a given commitment, often about data representa �
tion. It does this by having an internal infrastructure that is able to choose and coordi �
nate among specialized components, called brokers or agents, that are capable of
handling a particular data translation. The infrastructure is often designed to allow the
set of alternative commitments to be easily grown, even at run-time with some media �
tors. Mediator technology is currently an object of research and should become more
available to system integrators over time.

Solution

Specialize the mediator so that its commitment is compatible with component A’s (s2);
then integrate it with component A (s3). Repeat for component B (s4 , s5). These two
specialization and integration steps may take place at different times, for example, one at
system integration time, one at run-time.

Variation

Connector C allows variation on only one of its roles, making a fixed commitment for
the other role. For example, a mediator may support a fixed type of interaction with a
data-consuming component, but be capable of interacting with many types of data-pro �
ducing components.

Examples

• Tom³⁷

Aspect of packaging: data representation, namely document format
Component A: a program that reads PostScript documents
Component B: a document in LaTeX format
Connector C: the Tom service, which can convert among a variety of document formats
by choosing the appropriate conversion tools

• Retsina⁵¹

Aspect of packaging: data representation, namely the formats of different information
sources in the same domain, like stock information
Component A: a stock portfolio management program
Component B: a web page showing periodic stock updates
Connector C: the Warren system (an instance of the Retsina framework)

(s1)

(s2)

(s3)

(s4)

(s5)

A dA D1 C D2 BdB

(dA ∈ D1)dA C D2

A C D

A C dB (dB ∈ D2)

BA C

28

Intermediate Representation

Schematic

Problem

Same as for the Mediator technique, with the restriction that the mismatch between A
and B is about data representation. Connector C is simultaneously capable of supporting
several alternatives for a given commitment about data representation. It does this by
committing to its own choice for this alternative (call it dI) and by implementing all
translations to and from each of the alternatives in D and dI. The advantage of having an
intermediate form is that the number of translations the connector must implement
grows linearly with the number of alternatives; whereas, the number of pairwise transla �
tions grows quadratically with the number of alternatives. The disadvantages are that the
cost of two translations must be incurred even when A and B commit to the same alter �
native (dAB to dI to dAB) and that the translations may lose information. Typically, the set
of alternatives is committed when the connector is developed.

Solution

Specialize the connector to the mismatch at hand (s2) and integrate it (s3). Because the
set of alternatives is typically fixed when the connector is developed, the system integra�
tor often uses connector-specific tools at system build time to achieve the specialization
and integration.

Examples

• Xerox parc’s Inter-Language Unification (ilu)²⁸

Aspect of packaging: data representation, namely representation of basic datatypes (inte�
gers, strings, booleans, records, etc.)
Component A: a program written in C
Component B: a program written in Lisp
Connector C: the ilu infrastructure, which supports inter-language procedure call

• Corba
Aspect of packaging: data representation, namely representation of basic datatypes (inte�
gers, strings, booleans, records, etc.)
Component A: an object implemented in C++
Component B: an object implemented in Smalltalk
Connector C: a Corba orb, which supports inter-language method call

(s1)

(s2)

(s3)

A dA BdBD C D

A dA BdB (dA ∈ D, dB ∈ D)dA C dB

BA C

29

Unilateral Negotiation

Schematic

Problem

To integrate components A and B, where component A is committed at its development
time to a set of alternative decisions about interaction and component B is committed to
a particular decision (s1).

Solution
If component B’s commitment is in the set of commitments that component A is capable
of supporting, then specialize component A to match B’s commitment (s2) and integrate
the two (s3). This technique can also be seen as a mismatch prevention technique:
develop components that support more than one style of interaction to make them more
widely reusable. (One way to realize this advice is the Component Extension Technique.)
If component B’s commitment is not in the set of commitments that component A is
capable of supporting, then consider another technique, like On-line Bridge or Wrapper.

Examples

• Microsoft’s com connector⁶

Aspect of packaging: transfer protocol, namely the interface (collection of procedures) by
which A will export computation to B
Component A: a com component exporting multiple interfaces, for example, multiple
versions of the same logical interface
Component B: a com component importing a particular interface, for example, a partic�
ular version
Connector C: the com connector

• “Fat” executables
Aspect of packaging: data representation, namely processor instruction set
Component A: a Macintosh “fat” executable, i.e. a program compiled to both the 68000
and PowerPC instruction sets, but provided as a single executable file
Component B: a PowerPC processor
Connector C: the MacOS program loader

• Optional procedure arguments
Aspect of packaging: data representation, namely the number and types of arguments
passed between a procedure caller and definer
Component A: a procedure definer
Component B: a procedure caller
Connector C: a procedure call connector that allows for optional (keyword) arguments,
as with Modula 3 or Common Lisp

• Views of relational databases
Aspect of packaging: data representation, namely the grouping of data items into a record
Component A: a relational database
Component B: a database accessor
Connector C: a dbms, which allows a dynamic grouping of data (view) to be formed
from the database’s tables

(s1)

(s2)

(s3)

A D BdB= C =

A dB BdB (dB ∈ D)= C =

BA C

30

Bilateral Negotiation

Schematic

Problem

To integrate components A and B, each of which is committed at its development time to
a set of alternative decisions about interaction (s1) and to a protocol for selecting one of
the alternatives by negotiating with its partner components (s2). The negotiation may be
either symmetric (the two components interact through a pre-determined channel to
choose the alternative) or asymmetric (one component alone chooses the alternative).

Solution
Develop components that support negotiation to prevent packaging mismatch. There are
currently too few examples of bilateral negotiation to provide general advice.

Examples

• Microsoft’s com connector
Aspect of packaging: transfer protocol, namely the interface (collection of procedures) by
which A will export computation to B
Component A: a com component exporting multiple interfaces, for example, multiple
versions of the same logical interface
Component B: a com component capable of importing several interfaces. This compo �
nent alone chooses the final interface by iteratively querying for the interfaces A sup �
ports. For example, it might seek the most modern version of an interface that A and B
share in common.
Connector C: the com connector

• Modem whistling
Aspect of packaging: transfer protocol, namely two communication parameters: modula �
tion standard (bits per baud) and transmission rate (bits per second). There is a standard
algorithm by which the two modems interact symmetrically to select the best values for
these parameters.
Component A: a modem making a call
Component B: a model receiving a call
Connector C: a bit stream channel (telephone line)

(s1)

(s2)

(s3)

A DA BDB= C =

A dab Bdab (dab ∈ DA ∩ DB)= C =

BA C

31

Component Extension

Schematic

Problem
To integrate an extensible component A to a component B with a fixed commitment
about interaction. The developers of component A defer some commitments about
interaction by delegating these commitments to a set of modules integrated when the
component is initialized at runtime. When component A is developed, its designers
commit to an interface between A and the dynamically loaded modules, called exten�
sions, plug-ins, or add-ins and denoted above by X (s1). Either before or at the beginning
of run-time, A is integrated with the extensions (s2), after which the set of alternative
commitments that component A is capable of making is the union of those alternatives
that the extensions committed to individually when they were developed. Later, when
component B is integrated, component A selects the extension whose commitment
agrees with dB and integrates the extension and B (s3).

Solution

Develop an extension that matches component B’s commitment, and integrate it with
component A. When seen from the point of view of component A’s developers, this is a
mismatch prevention technique; from the point of view of someone selecting or develop �
ing an extension, this is a repair technique. This technique provides a particular architec �
ture for realizing Unilateral Negotiation. Namely, if component A and its extensions were
encapsulated into a single component whose port had commitment DA = {dY, dB, dZ},
then the diagram above would fit the pattern for Unilateral Negotiation.

Examples

• Word add-ins
Aspect of packaging: data representation, namely document format
Component A: Microsoft Word application
Extensions X: Word add-ins, which can each read documents in different formats
Component B: a FrameMaker document
Connector C: file access

• Netscape plug-ins
Aspect of packaging: data representation, namely document format, where a document is
considered any information source whose contents can be displayed on a workstation
(text, image, animation, sound, etc.)
Component A: the Netscape web browser
Extensions X: Netscape plug-ins, one per type of document, where the document’s type
is manifest through its file extension or mime type declaration
Component B: a document on the web
Connector C: web document access (e.g. http)

(s1)

(s2)

(s3)

A dA BXB dBdX dB

dA E dX = C =

A E XB dB

XY dY

XZ dZ

A E XB

XY dY

XZ dZ

BC

32

2.3 a space of techniques

The techniques in this catalog form a space whose primary discrimina �
tor is the degree of flexibility engendered in the initial set of architectural
elements to be integrated. There are three starting points.

2.3.1 No flexibility

Because the components make particular and conflicting commitments
about which the connector requires agreement, the integrator adds new
components to the system to overcome the mismatch. The chief tech �
nique in this family is On-line Bridge, which has two specializations: Off�

line bridge, where the mismatch is about data representation; and Wrap �
per, which involves an extra encapsulation step.

2.3.2 Flexible connector

The connector is designed to support a variety of commitments. When
the components’ commitments fall within the connector envelope of
possibilities, the integrator or the connector itself specializes the connec �
tor to overcome the particular mismatch. When the components’ com �

mitments do not fall within the envelope, a technique from the “no
flexibility” family may be used. The chief technique in this family is
Mediator, which has one specialization: Intermediate Representation,
where the mismatch is about data representation.

2.3.3 Flexible component(s)

One or both of the components are designed to support a variety of
commitments about which the connector requires agreement. When
there is overlap in the components’ envelopes of possibilities, the inte �
grator or the components themselves specialize the components to
achieve agreement. The two main techniques in this family are Unilateral
and Bilateral Negotiation. (Unilateral Negotiation is not truly a special �
ization of Bilateral Negotiation, since the latter can involve symmetric
solutions to mismatch resolution, like modem whistling, which the
former cannot.) Unilateral Negotiation has one specialization, Compo �
nent Extension, which provides a particular architecture for achieving
the more general technique.

A dA BdB= C =

A dA D1 C D2 BdB

A DA BDB= C =

33

2.4 flexible packaging in this space of techniques

The Flexible Packaging method is an example of Component Extension.
With reference to the catalog entry on page 31, component A is the ware,
component X is the packager, and connector E is the use of channels.
The examples in the catalog, Word and Netscape plug-ins, load their
extensions when the application is initialized and select the proper
extension when the connection to component B is made at run-time. In
contrast, with Flexible Packaging, only one extension can exist at run �
time, and the system integrator selects and integrates this extension at
system integration time.

2.5 related catalogs and classifications

The catalog in this chapter builds on the work of the software architec �
ture community, which has argued for making the types of interaction
among components first-class abstractions, called connectors.⁴⁸ The
schematics in the catalog directly reflect this style of system decomposi �
tion. Within this community, Shaw has argued that extra-functional
properties of software components, like packaging, often play as impor �
tant a role during system integration as functional properties.⁴⁵ She pro�
vided a preliminary list of packaging mismatch resolution techniques
and called for it to be “elaborated and refined.” The catalog in this chap �
ter is in response to that call.

In a similar vein to this cataloguing work, other researchers have
classified various aspects of software architecture to begin to bring disci �
pline to today’s folklore. Shaw and Clements classified the architectural
styles that a system may have, based in part of the interaction mecha �
nisms used in the system.⁴⁶ In a companion paper, Kazman, Clements,
Bass, and Abowd classified software components and the interactions
among them (connectors) both by how they compose to form systems
and by how they behave at run time.³⁰ Like this chapter, their model of
runtime behavior is based on the transfer of data and control among
components, though this chapter views this behavior in more detail.

Garlan, Allen, and Ockerbloom report the problems that they experi �
enced in building a system from reusable parts.¹⁹ They label these prob �
lems under the general heading of architectural mismatch and provide an
initial decomposition of architectual mismatch into four categories:
assumptions about components; assumptions about connectors;
assumptions about the global architecture; and assumptions about the
construction process. The concept of architectural mismatch is more
general than that of packaging mismatch and includes non-packaging
problems like whether components are built from redundant infrastruc �
tures and whether different components’ construction processes mutu �
ally interfere. Also, their categorization of architectural mismatch does
not perfectly align with the concept of packaging mismatch, since their
categories of problems about components and problems about connec �
tors both include packaging mismatch problems.

34

As an illustration of how patterns can capture expertise, Mularz
reports four patterns for solving integration problems.³⁵ Mularz’s pat �
terns are more specific and situated than those presented here. For
example, her Wrapper pattern, akin to the pattern of the same name
here, deals with components that expose an api that is no longer to be
used. Whereas her patterns are meant to provide specific guidance about
particular integration problems, the patterns here are more generic in
order to promote ready comparison among them.

Similarly, Dellarocas created an initial handbook of system integra �
tion problems paired with solutions, more comprehensive in scope than
Mularz’s.¹⁶ Dellarocas’ classification of interaction problems includes
more problems than just packaging mismatch (for example, timing
dependencies between components) but is less detailed in the regions of
overlap with this chapter.

35

 Separating Funcionality from Packaging

The basic idea behind the Flexible Packaging method is to take the deci �
sions about a software component’s packaging out of the hands of the
component provider and put them into the hands of the system archi �
tect. This chapter describes the two key elements of the design of the
Flexible Packaging method that achieve this shift in responsibility.

First, Section 3.1 describes the need for a new participant in the devel-
opment and deployment of software components. A given type of com �

ponent packaging typically involves a lot of specialized skills and knowl �
edge. By shifting the responsibility for the component’s packaging from
the component provider to the system architect, we relieve the compo �
nent provider from knowing these packaging details. However, we do
not want this shift to cause the system architect to become burdened
with the packaging details. To shelter the system architect from these
details, the Flexible Packaging method introduces a new development
role: the packaging specialist. With this introduction, the Flexible Pack �
aging method distributes the responsibility for a component among
three participants: the ware provider captures the component’s function �
ality in a module called the ware; the system architect makes the high �
level decisions about a component’s packaging; and the packaging spe �
cialist uses the architect’s high-level decisions to produce the detailed
code and artifacts needed to achieve the packaging that the architect
describes. This section describes both the nature of the packaging details
that the packaging specialist hides and how he hides them.

Second, Section 3.2 describes how the Flexible Packaging method
requires the ability to combine modules that are independently devel �
oped – one module that implements a component’s functionality, one
module that implements its interactions. If the modules’ interfaces are
based on procedure calls (or its variants), the module integrator often
must create “glue code” to integrate the modules – a situation that Flexi �
ble Packaging seeks to avoid. Instead, with Flexible Packaging, the mod �
ules run concurrently and interact through data channels. This approach
allows independently authored modules to be mixed and matched, with
any needed glue code semiautomatically generated.

After the introduction of these two key elements in the design of the
Flexible Packaging method, Section 3.3 discusses the previous work that
is most directly related to Flexible Packaging. Section 3.4 then reviews
each of the three roles in the method to lay the groundwork for Chapter
4, which describes each role in detail.

36

3.1 shifting and abstracting packaging decisions

3.1.1 The complexities of component packaging

Today, for a component provider to ensure that his component has a par �
ticular packaging, he must often exercise specialized skills and knowl �
edge. As mentioned in Chapter 1, his choice of packaging typically has
implications both on the content of the component’s source code and on
the tools and steps needed to construct and install the component. To
appreciate this point in more detail, this section describes what it takes
to package a component as an ActiveX control, which is representative of
the skills and knowledge needed for many packagings. Although there
are many ways to produce ActiveX controls, this explanation will focus
on one representative approach, namely the use of Microsoft’s Active
Template Library (atl).²¹

An ActiveX control is a special type of dynamic library that exports a
collection of com interfaces. Each com interface exports a collection of
procedures, called com methods, and data items, called com proper �
ties. com itself is a run-time mechanism that implements the method
calls and the property accesses. To hide many of the details of the com

mechanism, Microsoft created atl, a C++ template library for imple�
menting controls. Using this library, an ActiveX control is implemented
as a subclass of one or more library classes. An example class that imple �
ments an ActiveX control is shown in Figure 3.1. The number of class and
macro definitions used in this example illustrates the amount of packag �
ing-specific knowledge a component provider must master to write his
code, even when he uses a toolkit that simplifies the task.

Furthermore, using the atl toolkit when writing the source code is
not enough to package a component as an ActiveX control. The compo �
nent provider must also carry out ActiveX-specific construction and
installation steps. First, he must create a file written in Microsoft’s Inter�
face Definition Language (idl), which describes the com interfaces that
the control exports. This description both serves as documentation for
the control and is needed to link the control with other controls. Figure
3.2 shows an example idl description. After this description is written,
the component provider compiles it with an idl compiler. Next, the
component provider produces a registry file, which describes how the
control should be entered into the Windows system registry. An example
registry file is shown in Figure 3.3. To associate the compiled idl file, the
registry file, and an optional icon with the library implementing the con �
trol, the component provider creates a resource file for the library. An
example resource file consists of the following lines:

101 REGISTRY "PNGViewerControl.rgs"
1 TYPELIB "PNGViewerControl.tlb"
3 ICON "PNGViewerControl.ico"

For a good introduction to
com and ActiveX, consider

Chappell.¹⁰ The book’s main
content is blessedly light on

jargon and technical arcana,
and the running executive

summary in the margin
provides a particularly quick

way to learn the basics.

37

class ATL_NO_VTABLE CPNGControl :
public CComObjectRootEx<CComSingleThreadModel>,

public CComCoClass<CPNGControl, &CLSID_PNGControl>,
public CComControl<CPNGControl>,
public IDispatchImpl<IPNGControl, &IID_IPNGControl, &LIBID_PNGControlLib>,

public IProvideClassInfo2Impl<&CLSID_PNGControl, NULL, &LIBID_PNGControlLib>,
public IPersistStreamInitImpl<CPNGControl>,
public IPersistStorageImpl<CPNGControl>,

public IQuickActivateImpl<CPNGControl>,
public IOleControlImpl<CPNGControl>,
public IOleObjectImpl<CPNGControl>,

public IOleInPlaceActiveObjectImpl<CPNGControl>,
public IViewObjectExImpl<CPNGControl>,
public IOleInPlaceObjectWindowlessImpl<CPNGControl>,

public IDataObjectImpl<CPNGControl>,
public ISpecifyPropertyPagesImpl<CPNGControl>

{

public:
CPNGControl();
~CPNGControl();

DECLARE_REGISTRY_RESOURCEID(IDR_GENERICCONTROL)

BEGIN_COM_MAP(CPNGControl)
COM_INTERFACE_ENTRY(IPNGControl)
COM_INTERFACE_ENTRY(IDispatch)

COM_INTERFACE_ENTRY_IMPL(IViewObjectEx)
COM_INTERFACE_ENTRY_IMPL_IID(IID_IViewObject2, IViewObjectEx)
COM_INTERFACE_ENTRY_IMPL_IID(IID_IViewObject, IViewObjectEx)

COM_INTERFACE_ENTRY_IMPL(IOleInPlaceObjectWindowless)
COM_INTERFACE_ENTRY_IMPL_IID(IID_IOleInPlaceObject, IOleInPlaceObjectWindowless)
COM_INTERFACE_ENTRY_IMPL_IID(IID_IOleWindow, IOleInPlaceObjectWindowless)

COM_INTERFACE_ENTRY_IMPL(IOleInPlaceActiveObject)
COM_INTERFACE_ENTRY_IMPL(IOleControl)
COM_INTERFACE_ENTRY_IMPL(IOleObject)

COM_INTERFACE_ENTRY_IMPL(IQuickActivate)
COM_INTERFACE_ENTRY_IMPL(IPersistStorage)
COM_INTERFACE_ENTRY_IMPL(IPersistStreamInit)

COM_INTERFACE_ENTRY_IMPL(ISpecifyPropertyPages)
COM_INTERFACE_ENTRY_IMPL(IDataObject)
COM_INTERFACE_ENTRY(IProvideClassInfo)

COM_INTERFACE_ENTRY(IProvideClassInfo2)
END_COM_MAP()

BEGIN_PROPERTY_MAP(CPNGControl)
PROP_PAGE(CLSID_StockColorPage)

END_PROPERTY_MAP()

BEGIN_MSG_MAP(CPNGControl)
MESSAGE_HANDLER(WM_PAINT, OnPaint)

MESSAGE_HANDLER(WM_SETFOCUS, OnSetFocus)
MESSAGE_HANDLER(WM_KILLFOCUS, OnKillFocus)

END_MSG_MAP()

public:
STDMETHOD(get_FileName)(/*[out, retval]*/ BSTR *pVal);

STDMETHOD(put_FileName)(/*[in]*/ BSTR newVal);
private:

BSTR cached_FileName;

HRESULT OnDraw(ATL_DRAWINFO& di);
};

figure 3.1 An example C++
class declaration for an
ActiveX control written using
Microsoft’s Active Template
Library.

38

This resource file is compiled with a resource compiler, and the compiled
resource file is presented to the linker along with the compiled source
code. In short, in addition to using atl to produce his source code, the
component provider must produce three non-code artifacts, each in its
own syntax, invoke a packaging-specific tool, and use a packaging �
specific switch to the linker.

To be fair, Microsoft’s development environment, Developer Studio, is
capable of hiding some of these steps and reducing the tedium of others.
However, the skills and knowledge illustrated with this ActiveX example
are in fact representative of the complexity that a component provider
often faces when working with a given component packaging. Notice

#include <olectl.h>
import "oaidl.idl";
import "ocidl.idl";

[
object,
uuid(7CF18AA2-36FF-11d2-9FD5-00104B33709D),
dual,
helpstring("png Image Interface"),
pointer_default(unique)

]
interface IPNGViewerControl : IDispatch
{

[propget, id(1), helpstring("")] HRESULT FileName([out, retval] BSTR *pVal);
[propput, id(1), helpstring("")] HRESULT FileName([in] BSTR newVal);

};

[
uuid(7CF18AA0-36FF-11d2-9FD5-00104B33709D),
version(1.0),
helpstring("PNG Image Control for DeLine’s Thesis")

]
library PNGViewerControlLib
{

importlib("stdole32.tlb");
importlib("stdole2.tlb");

[
uuid(7CF18AA1-36FF-11d2-9FD5-00104B33709D),
helpstring("PNGViewerControl Class")

]
coclass PNGViewerControl
{

[default] interface IPNGViewerControl;
};

};

figure 3.2 An example
interface description in

Microsoft’s Interface
Definition Language.

39

that the skills and knowledge needed to achieve a given component
packaging are distinct from those needed to implement a given piece of
functionality, like painting png images, calendar management, vehicle
navigation, and so on. Hence, shifting the packaging decisions away
from the component provider keeps him from being burdened with
skills and knowledge that are not relevant to his job. However, these
packaging details are also not relevant to the system architect, whose job
is to understand the system-level implications of choosing different
interaction mechanisms. Hence, in shifting packaging decisions to the
architect, we do not also want to shift responsibility for the details that
follow from the packaging decisions.

HKCR
{

PNGViewerControl.PNGViewerControl.1 = s ’PNGViewerControl Class’
{

CLSID = s ’{7CF18AA1-36FF-11d2-9FD5-00104B33709D}’
}
PNGViewerControl.PNGViewerControl = s ’PNGViewerControl Class’
{

CurVer = s ’PNGViewerControl.PNGViewerControl.1’
}
NoRemove CLSID
{

ForceRemove {7CF18AA1-36FF-11d2-9FD5-00104B33709D} =
s ’PNGViewerControl Class’

{
ProgID = s ’PNGViewerControl.PNGViewerControl.1’
VersionIndependentProgID = s ’PNGViewerControl.PNGViewerControl’
ForceRemove ’Programmable’
InprocServer32 = s ’%MODULE%’
{

val ThreadingModel = s ’Apartment’
}
ForceRemove ’Control’
ForceRemove ’Programmable’
ForceRemove ’Insertable’
ForceRemove ’ToolboxBitmap32’ = s ’%MODULE%, 1’
’MiscStatus’ = s ’0’
{
 ’1’ = s ’131473’
}
’TypeLib’ = s ’{7CF18AA0-36FF-11d2-9FD5-00104B33709D}’
’Version’ = s ’1.0’

}
}

}

figure 3.3 An example
registry file for an ActiveX
control.

40

3.1.2 The packaging specialist

Although the Flexible Packaging method seeks to let the system architect
choose a component’s packaging, exposing her to the full complexity of
a packaging’s rules and rituals would make her job considerably harder
than it is today. In current practice, a system architect must understand
how to compose components packaged in a given way, but need not
understand how to achieve that packaging. For example, many Visual
Basic developers understand how to use ActiveX controls in their sys �
tems, without understanding how ActiveX controls are built. This expo �
sure to packaging complexity would be especially burdensome to those
architects who build their systems in heterogeneous architectural styles,
which involve several types of packaging at once.

Further, much of this packaging complexity is uninteresting: some
packaging decisions are high-level and represent an interesting part of a
component’s design; the other packaging decisions are mere details. For
instance, the high-level choices for ActiveX controls include the choice
of which com interfaces a given control exports and the choice of the
methods and properties that constitute a given com interface. How
these high-level choices are encoded in artifacts like idl files is a detail of
the technology. To prevent the system architect from being burdened
with these low-level details, the Flexible Packaging method introduces a
new participant into the process of developing and deploying compo �
nents: the packaging specialist. A packaging specialist is expert in a
given packaging technology, like ActiveX, and encapsulates the arcane
rites necessary to ensure that a component has that packaging.

Reviewing from Chapter 1, the Flexible Packaging method distin�
guishes the essential decisions about a component’s interactions from
the incidental decisions. The essential decisions about interaction are
intrinsic to the component’s functionality and are hence the responsibil �
ity of the ware provider. The remaining incidental decisions about the
component’s interactions constitute the component’s packaging. These
packaging decisions themselves can be split into high-level and low-level
decisions. The system architect makes the high-level packaging deci �
sions; the packaging specialist, the low-level. In short, the Flexible Pack �
aging method makes a two-tier distinction

in order to distribute the responsibilities among three participants.
Given our goal of having the packaging specialist encapsulate the low �

level packaging details, how should this encapsulation be achieved? To
motivate Flexible Packaging’s answer, three characteristics of the packag �
ing specialist’s job are noteworthy. First, the packaging specialist is
responsible not only for the source code needed to achieve a given pack �

interaction

essential: ware provider

incidental
high-level: system architect

low-level: packaging specialist

41

aging, but also for the necessary non-code artifacts (like idl files) and
the construction and installation steps. Second, the products for which
the packaging specialist is responsible are not fixed, but vary according
to the high-level packaging decisions that the system architect makes.
For instance, with ActiveX, the system architect chooses the com inter�
faces that the control exports, as well as the methods and properties that
constitute those interfaces. The packaging specialist is then responsible
for producing the atl source code and other products that reflect the
system architect’s com interface choices. The packaging specialist
encapsulates the syntax and tools associated with these products, but
must allow the content to vary with the architect’s decisions. Third,
because the system architect makes her high-level packaging decisions
to tailor the component to the integration context, she makes these deci �
sions at system integration time. Hence, the products for which packag �
ing specialist is responsible cannot be produced until then.

Given these three characteristics of the packaging specialist’s job,
what should the Flexible Packaging method require the packaging spe �
cialist to produce to encapsulate the low-level packaging details? A fixed
module or module library would be inadequate because it fails to cap �
ture the variability in the source code that results from the architect’s
high-level packaging decisions. Modules with parameters (like sml

functors or Ada generics) are capable of capturing the variability in this
source code (based on my experience building packaging generators)
but are not applicable to the non-code artifacts and the construction and
installation steps, since these are not written in programming notations.
Instead, the Flexible Packaging method requires the packaging specialist
to produce a software generator. This generator maps a set of packaging
parameters to the set of source code, non-code artifacts, and construc �
tion and installation steps that are needed to achieve the packaging.

The parameters that capture the system architect’s essential packaging
decisions are written in the form of a packaging description. An example
packaging description, shown previously in Chapter 1, describes an
ActiveX control for displaying png images:

PNGViewerControlInterface: interface ActiveXControlPackaging with
library_iid: UUID{7CF18AA0-36FF-11d2-9FD5-00104B33709D};
coclass_iid: UUID{7CF18AA1-36FF-11d2-9FD5-00104B33709D};
name: "PNGViewerControl";
help_string: "PNG Image Control for DeLine's Thesis";
IPNGViewerControl: player COM_Interface with

iid: UUID{7CF18AA2-36FF-11d2-9FD5-00104B33709D};
help_string: "PNG Image Interface";
FileName: player COM_Property with

id: 1;
signature: "BSTR";

end
end

end

42

This packaging description is really a compound parameter, like a
record in a standard programming language. From this description, the
ActiveX generator produces the atl source code, idl file, registry file,
and resource file that were discussed in Section 3.1.1. The generator also
produces a Makefile (set of construction steps) that processes the source
code and non-code artifacts. As described in Section 4.2, the Flexible
Packaging method provides a set of Java classes for creating these pack �
aging generators.

In summary, achieving a particular component packaging involves
both making high-level packaging decisions and deriving detailed arti �
facts from these decisions. The Flexible Packaging method places the
responsibility for the high-level packaging decisions in the hands of the
system architect. To keep the architect from being overburdened, the
method introduces the role of the packaging specialist, who provides a
software generator to map the architect’s high-level decisions to the
detailed artifacts. Later, Section 4.2 describes how the packaging special-
ist creates this generator.

3.2 mixing wares and packagers to produce components

3.2.1 A component is a ware plus a packager

To review, when using the Flexible Packaging method to create a compo �
nent, the system architect first selects a ware that implements the desired
functionality. Next, she writes a packaging description that captures the
desired packaging and runs a tool called Packgen, which automatically
selects the appropriate packaging generator to run on the packaging
description. The packaging generator creates the source code, non-code
artifacts, and construction and installation instructions needed to
achieve the packaging.

The source code that the packaging generator produces is called the
packager. The ware and the packager are complements: the ware imple �
ments the component’s functionality; the packager, its interactions with
other components. The ware’s and packager’s computations are com �

bined to form the component’s entire run-time behavior. How should
this combination be achieved?

The mechanism chosen for combining the ware and the packager
needs to support the ability to mix-and-match these two modules. The
goal of Flexible Packaging is to allow a ware to be packaged in multiple
ways, which means that a ware needs to be combinable with different
packagers generated from different packaging descriptions. Conversely,
a packager should be combinable with different wares. There are poten �
tially many pieces of functionality that one would like to make available,
for example, as ActiveX controls, which means combining an ActiveX
packager with many different wares.

The goal, it should be noted, is not to support the arbitrary mix-and �
match of wares and packagers: every piece of functionality cannot be
made available through every packaging. Some combinations of func �

43

tionality and packaging simply do not make sense. For instance, the
ware introduced in Chapter 1, which parses and paints png images, can �
not be packaged as a Unix filter. The ware requires the ability to paint to
a window, which a (pure) Unix filter cannot provide, since Unix filters
are for text stream transduction. Further, evolving a software component
to have a new style of interaction can take considerable effort.¹⁵ The goal
of Flexible Packaging, then, is to support a reasonable amount of mix �
and-match between wares and packagers and to detect ware/packager
mismatches like that of the png Unix filter. The question of what consti �
tutes a reasonable amount of mix-and-match is considered later in Sec-
tion 3.2.5.

In addition to supporting mix-and-match, whatever mechanism is
chosen for combining wares and packagers should not place an undue
burden on the software architect. In the traditional approach to system
integration, the system architect creates glue code to overcome packag �
ing mismatches between components. If combining a ware and a pack �
ager requires as much effort as creating glue code to combine compo�
nents, the Flexible Packaging method would provide no advantage over
the traditional approach. The method would simply have moved the
problem of mismatch resolution from between components to within
components, without making the problem any easier.

Hence, we need a means of combining a ware and packager that both
allows a reasonable degree of mix-and-match and does not require as
much integration effort as the original component integration problem.
First, I consider having the packager export a traditional interface to the
ware and then having the ware export an interface to the packager, nei �
ther of which proves to be satisfying. Then, I introduce interfaces based
on coroutines, which provides the desired mix-and-match with low inte�
gration effort.

3.2.2 Take 1: The packager exports an api to the ware

In general, combining a ware and a packager amounts to combining two
modules written in a standard programming language. Given this, the
most ready way to achieve the combination is to use the mechanisms
inherent in the language, like procedure call. Indeed, procedural inter �
faces (often called application programming interfaces, or apis) are the
basis of much of today’s reuse. With a traditional interface, a service pro�
vider and a service client agree on a collection of procedures by which
the service is invoked. The service provider implements the collection of
procedures, and the service client calls the procedures to invoke the ser �
vice. (Although this section discusses interfaces based on procedures, a
similar argument could be made for interfaces based on higher-order
functions or methods. The terms interface or api will be used through �
out to remain neutral about the mechanism.) Using an agreed-upon
interface to integrate software modules is called programming-by-con �
tract, particularly when the benefits and obligations inherent in the pro �
cedures are made clear through pre- and postconditions.³⁶ The idea of

44

building a computation out of another computation with an explicit
interface is the basis of many of computer science’s most successful ideas:
layered systems;¹⁷ information hiding;³⁹ data abstraction and abstract
datatypes;²⁴ and formalisms for reasoning about composition, like
Hoare logic²³ and algebraic interface specifications.²²

As useful as traditional apis are for building many classes of software
systems, they are unfortunately ill suited to our goal of mixing different
wares with different packagers. An api, as a form of interaction between
modules, binds too many decisions and thus hinders mix-and-match.
There are two ways to attempt to achieve our desired mix-and-match
using a traditional api: we could consider the packager as the service
provider that exports an api to the ware or vice versa. We will consider
each of these possibilities in turn. Because there are far more potential
wares than packagers (there are more potential bundles of functionality
than there are ways for components to interact), let’s start by considering
the packager as the service provider.

With the packager as the service provider, each packager would come
with a procedural interface against which wares are written. (This is
essentially the traditional idea of abstract i/o libraries.⁴⁰) This approach
makes combining a packager with different wares straightforward: each
ware would be written against the packager’s procedural interface, and
the system architect would combine the ware and the packager by link �
ing. Unfortunately, the converse – combining a ware with different pack�
agers – would be problematic because the various packagers’ interfaces
would differ.

To appreciate the differences that could arise between different pack�
agers’ interfaces, consider two example components that compute the
mean of a set of integer data. In Figure 3.4(a), the first component pulls
the integer data from a file and pushes the mean to standard output. In
Figure 3.4(b), the “outside world” sends the second component mes-
sages, pushing both the integer data and a request for the mean to the
component. The figure illustrates a reasonable approach to implement�
ing each of these components as a packager and a ware that coordinate
through a procedural interface. Each packager’s interface consists of
both procedures that the packager exports to the ware and procedures
that the ware is obliged to export to the packager. (The latter could also
be handled through function pointers – so-called call-back functions –
but that does not affect the argument here.)

I designed each interface with only its own component in mind;
hence the two interfaces are very different from each other. In the two
interfaces, the data push/pull distinction is reflected in the direction of
the procedure calls: when the data is pulled, the packager defines proce�
dures for the ware to call; when the data is pushed, the ware defines pro �
cedures for the packager to call. The reason is that a procedure call repre �
sents a particular pattern of data and control flow, and the packager’s
interface encodes the component’s interactions into this pattern. This
encoding is particularly awkward (though typical) for the message-pass �

45

Module P-file

int MoreData()
{

return ! eof(F);
}

int GetData()
{

int i;
fscanf(F, “%d”, &i);
return i;

}

void main()
{

F = fopen(DataFile, “r”);
int result = RunWare();
printf(“mean %d\n”, mean);

}

Module W-file

int RunWare()
{

int n=0, sum=0;
while (MoreData()) {

sum += GetData();
n++;

}
return sum/n;

}

Module P-message

void DataCB(message *m)
{

PutData(m->data);
}

void MeanCB(message* m)
{

m->reply = GetResult();
}

void main()
{

InitMessageSystem();
RegisterCallback(M1, DataCB);
RegisterCallback(M2, MeanCB);
WaitForMessages();

}

Module W-message

int n=0; sum=0;

void PutData(int i)
{

sum += i;
n++;

}

int GetResult()
{

return sum/n;
}

figure 3.4 The
implementations of two
components that calculate the
mean of a series of integers.
(a) The component gets its
data from a file and reports its
result to standard output. (b)
The component gets its data
from messages and reports its
result through a message.

(a)

(b)

46

ing component, since the ware’s functionality is fragmented across dif �
ferent procedure definitions.

Two approaches could be used to cope with the differences between
different packagers’ interfaces: standardizing the packagers’ interfaces to
eliminate the differences or writing glue code to compensate for the dif�
ferences. In the first approach, the packaging specialists would agree to
make their packagers export a standardized interface. Having all pack �
agers export the same interface would allow the packagers to be substi �
tutable for one another, and hence the system architect could readily link
a ware with any packager that implements the standard. Unfortunately,
this kind of cross-industry cooperation is difficult to achieve, especially
over the course of time. This approach also requires the services that the
packagers provide to be sufficiently similar to be united under a single
interface, which not plausible given the effect that the data push/pull dis �
tinction has on the direction of the procedure calls in the interface.

The second approach – writing glue code – is more promising. A ware
would initially be written against a particular packager’s procedural
interface, and a system architect would combine that ware and that pack �
ager by linking. To combine that ware with a different packager, the sys�
tem architect would create the necessary glue code to overcome the dif �
ferences between the original packager’s procedural interface and the
new packager’s procedural interface. The architect would then interpose
the glue code between the reused ware and the new packager. For
instance, Figure 3.5(a) shows the glue code that integrates P-message and
W-file; Figure 3.5(b), the glue code that integrates P-file and W-message.
As Black points out, the glue code between two active computations, like
P-file and W-message, must act as a buffer; the glue code between two
passive computations, like P-message and W-file, must act as a pump.⁴ In
both cases, the glue code is not negligible and performs a significant
computation.

In short, it is dubious to treat the packager as a service provider that
exports a procedural interface to the ware. Making the packager be the
service provider either requires an unlikely agreement among packager
interfaces or requires the system architect to create glue code to over �
come the differences between one packager’s interface and another’s.

3.2.3 Take 2: The ware exports an api to the packager

The converse option – considering the ware to be the service provider
and the packager to be the service client – is even more difficult. First,
the service that a packager provides is always about component interac �
tion; the service that a ware provides could be about any subject matter
whatever (mathematical calculation, calendar management, stock mar �
ket prediction, vehicle navigation, word processing). Whereas there
might be some chance of establishing standard apis among packagers,
there is no chance of such standards between wares. For the same reason,
creating glue code to overcome the difference’s between one ware’s api

and another’s is more difficult than the analogous job for packagers.

47

Module Glue-buffer

linked_list Buffer = create_list();

void PutData(int i)
{

list_append(Buffer, i);
}

int GetResult()
{

return RunWare();
}

int MoreData()
{

return ! list_empty(Buffer);
}

int GetData()
{

int result = list_head(Buffer);
Buffer = list_tail(Buffer);
return result;

}

Module Glue-pump

int RunWare()
{

while (MoreData())
PutData(GetData());

return GetResult();
}

figure 3.5 The glue code
needed to overcome the
differences between
packagers’ interfaces. (a) The
glue code needed to integrate
P-message and W-file. (b) The
glue code needed to integrate
P-file and W-message.

(a)

(b)

48

Second, one might object and claim that, because packagers are gen �
erated, the generator could consider the ware’s interface when generating
the packager, thereby obviating the need for glue code. However, given
the nature of the potential differences between different wares’ inter �
faces, creating a generator with enough “smarts” to overcome such dif �
ferences would be difficult and expensive. To support this smart genera �
tion, the description of the ware’s procedural interface would have to be
much more explicit and detailed than current interface descriptions.
Hence, having the ware provide an api to the packager is even more
dubious than the reverse.

In summary, a traditional interface is ill-suited for our intended mix �
and-match of wares and packagers, whether the packager exports an
interface to the ware or vice versa. Instead, Flexible Packaging introduces
a new type of interface between these two modules, an interface which is
based on a construct called a channel and which better supports our
intended mix-and-match.

3.2.4 Take 3: The ware and packager export channels to one another

Given the problems associated with having a traditional api between the
packager and ware, the Flexible Packaging method promotes a modular �
ity mechanism based on the old idea of coroutines.¹¹ Rather than inter �
acting through procedure calls, function calls, or method calls, the ware
and the packager interact through strongly typed unidirectional data
streams, called channels, and the execution of the ware and packager is
interleaved through coroutines. For a long time, developers have known
that the use of coroutines between modules allows those modules to have
independent control structures. (Indeed, the original purpose for which
Conway invented coroutines was to allow a compiler’s lexer and parser to
have independent control structures.) The Flexible Packaging method
takes advantage of this property of coroutines to reduce the restrictions
that a ware or packager makes on its partner-module, thereby promot �
ing mix-and-match between wares and packagers.

The Ciao and Ciao++ language constructs To use this channel con �
struct, the source code for wares and packagers is written in either an
extension of C, called Ciao, or an extension of C++, called Ciao++. Both
Ciao and Ciao++ add the same language constructs to their respective
base languages: channel; in; out; and alt. These constructs are syntactic
sugar for library calls. The translation from this syntactic sugar to the
library calls provides an opportunity to type-check the use of the con �
structs, a step that would be unnecessary in a language with polymor �
phic types. Each of the four channel constructs is described below.

channel [in|out] [stream] <type> <chname>;

A channel construct declares a channel, giving it a direction (in or out),
an arity (scalar or stream), a type, and a name. A scalar channel is used

Although channels in C++
could have been implemented

with templates, I used the
syntactic sugar approach for

consistency with C.

49

to communicate a single value; a stream channel is conceptually a queue:
multiple values may be put on a stream channel before they are con �
sumed. A stream channel supports three functions that a scalar channel
does not: open, which allows a computation to place values on a stream
channel after it has been previously closed; close, which signals that no
more values are to be placed on a stream channel; and more, which
checks a stream channel has not yet been closed.

in(<chname>, <variable>);

An in statement gets a value off a channel. The channel must be declared
with direction in, and the type of the variable must be the same as the
declared type of the channel.

out(<chname>, <expression>);

An out statement puts a value on a channel. The channel must be
declared with direction out, and the type of the expression must be the
same as the declared type of the channel.

alt {

<in-statement>: <statement>
<in-statement>: <statement> …
<in-statement>: <statement>

}

The alt construct, like its namesake in occam,²⁶ allows an input to occur
from any one of a set of in statements for which input is ready. After the
selected in statement occurs, the statements following the colon are exe�
cuted.

The use of channels to coordinate modules has both a data-flow and a
control-flow aspect. In terms of data flow, when one module does an out
statement on a channel and another module does an in statement on the
same channel, the value flows from the out statement to the in statement.
Explicitly, there is an assignment of the expression in the out statement
to the variable in the in statement. (For channels with record types, the
assignment is field-wise.) Since this data flow has the same meaning as
assignment, in and out statements on channels of array or pointer types
cause aliasing, just as assignment does.

The control-flow aspect of channels is like coroutines: after a module
executes an in or out statement, the thread of control leaves that module
and resumes execution wherever it left off in the other module. The con �
trol-flow aspect of channels is illustrated in Figure 3.6. The component
in the figure consists of two Ciao modules: the packager in module P;
and the ware in module W. The component is packaged as a batch pro �
gram; hence, obeying the rules of this packaging, module P exports a
function called main. How the thread of control enters the component is
packaging-specific. For a batch program, the thread of control begins in

Because scalar channels are
buffered, as described in
Section 3.2.5, both scalar and
stream channels share the
same implementation. The
scalar/stream distinction
allows a programmer to
document his intended use of
the channel.

When more than one of the in
statements in an alt statement
has data ready, the current
implementation chooses the
first one listed in the alt. This
situation only arises because
out statements are buffered. A
better implementation might
be to select the in statement
whose data is “oldest,” i.e.
buffered for the longest time.
The Ciao compiler’s deadlock
check is stronger than
necessary: it uses non�
determinism to detect the
possibility of deadlock,
whatever the scheduling
policy for alt statements.
Because of the strength of this
check, the compiler may
report false positives for
deadlock.

50

the function main. This function executes until it reaches the out state �
ment on channel N. The thread then resumes execution where it left off

in the module W. In this case, because the thread has not yet executed
any code in module W, it starts at the beginning of the function declared
to be a coroutine, Compute. The thread then executes until it reaches the
in statement on channel N. After the data value is transferred between
the out statement on N and the in statement on N, the thread resumes
execution where it left off in module P (just after the out statement). In
this way, the thread of control bounces back and forth between the mod �
ules on every occurrence of an in or out statement, and the modules’
computations are effectively interleaved.

The addition of these constructs to C and C++ do not significantly
impact the semantics of the language. First, these constructs are type
safe. As mentioned earlier, the type of an expression in an out statement
must exactly match the declared channel type. Similarly, the type of a
variable in an in statement must exactly match the declared channel
type. Hence in and out statements cannot cause type-unsafe data flows.
The Ciao and Ciao++ compilers check for type violations. In terms of
run-time behavior, the Ciao constructs do not affect the languages’
other control flow constructs, including interrupts and setjmp/longjmp.
The exception is program termination. When the Ciao run-time imple �
mentation detects deadlock, it uses a call to exit to halt the program with
an error message. (In the absence of deadlock, the program terminates

void main()
{

channel out stream int N;
channel in int Min;
channel in int Max;
int i;

scanf(“%d”, &i);
out(N, i);
scanf(“%d”, &i);
out(N, i);
scanf(“%d”, &i);
out(N, i);

in(Min, i);
printf(“Minimum is %d”, i);
in(Max, i);
printf(“Maximum is %d”, i);

}

coroutine void Compute()
{

channel in stream int N;
channel out int Min;
channel out int Max;
int n, min, max;

in(N, n);
min = n;
max = n;
in(N, n);
if (n < min) min = n;
if (n > max) max = n;
in(N, n);
if (n < min) min = n;
if (n > max) max = n;
out(Min, min);
out(Max, max);

}

figure 3.6 A small example
of the use of channels to

coordinate modules. The
arrows indicate how the

thread of control bounces
back and forth between the

modules in the style of
coroutines.

51

in the usual way.) Because the coroutines are implemented using
Microsoft’s Fiber (light-weight thread) library, Ciao and Ciao++ mod �
ules themselves should not make calls to this library.

Channels support independent control structures The advantage of
interfaces based on coroutines is that the modules are free to have what �
ever internal control structure is convenient. When modules coordinate
through a procedural interface, the interface both serves as a contract
between the modules and dictates the functional decomposition of the
module implementing the service. This dual role of a traditional
interface is evident in the message-passing component in Figure 3.4(b).
The interface between the packager and the ware allows the packager to
push data to the ware, but forces the ware’s functionality to be awkwardly
distributed among different procedures. Also, as previously discussed,
the data push/pull distinction influences the direction of the procedure
calls in a packager’s interface to a ware. Hence, the two packager inter �
faces in Figure 3.4 are quite different from one another.

In contrast, Figure 3.7 shows the same interface implemented using
channels. With this channel-based interface, the ware W may be readily
integrated with either the file packager P-file or the message packager P�
message, with no need for glue code. Whereas the data push/pull dis-
tinction affects the direction of the procedure calls in procedure-based
interfaces, this distinction is not manifest in channel-based interfaces.
As a result, the interfaces to P-file and P-message are the same:

Pkg = out(N) → Pkg [?] in(Mean) → done

channel out stream int N
channel in int Mean

despite the fact that P-file receives its data via pull and P-message receives
its data via push. Also, the ware W ’s source code is written as a single
coherent procedure, whether integrated with P-file or P-message.
Because the module interaction is done through channels rather than
procedures, how the modules interact no longer affects how each mod �
ule is decomposed into procedures.

3.2.5 Additional channel features

As the example components in Figure 3.7 illustrate, basing the interface
between the ware and packager on coroutines rather than procedure
calls makes substantial progress toward our desired mix-and-match.
However, with the channel mechanism described so far, ordering mis �
match, name mismatch, and data representation mismatch can still cre �
ate incompatibilities between the ware and packager. Channel buffering
and channel maps, explained in this section, address these mismatches.
With these final channel features in place, I then describe how the chan �
nel mechanism allows a reasonable amount of mix-and-match between

52

Module P-file

void main()
{

channel out stream int N;
channel in int Mean;
int i, m;
F = fopen(DataFile, “r”);
open(N);
while (! eof(F)) {

fscanf(F, “%d”, &i);
out(N, i);

}
close(N);
in(Mean, mean);
printf(“mean %d\n”, mean);

}

Module W

coroutine void RunWare()
{

channel in stream int N;
channel out int Mean;
int i, n=0, sum=0;
while (more(N)) {

in(N, i);
sum += i;
n++;

}
out(Mean, sum/n);

}

Module P-message

channel out stream int N;
channel in int Mean;

void DataCB(message *m)
{

out(N, m->data);
}

void MeanCB(message* m)
{

int mean;
close(N);
in(Mean, mean);
m->reply = mean;

}

void main()
{

open(N);
InitMessageSystem();
RegisterCallback(M1, DataCB
RegisterCallback(M2, MeanC
WaitForMessages();

}

figure 3.7 The two
components from Figure 3.4,

re-implemented using
channels.

53

wares and packagers and how the system architect determines ware/
packager compatibility.

Alleviating ordering mismatch The use of channels, as discussed so
far, is restrictive in that the modules must agree on the exact order in
which the channels are used. For example, when one module executes an
in (out) statement on a given channel, the other module must then exe�
cute an out (in) statement on the same channel. To loosen this restric �
tion, an out statement’s implementation buffers the data provided in the
out statement until the corresponding in statement consumes the data.
Because of the buffering, execution may proceed past an out statement
without the execution of corresponding in statement; however, an in
statement must still block until the corresponding out statement is exe �
cuted, that is, until the channel’s buffer is not empty. In the presence of
buffering, deadlock is now possible: each module may be stuck at an in
statement, requiring data from the other module in order to proceed.
Hence, for two modules to coordinate correctly at run time, rather than
agreeing on the exact order in which channels are used, the modules
instead must avoid deadlock. How deadlock is prevented at compile time
and detected at run time is discussed in Chapter 4. An implication of this
weakened condition for module coordination is that the value that an
out statement puts on a channel need not ever be consumed by an in
statement. Indeed, an out channel in one module need not have a corre �
sponding in channel in the other module.

Alleviating name and data representation mismatch Of the possible
differences in channel-based interfaces, differences in data representa �
tion and connection establishment are likely to be quite common. That
is, without prior agreement or conventions, two independent program �

mers are quite likely to choose different names and types for the same
channel. Given this, the Ciao compiler, which the system architect uses
to combine a ware and a packager, simplifies the ability to overcome
these differences. As mentioned in Chapter 1, when the system architect
combines a ware and a packager, he hands the compiler the ware’s source
code, the packager’s source code, and a table called a channel map. An
example channel map, shown earlier in Chapter 1, is the following:

Initialize Begin

NewFile SetFileName channel in BSTR windows_string;
channel out char* c_string;
BSTR bstr;
char* cstr = (char*)malloc(100);
in(windows_string, bstr);
sprintf(cstr, \"%S\", bstr);
out(c_string, cstr);

Finalize Quit

An out statement without a
corresponding in statement
introduces the possibility of a
memory leak, which the
current Ciao compiler does
nothing to address. When
either an out channel has no
corresponding in channel or
when the source code contains
no in statements on the
corresponding in channel,
then there is no possibility
that the out statement’s value
will be consumed. In this case,
as an optimization, the
compiler could eliminate the
out statement. In the general
case, it is undecidable whether
a given out statement leaks
memory.

54

Each entry in the channel map contains the name of a channel declared
in the ware and the name of the corresponding channel declared in the
packager. When the two channels have different types, the map entry
may additionally contain source code to convert from the out channel’s
type to the in channel’s type. If the two channels share a common name
but differ in type, the map entry contains the same name twice plus the
conversion code.

When a channel’s name does not appear in the map, either (1) the
channel has a corresponding channel in the other module with the same
name and same type or (2) the channel is an out channel and there is no
corresponding in channel in the other module. In the absence of name
and type mismatch, the correspondence between channels is based on
name matching, like the matching of a procedure caller to a procedure
definer with a conventional linker. Because the compiler falls back on
name matching, the cost of channel maps is incremental. The more dis �
agreement there is between the ware author and the packager author, the
more entries in the channel map. When the ware and packager authors
collaborate to agree on channel names and types, the system architect
can forgo the channel map.

The Flexible Packaging method currently provides no support to the
system architect for overcoming differences in three aspects of interac�
tion: state persistence, state scope, and failure. Chapter 6 discusses the
possibility of adding support for these aspects.

Supporting “reasonable” mix-and-match As mentioned earlier, some
combinations of functionality and packaging do not make sense; hence,
some combinations of wares and packagers do not make sense. Because
channels are used to combine a ware and a packager, they are also used
to determine the compatibility between them. Each Ciao module (each
ware and each packager) comes with a channel signature that lists the
module’s channels and captures the order in which in and out statements
are executed on those channels. As an example, here is the channel sig �
nature for the ware discussed in Chapter 1:

Ware = in(Initialize) → Loop.
Loop= in(NewFile) → Loop

[] in(Paint) → Loop
[] in(Finalize) → done.

channel in int Initialize;
channel in char* NewFile;
channel in struct { struct { long left, bottom, top, right; }* rect;

void* hdc; } Paint;
channel in int Finalize;
channel out char* ErrorMessage;

55

The first half provides a csp expression to capture the order of channel
use; the second half lists the channels.

A ware’s channel signature abstractly captures its interaction require �
ments; a packager’s channel signature captures the “shape” that the func �
tionality must have to be compatible with the packaging. As a simple
example, consider two wares and two flavors of Unix filter. The first
ware, Rev separately reverses each line in a sequence of lines and has the
following channel signature:

Rev = in(Line) → out(Backward) → Rev [] done.

channel in char* Line;
channel out char* Backward;

The second ware, Sort sorts all of its lines of input and has the following
channel signature:

Sort = in(Line) → Sort [] Report.
Report = out(Sorted) → Report [?] done.

channel in char* Line;
channel out char* Sorted;

Given these signatures, it is clear that the first ware provides a line of
output for every line of input it receives; whereas, the second ware con �
sumes all its input before producing any output.

Now consider two variations on Unix filters. The first is an incremen�
tal filter, like the common utilities cat, head, and grep, and its packager
has the following channel signature:

Inc = out(I) → in(O) → Inc [?] done.

channel out char* I;
channel in char* O;

The second is a non-incremental filter, and its packager would have the
following channel signature:

NonInc = out(I) → NonInc [?] Gather.
Gather = in(O) → Gather [] done.

channel out char* I;
channel in char* O;

As these signatures reveal, the first packager is compatible with an incre �
mental ware, like Rev, but not a batch ware, like Sort. Indeed, if this
packager were combined with Sort, the result would be deadlock: the
ware would be stuck on in(Line); the packager would be stuck on in(O).

56

On the other hand, the second packager is readily compatible with a
non-incremental ware, like Sort, and also, due to channel buffering,
with an incremental ware, like Rev.

Determining ware/packager compatibility Given the task of deter �
mining whether a given ware and packager are compatible, the system
architect can proceed in three stages. First, she can use her intuition,
based on a glance at the ware’s signature and the type of the packaging.
For instance, one of the biggest differences between packagings is in
whether the packaging allows the outside world or the component itself
to choose what computation the component performs. An example of
the former kind is an ActiveX control, where other components deter �
mine what computation the control performs by calling its com meth �
ods. An example of the latter kind is a batch program, which is free to
perform whatever computation it chooses. Given this, an ActiveX pack �
ager is most likely to be combined with a ware whose signature features
external choice at its top level:

Ware = service1 [] service2 [] … [] servicek

Since other components determine which com method is called in the
ActiveX packager, the packager in turn determines which service the
ware performs. On the other hand, a packager for a batch program
should not be combined with such a ware, since it will be unable to select
which of the services the ware performs. Instead, a ware to be combined
with a batch program packager should feature sequencing and internal
choice. In this way, the system architect can use her intuition about
whether a given ware is well suited to be packaged with a given packag �
ing.

Given that the system architect’s intuition suggests compatibility, the
next stage is for her to establish a correspondence between the ware’s and
packager’s signatures. At this stage, she may read the channel signatures
and realize that there is no correspondence, which means that the ware
and packager are incompatible. In particular, the ware and the packager
are incompatible if an in channel in one has no corresponding out chan �
nel in the other. For example, were a system architect to try to package
the png ware as a Unix filter (either incremental or not), she would dis �
cover that the ware’s in channel Paint has no corresponding out channel
in the filter packager. The ware requires a painting interaction that the
filter packager cannot provide.

Once the system architect has established a correspondence between
the ware’s and packager’s signatures, the final stage is for the Ciao com �

piler to validate the compatibility between the ware and packager. Given
the ware’s and packager’s channel signatures and the channel map that
establishes the correspondence between their channels, the Ciao com �

piler automatically checks compatibility. As described in detail in Sec-
tion 4.3, the Ciao compiler creates a csp model of the combination of the
ware and packager and uses the csp model checker fdr to checker

57

whether this model successfully terminates or deadlocks. Absence of
deadlock in this csp model implies absence of deadlock in the combined
ware and packager, which is the basis of their compatibility.

3.3 work related to flexible packaging

Although much of the previous work related to this research appears
throughout the dissertation, several projects deserve particular mention.

3.3.1 Separations of concern

Gelernter and Carriero were early advocates of the separation of a soft �
ware component’s functionality from its interaction with other compo �
nents²⁰: “We can build a complete programming model out of two
separate pieces – the computation model and the coordination model. The
computation model allows programmers to build a single computational
activity: a single-threaded, step-at-a-time computation. The coordina �
tion model is the glue that binds separate activities into an ensemble.”
They created Linda as a coordination language to supplement a variety
of popular programming languages (or computation languages, in their
terminology).⁹ The Linda model is that computations interact through a
shared persistent database of tuples, called a tuplespace. A given pro �
gramming language, like C or Fortran, is supplemented with an out
statement for adding a tuple to the tuplespace and an in statement for
removing a tuple from the tuplespace. (I chose the keywords for Ciao in
recognition of this earlier work.) Unlike Ciao communication, which is
broken down by channels, the Linda tuplespace is global. However,
because an in statement removes a tuple that matches a specified pat �
tern, a programmer can use the patterns to simulate separate channels or
to create any partitioning that he finds handy.

Like Flexible Packaging, Gelernter’s and Carriero’s work separates
functionality from interaction. It advocates an interaction mechanism,
shared tuplespace, that sufficiently general to simulate other interaction
mechanisms, like rpc and message passing. Rather than advocating a
single interaction mechanism, Flexible Packaging allows the system
architect to select an interaction mechanism. Indeed, the ability to mix �
and-match pieces of functionality and interaction mechanisms is Flexi �
ble Packaging’s main focus. This difference between the research
projects in part reflects the research communities in which they arose.
The Linda work arose in the parallel programming community, where
component interaction allows large computational tasks to be decom �

posed into manageable pieces; Flexible Packaging arose in the software
engineering community, where component interaction allows heteroge �
neous parts to be composed into systems.

Callahan’s thesis Software Packaging addresses a restricted case of the
problem that Flexible Packaging addresses.⁷ As with Flexible Packaging,
the goal of Software Packaging is to allow a software component to inter �
act through multiple mechanisms. Callahan restricts the range of mech �

58

anisms to variations of procedure call: local procedure call, remote pro �
cedure call, and cross-language procedure call. This restriction offers
two advantages. First, because the range is of interaction mechanisms is
narrow, there is no need for packagers. His analogue of a ware exports
procedure definitions and uses, which can be readily attached to any of
the three procedural connectors. Second, because the choice of mecha �
nisms is fixed, he implements an inference system that automatically
selects the appropriate procedural connector to use between any two
components. Given declarative descriptions of the components, his
engine selects remote procedure call, if the components are on different
machines; cross-language procedure call, if the components are imple �
mented in different programming languages; and local procedure call,
otherwise. How such an inference mechanism could be applied to Flexi �
ble Packaging is discussed in Section 6.6.2.

Flexible Packaging is also similar to the work on Aspect-Oriented
Programming (aop) at Xerox parc.³¹ The goal of both research projects
is to separate a component’s functionality from extra-functional con �
cerns. For Flexible Packaging, the extra-functional concern is compo �
nent interaction. aop has explored several different extra-functional
concerns, including thread synchronization and data transfer in distrib �
uted programs.³² In their approach, a program written in a standard
programming language, like Java, is supplemented with a declarative
description of an extra-functional concern, called an aspect. For exam �

ple, a Java class with internal data could be supplemented with an aspect
that describes how threads should synchronize on that data. An aspect is
expressed relative to the functionality, often including names that appear
in the source code that implements the functionality. For instance, the
thread synchronization aspect would include the name of the class and
data items involved in the synchronization. Because an aspect is stated
relative to the functionality, it is not reusable independent of the func �
tionality. In contrast, with Flexible Packaging, a packaging description
(in aop terms, an aspect about component interaction) is an indepen�
dently reusable artifact and is not expressed with relative to the function �
ality. The price to be paid for this reusability is that the system architect
must create a channel map to show the relationship between the func �
tional and extra-functional concern, and their combination unfolds at
run time as the ware and packager use channels to coordinate. In con �
trast, because aspects are expressed relative to the functionality, the aop

compiler weaves the source code that implements the functionality
together with the source code generated from the aspect at compile time.

3.3.2 Concurrency and modularity

The benefits of concurrency on program structure have been studied for
a long time. Conway invented coroutines in the early 1960s, for example,
to provide a good structure for his cobol compiler.¹¹ Like typical mod�
ern compilers, his compiler’s modules implemented the various phases
of compilation, like lexing and parsing, each of which can be seen as a

59

state machine. The concurrency inherent in the coroutine mechanism
allowed these machines to proceed independently of one another.

Kahn and MacQueen report their experience using networks of pro �
cesses that communicate through data channels (later known as Kahn �
MacQueen networks) to structure programs that, for example, sort,
compute power series, and compute Fourier transforms.²⁹ Kahn and
MacQueen separate the programming model from the execution plat �
form. A network of processes can execute on a single processor with the
channels implemented as coroutines or on a multiprocessor.

A similar notion of process networks underlies the Jackson System
Development (jsd) method, in which a system is developed in three
phases: in the model phase, the developer uses processes and events
(data communicated asynchronously on channels) to describe the parts
of the world that circumscribe the problem the system is to solve; in the
network phase, the developer adds processes that describe the system’s
solution to the problem; and the implementation phase, the developer
maps the resulting network of concurrent processes onto the available
computing and data storage resources.⁸ With jsd’s primary focus on the
events that processes exchange, Jackson argues that jsd is better suited
to describing systems that change over time than older approaches, like
entity/relationship diagrams.

More recently, Reppy argues that concurrent languages are useful for
structuring interactive, distributed, and reactive systems: “These appli �
cations share the property that flexibility in the scheduling of computa �
tion is required. Whereas sequential languages force a total order on
computation, concurrent languages permit a partial order, which pro �
vides the needed flexibility.”⁴² His language Concurrent ml (cml) has
been used to create a user interface toolkit based on the X protocol and a
distributed programming toolkit.⁴³

In these examples, the use of concurrency to promote good program
structure arises in the nature of the problem. Instead, with Flexible Pack �
aging, the use of concurrency to promote good program structure arises
in the nature of the development process. Reiterating Reppy’s point,
switching from a sequential to a concurrent programming notation
allows a program’s developers to specify a partial order of computation
rather than a total order. In the previous examples, this flexibility in the
order of computation allows the system to implement the flexibility
inherent in the problem (e.g. the flexible order of operations in an inter�
active system). With Flexible Packaging, the added flexibility is used to
foster compatibility between independently authored modules. With
Flexible Packaging, the variability in the order of computation arises not
so much because of variable run-time phenomena (like the order of user
operations) but because of variable combinations of Ciao modules.

3.3.3 Channel signatures and csp

The use of csp in Ciao channel signatures was suggested by Allen’s use of
csp in the Wright architectural description language.¹ In Wright, a sys�

60

tem is described as a configuration of components and connectors.
Components provide the system’s functionality; connectors mediate the
interaction among components. A component description in Wright
captures how the component interacts with the “outside world” to pro �
vide its functionality. The description contains a port for each kind of
interaction in which the component participates and a computation that
captures how all the ports’ interactions are combined to form the com �

ponent’s total behavior. Both ports and computations are specified as
csp process definitions. Just as a component’s interactions are factored
into ports, a connector description is divided into roles. Each role
describes how a component taking part in that interaction must behave.
A connector description also has a glue description that captures how
the roles’ interactions are combined to form the connector’s total inter �
active behavior. Wright checks both the internal consistency of individ �
ual component and connector descriptions and global properties of the
configuration, like deadlock freedom.

Channel signatures can be thought of as simplified Wright descrip�
tions. A channel signature captures a Ciao module’s interactive behavior
in the same way that a Wright component’s computation section cap �
tures how the component’s interactive behavior. Indeed, a channel signa �
ture can be thought of as the Wright component description of a Ciao
module, with the syntax simplified and specialized. Given this, a plausi �
ble approach to checking the compatibility of Ciao modules would be to
describe a configuration containing the Ciao modules and a channel
connector and to run the Wright tools on the configuration, which
would then run fdr. Since the full generality and power of Wright are
already hidden from Ciao users (in the name of ease of learning), the
Ciao compiler instead skips the middleman and invokes fdr directly.

3.4 flexible packaging at a glance

In summary, this chapter discusses the two key aspects of Flexible Pack �
aging: the introduction of the role of the packaging specialist to prevent
burdening the system architect with packaging details; and the use of
channels to support the mix-and-match of packagers and wares. With
these ideas established, I can now provide an overview of the method as
a whole. The role of each participant plays is briefly described below. The
tools that each participants uses are mentioned below and discussed at
length in Chapter 4.

3.4.1 The ware provider’s job

The ware provider creates source code in Ciao or Ciao++ to implement
the functionality that he wishes to provide. As part of the ware’s develop �
ment, he chooses those interactions that are flexible and those that are
fixed. The flexible interactions are implemented with channels; the fixed
interactions are implemented in the traditional way, for example, by call �
ing i/o libraries. For instance, with the png ware, the source of the

61

painting context and the file name has been made flexible and is imple �
mented with channels; the interactions that paint pixels to the window
are not flexible and are implemented with calls to a standard Windows
library. Choosing which interactions to flex and which to fix is an engi �
neering decision, not a dictate of the method. Once he has created his
source code, the ware provider runs a tool that automatically generates a
channel signature from the source code. As a last step, he makes the
source code and channel signature, pictured at right, available for use.

3.4.2 The packaging specialist’s job

The packaging specialist is a guru about some particular packaging, like
ActiveX. From his experience with this packaging, he decides which
aspects of the packaging are essential and which are details. First, he uses
the UniCon notation to describe the parameters in packaging descrip �
tion that the system architect must provide. This packaging description
represent the essential decisions about the packaging. He then uses a
framework to create a generator which maps the system architect’s pack �
aging description to the source code, non-code artifacts, and construc �
tion and installation steps needed to implement the described
packaging. His final step is to make the packaging generator, pictured at
right, available for use.

3.4.3 The system architect’s job

After selecting a ware to use, the system architect turns the ware into a
full-fledged component in two steps, pictured in Figure 3.8. The first
step is to write a packaging description, which expresses how she wants
the final component to interact with other components in the system.
She then invokes the Packgen tool on the packaging description, which
in turn runs the appropriate packaging generator. The result of running
Packgen is a packager with its channel signature, non-code artifacts, and
construction and installation steps.

Her second step is to combine the packager and the ware. Having
inspected both of the channel signatures and having read the ware’s and
packager’s documentation, she finds an appropriate correspondence
between the ware’s and packager’s channels. (If she cannot find such a
correspondence, she realizes that the ware cannot sensibly be packaged
according to the packaging description and can either reject the ware or
rewrite the packaging description.) She records this correspondence
between channels as a channel map. Finally, she runs the Ciao compiler
on the ware, packager, and channel map, which produces the final com �

ponent. This component is ready for integration in her system.

sig

ware

packaging
generator

62

figure 3.8 The two steps that
the system architect performs

to produce a component
tailored to an integration

context. As the first step, she
writes a packaging description

and runs the tool Packgen on
the description. Packgen in

turn invokes the appropriate
packaging generator, which
produces the packager, non �

code artifacts, and
construction steps (Makefile)

needed to achieve the
packaging. As the second step,

she runs UniCon on a
description of her component,

which first runs the Ciao
compiler on the ware and

packager and then runs Make
to produce the final

component.

packaging

sig sig

C

Make

final component

C

packaging

Ciao compiler

packager warechannel map

compiled
packager

compiled
ware

non-code
artifacts

Makefile

generator

description

C

Ciao run-time
library

63

 Tools for Flexible Packaging

The previous chapter discussed the main ideas behind Flexible Packag �
ing and provided a general overview of the method. One of the goals in
the design of Flexible Packaging was to make each participant’s job as
painless as possible, in part through a thoughtful distribution of respon �
sibilities across participants, in part through the provision of useful
tools. This chapter focuses on the specific tools that each of the partici �
pants uses to fulfil his role. Section 4.1 describes SigGen, a tool that the
ware provider uses automatically to extract a channel signature from his
Ciao source code. Section 4.2 discusses the tools that ease the packaging
specialist’s creation of a packaging generator: UniCon describes the
information that the system architect is required to include in the pack �
aging description; Echo facilitates reading the packaging description;
PackagerMaker is the Java class from which the packaging generator, a
Java class, must be derived; GlueCode allows a generator to produce new
files from templates; and Macro allows a generator to produce a new
Ciao or Ciao++ source file by manipulating a syntax tree. Finally, Sec-
tion 4.3 describes the use of fdr to check channel signature compatibil-
ity and the Ciao run-time library.

4.1 tools for the ware provider

As discussed in the last chapter, the ware provider implements his
intended functionality in either Ciao or Ciao++. If writes his code in
Ciao, he then runs a tool, called SigGen, which automatically produces a
channel signature from the source code, as shown in Figure 4.1. (A ver-
sion of SigGen for Ciao++ is future work.) This section describes the
implementation of SigGen. The Ciao and Ciao++ compilers themselves
are described later in Section 4.3.

4.1.1 Channel signatures

Before describing how SigGen works, I first define channel signatures. A
channel signature is an expression in the following subset of csp,²⁵

where id is an identifier in the style of C:

64

SigGen

ware source

figure 4.1 The ware provider
runs SigGen on the ware’s

source code to produce the
ware’s channel signature.

sig

ware

packaging

sig sig

C

Make

final component

C

packaging

Ciao compiler

packager warechannel map

compiled
packager

compiled
ware

non-code
artifacts

Makefile

generator

description

C

Ciao run-time
library

65

sig: id = proc. signature definition

proc: id named process
in(id) → proc process prefixed with in
out(id) → proc process prefixed with out
id ; proc process sequencing
proc [?] proc [?] … [?] proc internal choice
proc [] proc [] … [] proc exernal choice
done successful termination

A signature definition assigns a name to a process. A process specifies all
the orders in which in and out statements may occur at run time, namely
the orders given by the process’s trace set.²⁵

4.1.2 Generating channel signatures

Given a collection of Ciao source files, SigGen iterates over the files,
parsing each into an abstract syntax tree (ast). SigGen processes two
types of constructs for each ast. First, it processes each type definition
(typedef) and stores the representation of the type in a table under the
type’s name. When a channel is declared on a user-defined type, SigGen
reports the type of the underlying representation as the channel’s type,
i.e. SigGen treats user-defined types as transparent types. If the channel
types were opaque, the system architect would be unable to detect chan-
nel type mismatches when matching the packager’s channels with the
ware’s.

The second ast construct that SigGen processes are function defini-
tions. For each function definition, SigGen creates a control flow graph
(cfg) that is conventional with two exceptions. First, since the tool’s out-
put is a channel signature, which captures only the order in which in and
out statements take place, the only statements that are considered in the
cfg are in statements, out statements, and those statements that effect
control flow; other statements, like assignments that do not involve func-
tion calls, are ignored. Second, in addition to conventional (internal)
conditional nodes, SigGen’s cfg also contains external conditional
nodes. External conditional nodes represent changes in control flow that
depend only on the state of the channels; internal conditional nodes rep-
resent changes in control flow that depend on at least some non-channel
state, like local variables. Hence, the nodes that appear in the cfg are of
one of the following types: function entry; function exit; in statement;
out statement; internal conditional; external conditional; and function
call. Figure 4.2 shows a Ciao function definition and the control flow
graph that SigGen creates for that function definition. Because the con-
ditional expression in the while statement depends only on the state of
the channel N, an external node is used to represent the while.

From the control flow graph, SigGen computes a process definition
according to the recursive translation function T given in Figure 4.3. It
then stores this process definition in a global table under the function’s

66

name. In addition to using this table to produce the final channel signa-
ture, SigGen also uses the table to process function-call nodes. To trans-
late a function-call node, SigGen looks up the function’s name in the
table. If the name appears in the table and its process definition consists
of more than the process done, SigGen uses the process sequencing
construct (semicolon) to insert a transition to this function’s process
into the process being defined. If the function name does not appear in
the table, the function-call node is ignored. This approach assumes that
the ware provider has given SigGen all the relevant source code and that
functions that appear only as prototypes (e.g. library functions) do not
use channels. These assumptions are reasonable given that SigGen is
meant to provide a leg up on producing channel signatures; the respon-
sibility for the accuracy of a ware’s channel signature ultimately lies in
the hands of the ware provider.

To make the generated signatures more readable, SigGen also limits
the repetition of process definitions. In particular, for each node in a cfg

that has multiple in-coming edges, SigGen assigns a generated name to
that node’s process definition and, where needed, repeats the name
rather than the whole definition. For example, given the following func-
tion definition

void F()
{

int i, j = random() % 10;
if (j > 5) in(A, i); else in(B, i);
out(C, i);
out(D, j);

}

coroutine void ComputeMean()
{

channel in stream int N;
channel out int Mean;
int i, n=0, sum=0;
while (more(N)) {

in(N, i);
sum += i;
n++;

}
out(Mean, sum/n);

}

ComputeMean

out(Mean)

in(N)

end

E

figure 4.2 A Ciao function
definition and the control flow

graph created from the
function definition.

Conditional nodes are
depicted with circles labeled

with either “I” or “E” to
distinguish internal from

external conditions.

67

SigGen will generate the following signature

F = in(A) → F0 [?] in(B) → F0.
F0 = out(C) → out(D) → done.

rather than the more verbose signature

F = in(A) → out(C) → out(D) → done
[?]in(B) → out(C) → out(D) → done.

For readability, these generated process names are derived from the
function name, but the current implementation of SigGen does not pre-
vent the generated names from clashing with user-defined names.

in(C) → T(n)

out(C) → T(n)

T(n0) [?] T(n1) [?] … [?] T(nk)

T(n0) [] T(n1) [] … [] T(nk)

{ f ; T(n) if f is in the table

T(n) otherwise

done

in(C)

n

out(C)

n

I

n1n0 nk...

n1

E

n0 nk...

call f

n

end

figure 4.3 The translation
function T from a control flow
graph to a process definition.
A successor node of a given
node is denoted by n.

68

SigGen’s output consists of two parts. First, it lists the channel defini-
tions that it encountered. Second, it lists the relevant process definitions,
starting with those functions declared as coroutine and including the
functions transitively called from the coroutine functions.

4.1.3 Accuracy of the generated channel signature

Automatically generating a channel signature from the ware’s source
code has two effects that the ware provider may find objectionable. First,
because of the approximate nature of a control flow analysis, the gener �
ated signature may not accurately reflect the order in which the ware
does in and out statements on its channels. Such an inaccuracy crops up
with the png ware. The ware’s coroutine contains the following loop

while (!done) {
alt {

in(NewFile): …
in(Paint): …
in(Done): done = 1;

}
}

from which SigGen generates the following channel signature

Loop =
(in(NewFile) → Loop [] in(Paint) → Loop [] in(Done) → Loop)
[?] done

Because SigGen does not take data flow into account, it is unable to
detect the relationship between the in on channel Done and the termina�
tion of the loop. The following channel signature accurately reflects the
code’s content:

Loop = in(NewFile) → Loop [] in(Paint) → Loop [] in(Done) → done

Currently, the ware provider would have to inspect the generated chan �
nel signature, notice the inaccuracy, and correct it by hand. Improving
SigGen to take data flow into account is future work.

However, a more accurate code analysis would not correct the ware
provider’s possible second objection: the generated channel signature
directly reflects the content of the code. The ware’s channel signature is
its interface description and advertises the ware’s capabilities to those
who would reuse it. As such, the ware provider may not want to make
promises about the ware that are based on the ware’s current implemen �
tation. For example, if the ware’s code happens to do an in on channel A
and then an in on channel B, the signature will reflect this

in(A) → in(B) → P

69

If this order is not fundamental to the ware’s functionality, but merely a
happenstance of the current code, then the ware provider may want to
make a looser promise about ordering, for example

in(A) → in(B) → P [?] in(A) → in(B) → P

Again, inspection of the generated channel signature is the ware pro �
vider’s recourse to this problem.

If the ware provider changes the channel signature in order to give
away fewer implementation details, he is nonetheless responsible for
keeping the signature accurate. In particular, it must be the case that the
set of possible orders in which the ware can do in and out statements at
run time is a subset of the set of possible orders that the channel signa �
ture describes. The channel signature is free to describe orders that can �
not actually happen at run time, but the ware must not exhibit an order
at run time that the signature does not include. If there are orders of in
and out statements that the ware can perform at run time that are not
described in its channel signature, then there are possible sources of
deadlock that the analysis in Section 4.3.1 will not catch. In brief, an
inaccurate channel signature is a source of undetected deadlock.

Given the difficulty of automatically producing a satisfactory channel
signature from the code, this approach may seem unpromising. How �

ever, compare this with today’s module systems: the programmer is
responsible for producing by hand both the module’s implementation
and its interface; the module system’s tools (e.g. the compiler) checks for
consistency between the two. For example, a Modula 3 programmer cre �
ates both a module and its interface; an sml programmer creates both a
structure and its signature; and a com programmer creates both a con �
trol’s source code and its idl file. A channel signature, however, contains
ordering information that these other interface descriptions do not. Pro �
ducing an accurate channel signature with its ordering information is
more difficult than producing an interface description in these other
notations. Hence providing tools to lighten the burden of creating a
channel signature is appropriate.

4.2 tools for the packaging specialist

The packaging specialist’s job is to capture his expertise about a given
packaging in the form of a software generator. This packaging generator
accepts a packaging description, from which it generates the Ciao/
Ciao++ source code, non-code artifacts, and construction and installa �
tion instructions needed to achieve the described packaging.

This section describes the tools that I provide to facilitate the creation
of the packaging generator. These tools are illustrated in Figure 4.4. The
packaging specialist first writes a definition in the UniCon notation that
captures the information to be included the packaging description. He
then writes the source code for the packaging generator, which consists
of two Java classes, a class of type PackagerMaker and a class of type

70

packaging
generator

Echo

UniCon

definition
packaging

Java compiler

GlueCode Macroecho classes
packaging
specialist’s

subclass

Packager-
Maker

subclassing

figure 4.4 The packaging
specialists’s tools. The

packaging specialist creates a
packaging generator, which is

a subclass of the Java class
PackagerMaker. He may use

the classes Macro or
GlueCode, if convenient, to

generate code and non-code
artifacts. He may use Echo to

produce Java classes that
facilitate reading packaging

descriptions written in
UniCon.

packaging

sig sig

C

Make

C

packaging

Ciao compiler

packager warechannel map

compiled
packager

compiled
ware

non-code
artifacts

Makefile

generator

description

C

Ciao run-time
library

71

ConfigurationExpert. When he implements these classes, he may find
several Java classes useful: Echo classes are data structures that contain
the contents of the packaging description; GlueCode generates new text
files from template files; and Macro generates new Ciao source files from
template abstract syntax trees. Each of these tools is described in turn.

4.2.1 UniCon captures packaging abstractions

A system architect writes her packaging description in the architectural
description language UniCon.⁴⁷ This notation is well suited for express �
ing packaging descriptions for two reasons. First, UniCon is an open �
ended property-based notation and hence is flexible enough capture
whatever parameters are needed to drive the generation. Second, the
language is centered around architectural abstractions, like components
and connectors, which are the bread and butter of the system architect’s
job. This means that the system architect can use the same notation to
describe both her components’ packagings and how the components are
assembled with connectors to form the final system. The fact that Uni �
Con is centered on architectural abstractions makes it more appropriate
for recording packaging descriptions than more popular open-ended
notations, like xml.

Briefly, UniCon describes a software system as a configuration of
components and connectors. A component implements a part of the sys �
tem’s functionality; a connector mediates the interaction among compo �
nents. A component has an interface and an implementation. A compo �
nent’s interface describes its expectations about interaction with other
components – what is called its packaging in this dissertation. Its imple �
mentation describes the parts out of which the component is built,
sometimes a single atomic part (for example, a source file, a library, or
an executable), sometimes a configuration of other components and
connectors. Concretely, a packaging description is an interface defini�
tion in UniCon. A component in UniCon has exactly one interface.
Because the component may participate in many forms of interaction,
an interface description is consists of an arbitrary number of units,
called players, one per form of interaction. Both the interface itself and
its constituent players may be annotated with properties (name/value
pairs). As an example, here is a component definition in UniCon:

Sort: component
interface Filter with

in: player StreamIn with signature: “char*”; end
out: player StreamOut with signature: “char*”; end
err: player StreamOut with signature: “char*”; port: StdErr; end

end
external Executable with

executable_file: Filename(“sort”);
end

end

Connector descriptions in
UniCon are just as rich as
component descriptions.
While a component has an
interface (divvied into players)
and an implementation, a
connector has a protocol
(divvied into roles) and an
implementation. The language
constructs apply equally well
to connectors and
components. However, since
connectors are not needed for
packaging descriptions, they
are not discussed further here.

72

This component’s interface is derived from the definition Filter and con�
tains three players: in, out, and err. Each of these players has a property
signature, and the player err also has a property port.

UniCon is a convenient notation for the system architect’s packaging
descriptions because of its architectural abstractions. UniCon is also a
convenient notation for the packaging specialist because several con �
structs allow him to record the information that he needs from the sys �
tem architect: definition inheritance, the entails construct, and strongly
typed properties.¹⁴

The packaging specialist captures the information he requires from
the system architect in a UniCon interface definition, like the definition
ActiveXControl in Figure 4.5. In order for a component to have a given
packaging, the component’s interface must inherit from the packaging
specialist’s interface definition. For example, for an architect to describe
his component as an ActiveX control, his component’s interface must
inherit from ActiveXControl. As with object-oriented languages, when
one UniCon definition inherits from another, the sub-definition can be
thought to include the textual contents of the super-definition, and a
property or player in the sub-definition overrides an item with the same
name in the super-definition.

In addition to inheriting contents, a definition may also inherit obli �
gations in the form of entails constructs. An entails construct names a
property or player or set of properties or players that a definition must
contain. An entails construct has the following form:

entails: entails [only] [range of] pattern

pattern: id : type type property obligation
player id player obligation
pattern | pattern | … | pattern disjunctive obligation

range: exactly integer
at least integer
at most integer
from integer to integer

where id is a UniCon identifier and type is a UniCon type, described
later. The default range is exactly 1.

An entails construct’s obligation is fulfilled when the number of prop �
erties or players in the definition that match the pattern falls within its
range; otherwise, the entails construct is unfulfilled. If the entails con�
struct is marked only, then the pattern must further be exhaustive. If an
entails only construct has a pattern about players, for example, then all of
the definition’s players must match the pattern. The only clause is used to
forbid packaging heterogeneity where the packaging specialist finds it
appropriate. These entails obligations come due when they are included,
directly or though inheritance, in a component or connector definition.
Because a component’s interface is a leaf in the inheritance tree, it is erro �

73

neous for it to contain unfulfilled entails constructs. Hence, a definition
with unfulfilled entails constructs is like an abstract class in an object �ori-
ented programming language, like Java; a component’s interface is like a
concrete class.

In UniCon, properties are strongly typed and a property’s type is con �
sidered when matching it against an entails construct. The type system
includes the following base types, written alongside sample values of
that type:

boolean true, false
integer -2, -1, 0, 1, 2
range at least 3, from 1 to 2
real -2.7, 0.0, 3.1415

string “hello”, “there”
uninterpreted {can’t touch this}

UniCon provides simple functions over these types, such as integer addi �
tion and string concatenation. By design, type uninterpreted supports no
operations whatever. Its function is to allow UniCon to carry the output
from external tools without fear that the values will be modified; hence,
type uninterpreted is a byte-level persistent form to which tools “pickle”
their abstract data types. UniCon also supports a parameterized list type
and two built-in type constructors, tuples and records:

int list [1,2,3], []
boolean * integer (true, 3), (false, 4)
(x: integer, y: real) (x: 2, y: 4.2), (x: -1, y: 0.0)

UniCon supports user-defined types through a construct like Standard
ml’s datatype construct,³⁴ restricted to the definition of monomorphic
types. When defining a new type, a system architect gives the type a
name and describes how to write down values of the new type, possibly
using other values. For instance, the declaration

type port_binding = Stdin | Stdout | Stderr | PortNumber of int end

declares the new type port_binding, whose values include Stdin, Stdout,
Stderr, and PortNumber(5). Using this type system, a packaging
specialist can be specific about the kinds of values that a given property
can have.

Using UniCon, a packaging specialist spells out the information that
the system architect must provide in the packaging description. For
example, Figure 4.5 defines ActiveXControl, from which the packaging
descriptions of all ActiveX controls are derived. The figure illustrates
several interesting uses of UniCon. First, many of the definitions contain
both a property and an entails construct that mentions the same prop �
erty, which allows the packaging specialist to provide a default value for
a required property. Second, type uninterpreted is well suited to capture

74

type uuid = UUID of uninterpreted end

type com_property_access_type = ReadOnly | ReadWrite end

COM_Property: player BasicPlayer with

num_assocs: at least 1;
entails id: type integer;
entails signature: type string;
entails access: type com_property_access_type;
access: ReadWrite;
entails help_string: type string;
help_string: "";
entails value_is_calculated: type boolean;
value_is_calculated: false;

end

COM_Method: player RoutineDef with

entails help_string: type string;
help_string: "";
entails id: type integer;

end

COM_Interface: player PL_Bundle with

entails iid: type uuid;
entails at least 0 of (idl_attribute: type uninterpreted nonaggr);
entails only at least 0 of (player COM_Property | player COM_Method);
entails help_string: type string;
help_string: "";

end

OutgoingInterfaces: player BasicPlayer with

num_assocs: at least 1;
entails only at least 1 of (player COM_Interface);

end

COM_Component: interface WindowsDLL with

entails only at least 1 of (player COM_Interface | player OutgoingInterfaces);
entails library_iid: type uuid;
entails coclass_iid: type uuid;
entails help_string: type string;
help_string: "";
entails version: type string;
version: "1.0";
entails name: type string;

end

IUnknown: player COM_Interface with

iid: UUID {00000000-0000-0000-C000-000000000046};

QueryInterface: player RoutineDef with signature: ([
"[in] REFIID riid",
"[out, iid_is(riid)] void **ppvObject"], "HRESULT"); end

AddRef: player RoutineDef with signature: ([], "ULONG"); end

Release: player RoutineDef with signature: ([], "ULONG"); end

end

figure 4.5 The UniCon
definition of the

ActiveXControl packaging
and some of its supporting

definitions.

75

ActiveXControl: interface COM_Component, WithResources with

picture_name: "COMinterface";

iUnknown: player IUnknown;
iDispatch: player IDispatch;
iPersistStreamInit: player IPersistStreamInit;
iQuickActivate: player IQuickActivate;

resources: player WindowsResources with

reg: player RegistryResource with

id: 101;
registry_instruction_file: Filename("GenericControl.rgs");

end

typelib: player TypeLibraryResource with

id: 1;
type_library_file: Filename("Generic.tlb");

end

end

dll_defs: player PL_Bundle with

DllCanUnloadNow: player RoutineDef with

signature: (["void"], "STDAPI");
export_publicly: false;

end

DllGetClassObject: player RoutineDef with
signature: (["REFCLSID rclsid", "REFIID riid", "LPVOID* ppv"], "STDAPI");
export_publicly: false;

end

DllRegisterServer: player RoutineDef with
signature: (["void"], "STDAPI");
export_publicly: false;

end

DllUnregisterServer: player RoutineDef with
signature: (["void"], "STDAPI");
export_publicly: false;

end

end

export_from_library: dll_defs;
end

ActiveXControlPackaging: interface ActiveXControl, Packaging with

AXGen: player PackagingGenerator with

packager_generator: "DeLineThesis.expert.ActiveXPackagerMaker";
additional_imports: ["ActiveX\\ActiveXUtils.uni", "libcmt.uni"];
additional_modules: [

("imp: COMPONENT ATLImplementationModule;", "imp.all"),
("gen: COMPONENT ATLGenericModule;", "gen.all") ,
("cmt: COMPONENT MultithreadedLibrary;", "cmt.all")

];
build_option: "/D_MT /I. /I.\\build

/I\"\\Thesis\\Software\\VSS\\FlexPack\\Packagings\\ActiveX\"";
end

end

76

such values as ActiveX’s universal identifiers (uuids), which may either
be canonical (as with IUknown) or may be the output of a tool like
Genguid. Third, multiple inheritance is quite handy for defining packag �
ings. The definition of ActiveXControl, for example, inherits both from
COM_Component (because an ActiveX control is a kind of com compo�
nent) and WithResources (because an ActiveX control must export Win �
dows resources in order to be properly installed). Factoring the defini�
tions in this way allows them to be reused. For example, the definition
WithResources is also used for defining the packagings for Windows
stand-alone applications and Netscape plug-ins.

4.2.2 Packgen runs the appropriate generator

Once the system architect writes a packaging description that conforms
to the packaging specialist’s UniCon definitions, she runs the tool Pack �
gen on the packaging description to invoke the appropriate packaging
generator. This tool is invoked with two arguments, a UniCon file and
the name of a UniCon interface definition within that file. (If she omits
the second argument, the first interface definition in the file is used.)
The interface definition on which Packgen is invoked is called the source
definition. The source definition must inherit from the following:

Packaging: interface BasicInterface with
entails packager_generator: type java_class;
entails additional_imports: type string list;
entails additional_modules: type (string * string) list;
additional_imports: [];
additional_modules: [];
entails at least 0 of (build_option: type string nonaggr);

end

Due to this inheritance, the source definition must contain the property
packager_generator, whose value names a Java class of type
PackagerMaker. For example, in Figure 4.5, the definition ActiveXCon-
trolPackaging inherits both the packaging definition (ActiveXControl)
and Packaging. Hence, to clarify a point from the previous section, an
ActiveX control is described in UniCon as a component whose interface
inherits directly from ActiveXControlPackaging and hence indirectly
from ActiveXControl.

Given the value of the property packager_generator, Packgen creates
an instance of the named Java class and invokes one of its methods, as
described in the next section. This use of Java’s dynamic class loading
makes installing new packaging generators very easy. The installation
procedure consists of ensuring that the packaging generator’s Java class
is on the Java path and that the UniCon file that contains the packaging
definition is on the UniCon path. Given that these two files are on the
right paths, Packgen can find them at run time.

77

4.2.3 PackagerMaker captures source code generation

Reflecting the two steps that the system architect performs to package a
component – one step to generate the packager, one step to build the
final component – the packaging specialist implements the packaging
generator as two Java classes – one that produces the packager, one that
produces construction and installation steps. The first class, a subclass
of PackagerMaker, is discussed in this section; the second, a subclass of
ConfigurationExpert, is discussed in the next.

The first half of a packaging generator is a subclass of the abstract Java
class PackagerMaker. As an abstract class, PackagerMaker defers to its
subclasses the responsibility for implementing the following method:

public abstract CiaoFile[] makePackager(Object intf) throws Die;

The argument to this method is an Echo object, described later in Sec-
tion 4.2.5, that mirrors the source definition on which Packgen is
invoked. This method is responsible for producing the set of Ciao/
Ciao++ source files that implement the packaging, which are returned as
an array of CiaoFile objects. (The generation of non-code artifacts, and
construction and installation instructions is discussed in Section 4.2.4.)
A CiaoFile object is simply a carrier of aggregate source file information
(as might be implemented with a record or structure in another lan-
guage) and supports only a constructor:

public CiaoFile(String filename, int baseLanguage,
String[] buildOptions, String channelSignature);

The arguments are as follows: the name of the source file; the source lan �
guage (either the constant BaseLanguage.Ciao or BaseLanguage.Ciao�
PlusPlus); any packaging-specific switches to be passed to the compiler
(typically the empty string); and a string containing the channel signa �
ture for the packager.

This last argument is needed because the packaging generator is
responsible for producing a channel signature for each generated source
file. The ware provider’s tool SigGen cannot be run on a packager’s
source code. When SigGen is run on a ware’s source code, it can readily
identify every place where a thread might initially enter the ware, namely
those functioned declared as coroutine. The places where the thread of
control enters the packager, however, is packaging specific. For instance,
a thread enters a batch program through the function main; a stand �alone
Windows application, through the function WinMain; and a procedure
library, through any exported procedure. Because of this, the packaging
generator itself is responsible for producing the channel signature.

Further, the packaging specialist’s generated source code is required
to call the function CiaoBegin wherever the thread of control first enters
the packager and to call CiaoEnd whenever it last leaves the packager.
Knowing the points at which control enters and leaves the component is

78

part of what it means to be the guru for a given packaging. The functions
CiaoBegin and CiaoEnd are described in Section 4.3.3.

4.2.4 ConfigurationExpert captures non-source generation

The previous section discusses how packaging generators produce the
source code needed to implement a packaging. This section discusses
the generation of non-code artifacts and construction and installation
instructions. This split between the two parts of generation reflects the
system architect’s two-step process for packaging a component: first she
generates the packager from the packaging description; then she links
the packager with the ware by creating a map between their channel sig �
natures. As previously discussed, to accomplish this first step, she uses
Packgen and, through it, a PackagerMaker object. To accomplish the sec �
ond step, she creates a UniCon description of her final component.

In this UniCon description, like that shown in Figure 4.6, the compo-
nent’s interface is the packaging description from which the packager
was generated. The component’s implementation is a configuration that
consists of two components (the ware and the packager) connected with
a Channels connector. This connector has a property named match
whose value is the channel map. The build the final component, the sys �
tem architect invokes the UniCon compiler on this description.

When the UniCon compiler builds a component, it invokes a piece of
software, called an expert, to generate the non-code artifacts and con �
struction and installation instructions needed to build the component.⁴⁸

The compiler looks up the property expert on the implementation,
which names a Java class that implements the expert. In UniCon, an
implementation may either be an external or a configuration. For an
external, the expert must be a subclass of the Java class Expert; for a con �
figuration, a subclass of ConfigurationExpert. Subclasses of either class
must implement the following methods:

public void init(Object intfEcho, Object implEcho);
protected void checkSemantics(Object intfEcho, Object implEcho);
protected HandyVector make(Makefile buildFile, HandyVector dep,

Object intfEcho, Object implEcho);

The first method initializes the expert object; the second causes the
expert to check whether the implementation is semantically correct, a
check that varies based on the nature of the implementation; and the
third causes the expert to amend a Makefile with whatever construction
and installation steps are needed for this implementation. All three
methods are given two Echo objects, one that mirrors the interface defi-

nition and one that mirrors the implementation definition. Hence an
expert’s implementation has the same simplified access to UniCon defi-

nitions that PackagerMaker objects do.
A typical implementation of the make method uses GlueCode to gen�

erate any necessary non-code artifacts. (The Macro tool is inapplicable

79

PNGViewerControl: component
interface PNGViewerControl_Interface;
configuration FlexiblePackagingStyle with

expert: JavaExpert("DeLineThesis.expert.ActiveXExpert");
ware: component PNG_ViewerWare;
pkg: component PNGViewerControlPackager;
anonymous connector Channels with

connection ware.channels to channels;
connection pkg.channels to channels;
match: [

(pkg.channels.Init, ware.channels.Finalize, TypesOkay),
(pkg.channels.SetFilename, ware.channels.SetFilename,

TypeFixupCode("
channel in BSTR WindowsString;
channel out char* CString;
BSTR bstr;
char* cstr = (char*)malloc(100);
extern int sprintf(char *buffer, const char *format, ...);
in(WindowsString, bstr);
sprintf(cstr, \"%S\", bstr);
out(CString, cstr);

")),
(pkg.channels.GetFilename, ware.channels.EchoFilename,

TypeFixupCode("
channel in char* CString;
channel out BSTR WindowsString;
char* cstr;
BSTR bstr = (BSTR)malloc(200);
in(CString, cstr);
wsprintfA(bstr, \"%s\", cstr);
out(WindowsString, bstr);

"))
];

end
end

end

figure 4.6 A flexibly
packaged component,
described in UniCon. Its
interface PNGViewer�
Control_Interface is the
packaging description from
which the packager was
generated. The implemen�
tation consists of the ware and
the packager, connected with
a connector whose property
“match” is the channel map.

80

since it only produces source code.) Once the appropriate non-code arti �
facts have been generated, the expert uses the Makefile object’s interface
to add construction and installation steps. This interface contains two
methods:

public void addRule(String fromExtension, String toExtension,
String[] commands);

public void addTarget(String target, String[] dependencies,
String[] commands);

An expert uses the first to add generic rules to the Makefile, for example,
a rule that states how to compile a C file to an object file. An expert uses
the second to describe how a given list of commands can be used to
build a target from a list of dependencies.

In summary, the packaging specialist is responsible for creating three
things: a set of UniCon definitions that describe the information that
must appear in the system architect’s packaging description; a subclass
of PackagerMaker that produces source code from the packaging
description; and a subclass of ConfigurationExpert that produces the
non-code artifacts and construction and installation instructions from
the packaging description.

Three tools ease this Java programming task: Echo, described in
Section 4.2.5, creates Java objects that mirror UniCon definitions and
obviate the need for the packaging specialist to learn about UniCon’s
internal representations; GlueCode, described in Section 4.2.6, allows a
generator to produce source code by inserting strings into a template
text file; and Macro, described in Section 4.2.7, allows a generator to pro-
duce source code by inserting Ciao ast nodes into a template Ciao ast

tree.
Note, however, that compared with ware providers and system archi �

tects, there are very few packaging specialists in the world. There are
perhaps only several dozen popular ways in which components interact
with one another, hence only the need for several dozen packaging spe�
cialists. Further, each packaging specialist is a highly trained expert on a
given form of component interaction. Because there are few packaging
specialists and because these specialists are well trained, there is less
motivation for creating good tools for packaging specialists than there is
for ware providers and system architects. Nonetheless, in order to carry
out the experiments described in Chapter 5, I built nine packaging gen �
erator. To lower the effort involved in producing nine generators, I built
the tools described in the next three sections. Although these tools are
not a significant contribution of Flexible Packaging, they proved to be
sufficiently useful in the practice of being a packaging specialist that they
are worth mentioning.

81

4.2.5 Echo hides UniCon’s internal representations

The packaging generator reads the system architect’s packaging defini�
tion in order to produce output based on this definition. To do this, the
typical approach is to use the UniCon library to parse and check a defi�

nition, then to traverse UniCon’s abstract syntax tree to read the defini�
tion. The disadvantage of this approach is that every packaging specialist
must either write his own parser or learn UniCon’s internal representa �
tions. The Echo tool provides a way around this.

Given a UniCon definition, Echo produces a Java interface that is a
definition-specific projection of the ast. For each entails construct in the
definition, there is a method in the Java interface that may be called to
access the items in the definition that match the entails. For instance,
given the interface definition

Filter: interface BasicInterface with
entails incremental: type boolean;
entails at least 1 of (player StreamIn);
entails at least 1 of (player StreamOut);

end

Echo produces the following Java interface
public interface Filter extends BasicInterface {

boolean incremental();
StreamIn[] StreamIn_players();
StreamOut[] StreamOut_players();

}

Generalizing from this example, the entails constructs map to Java meth �
ods as follows: if the entails construct has a property pattern, the
method’s name is the property’s name, and the return type is the prop �
erty’s type; if the entails construct has a player pattern, the method’s
name is the player definition name with a suffix of _players, and the
return type is the mapping of the player’s definition; if the entails con�
struct has a role pattern, the method’s name is the role definition name
with a suffix of _roles, and the return type is the mapping of the role’s
definition; if the entails construct has a disjunctive pattern, a separate
method is created as above for each disjunct. A UniCon definition is
mapped to a Java interface rather than a Java class because Java interfaces
support multiple inheritance. For each UniCon definition, Echo also
produces a Java class that implements the Java interface and that encap-
sulates the knowledge about UniCon’s ast representation.

For each user-defined type, Echo similarly produces a Java class
whose structure reflects the user-defined type. For example, given the
definition

type port_binding = Stdin | Stdout | Stderr | PortNumber of integer end

82

Echo produces the following Java class

public class port_binding
{

public final static int tagStdin=0, tagStdout=1,
tagStderr=2, tagPortNumber=3;

public int tag;

public int PortNumber; // available iff tag == tagPortNumber

public port_binding (AST_Root root, UserDefinedValue uval)
{

// implementation omitted
}

}

To read a value of this user-defined type, the generator accesses the fields
of a unix_port_binding object. The tag field allows the generator to test
which type constructor (Stdin, Stdout, Stderr, or PortNumber) was used
to create the value. If a type’s constructor has a value associated with it
(as is the case for PortNumber), then a field named after the type’s con �
struct can be used to access that value. For example, if a property p has
the value PortNumber(3) and if v is the Java object representing p’s value,
then v.tag == tagPortNumber and v.PortNumber == 3.

Because Echo creates Java classes that mirror the structure of the Uni-
Con definitions and that hide the details of UniCon’s ast representa-
tions, the packaging specialist needs only to understand his own defini-
tions and Echo’s translation process. As an illustration of the directness
that this lends to the source code, consider a Java method that checks
whether an ActiveX control’s com interfaces all have unique UUIDs:

boolean noDuplicateUUIDs(ActiveXControl ax)
{

Hashtable seenSoFar = new Hashtable();
COM_Interface[] interfaces = ax.COM_Interface_players();
for (int i=0; i<interfaces.size; i++) {

String id = interfaces[i].iid().UUID;
if (seenSoFar.contains(id))

return false;
else

seenSoFar.put(id, id);
}
return true;

}

This method’s code directly reflects the definitions in Figure 4.5.
Instances of these Echo classes are provided as arguments to Packager �

83

Maker’s method makePackager and ConfigurationExpert’s methods init,
checkSemantics, and make, which were described earlier.

4.2.6 GlueCode makes substitutions into text templates

The GlueCode tool allows a packaging specialist to create a text file with
named variables and to substitute text for those variables. These vari �
ables are of three kinds: scalar variables; list variables; and block vari �
ables. Each type of variable is distinguished by its syntax and its
substitution behavior. A scalar variable is written as @@<variable>@@
and the text substituted for the variable directly replaces the variable in
the output file. A list variable is written as @@<<variable>>@@. Many
pieces of text may be substituted for the same list variable, which causes
the line containing the list variable to be repeated once in the output file
for each substitution. A block variable is written between two delimiters:
@@<begin block>@@ and @@<end block>@@. Each time the block is
instantiated, its text is repeated in the output file. A block typically con �
tains other variables, which have different substitutions for each block
instance. Figure 4.7(a) shows an example template file.

The Java classes GlueCode and GlueBlock allow the generator to sub �
stitute text for the variables in a template file. Here are the interfaces to
these two classes:

public class GlueCode
{

public GlueCode(String templateFile, String filename)
throws IOException;

public void setVariable(String var, String value);
public void addToListVariable(String var, String value);
public GlueBlock newBlock(String var);

}

public class GlueBlock
{

public void setVariable(String var, String value);
public void addToListVariable(String var, String value);
public GlueBlock newBlock(String var);

}

The generator creates a new instance of the template file with GlueCode’s
constructor, whose arguments are the name of the template file and the
name of the output file. The method setVariable substitutes a given piece
of text for a given scalar variable, the method addToListVariable pro �
vides a new piece of text to substitute for a given list variable, and the
method newBlock creates a new instance of a given block variable.
Because variables can be nested inside blocks, the call to newBlock
returns a GlueBlock object that supports the same variable substitution

I chose the strange bracket
syntax to avoid sequences of
characters that have meaning
in the generated file. A better
implementation would allow
the user to select the brackets.

84

char* @@<<variable>>@@ = “@@<<string>>@@”;

void tempfun()
{

char* s = @@<strexp>@@
@@<begin if_stmt>@@
if (@@<cond>@@)

printf(“%s”, @@<variable>@@);
@@<end if_stmt>@@

}

figure 4.7 An example use of
the GlueCode tool. (a) A

template file for generating a C
function. (b) Java code that

instantiates the template file.
(c) The instantiate that the

Java code produces.

GlueCode gluefile = new GlueCode(“template”, “foo.ciao”);
gluefile.addToListVariable(“variable”, “HELLO”);
gluefile.addToListVariable(“string”, “hello”);
gluefile.addToListVariable(“variable”, “THERE”);
gluefile.addToListVariable(“string”, “there”);
gluefile.setVariable(“strexp”, “HELLO”);
GlueBlock block = gluefile.newBlock(“if_stmt”);
block.setVariable(“cond”, “strlen(s) > 0”);
block.setVariable(“variable”, “s”);
gluefile.generate();

char* HELLO = “hello”;
char* THERE = “there”;

void tempfun()
{

char* s = HELLO;

if (strlen(s) > 0)
printf(“%s”, s);

}

(a)

(b)

(c)

85

methods. Figure 4.7(b) shows a sample use of these methods, with the
results show in Figure 4.7(c).

When GlueCode is used to create Ciao or Ciao++ source code, the
generator produces the source code at the lexical level. If the generator,
for instance, creates an output file with a syntax error, this error is not
discovered until the source code is submitted to the compiler. In con �
trast, the Macro tool allows the generator to produce source code by
making substitutions into an abstract syntax tree, thereby preventing the
possibility of syntax errors.

4.2.7 Macro makes substitutions into abstract syntax trees

Macro allows a generator to parse Ciao or Ciao++ source code into an
abstract syntax tree with named “holes” and to substitute ast nodes into
those holes. To create Macro, I extended the grammar of Ciao and
Ciao++ to include new hole constructs: the syntax $exp(ident) is a valid
expression; $stm(ident) is a valid statement; and $top(ident) is a valid
top-level declaration, like a function definition or user-defined type. For
all three extensions, the identifier names the hole.

The use of Macro is similar to that of GlueCode. The packaging spe �
cialist creates a template file with Ciao or Ciao++ source code, using the
hole constructs wherever substitutions should be performed. He then
uses the Java class Macro to perform the substitutions:

public class Macro
{

static public C_Expression exp(String s) throws ParseException;
static public C_StatementList stm(String s) throws ParseException;
static public C_Root top(String s) throws ParseException;
static public void subst(C_Root root, String name,

SimpleNode replacement)
}

The first three methods parse strings to produce various ast nodes: exp
produces an expression; stm produces a statement; and top produces a
top-level construct. The method subst takes the root of an ast, the name
of a hole, and a ast node to substitute for the named hole. (This is the
version of Macro for Ciao; the version for Ciao++ is similar.) The imple �
mentation of subst ensures that the right type of ast node is substituted
for the named hole. Figure 4.8 shows how Macro would be used to pro-
duce the same output as the GlueCode tool in Figure 4.7.

The chief advantage of GlueCode over Macro is its support for lexical
substitutions. For example, source code like the following

char* s1 = produce_s1();
char* s2 = produce_s2();
char* s3 = produce_s3();

86

$top(vars)

void tempfun()
{

char* s = $exp(strexp);
$stm(if_stmt)

}

figure 4.8 An example use of
the Macro tool. (a) A Ciao file

with named holes for
generating a C function. (b)

Java code that instantiates the
template ast. (c) The

instantiation that the Java
code produces. This use of
Macro produces the same

output as the use of GlueCode
in Figure 4.7.

CiaoParser parser = new CiaoParser();
C_Root ast = parser.parse(“template”);
Macro.subst(ast, “vars”, Macro.top(“

char* HELLO = \“hello\”;
char* THERE = \“there\”;
”));

Macro.subst(ast, “strexp”, Macro.exp(“HELLO”));
Macro.subst(ast, “if_stmt”, Macro.stm(“

if (strlen(s) > 0)
printf(\“%s\”, s);

”));
ast.print(new PrintWriter(new FileWriter(“foo.ciao”)));

char* HELLO = “hello”;
char* THERE = “there”;

void tempfun()
{

char* s = HELLO;

if (strlen(s) > 0)
printf(“%s”, s);

}

(a)

(b)

(c)

87

would be generated with the following GlueCode template

char* s@@<<num>>@@ = produce_s@@<<num>>@@();

In Macro, the template would consist of an expression like $top(x). The
lexical similarity would instead be captured in the source code that
manipulates the template:

String code = “”;
for (int i=1; i<=3; i++)

code += “char* s” + i + “= produce_s” + i + “();”;
Macro.subst(ast, “x”, Macro.top(code));

The chief advantage of Macro over GlueCode is Macro’s support for syn �
tax checking at generation time.

Macro is based on Batory’s, Lofaso’s, and Smaragdakis’s Jakarta Tool
Suite (jts).² A programmer uses jts to create software generators that
are both written in Java and that produce Java source code. Because the
language in which the generator is written is the same as the generator’s
target language, the template source code and the generator’s source
code can be combined, improving clarity. For example, consider the fol �
lowing source code, written in jts’s extension to Java, called Jak:

C_Expression e = exp{ 2 < 3 }exp;
C_Statement s = stm{ if ($e) System.println(“hello”); }stm;

(The syntax exp{expression}exp and stm{statement}stm are Jak’s con�
structs for expressions and statements, respectively.) The occurrence of
$e in the declaration of s is an escape: the value of the variable e is substi �
tuted for $e when the statement expression is evaluated. Because packag �
ing generators produce Ciao and Ciao++ code (variations on C and
C++), I could not directly use jts. Macro is an attempt to reap the same
benefits in a different implementation.

Macro falls short of jts’s benefits in two key ways. First, because the
language in which the generator is implemented differs from the lan�
guage in which the generated code is implemented, jts’s convenient
intermixing of generator and generated code is not possible with Macro.
Changing Macro to allow the mixing of template source code and gener �
ator source code would require creating a super-language that combined
the syntaxes of Java and Ciao or Java and Ciao++, which would require
considerable effort.

Second, working with C and C++ code at the level of abstract syntax
trees is more inconvenient than working with Java at this level due to the
infamous “typedef” problem. Syntactic ambiguities in C and C++ make
these languages notoriously tedious to parse. For example, the expres �
sion

x * y;

88

is a variable declaration if x is the name of a type; otherwise it is a useless,
but legal multiplication expression. The typical approach to coping with
such ambiguities is for the parser to update a symbol table each time it
encounters a typedef statement; the lexer then uses this symbol table to
distinguish type name tokens from identifier tokens. Because of this
problem, parsing a simple declaration, like

BSTR b;

requires the parser to have processed the typedef that defines BSTR,
which means parsing the header file that contains this type definition. In
short, to parse even a short piece of C code into an abstract syntax tree
often requires parsing many header files and processing their type defi�

nitions. This limitation makes the use of Macro to generate a source file
noticeably slower than the equivalent use of GlueCode. This problem
does not occur with Java, whose syntax is more civilized, and hence does
not effect jts. As a result of these two limitations with Macro, I more
often used GlueCode to produce source code in the packaging genera �
tors.

4.2.8 Packaging generators versus “wizards”

The use of software generation to simply the task of achieving a given
component packaging is not new. An early example is stub generation in
rpc systems.³ More recently, Microsoft provides “wizards” with its
Developer Studio environment to ease the task of creating applications
with graphical user interfaces and ActiveX controls. With the ActiveX
wizard, a programmer answers a series of questions through a dialog
box. After he answers the questions, the wizard generates a code tem �

plate and the necessary non-code artifacts and construction and instal �
lation instructions.

Flexible Packaging’s software generation provides several advantages
over these wizards. First, as a written document, the system architect’s
packaging description is a permanent part of the system’s design record.
In contrast, the information typed into a wizard’s dialog box is discarded
after generation. Second, because the wizard produces a code template,
it encourages the very tangling of concerns that Flexible Packaging
avoids through its use of channels. As a result, if a wizard user changes
her mind about one of the questions, she must generate a new template
and copy to the new template whatever modifications she made to the
old template. In contrast, with Flexible Packaging, a system architect
modifies her packaging description, re-runs Packgen, and modifies the
channel map as necessary. Finally, as described in Chapter 6, the design
of Flexible Packaging’s generators allows the system architect to describe
and generator heterogeneous packagings, a capability no wizard cur �
rently provides.

89

4.3 tools for the system architect

As described earlier, the system architect first creates a packaging
description in UniCon and runs Packgen on it to produce the packager.
She then writes a UniCon description of the final component, whose
implementation includes the ware, the packager, and a connector con �
taining the channel map as a property. Finally, she runs the UniCon
compiler on the component description to build the final component. As
part of building the final component, UniCon invokes the Ciao compiler.
Before translating the Ciao (Ciao++) code to C (C++), the Ciao com �

piler, as pictured in Figure 4.9, uses fdr to ensure that the ware’s and
packager’s channel signatures are compatible. This section describes
both the channel signature check and the workings of the Ciao compiler,
including the channel run-time implementation.

4.3.1 Checking the compatibility of channel signatures

To validate the compatibility of the ware’s and packager’s channel signa �
tures, the Ciao compiler uses the fdr model checker for csp.⁴⁴ The
compiler creates a description of a csp process that represents the ware
and packager executing in parallel and checks whether this parallel pro �
cess refines a process that participates in an arbitrary number of events
and then successfully halts.

Modeling channels To model channels in csp, the obvious approach is
to use csp’s channels, modeling in(C) with C?x and out(C) with C!x.
Unfortunately, this does not have the intended meaning. Consider a
ware and a packager that each do an in on channel Chan and then suc �
cessfully terminate:

Ware = in(Chan) → done.
Pkg = in(Chan) → done.

The resulting component would deadlock at run time. However, the pro �
posed csp model does not deadlock:

Chan?x → skip || Chan?x → skip

(skip is the csp equivalent of done.) In csp, this process is equivalent to
the process Chan?x → skip. Hence, when using csp channels to model
Ciao channels, two semantically separate events at the Ciao level (the
two in statements) are incorrectly unified in the model.

Instead, channel events are modeled with csp events of the form
C.W.P or C.P.W, where C is a channel on which data is flowing from the
ware W to the packager P or vice versa. A ware’s event in(C) is modeled
with C.P.W (since the data flows from the packager to the ware); its event
out(C) is modeled with C.W.P. Hence the previous example would be
modeled with the csp expression

90

sig sig

C

Make

final component

C

Ciao compiler

packager warechannel map

compiled
packager

compiled
ware

non-code
artifacts

Makefile

figure 4.9 The system
architect’s tools. The system

architect creates a channel
map and runs the Ciao

compiler on the map, the
ware, and the packager. The

compiler first runs fdr to
check whether the ware’s and
packager’s channel signatures

are compatible and reports
fdr’s output. If the signatures

are compatible, the Ciao
compiler translates the Ciao

code to C code and runs Make
to produce the final

component.

C

Ciao run-time
library

FDR

csp check

report

91

Chan.Ware.Pkg → skip || Chan.Pkg.Ware → skip

which deadlocks since the parallel processes disagree about the first
event to occur. If the example were changed to the following deadlock �
free component

Ware = in(Chan) → done.
Pkg = out(Chan) → done.

then the csp expression

Chan.Ware.Pkg → skip || Chan.Ware.Pkg → skip

reflects the absence of deadlock.

Modeling in statements When there are exactly two coroutines – one
in the ware, one in the packager – we model channels as previously
described. However, when there are more than two coroutines, the data
that an in statement removes from a channel may have been placed there
by more than one coroutine. Hence, to model an in statement on chan �
nel A in the channel signature of coroutine C, the compiler inspects the
channel signatures for the other coroutines, keeping track of which of
these channel signatures contains an out on A. If none of them do, the
compiler models the in statement with the csp process stop, which is
the simplest deadlocked process. If exactly one coroutine Ci contains an
out statement on channel A, then the channel is modeled, as previously
described, with the event A.Ci.C. Finally, if the coroutines C1, …, Ck
each contain at least one out on the channel, then the compiler models
the in statement with the non-deterministic choice A.C1.C → P …
A.Ck.C → P, where P is the csp process that models the statement fol �
lowing the in statement. This use of non-determinism insists that the
component not deadlock, no matter which coroutine the run-time
scheduler chooses to schedule. In other words, this use of non-determin �
ism ensures that the compatibility of the ware and packager does not
depend on any particular coroutine scheduling algorithm.

Modeling out statements The compiler uses csp’s interleave operator
(|||) to model the way that out statements buffer their output. For
instance, the channel signature

Ware = out(A) → in(B) → in(C) → done.

is modeled with the csp expression

(A.Ware.Pkg → skip) ||| (B.Pkg.Ware → C.Pkg.Ware → skip)

Informally, this csp expression means that the event A.Ware.Pkg may
happen before or after any of the events in the expression on the right �

92

hand side of the interleave operator, i.e. before B.Pkg.Ware, between
B.Pkg.Ware and C.Pkg.Ware, or after C.Pkg.Ware. In short, we model
buffering as deferring the execution of an out statement until the corre�
sponding in statement executes.

(Unfortunately, the use of the interleave operator makes the final csp

check particularly expensive for fdr to verify, because it creates many
states for fdr to check. To reduce this expense, the compiler could first
model out statements with no buffering, using event prefixing (→)
rather than interleaving (|||). For example, the previous ware signature
would be modeled with the csp expression

A.Ware.Pkg → B.Pkg.Ware → C.Pkg.Ware → skip

the first time that the compiler runs fdr. The use of event prefixing
greatly reduces the state space to explore, hence speeding the fdr check.
If fdr reports that this check fails, then the compiler would re-run the
check, this time modeling out statements with the interleave operator.
The soundness of this optimization relies on a Ciao implementation that
implements synchronous versions of in and out statements until dead�
lock is detected, in which case it begins buffering out statements. With �
out this restriction, the Ciao implementation is free to choose an order
for in and out statements that is not covered by the optimized fdr check,
which allows the possibility of deadlock to go undetected at compile
time. The Ciao implementation does not currently uphold this restric �
tion.)

Compatibility check To test for compatibility between the ware’s and
packager’s channel signatures, the compiler uses the csp refinement test
Spec System, where

Spec = (e : E • e → Spec) skip

System = Ware || Pkg

and E is the set of all events of the form C.P.W. The process Spec may par �
ticipate in any number of any of the events in E and then terminate suc�
cessfully, or it may indefinitely participate in any of the events in E.
Informally, Spec represents a “good” component – one that either uses
channels for a while and then terminates or that uses channels
indefinitely (for example, a server component that never quits). In
effect, the refinement test checks whether the ware and the package
together form such a “good” component.

More formally, the refinement test Spec System is, by definition, the
test failures(System) ⊆ failures(Spec), where failures(P) is the set of all
pairs (s, X) such that s is a trace of P and X is the set of events that P can
refuse to perform after performing those events in trace s. Given the def�
inition of skip = 3 → stop (where 3 is a special event that denotes suc �
cessful termination) and given the definition of Spec above, the set
failures(Spec) contains two kinds of elements: a trace that ends in 3

f

f

93

paired with all possible subsets of E (the process runs to completion and
refuses to do anything afterward); or a trace that does not end in 3
paired with the empty set (the process has not yet successfully termi �
nated and is willing to participate in any event). If failures(System) is a
subset of failures(Spec), then any element in failures(System) must also be
of one of these two kinds. That is, the process System either terminates
successfully after some number of events or participates in some number
of events and is thereafter willing to participate in any event. Because the
events in this refinement test encode in and out statements, if the refine �
ment test is true, then the composition of the ware and packager either
executes in and out statements until it terminates, or it executes in and
out statements indefinitely; that is, the composition of the ware and
packager does not experience run-time deadlock.

When given a refinement check of this kind, the fdr model checker
either answers that the refinement is valid or provides a counterexample.
The Ciao compiler reports this result to the system architect, translating
the csp events in the counterexample back to the channel operations
that the system architect recognizes.

Limitations of the compatibility check This fdr check relies on the
accuracy of the ware’s and packager’s channel signatures. Namely, if the
ware or packager can execute a sequence of in and out statements that is
not covered in its channel signature, then there is a possible source of
deadlock that the fdr check cannot detect. As described in Section 4.1.3,
the accuracy of the channel signatures depends on human program �

mers, who are fallible. As such, the Ciao library implements run-time
deadlock detection. If the fdr check misses a source of deadlock due to
inaccuracy in the channel signatures, then the Ciao library can detect it
at run time (if it occurs) and provides a log of all in, out, and alt state�
ments for diagnosing the problem.

4.3.2 Compiling Ciao and Ciao++ to library calls

Once UniCon establishes the compatibility of the ware’s and packager’s
channel signatures, it invokes the Ciao or Ciao++ compiler on their
source code. For each source file, the Ciao compiler first checks that
each channel’s use is consistent with its declaration: a channel appearing
in an in statement is declared as an in channel; a variable appearing in an
in statement has the same declared type as the channel; a channel
appearing in an out statement is declared as an out channel; and an
expression appearing in an out statement is of the same type as the chan �
nel’s declared type. If the source file passes these checks, the compiler
replaces the Ciao constructs with calls to the channel library, whose
implementation is described in the next section. Figure 4.10 shows how
each Ciao construct is translated into C source code that makes calls to
the channel library.

This translation takes the channel map into account. If the channel
map shows that a channel has different names in the ware and the pack �

94

channel in type name;
channel out type name;
channel in stream type name;
channel out stream type name;

extern ciao_channel name;

in(channel, variable); variable = (type*)CiaoChannelIn(channel);

out(channel, variable); CiaoChannelOut(channel, & variable);

out(channel, expression); {
static type temp = expression;
CiaoChannelOut(channel, & temp);

}

alt {
in(channel0, variable0):

statement0;
in(channel1, variable1):

statement1;
...
in(channelk, variablek):

statementk;
}

{
static ciao_channel chs[" + ins.length + "];
chs[0] = channel0;
chs[1] = channel1;
...
chs[k] = channelk;
switch (CiaoAltIn(k+1, chs)) {

case 0:
variable0 = (type*)CiaoChannelIn(chs[0]);
statement0;
break;

case 1:
variable1 = (type*)CiaoChannelIn(chs[1]);
statement1;
break;

...
case k:

variablek = (type*)CiaoChannelIn(chs[k]);
statementk;
break;

}
}

figure 4.10 The
implementation of each of the

Ciao language constructs as
calls on the channel library.

95

ager, a generated name is substituted for these differing channel names
during the translation. During the translation, any conversion code that
appears in the channel map is also applied. The conversion code is
required to declare exactly one in channel and one out channel. During
the translation, the compiler examines out statements for possible
replacement with conversion code. In the channel appearing in an out
statement appears in a map entry with conversion code, the out state �
ment is replaced with the conversion. During this replacement, the out
statement being replaced is unified with the in statement in the conver �
sion code. For example, given the statements

channel out char* Str;
out(Str, “hello”);

and the channel map entry

(Int, Str, TypeFixupCode(“
channel in char* X;
channel out int Y;
char* s;
in(X, s);
out(Y, strlen(s));”))

the compiler will produce the following code

channel out char* Str;
{

char* s;
s = “hello”; // note the unification of the in and out statements
out(Int, strlen(s)); // note the channel name replacement

}

Allowing the channels in the conversion code to have any name (that is,
making the conversion code independent of the channel names in the
channel map) allows the system architect to build up a library of conver �
sion routines for use in many maps.

Once the source files have been translated, the compiler’s final step is
to generate the functions CiaoBegin and CiaoEnd. CiaoBegin contains
code to create each of the channels with CiaoMakeChannel and to
initialize the coroutine scheduler, discussed in the next section; CiaoEnd
contains code to delete each of the channels.

The current implementation
generates the name by
concatenating the two
differing names in the channel
map. If this generated name
shadows a name already in use
in the source code, the
compiler does not catch this
mistake.

96

4.3.3 The Ciao channel library

The interface to the Ciao channel library is the following:

typedef struct ciao_priv_channel_rep *ciao_channel;
typedef void (*ciao_thread_function)(void);

ciao_channel CiaoMakeChannel(char* debugName);
int CiaoChannelEmpty(ciao_channel ch);
void CiaoChannelOut(ciao_channel ch, void* item);
void* CiaoChannelIn(ciao_channel ch);
int CiaoChannelAltIn(int numch, ciao_channel* chs);
void CiaoStreamOpen(ciao_channel ch);
void CiaoStreamClose(ciao_channel ch);
int CiaoStreamMore(ciao_channel ch);
void CiaoCreateThread(ciao_thread_function func);
void CiaoBarrier();

Because C does not support polymorphic types, the underlying channel
representation is untyped, as witnessed by the void* argument to
CiaoChannelOut and the void* result from CiaoChannelIn. Hence, the
library itself provides no type checking. To provide type checking and to
provide a better syntax for alt statements than CiaoChannelAltIn pro �
vides, Ciao is implemented as a set of language extensions and a com �

piler. In a language like sml with strong typing, polymorphic types, and
higher-order functions, Ciao would be implemented purely as a library,
with no compilation step, and would be similar to Reppy’s cml.⁴² The
last two functions in the interface, CiaoCreateThread and CiaoBarrier,
support multithreaded packagers and are described in Chapter 6.

A channel is implemented as a dynamic array, initially of length one,
which doubles in length each time it becomes full. The coroutining is
implemented with the Windows nt Fiber library, which supports non �
preemptive, client-scheduled threads. The functions CiaoChannelOut,
CiaoChannelIn, CiaoChannelAltIn, and CiaoStreamMore each calls the
internal function coroutine_yield to schedule another coroutine (fiber).
The function coroutine_yield maintains an ordered list of fibers, with an
indication of whether each fiber is blocked on an in statement. To sched �
ule a new fiber, coroutine_yield selects the next unblocked fiber on the
list. If there are no unblocked fibers to run, coroutine_yield reports
deadlock and halts the program. The scheduling scheme is somewhat
more complicated in the presence of multithreading, which is discussed
in Chapter 6.

97

 Experiments

In order to validate the feasibility of the Flexible Packaging method and
to demonstrate the thesis claim, I conducted a series of experiments. In
the role of the ware developer, I developed three wares that implement
three diverse pieces of functionality: image painting; data translation;
and text classification. In the role of the packaging specialist, I created
nine packaging generators that represent nine packagings used in prac �
tice today. Finally, in the role of the system architect, I packaged these
wares to form thirteen different components. This chapter catalogs the
wares, packagings, and components in the experiments. Chapter 6 dis �
cusses how these experiments validate the thesis claim.

5.1 experimental wares

The wares that I created for the experiments are diverse, both in the
domain of the functionality that they provide and in their use of chan �
nels to coordinate with packagers. Because I needed to spend the bulk of
the validation effort on studying and encapsulating various packagings,
I intentionally kept the wares simple.

5.1.1 png image painting

The Portable Network Graphics (png) image encoding standard was
recently designed to be a successor to the popular gif standard. One
reason that the gif standard still prevails is that many different kinds of
software need to display images – drawing programs, document editors,
stand-alone image viewers, user interface design tools, and web brows �
ers; each imposes its own packaging requirements on the image-han �
dling component. Creating a png viewing component for each of these
niches takes time. This, then, is a natural opportunity for Flexible Pack �
aging. With the functionality of parsing and displaying a png image
captured as a ware, the functionality can be reused in many different
contexts.

The png ware is about 400 lines of Ciao and uses Randers-Pehrson,
Dilger, and Schalnat’s libpng library for parsing png files. Its Ciao signa �
ture is the following:

PNG_Main = in(Init) → PNG_Main
[] in(NewFile) → PNG_ReadFile; PNG_Main
[] in(Paint) → PNG_Main
[] in(Finalize) → done

98

PNG_ReadFile = out(ErrorMessage) → done
[?] ConvertPNGToDIB; done.

ConvertPNGToDIB = out(ErrorMessage) → done.

channel in int Init
channel in struct { struct { long left, bottom, top, right; }* rect;

void* hdc; } Paint
channel in char* NewFile
channel in int Finalize
channel out char* ErrorMessage

(This is the channel signature that SigGen produces, which could be fur�
ther simplified.) According to this channel signature, the ware first waits
for an indication that it should initialize and then loops to handle com �

mands. If it receives the name of a new file, it parses the file, possibly
reporting a parse error. If it receives a painting context, it paints the last
file that it parsed or a white rectangle if no file has yet been parsed.
Finally, if it receives an indication to quit, it does so, after de-allocating
its resources.

As the author of this ware, I faced the choice of how flexible to be
about ordering. For example, I could have insisted on a more stringent
ordering, such as the following:

PNG_Main = in(Init) → PNG_Main1
PNG_Main1 = in(SetFilename) →

(out(ErrorMessage) → PNG_Main1
[?] in(Paint) → PNG_Main1)

[] in(Finalize) → done.

This version insists that the packager provide a file name before each
paint request and that it send only one paint request per file name. Such
ordering guarantees make it somewhat easier to write the ware, for
example, by simplifying resource management. However, the penalty is
that such a ware cannot be combined with a packager that cannot make
the ordering guarantees, like Netscape plug-ins. Instead, as the author, I
chose to give up strong ordering guarantees in favor of a wider range of
packagers.

5.1.2 Area code translation

In order to accommodate an ever increasing need for new telephone
numbers in western Pennsylvania, the 412 telephone area code was
recently split into two area codes, 412 and 724. Whether a given phone
number remained in the 412 area code or switched to the new 724 area
code was determined by its exchange (first three digits). Because of this
change, phone numbers had to be updated in many databases and other
electronic artifacts. The variety of artifacts is staggering: traditional
databases from a number of vendors, spreadsheets, formatted text files,

99

text documents and document templates, web pages, electronic business
cards, address books in contact managers, and many others.

Such a problem provides a natural opportunity to use Flexible Pack �
aging. I created a ware that translates old phone numbers to new phone
number and that is flexible about the source and sink of the phone data.
The ware’s main value is in encapsulating the table of phone exchanges in
the new 724 area code. This modest data transformation problem is rep �
resentative of a huge class of problems, some with enormous amounts of
processing.

The area code ware is about 100 lines of Ciao and has the following
channel signature:

convert = in(Phone) → out(NewPhone) → convert [] done.

channel in stream char* Phone
channel out stream char* NewPhone

The ware loops over the contents of the Phone stream, converting each
phone number from the old area code to the new and placing it on the
NewPhone channel. If a string from the Phone stream cannot be parsed,
it is place unchanged on the NewPhone channel.

5.1.3 Chat message threading

The members of the computer science community at Carnegie Mellon
University use a chat system, called Zephyr, to share information rang �
ing from the technical to the frivolous. A Zephyr message, also called a
Zephyrgram, consists of the following strings:

• a class, which distinguishes conversational messages (those of class
“message”) from automatically generated notifications;

• an instance, which the message sender chooses to represent the mes �
sage’s subject;

• a sender id, which is the sender’s Kerberos authentication ID;
• a sender name, which is text the user chooses to give himself a name;
• a time stamp, which indicates when the message was sent; and
• a body, which contains the message’s content.

The Zephyr community uses several programs to read and send mes �
sages, each of which display the messages as a list ordered by the message
time stamps. Since there are typically several conversations on different
topics occurring at the same time, this flat presentation makes it difficult
to distinguish the conversations and to follow them independently.

To improve this presentation, I created a ware to break the stream of
messages into distinct conversations. The ware is flexible both about the
source of the Zephyr messages and about how the resulting conversa �
tions are consumed. Because the notion of conversation is not intrinsic
to the Zephyr model, the ware uses heuristics both to attribute a message

100

to a conversation and to determine when a new conversation is started.
The ware is about 100 lines of Ciao and has the following channel signa �
ture:

ListenForMessages = in(ZephyrNotices) → Classify; ListenForMessages
[] out(ThreaderDone) → done.

Classify = out(NewMessage) → done

[?]out(NewThread) → out(NewMessage) → done.

channel in stream (char*, char*, char*, char*, char*, char*) ZephyrNotices
channel out char* NewThread
channel out (char*, char*, char*, char*, char*, char*, char*) NewMessage

The ware loops over the contents of the ZephyrNotices stream. For each
message, it determines whether the message belongs to an existing or a
new conversation. If it belongs to an existing conversation, the ware
announces a new message belonging to that conversation. If it belongs to
a new conversation, the ware first announces a new conversation and
then announces the message. Although ideally a message’s body would
be used to determine whether it belongs to a given conversation, classify �
ing short text messages from multiple authors is currently beyond
today’s text classification algorithms. Instead, the ware relies on the
Zephyr community’s conventions about the message instance strings,
namely messages with similar instance strings are part of the same con �
versation.

5.1.4 Variety of wares

This collection of wares represents a variety of ways that functionality
can be provided. To characterize these wares, we could consider the
space of all wares as having centroids or pure forms. We would then clas�
sify a ware by saying which pure form it is most like or by saying that it is
a hybrid of two or more pure forms. To classify the three experimental
wares, consider the following pure forms.

• An abstract machine accepts commands from the outside world and
produces results based on the command it is given. It has a channel sig �
nature of the following form:

AM = in(~) → out(~) → AM
[] in(~) → out(~) → AM…
[] in(~) → out(~) → done

• A transducer produces a stream of results from a stream of inputs. It has
a channel signature of the following form:

Tr = in(~) → out(~) → Tr [] done

101

• A driver sends commands out into the world. It has a channel signature
of the following form:

Dr = out(~) → Dr [?] out(~) → Dr [?] … [?] out(~) → Dr [?] done

Given this set of pure forms, the png ware is an example of an abstract
machine, although it differs from the pure form by being more insistent
about the order of commands (namely, initialization must happen first).
The area code ware is a perfect example of a transducer. The chat mes �
sage ware can be thought of as a hybrid of a transducer and a driver. Like
the transducer, it produces outputs from a stream of inputs, but those
outputs are discrete and based on an internal choice, as with a driver.

Since wares are not natural phenomena, but the creations of people,
we should not expect a single, naturally arising set of pure forms.
Instead, the collection of pure forms is a social convention, based on
convenience to those producing and consuming wares. As such, the pure
forms above are demonstrative; the actual collection will evolve over
time as more experience is gained with Flexible Packaging. Such a collec�
tion of pure forms would also be handy for giving guidance about ware/
packager compatability. For example, packagings like ActiveX controls,
Netscape plug-ins, and Windows applications with guis are most likely
to be compatable with wares whose pure form is an abstract machine;
whereas, Unix filters are most likely to be compatable with transducers.
As more experience is gained with Flexible Packaging and a useful col�
lection of pure forms emerges, a packaging specialist will be able to ref �
erence these pure forms when he documents his packaging generator in
order to give system architects guidance about the wares that are com �

patable with his packaging.

5.2 experimental packagings

To experiment with a wide variety of packagings that are popular among
today’s practitioners, I played the role of nine different packaging spe �
cialists, each time creating a packaging generator for a particular pack �
aging. Because many of these packagings are quite complicated and take
years to master, becoming a true packaging guru nine times would have
required an untenable level of effort. Instead, I captured enough of the
packaging’s complexity to be representative without spending more than
a few months learning any one technology.

In practice, many components participate simultaneously in more
than one style of interaction. For example, a component may simulta �
neously be an ActiveX control, file accessor, and database accessor. Such
a component is said to have a heterogeneous packaging. To account for
this heterogeneity, I split the component packagings from the experi �
ments into two categories: Component Standard packagings govern how
a component’s services are invoked; Data Access packagings govern how
a component accesses external data in order to implement its services. A
component’s complete packaging, then, consists of exactly one Compo �

102

nent Standard packaging, plus zero or more Data Access packagings.
This packaging composition rule allows a component simultaneously to
be an ActiveX control, file accessor, and database accessor, but prevents a
component from simultaneously being an ActiveX control and a batch
program.

This distinction among packagings is reflected in the implementation
of the packagers. A packager that implements a Component Standard
packaging has a form that the packaging technology dictates. For exam �

ple, a batch program is implemented as a function called main; a
Netscape plug-in, as a dynamically loaded library that exports a given
set of functions. On the other hand, a packager that implements a Data
Access packaging obeys a convention that the Flexible Packaging
method introduces. Namely, a Data Access packager is always imple �
mented as a coroutine of the following form:

coroutine void DoAccess()
{

channel in int StartAccess; int ignored; ...

in(StartAccess, ignored);
... do the data access ...

}

The in statement acts as a guard preventing computation from proceed �
ing until some other computation places data on the channel. The in
statement may be triggered in two ways. First, as usual, a corresponding
out statement may appear in the ware’s source code. Second, a corre�
sponding out statement may appear in another packager’s source code,
in particular, in the source code of a packager that implements a Com �

ponent Standard packaging.
To support the latter option, the packaging generators for Component

Standard packagings obey a second convention. Because a Component
Standard packaging governs how the component’s services are invoked,
such a packaging determines those points at which control enters the
component. Call these the entry points. A batch program, for example,
has a single entry point, the function main; an ActiveX control has an
entry point for each com method that it exports. A packaging descrip �
tion typically contains one UniCon player for each entry point. The sec�
ond convention is that an entry point player may have a property called
activate whose value is a pair: the name of a channel on which to do an
out statement; and an indication of whether this out statement should be
executed in a new thread of control. The combination of these two con �
ventions allows packagers to be combined to implement a heterogeneous
packaging: each Data Access packager is guarded with an in statement; a
Component Standard packager may contain the corresponding out
statement, generated from an activate property.

To support the experiments, I created packaging generators for each
of the following Component Standard packagings: (1) ActiveX controls;

A batch program does not
need a player per entry point,

since there is exactly one. Its
entry point is implicit in its

description.

103

(2) Netscape plug-ins; (3) Windows applications; (4) batch programs;
and (5) cgi scripts. I also created packaging generators to support access
to each of the following types of data: (1) Excel spreadsheets; (2) rela �
tional databases; (3) text streams; and (4) tcp/ip socket streams. These
nine packaging generators are described in the following catalog. An
entry in the catalog contains the following information about the pack �
aging: whether the packaging is a Component Standard packaging or a
Data Access packaging; the UniCon definitions that a system architect
uses to write a packaging description; and an explanation of what the
packaging generator does with such a packaging description.

104

105

ActiveX Control (Component Standard)

UniCon

Definitions

TYPE uuid = RegistryFormat OF uninterpreted | CppFormat OF uninterpreted END
TYPE com_property_access_type = ReadOnly | ReadWrite END

COM_Property: PLAYER BasicPlayer WITH
ENTAILS id: TYPE integer;
ENTAILS signature: TYPE string;
ENTAILS access: TYPE com_property_access_type;
access: ReadWrite;
ENTAILS help_string: TYPE string;
help_string: "";
ENTAILS value_is_calculated: TYPE boolean; -- when false, ’get’ returns value passed in last ’set’

value_is_calculated: false;
END

COM_Method: PLAYER RoutineDef WITH
ENTAILS help_string: TYPE string;
help_string: "";
ENTAILS id: TYPE integer;

END

COM_Interface: PLAYER PL_Bundle WITH
ENTAILS iid: TYPE uuid;
ENTAILS AT LEAST 0 OF (idl_attribute: TYPE uninterpreted NONAGGR);
ENTAILS ONLY AT LEAST 0 OF (PLAYER COM_Property | PLAYER COM_Method);
ENTAILS help_string: TYPE string;
help_string: "";

END

OutgoingInterfaces: PLAYER BasicPlayer WITH
ENTAILS ONLY AT LEAST 1 OF (PLAYER COM_Interface);

END

COM_Component: INTERFACE WindowsDLL WITH
ENTAILS ONLY AT LEAST 1 OF (PLAYER COM_Interface | PLAYER OutgoingInterfaces);
ENTAILS library_iid: TYPE uuid;
ENTAILS coclass_iid: TYPE uuid;
ENTAILS help_string: TYPE string;
help_string: "";
ENTAILS version: TYPE string;
version: "1.0";
ENTAILS name: TYPE string;

END

-- See page 110 for the definition of WithResources.

P1

106

ActiveXControl: INTERFACE COM_Component, WithResources WITH
iUnknown: PLAYER IUnknown;
iDispatch: PLAYER IDispatch;
iProvideClassInfo2: PALYER IProvideClassInfo2;
iPersistStreamInit: PLAYER IPersistStreamInit;
iPersistStorage: PLAYER IPersistStorage;
iQuickActivate: PLAYER IQuickActivate;
iOleControl: PLAYER IOleControl;
iOleObject: PLAYER IOleObject;
iOleInPlaceActiveObject: PLAYER IOleInPlaceActiveObject;
iViewObjectEx: PLAYER IViewObjectEx;
iDataObject: PLAYER IDataObject;

resources: PLAYER WindowsResources WITH
reg: PLAYER RegistryResource WITH

id: 101;
registry_instruction_file: Filename("GenericControl.rgs");

END
typelib: PLAYER TypeLibraryResource WITH

id: 1;
type_library_file: Filename("Generic.tlb");

END
END

END

Packaging

Generator

The generator uses Microsoft’s ActiveX Template Libarary (atl) to
produce the packager’s source code. For each of the common com

interfaces, like IViewObject and IOleControl, this library includes a
correponding class. To implement a control that exports a given com

interface, a developer creates a class that subclasses from the corresponding
atl class and overrides its methods. The generator produces a class whose
superclasses correspond to the com interfaces listed in the definition
ActiveXControl above. The generated class has a method for each of the
com methods in each of the com interfaces above. Since many of these
methods are not interesting to the average programmer and since atl

provides reasonable default implementations for them, the generated class
overrides only a few, like Draw. The implementation of an overridden
method contains an out statement to export the method arguments and an
in statement to import a result (if any) to return. The names of the channels
are derived from the method name.

An ActiveX control’s packaging description may also introduce new
com interfaces. The generator handles each method in a new com

interface like the overridden methods discussed previously. For each com

property in the new com interfaces, the generator produces different code,
depending the com property’s description in UniCon. In the description,
the value of the UniCon property value_is_calculated indicates whether the
com property’s value is computed or cached. When value_is_calculated is
true, a computed value is returned when a control does a “get” on the com

property; when value_is_calculated is false, the value returned from a “get”
is the value from the most recent “set.” In the former case, the generator
produces two methods, one for the set, one for the get; in the latter case, the
generator produces only the set method.

In addition to these methods, the generator produces coroutines. First,
it produces a coroutine for error reporting. The coroutine loops reading

107

data from a channel named ErrorMessage and reporting the error
messages with a dialog box. If the ActiveX control raises com events, the
generator produces a second coroutine. A com event is a special kind of
com method. For each com event M, the generator produces a function
called Fire_M, whose implementation announces M. The second coroutine
loops over an alt statement. For each event M, the alt statement contains an
in statement to input the contents of event M; each in statement guards a
call to Fire_M.

The generator also produces several non-code artifacts: an idl file; a
registry file; and a resource file. The generator runs the midl compiler on
the idl file to produce a type library. The type library advertises the
control’s capabilities both to developers and to other controls. The registry
file is a set of instructions for installing the control in the system registry
and is referenced as a resource in the resource file. In addition to this
reference to the registry file, the resource file may contain other Windows
resources, like an icon to represent the control in development
environments like Visual Basic. The generator runs a resource compiler on
the resource file. As a final step, it produces the construction steps needed
to compile the source code to a dynamically linked library (dll), to
associate the compiled resource file with the dll through a linker switch,
and to run the com installer to install the dll.

108

Netscape plug-in (Component Standard)

UniCon

Definitions

-- See page 110 for the definition of WithResources.

WindowsDLL: INTERFACE BundledLibrary, WithResources WITH
dynamically_linked: true;
ENTAILS export_from_library: TYPE player;

END

Netscape4Plugin: INTERFACE WindowsDLL WITH
ENTAILS mime_type: TYPE string;
ENTAILS file_extension: TYPE string;
ENTAILS product_name: TYPE string;

END

Packaging

Generator

Because the interface to all Netscape plug-ins is the same, the generator
always produces the same source file. A Netscape plug-in exports a set of
procedure definitions for the browser to call. For each of these procedure,
the body contains an out statement that outputs the procedure arguments.
The generator also produces a coroutine for error reporting, similar to that
for ActiveX controls.

In addition to source code, the generator produces a Windows resource
file that contains two text properties that the plug-in protocol requires, one
for the mime type and one for the file extension of the documents that the
plug-in handles. The generator produces the construction steps needed to
compile the source code into a dynamically loaded library (dll) with the
Windows resources and to copy the resulting dll into the proper directory
(a subdirectory named “plugins” of the directory that contains the browser
executable).

P2

109

Windows application (Component Standard)

UniCon

Definitions

Resource: PLAYER BasicPlayer WITH
num_assocs: AT LEAST 0;

END

VersionInfoResource: PLAYER Resource WITH
ENTAILS file_version: TYPE uninterpreted;
ENTAILS product_version: TYPE uninterpreted;
ENTAILS file_flags_mask: TYPE uninterpreted;
ENTAILS file_flags: TYPE uninterpreted;
ENTAILS file_os: TYPE uninterpreted;
ENTAILS file_type: TYPE uninterpreted;
ENTAILS file_subtype: TYPE uninterpreted;
-- these are the defaults the DevStudio wizard gives you
file_version: {1,0,0,1};
product_version: {1,0,0,1};
file_flags_mask: {0x3fL};
file_flags: {0x0L};
file_os: {0x4L};
file_type: {0x2L};
file_subtype: {0x0L};
ENTAILS key: TYPE (key_name:string, key_value:string) NONAGGR;

END

BitmapResource: PLAYER Resource WITH
ENTAILS id: TYPE integer;
ENTAILS bitmap_file: TYPE file_type;

END

IconResource: PLAYER Resource WITH
ENTAILS id: TYPE integer;
ENTAILS icon_file: TYPE file_type;

END

TYPE menu_item_type = MenuItem of (label: string, id:integer) | Separator END

MenuResource: PLAYER Resource WITH
ENTAILS id: TYPE integer;
ENTAILS menu_contents: TYPE (string * menu_item_type list) list;

END

RegistryResource: PLAYER Resource WITH
ENTAILS id: TYPE integer;
ENTAILS registry_instruction_file: TYPE file_type;

END

TypeLibraryResource: PLAYER Resource WITH
ENTAILS id: TYPE integer;
ENTAILS type_library_file: TYPE file_type;

END

P3

110

ResourceBundle: PLAYER BasicPlayer WITH
ENTAILS AT LEAST 1 OF (PLAYER Resource);
ENTAILS AT LEAST 0 OF (PLAYER VersionInfoResource);
ENTAILS AT LEAST 0 OF (PLAYER BitmapResource);
ENTAILS AT LEAST 0 OF (PLAYER IconResource);
ENTAILS AT LEAST 0 OF (PLAYER MenuResource);
ENTAILS AT LEAST 0 OF (PLAYER RegistryResource);
ENTAILS AT LEAST 0 OF (PLAYER TypeLibraryResource);

END

WithResources: INTERFACE BasicInterface WITH
ENTAILS AT MOST 1 OF (PLAYER ResourceBundle);

END

WindowsApplication: INTERFACE WithResources WITH
menu_resource: PLAYER WindowsResources WITH

menu: PLAYER MenuResource WITH
id: 4;
menu_contents: [("File", [MenuItem (label:"&Open...", id:40),

 MenuItem (label:"&Exit", id:50)])];
END

END
END

Packaging

Generator

Creating a generator for Windows applications with arbitrary graphical
user interfaces (guis) would amount to recreating Microsoft’s gui design
wizard in Developer’s Studio. This wizard allows a designer to create a gui

through a wysiwyg editor and to generate a source code skeleton that
implements the gui. Rather than recreate this tool, the generator for this
packaging creates applications with a fixed graphical user interface. This
interface consists of a single window with a menu bar that contains a “File”
menu. The “File” menu has two items: “Open,” which launches a file-
loading dialog box; and “Exit,” which terminates the application. The
generated application takes a single, optional command-line argument,
which is the name of a file to load. Providing this argument is the same as
loading the file through the dialog box.

The architect’s packaging description must contain an icon Windows
resource, which serves as the application’s icon on the desktop. Through
inheritance, the description also contains a menu resource, shown above.
The source code that the generator produces is always the same, except for
the resource ids of the menu and icon. This source code uses out channels
to indicate when the application is initializing, painting, loading a file, and
terminating. The generator also produces a Windows resource file and the
construction steps needed to compile the source code to an executable with
the given Windows resources.

(To produce a Windows application with a different gui, a system
architect could use Microsoft’s gui designer to generator a code skeleton.
The generated source code contains comments that indicate those places
where the programmer should insert the code that implements his
functionality. The architect would instead replace these comments with
channel declarations.)

111

Batch program/filter (Component Standard)

UniCon

Definitions

ConsoleApplication: INTERFACE BasicInterface WITH
ENTAILS AT LEAST 0 OF (PLAYER BasicPlayer);

END

Packaging

Generator

The source code that the generator produces is always the same, namely a
definition of the function main:

int main(int argc, char* argv[]);

The body of main first does an out of argv[0] on the channel
ProgramName and then an out for each of the other elements of the array
argv on the stream channel ProgramArguments. Finally, the body of main
does an in on the channel ProgramResult to input a status code to return as
the result of main. The generator also produces the construction steps
needed to compile the source code to an executable.

P4

112

CGI script (Component Standard)

UniCon

Definitions

TYPE cgi_method_type = PostMethod | GetMethod END

CGI_Script: INTERFACE ConsoleApplication WITH
ENTAILS query_method: TYPE cgi_method_type;
ENTAILS query_names: TYPE string list;

END

Packaging

Generator

A cgi script produces a mime-encoded document (typically an html

document) based on a query string. There are two kinds of cgi scripts,
which differ in how the query string is provided to the script: those that use
the “post” query method receive the query string through standard input;
those that use the “get” query method receive the query string through
command-line arguments. The cgi script packaging generator produces
either kind of cgi script, depending on the value of the query_method

property. A query string is an encoded list of name–value pairs. The source
code that the generator produces decodes this string and, for each name in
the property query_names, looks for a name– value pair with that name
and outputs the value on a channel with that name. After outputting the
values in the query string, the generated code reads the contents of a
channel called html output and returns those contents as the result of the
script.

The generator also produces the construction steps needed to compile
the source code to an executable and to copy the executable to the web
server’s cgi script directory.

(This is the only generator in the experiments for which channel
signatures do not adequately capture the packager’s use of channels. For
each of the names in query_names, the generated packager will output a
single value on a channel of that name. These out statements can occur in
any order. To capture the fact that the out statements occur once per
channel and in any order is to spell out all the possible orderings in the
channel signature. This makes the channel signature tediously long if there
are more than a few query names. Instead, the channel signature less
accurately states that the out statements happen any number of times in any
order, which can be succinctly captured with a recursive process definition.
In future work, channel signatures could also include csp’s interleave
operator (|||) to allow the packaging specialist directly to specify the lack of
ordering constraints.)

P5

113

Excel spreadsheet (Data Access)

UniCon

Definitions

TYPE cell_address_type = Col OF string | Row OF string | FirstEmptyCell | Current END

TYPE cell_access_scope_type =
CellRange of (cell_address_type * cell_address_type) * (cell_address_type * cell_address_type) |
Cell of (cell_address_type * cell_address_type)

END

TYPE cell_access_type = CellRead | CellWrite | CellUpdate END

SpreadsheetAccess: PLAYER BasicPlayer WITH
ENTAILS range: TYPE cell_access_scope_type;
ENTAILS access: TYPE cell_access_type;
access: CellUpdate;
ENTAILS AT LEAST 0 OF (PLAYER SpreadsheetAccess);

END

SpreadsheetRead: PLAYER SpreadsheetAccess WITH
access: CellRead;

END

SpreadsheetWrite: PLAYER SpreadsheetAccess WITH
access: CellWrite;

END

SpreadsheetAccessor: INTERFACE Application WITH
ENTAILS AT LEAST 1 OF (PLAYER SpreadsheetAccess);

END

Packaging

Generator

The source code that this generator produces uses extensions to Microsoft’s
C++ compiler that support com. In addition to the usual #include
directive, the C++ preprocessor has an #import directive which translates
com type libraries (mentioned on page 107) to C++ data structures. This
translation maps com objects to C++ objects, com method calls to C++
method calls, and com property accesses to C++ object field accesses.
Microsoft Excel is implemented as a collection of com objects, so invoking
Excel, loading spreadsheets, and accessing the content of those
spreadsheets can all be accomplished through com. For each spreadsheet
access in the packaging description, the generator produces COM method
calls to implement the access. If the access type is CellRead, the generator
produces an out statement to report the spreadsheet cell’s content; if the
type is CellWrite, it produces an in statement to get a new value for the cell;
if the type is CellUpdate, it produces both the out and in statements.

(Although Microsoft’s #import directive makes it easy to use com

objects, the #import directive itself causes the size of the source code to sky-
rocket. In one of the experiments, a source file with a hundred lines of code
and a few #import directives expands after preprocessing to a source file
over four megabytes long and with 22,182 top-level constructs! Because of
such large source files, I had to make the Ciao++ compiler an incremental
compiler.)

P6

114

Relational database (Data Access)

UniCon

Definitions

Column: PLAYER BasicPlayer WITH
ENTAILS signature: TYPE string;

ENTAILS name: TYPE string;
name: ""; -- this means the player name is the column name

END

Relation: PLAYER BasicPlayer WITH
ENTAILS AT LEAST 1 OF (PLAYER Column);

END

TYPE odbc_type = ODBC_Binary | ODBC_Char of integer | ODBC_Date | ODBC_SmallInt |
ODBC_Double | ODBC_Float | ODBC_Integer | ODBC_Time END

TYPE sql_statement_type = Select | Update OF (key: (string * odbc_type)) END

DBAccess: PLAYER DBPlayer, OneAssoc WITH
ENTAILS sql_statement: TYPE sql_statement_type;
ENTAILS columns: TYPE (string * odbc_type) list; -- name x signature
ENTAILS from: TYPE string list;
ENTAILS where: TYPE string;
where: "";

END

DatabaseAccessor: INTERFACE Application WITH
 ENTAILS AT LEAST 1 OF (PLAYER DBAccess);

ENTAILS server_name: TYPE string;
END

Packaging

Generator

This packaging generator uses the popular ODBC library <<CITE?>> to
access relational databases. This library allows a program to construct SQL
queries and to access the records that result from those queries. For each
query (DBAccess player) in the architect’s packaging description, the
generator produces the necessary calls to the ODBC library. If the SQL
statement type is Select, the generated code reports the resulting records
through an out channel whose name is derived from the DBAccess player; if
its type is Update, in addition to reporting the result, it gets a new value for
each record through an in channel.

P7

115

Text stream (Data Access)

UniCon

Definitions

TYPE re_format_type =
EndOfLine |
Lit OF string |
InSet OF string |
NotInSet OF string |
Choice OF re_format_type list |
Seq OF re_format_type list |
Plus OF re_format_type |
Star OF re_format_type |
Named OF string * re_format_type

END

TYPE lexeme_set_type = LexemeSet OF string END

TYPE input_format_type = RegularExpression OF re_format_type | Grammar OF lexeme_set_type * string
END

TYPE print_format_type =
PrintVar OF string |
PrintS OF string |
PrintI OF integer |
PrintR OF real |
PrintLine OF print_format_type list

END

TYPE output_format_type = Format OF print_format_type | MacroString OF string END

WithFormattedIO: INTERFACE BasicInterface WITH
InternetLexemes: LexemeSet("internet-lexemes");

END

TYPE unix_port_binding = Stdin | Stdout | Stderr | PortNumber OF integer END

Stream: PLAYER BasicPlayer WITH
 ENTAILS unix_port: TYPE unix_port_binding;
END

StreamIn: PLAYER Stream WITH
 unix_port: Stdin;

ENTAILS format: TYPE input_format_type;
END

StreamOut: PLAYER Stream WITH
 unix_port: Stdout;

ENTAILS format: TYPE output_format_type;
END

Filter: INTERFACE WithFormattedIO WITH
 ENTAILS AT LEAST 1 OF (PLAYER StreamIn | PLAYER StreamOut);
END

P8

116

Packaging

Generator

For each of the input and output streams in the system architect’s
packaging description, the generator creates an independent coroutine. For
an input stream, this coroutine reads input from the given stream, parses it
according to the specified format, and reports the results through out

channels. For an output stream, the coroutine gathers data through in

statements and then reports them as specified by the stream’s format.
The input stream’s format may either be given through a regular

expression or through a grammar. If the format is given by a regular
expression, the generator creates a Yacc script that parses the regular
expression. The treatment of regular expressions is conventional with one
exception. Any portion of the regular expression may be given a name
(through the Named type constructor). When the Yacc script matches the
input against the named portion of the regular expression, the Yacc script
reports the matching input on an out channel of that name. See page 123 for
an example regular expression.

An input stream’s format may also be given by a grammar. Rather than
having the architect provide a Lex script or other specification of the
lexemes (tokens) on which the grammar is based, the generator instead
provides a fixed collection of handy lexeme sets. A grammar is then written
as a string and uses the lexemes in its chosen lexeme set. (See page 132 for
an example grammar.) The generator creates Yacc script for this grammar.
The grammars are conventional with one exception. Any non-terminal on
the right-hand side of a grammar rule may be enclosed in dollar signs ($).
When the Yacc script matches the input against the non-terminal in that
context, the Yacc script reports the matching input on an out channel
named after the non-terminal.

The format of an output stream may be given by print format or a
macro string. A print format is a tree of print commands that consists of
the following nodes: PrintVar(C) means to print a string from the channel
C; PrintS(S) means to print the string S; printI(I) means to print the integer
I; PrintR(R) means to print the real R; and PrintLine(L) means to do the
commands in L. A macro string is a literal string into which substitutions
are made before it is printed. Wherever a string appears between dollar
signs ($) in the macro string, the generated code does an in statement on a
channel whose name is between the dollar signs and substitutes the value
from the in statement into the macro string. An example of a macro string
is on page 123.

117

TCP/IP socket stream (Data Access)

UniCon

Definitions

-- See page 115 for the definitions of input_format_type and output_format_type.

TYPE request_type = Request of string * output_format_type END
TYPE reply_type = Reply of input_format_type END

TYPE rr_protocol_type = RRProtocol OF (request_type * reply_type) list END

SocketStream: PLAYER BasicPlayer WITH
ENTAILS hostname: TYPE string;
ENTAILS port: TYPE integer;

END

RequestReplyProtocolSocketStream: PLAYER SocketStream WITH
ENTAILS rrprotocol: TYPE rr_protocol_type;

END

SocketClient: INTERFACE BasicInterface WITH
ENTAILS AT LEAST 1 OF (PLAYER SocketStream);

END

RequestReplyProtocolSocketClient: INTERFACE SocketClient WITH
ENTAILS AT LEAST 1 OF (PLAYER RequestReplyProtocolSocketStream);

END

Packaging

Generator

The generator produces source code for a client of an internet server that
uses a request–reply protocol over a tcp/ip socket connection. The system
architect describes the request–reply protocol using the same input and
output format definitions that the text stream packaging uses. (See pages
115 to 116.) The generated source code establishes a socket connection to
the specified server and then uses the same generated code as the text
stream packaging generator to do input and output on the socket
connection.

P9

118

5.3 experimental components

With the previous wares and packaging generators in hand, I created
each of thirteen components by writing a packaging description for one
of the wares. Some of the packagings were homogeneous (for example,
ActiveX alone); others were heterogeneous (for example, both ActiveX
and tcp/ip sockets). After writing the packaging description, I ran
Packgen on it. Packgen, in turn, ran one packaging generator, for a
homogeneous packaging, or more than one packaging generator, for a
heterogeneous packaging. Either way, Packgen produces a packager,
which I then combined with the ware. For most of the components, there
were only name and datatype mismatches between the packager and the
ware, which I overcame with a channel map. When the mismatch was
more complex, I created one or more conversion coroutines to overcome
the differences. Finally, when the packager was multithreaded, I created
a thread map to assign coroutines to threads.

The following table summarizes the distribution of wares and packag �
ings across the experimental components:

Wares
png image painting C5, C6, C7

Area code translation C1, C2, C3, C4

Chat message threading C8, C9

No ware C10, C11, C12, C13

Packagings
ActiveX control C5, C8, C10

Netscape plug-in C6

Windows application C7

Batch program C3, C9, C12, C13

cgi script C4, C11

Excel spreadsheet C1, C12

Relational database C2, C13

Text stream C3, C9, C12, C13

tcp/ip socket stream C8, C9, C10, C11

5.3.1 Components without wares

Four of the experimental components are unusual in that they contain
no ware. As mentioned in Chapter 2, one way to overcome a packaging
mismatch is to interpose a bridge between a reused component and the
new system in which the component is reused. Such a bridge encom �

passes no interesting functionality, but simply overcomes the differences
between two types of interaction. Although I designed the packaging
generators to produce packagers that complement wares, these genera �
tors can also be used automatically to produce such bridges. A bridge
component contains no ware (because it has no interesting functional �
ity), but has a heterogeneous packaging. For example, component C10

119

bridges between socket-based interaction and ActiveX events. It listens
for Zephyr messages on a socket and announces each in-coming mes �
sage as an ActiveX event. I created this component by writing a packag �
ing description that involves both sockets and ActiveX events and by
creating a channel map that connects different channels in the packager
(rather than between the packager and the ware).

5.3.2 Component testing and performance measurement

After building each of the experimental components, I tested it by hand.
For those components with user interfaces (C1, C2, C3, C7, C9, C12, C13),
I ran each component and used the user interface to test it. For the other
components, I integrated each component into a system with a user
interface and tested the component through the system’s user interface.
In particular, I tested eachof the cgi scripts (C4 and C11) by creating a
web page with a form that the cgi script processes; I tested each of the
ActiveX controls (C5, C8, and C10) by building a Visual Basic applica �
tion that includes an instance of that control; and I tested the png

Netscape plug-in (C6) by using Netscape to view png images.
To ensure that the performance of a flexibly packaged component is

comparable to a hand-made component with the same behavior, I cre �
ated hand-made versions of three of the area code components (compo �
nents C1, C2, and C3). These three are the only experimental compo�
nents that both have a ware and that run in batch mode, thereby being
suitable for timing. I timed the execution of the three flexibly packaged
components and the three hand-made components and compared the
two. The run-time overheads for the flexibly packaged components were
8% for the filter (component C3), 2% for the database accessor (compo �
nent C2), and 1% for the Excel spreadsheet accessor (component C1).
These figures are pessimistic for two reasons. First, neither the Ciao
compiler nor the channel run-time has been tuned to optimize compo�
nent performance. Second, the run-time overhead depends on the ratio
of the time each module spends computing versus the time the modules
spend coordinating through channels. Because the area code ware does
little computation, coordination dominates the execution time of the
three flexibly packaged components. For these reasons, the run-time
overhead, in general, should be less than those measured.

5.3.3 Reading the catalog

The catalog that follows describes each experimental component with
the following information:

• a name of the component (in bold);
• the ware and the packagings involved;
• an informal description of the component’s use;
• the packaging description from which Packgen created the packager;
• the generated packager’s channel signature;
• the ware’s channel signature;

120

• the thread map, if any;
• the channel map, if any; and
• the conversion coroutines, if any.

For brevity, the channel signatures in the catalog are not given in their
full UniCon syntax, but instead in the abbreviated syntax used in Chap �
ter 1. When a channel signature involves more than one coroutine, it is
presented in sections, one section per coroutine. Each section gives the
csp description of the coroutine’s channel use and the list of channels
that the coroutine uses.

Each catalog entry illustrates the work that I had to perform, in the
role of the system architect, to produce the entry’s component. First, I
had to create the given packaging description. Then I ran Packagen to
produce the packager whose channel signature is given. The reader may
compare the packaging description with the packager’s channel signa �
ture to see how the packaging description contributes to the set of chan �
nels in the packager, for example, too see how the channel names arise.
The reader may also compare the packager’s and ware’s signatures to
understand how I combined them with the given thread map, channel
map, and coversion code.

121

Area code database Area code translation + batch program–relational database

A batch program that updates phone numbers in a relational database.
Both the name of the database to update and the SQL query that generates
the phone numbers are given in the packaging description.

Packaging

Description

AreaCodeDatabase: interface DatabaseAccessorPackaging, ConsoleAppPackaging with
DB: player DBAccess with

server_name: "NewPhone.dsn";
sql_statement: Update (key: ("ID", ODBC_Integer));
columns: [("Nighttime Phone", ODBC_Char(50))];
from: ["Records"];

end
activate: (DB, WithMyThread);

end

Packager DBAccess = in(StartDBAccess) → DoDBAccess.
DoDBAccess = out(NighttimePhone) → in(NewNighttimePhone) → DoDBAccess [?] done.

channel in int StartDBAccess
channel out stream unsigned char* NighttimePhone
channel in stream unsigned char* NewNighttimePhone

Main = out(ProgramName) → Args.
Args = out(ProgramArguments) → Args [?] out(StartDBAccess)→ done.

channel out char* ProgramName
channel out stream char* ProgramArguments
channel out int StartDBAccess

Ware convert = in(Phone) → out(NewPhone) → convert [] done.

channel out stream char* NewPhone
channel in stream char* Phone

Channel map Phone NighttimePhone channel in unsigned char* In;
unsigned char* s1;
channel out char* Out;
char* s2;
in(In, s1);
s2 = (char*)s1;
out(Out, s2);

NewPhone NewNighttimePhone channel in char* In;
channel out unsigned char* Out;
char* s1;
unsigned char* s2;
in(In, s1);
s2 = (unsigned char*)s1;
out(Out, s2);

C1

122

Area code spreadsheet Area code translation + Batch program–Excel spreadsheet

A batch program that updates cells in a spreadsheet that contain phone
numbers. Both the name of the spreadsheet and the range of cells to update
are given in the packaging description.

Packaging

Description

AreaCodeExcelApplicationPackaging: interface SpreadsheetAccessorPackaging, FilterPackaging with
PhoneNumbers: player SpreadsheetAccess with

filename: Filename("Records.xls");
range: CellRange ((Col "I", Row "2"), (Col "I", FirstEmptyCell));

end
activate: (PhoneNumbers, WithMyThread);

end

Packager Spreadsheet = in(StartExcelAccess) → Access0.
Access0 = out(PhoneNumbers) → in(NewPhoneNumbers) → Access0 [?] done.

channel in stream char* NewPhoneNumbers
channel out stream char* PhoneNumbers

Main = out(ProgramName) → Args.
Args = out(ProgramArguments) → Args [?] out(StartExcelAccess) → done.

channel out char* ProgramName
channel out char* ProgramArguments
channel out int StartExcelAccess

Ware convert = in(Phone) → out(NewPhone) → convert [] done.

channel out stream char* NewPhone;
channel in stream char* Phone;

Channel map NewPhone PhoneNumbersIn

Phone PhoneNumbersOut

C2

123

Area code filter Area code translation + Batch program–text stream

A filter that updates phone numbers. The format of the input stream and
output stream are given in the packaging description.

Packaging

Description

AreaCodeFilter: interface FilterPackaging with
input: player StreamIn with

format: RegularExpression (
Seq [Named("ID", Plus(InSet("0-9"))), Lit(","),

Named("Name", Star(NotInSet(","))), Lit(","),
Named("Address1", Star(NotInSet(","))), Lit(","),
Named("Address2", Star(NotInSet(","))), Lit(","),
Named("City", Star(NotInSet(","))), Lit(","),
Named("State", Star(NotInSet(","))), Lit(","),
Named("Zip", Star(NotInSet(","))), Lit(","),
Named("WorkPhone", Star(NotInSet(","))), Lit(","),
Named("HomePhone", Star(NotInSet(","))),
EndOfLine]);

end
output: player StreamOut with

format: MacroString(
"$IDOut$, $NameOut$, $Address1Out$, $Address2Out$, $CityOut$, $StateOut$, $ZipOut$,

$WorkPhoneOut$, $HomePhoneOut$");
end
activate: (input, WithMyThread);
activate: (output, WithMyThread);

end

Packager input = in(Start_input) → input1.
input1 = out(ID) → out(Name) → out(Address1) → out(Address2) → out(City) → out(State) → out(Zip)

→ out(WorkPhone) → out(HomePhone) → input1 [?] done.

channel in int Start_input
channel out stream char* Address1, Address2, City, HomePhone, ID, Name, State, WorkPhone, Zip

output = in(Start_output) → output1.
output1 = in(IDOut) → in(NameOut) → in(Address1Out) → in(Address2Out) → in(CityOut) →

in(StateOut) → in(ZipOut) → in(WorkPhoneOut) → in(HomePhoneOut) → output1 []
done.

channel in int Start_output
channel in stream char* Address1Out, Address2Out, CityOut, HomePhoneOut, IDOut, NameOut,

StateOut, WorkPhoneOut, ZipOut

Main = out(ProgramName) → Args.
Args = out(ProgramArguments) → Args [?] out(Start_output) → out(Start_input) → done.

channel out char* ProgramName
channel out stream char* ProgramArguments
channel out int Start_output
channel out int Start_input

C3

124

Ware convert = in(Phone) → out(NewPhone) → convert [] done.

channel in stream char* Phone;
channel out stream char* NewPhone;

Channel map Phone HomePhone

NewPhone HomePhoneOut

ID IDOut

Name NameOut

Address1 Address1Out

Address2 Address2Out

City CityOut

State StateOut

Zip ZipOut

WorkPhone WorkPhoneOut

125

Area code CGI script Area code translation + CGI script

A CGI script that accepts a phone number to translate from a web form.
The web form contains a text box (named “Phone”) in which the user enter
the phone number. The CGI script generates an HTML document with the
updated phone number.

Packaging

Description

AreaCodeCGIScript: interface CGI_ScriptPackaging with
query_method: PostMethod;
query_names: ["Phone"];

end

Packager Main = out(Phone) → Main [?] GetHTML.
GetHTML = in(HTMLOutput) → GetHTML [?] done.

channel out char* Phone;
channel in stream char* HTMLOutput;

Ware convert = in(Phone) → out(NewPhone) → convert [] done.

channel in stream char* Phone;
channel out stream char* NewPhone;

Channel map NewPhone HTMLOutput channel in char* NewPhone;
channel out stream char* HTMLOutput;
char* s;
static char buffer[200];
in(NewPhone, s);
sprintf(buffer, \"<html><head><title>Zephyr Query Results</
title></head><body>New phone number: %s</body></html>\",
s);
out(HTMLOutput, buffer);
CiaoStreamClose(HTMLOutput);

C4

126

PNG ActiveX control PNG image painting + ActiveX control

An ActiveX control that parses and paints PNG images. Setting the con-
trol’s property named “FileName” causes the control to parse and display
the image. The control reports any parse error through a dialog box.

Packaging

Description

PNGViewerControl: interface ActiveXControlPackaging with
library_iid: RegistryFormat{7CF18AA0-36FF-11d2-9FD5-00104B33709D};
coclass_iid: RegistryFormat{7CF18AA1-36FF-11d2-9FD5-00104B33709D};
name: "PNGViewerControl";
help_string: "PNG Image Control for DeLine's Thesis";
IPNGViewerControl: player COM_Interface with

iid: RegistryFormat{7CF18AA2-36FF-11d2-9FD5-00104B33709D};
help_string: "PNG Image Interface";
FileName: player COM_Property with

id: 1;
signature: "BSTR";

end
end

end

Packager Control = out(Init) → Calls.
Calls = out(Paint) → Calls [?] out(SetFileName) → Calls [?] out(Done) → done.

channel out int Init
channel out struct { struct { long left; long bottom; long top; long right; }* rect; void* hdc; } Paint
channel out unsigned short* SetFileName
channel out int Done

ReportErrors = in(ErrorMessage) → ReportErrors [] done.

channel in stream char* ErrorMessage

Ware PNG_Main = in(Init) → PNG_Main
[] in(NewFile) → PNG_ReadFile; PNG_Main
[] in(Paint) → PNG_Main
[] in(Finalize) → done

PNG_ReadFile = out(ErrorMessage) → done [?] ConvertPNGToDIB; done.
ConvertPNGToDIB = out(ErrorMessage) → done.

channel in struct { struct { long left, bottom, top, right; }* rect; void* hdc; } Paint
channel in int Init
channel out char* ErrorMessage
channel in char* NewFile
channel in int Finalize;

C5

127

Channel map Finalize Done

SetFilename SetFileName channel in BSTR windows_string;
channel out char* c_string;
BSTR bstr;
char* cstr = (char*)malloc(100);
in(windows_string, bstr);
sprintf(cstr, \"%S\", bstr);
out(c_string, cstr);

128

PNG Netscape plug-in PNG image painting + Netscape plug-in

A Netscape plug-in that parses and paints PNG images. With the plug-in
installed, the browser can load a PNG image as its own document and can
display PNG images embedded in HTML documents. As discussed in
Chapter 6, this plug-in has the limitation that it can display only a single
PNG image at a time. Hence a web page cannot include more than one
PNG image.

Packaging

description

PNGplugin: interface Netscape4Plugin with
mime_type: "image/png";
file_extension: "png";
product_name: "DeLine Thesis PNG Plug-in";

end

Packager Plugin = out(New) → Calls.
Calls = out(Paint) → Calls [?] out(NewStream) → Stream [?] out(Destroy) → done.
Stream = in(RequestIncremental) → Incr [] in(RequestWholeFile) → out(FileLoaded) → Calls.
Incr = in(StreamBytesWanted) → out(StreamData) → in(StreamBytesConsumed) → Incr

[?] out(StreamDone) → Calls
[?] out(StreamError) → Calls.

channel out int New, Destroy
channel out struct { void* hwnd; void* hdc; } Paint
channel out void* NewStream
channel out char* FileLoaded
channel in int RequestIncremental, RequestWholeFile
channel in int StreamBytesWanted, StreamBytesConsumed
channel in (int, int, char*) StreamData
channel in int StreamDone, StreamError

ReportErrors = in(ErrorMessage) → ReportErrors [] done.

channel in char* stream ErrorMessage

Ware PNG_Main = in(Init) → PNG_Main
[] in(NewFile) → PNG_ReadFile; PNG_Main
[] in(Paint) → PNG_Main
[] in(Finalize) → done

PNG_ReadFile = out(ErrorMessage) → done [?] ConvertPNGToDIB; done.
ConvertPNGToDIB = out(ErrorMessage) → done.

channel in struct { struct { long left, bottom, top, right; }* rect; void* hdc; } Paint
channel in int Init
channel out char* ErrorMessage
channel in char* NewFile
channel in int Finalize;

C6

129

Channel map Init New

Finalize Destroy

NewFile FileLoaded

Paint Paint channel in struct { void* hwnd; void* hdc; } InPaint;
struct { void* hwnd; void* hdc; } i;
channel out struct { struct { long left, bottom, top, right; }* rect;
void* hdc; } OutPaint;
struct { struct { long left, bottom, top, right; }* rect; void* hdc; } o;
RECT bounds;
in(InPaint, i);
GetClientRect(i.hwnd, (LPRECT)&bounds);
o.rect = &bounds;
o.hdc = i.hdc;
out(OutPaint, o);

NewStream RequestWholeFile channel in void* NewStream;
channel out int RequestWholeFile;
void* ignored;
in(NewStream, ignored);
out(RequestWholeFile, 1);

130

PNG application PNG image painting + Windows application

A stand-alone Windows application that displays PNG images. The appli-
cation has a single menu “File” with two items, “Open...” and “Exit.” The
Open menu item displays a dialog box through which the user can load a
PNG file. The user may also specify a PNG file on the command line when
he launches the application.

Packaging

Description

PNGWinApp: interface WindowsApplicationPackaging with
resources: player WindowsResources with

icon: player IconResource with
id: 3;
icon_file: Filename("icon1.ico");

end
end

end

Packager WinMain = out(Init) → (out(OpenFile) → Cmds [?] Cmds).
Cmds = out(Paint) → Cmds [?] out(OpenFile) → Cmds [?] out(Done) → done.

channel out int Init
channel out struct { void* hdc; void* hwnd; } Paint
channel out char* OpenFile
channel out int Done

ReportErrors = in(ErrorMessage) → ReportErrors [] done.

channel in char* ErrorMessage

Ware PNG_Main = in(Init) → PNG_Main
[] in(NewFile) → PNG_ReadFile; PNG_Main
[] in(Paint) → PNG_Main
[] in(Finalize) → done

PNG_ReadFile = out(ErrorMessage) → done [?] ConvertPNGToDIB; done.
ConvertPNGToDIB = out(ErrorMessage) → done.

channel in struct { struct { long left, bottom, top, right; }* rect; void* hdc; } Paint
channel in int Init
channel out char* ErrorMessage
channel in char* NewFile
channel in int Finalize;

C7

131

Channel map Finalize Done

NewFile OpenFile

Paint Paint channel in struct { void* hwnd; void* hdc; } InPaint;
struct { void* hwnd; void* hdc; } i;
channel out struct { struct { long left, bottom, top, right; }* rect; void* hdc;
} OutPaint;
struct { struct { long left, bottom, top, right; }* rect; void* hdc; } o;
RECT bounds;
in(InPaint, i);
GetClientRect(i.hwnd, (LPRECT)&bounds);
o.rect = &bounds;
o.hdc = i.hdc;
out(OutPaint, o);

132

Chat message ActiveX control Chat message threading + ActiveX control–TCP/IP socket stream

An ActiveX control that listens for Zephyr messages on a socket. When the
control receives a message, it decides whether the message is part of an
existing conversational thread or a new thread. If it is part of a new thread,
it raises an ActiveX event (NewThread) to announce the new thread. It then
raises an ActiveX event (NewMessage) to announce a new message within a
thread. The control supports two methods: Subscribe, which causes the
control to being listening to messages; and Unsubscribe, which causes it to
stop listening to messages.

Packaging

description

ZephyrThreader_Interface: interface SocketActiveXControl with

iconres: player WindowsResources with
icon: player IconResource with

id: 200;
icon_file: Filename("zephyr.ico");

end
end

ZEchoClient: player RequestReplyProtocolSocketStream with
hostname: "128.2.198.16"; -- "springer.arch.cs.cmu.edu"
port: 17763;
rrprotocol: RRProtocol [

(Request ("Sub", MacroString("subscribe $SubscriptionClass$ $SubscriptionInstance$\\n")),
Reply (Grammar (value(InternetLexemes), "

Top: (Zgram)* ;
Zgram: ClassLine InstanceLine SenderLine TimeLine FingernameLine BodyLine EndLine ;
ClassLine: STRING $ZClass$ NEWLINE ;
InstanceLine: STRING $ZInstance$ NEWLINE ;
SenderLine: STRING $Sender$ NEWLINE ;
TimeLine: STRING $Time$ NEWLINE ;
FingernameLine: STRING $Fingername$ NEWLINE ;
BodyLine: STRING $Body$ NEWLINE ;
EndLine: STRING LENGTH_ENCODED_STRING NEWLINE ;
ZClass: LENGTH_ENCODED_STRING;
ZInstance: LENGTH_ENCODED_STRING;
Sender: LENGTH_ENCODED_STRING;
Time: LENGTH_ENCODED_STRING;
Fingername: LENGTH_ENCODED_STRING;
Body: LENGTH_ENCODED_STRING;

")))
];

end

library_iid: RegistryFormat{2502DF00-CC25-11d2-9FEA-00104B33709D};
coclass_iid: RegistryFormat{2502DF01-CC25-11d2-9FEA-00104B33709D};
name: "ZephyrThreader";
help_string: "Zephyr Threading Control for DeLine’s Thesis";

-- (continued on next page)

C8

133

IZephyrThreader: player COM_Interface with
iid: RegistryFormat{2502DF02-CC25-11d2-9FEA-00104B33709D};
help_string: "The ZephyrThreader control reads Zephyr notices from over a socket and reports them

with ActiveX events. This control is only necessary because Zephyr/Kerberos are not available
on WindowsNT.";

Subscribe: player COM_Method with
id: 1;
signature: (["BSTR zclass", "BSTR zinstance"], "void");
help_string: "Begin receiving Zephyr notices of the given class and instance.";
activate: (ZEchoClient, WithNewThread);

end
Unsubscribe: player COM_Method with

id: 2;
signature: (["void"], "void");
help_string: "Stop receiving Zephyr notices.";

end
end

Events: player OutgoingInterfaces with
IZephyrNoticeEvents: player COM_Interface with

iid: RegistryFormat{3BF4CBC0-CC25-11d2-9FEA-00104B33709D};
help_string: "This interface is for receiving events about Zephyr notices.";
OnError: player COM_Method with

id: 1;
signature: (["BSTR message"], "void");
help_string: "Event raised whenever an error occurs.";

end
OnNewThread: player COM_Method with

id: 2;
signature: (["BSTR threadName"], "void");
help_string: "Event raised whenever a new Zephyr thread has been identified.";

end
OnNewMessage: player COM_Method with

id: 3;
signature: (["BSTR threadName", "BSTR zclass", "BSTR zinstance", "BSTR sender", "BSTR

fingername", "BSTR time", "BSTR body"], "void");
help_string: "Event raised whenever a new Zephyr notice (message) arrives.";

end
end

end

end

134

Packager listen_to_socket = in(BeginListeningToSock) → in(Sub) → Sub_do_output; Sub_parse; done.
Sub_do_output = in(SubscriptionClass) → in(SubscriptionInstance) → done.
Sub_parse = Sub_Top.
Sub_Top = Sub_Top1.
Sub_Top1 = Sub_Zgram; Sub_Top1 [?] done.
Sub_Zgram = Sub_ClassLine; Sub_InstanceLine; Sub_SenderLine; Sub_TimeLine;

Sub_FingernameLine; Sub_BodyLine; done.
Sub_ClassLine = out(Sub_ZClass) → done.
Sub_InstanceLine = out(Sub_ZInstance) → done.
Sub_SenderLine = out(Sub_Sender) → done.
Sub_TimeLine = out(Sub_Time) → done.
Sub_FingernameLine = out(Sub_Fingername) → done.
Sub_BodyLine = out(Sub_Body) → done.

channel in int BeginListeningToSock
channel in int Sub
channel in char* SubscriptionInstance, SubscriptionClass
channel out char* Sub_ZClass, Sub_Fingername, Sub_Time, Sub_Body, Sub_ZInstance, Sub_Sender

Control = out(Init) → Calls.
Calls = out(Paint) → Calls [?] out(Done) → done.

channel out int Init
channel out struct { struct { long left; long bottom; long top; long right; }* rect; void* hdc; } Paint
channel in int Done

ReportErrors = in(ErrorMessage) → ReportErrors [] done.

channel in char* ErrorMessage

ActiveXEventLoop = in(OnError) → ActiveXEventLoop
[] in(OnNewThread) → ActiveXEventLoop
[] in(OnNewMessage) → ActiveXEventLoop.

channel in int FireOnError
channel in unsigned short* FireOnNewThread
channel in (unsigned short*, unsigned short*, unsigned short*, unsigned short*, unsigned short*,

unsigned short*, unsigned short*) FireOnNewMessage

135

Ware ListenForMessages = in(ZephyrNotices) → Classify; ListenForMessages
[] out(ThreaderDone) → done.

Classify = (out(NewMessage) → done [?] Classify)
[?] out(NewThread) → out(NewMessage) → done.

channel in stream (char*, char*, char*, char*, char*, char*) ZephyrNotices
channel out int ThreaderDone
channel out char* NewThread
channel out (char*, char*, char*, char*, char*, char*, char*) NewMessage

Thread map ListenForMessages listen_to_socket

ActiveXEventLoop listen_to_socket

Translate listen_to_socket

Conversion

Coroutine

coroutine void Translate()
{

channel in char* Sub_ZClass;
channel in char* Sub_ZInstance;
channel in char* Sub_Sender;
channel in char* Sub_Time;
channel in char* Sub_Fingername;
channel in char* Sub_Body;
channel out stream (char*, char*, char*, char*, char*, char*) ZephyrNotices;
char *zclass, *zinst, *sender, *time, *finger, *body;

while (1) {
// Gather information from six channels into one

in(Sub_ZClass, zclass);
in(Sub_ZInstance, zinst);
in(Sub_Sender, sender);
in(Sub_Time, time);
in(Sub_Fingername, finger);
in(Sub_Body, body);
out(ZephyrNotices, zclass, zinst, sender, time, finger, body);

}
}

136

Channel map ServerSubscribe Subscribe channel in (BSTR, BSTR) Subscribe;
channel out int ServerSubscribe
channel out char* SubscriptionClass;
channel out char* SubscriptionInstance;
BSTR zc, zi;
static char buf[100], buf2[100];
in(Subscribe, zc, zi);
out(ServerSubscribe, 1);
sprintf(buf, \"%S\", zc);
out(SubscriptionClass, buf);
sprintf(buf2, \"%S\", zi);
out(SubscriptionInstance, buf2);

NewThread FireOnNewThread channel in char* NewThread;
channel out BSTR FireOnNewThread;
char* s; int len; wchar_t* wide; BSTR result;
in(NewThread, s); len = strlen(s)*2; wide =
(wchar_t*)malloc(len); mbstowcs(wide, s, len);
result = SysAllocString(wide); out(FireOnNewThread, result);

NewMessage FireOnNewMessage channel in (char*,char*,char*,char*,char*,char*,char*)
NewMessage;
channel out (BSTR,BSTR,BSTR,BSTR,BSTR,BSTR,BSTR)
FireOnNewMessage;
char *s1, *s2, *s3, *s4, *s5, *s6, *s7; int len;
wchar_t *w1, *w2, *w3, *w4, *w5, *w6, *w7;
BSTR r1, r2, r3, r4, r5, r6, r7;
in(NewMessage, s1, s2, s3, s4, s5, s6, s7);
len = strlen(s1)*2; w1 = (wchar_t*)malloc(len);
mbstowcs(w1, s1, len); r1 = SysAllocString(w1);
len = strlen(s2)*2; w2 = (wchar_t*)malloc(len);
mbstowcs(w2, s2, len); r2 = SysAllocString(w2);
len = strlen(s3)*2; w3 = (wchar_t*)malloc(len);
mbstowcs(w3, s3, len); r3 = SysAllocString(w3);
len = strlen(s4)*2; w4 = (wchar_t*)malloc(len);
mbstowcs(w4, s4, len); r4 = SysAllocString(w4);
len = strlen(s5)*2; w5 = (wchar_t*)malloc(len);
mbstowcs(w5, s5, len); r5 = SysAllocString(w5);
len = strlen(s6)*2; w6 = (wchar_t*)malloc(len);
mbstowcs(w6, s6, len); r6 = SysAllocString(w6);
len = strlen(s7)*2; w7 = (wchar_t*)malloc(len);
mbstowcs(w7, s7, len); r7 = SysAllocString(w7);
out(FireOnNewMessage, r1, r2, r3, r4, r5, r6, r7);

137

Chat message digest Chat message threading + Batch program–text stream–TCP/IP socket stream

A batch program that breaks a collection of messages from the Zephyr
archive into conversations and then prints them in a digest form. The pro-
gram is intended to allow the user to read a day’s worth of Zephyr messages
like a newspaper. The batch program takes a single command-line argu-
ment, a query to send to the Zephyr archive.

Packaging

description

ZArchiveClient: interface SocketConsoleApp with
ZEchoClient: player RequestReplyProtocolSocketStream with

hostname: "128.2.181.72"; -- "zarchive.cs.cmu.edu"
port: 19981;
status_only_response: Grammar(value(InternetLexemes), "

Top: $Code$ STRING NEWLINE ;
Code: CODE ;

");
record_response: Grammar (value(InternetLexemes), "

Top: $Code$ STRING NEWLINE OptRecord ;
OptRecord: Record | /*nothing*/ ;
Code: CODE ;
Record: Tag RecordEnd NEWLINE ;
RecordEnd: $Value$ | $OpenRec$ (NEWLINE)* (Record)* (NEWLINE)* $CloseRec$;
OpenRec: '[' ;
CloseRec: ']' ;
Tag: STRING ;
Value: LENGTH_ENCODED_STRING ;

");
rrprotocol: RRProtocol [

(Request ("Start", MacroString("")),
Reply (value(status_only_response))),

(Request ("Help", MacroString("HELP\\n")),
Reply (value(record_response))),

(Request ("Retrieve", MacroString("RETRIEVE $Query$\\n")),
Reply (value(record_response)))

];
end
uses_return_code: true;
activate: (ZEchoClient, WithMyThread);

end

C9

138

Packager listen_to_socket = in(BeginListeningToSock) → (in(Start) → Start_do_output; Start_parse; done

[] in(Help) → Help_do_output; Help_parse; done

[] in(Retrieve) → Retrieve_do_output; Retrieve_parse; done).
Retrieve_do_output = in(Query) → done.
Retrieve_parse = Retrieve_Top.
Retrieve_Top = out(Retrieve_Code) → Retrieve_OptRecord; done.
Retrieve_RecordEnd1 = Retrieve_Record; Retrieve_RecordEnd1 [?] out(Retrieve_CloseRec) → done.
Retrieve_RecordEnd = out(Retrieve_Value) → done [?] out(Retrieve_OpenRec) →
Retrieve_RecordEnd1.
Retrieve_OptRecord = Retrieve_Record; done [?] done.
Retrieve_Record = out(Retrieve_Tag) → Retrieve_RecordEnd; done.
Help_do_output = done.
Help_parse = Help_Top.
Help_Top = out(Help_Code) → Help_OptRecord; done.
Help_Record = out(Help_Tag) → Help_RecordEnd; done.
Help_OptRecord = Help_Record; done [?] done.
Help_RecordEnd1 = Help_Record; Help_RecordEnd1 [?] out(Help_CloseRec) → done.
Help_RecordEnd = out(Help_Value) → done [?] out(Help_OpenRec) → Help_RecordEnd1.
Start_do_output = done.
Start_parse = Start_Top.
Start_Top = out(Start_Code) → done.

channel in int BeginListeningToSock
channel in int Start, Help, Retrieve
channel out int Start_Code, Help_Code, Retrieve_Code
channel out char* Help_CloseRec, Help_Value, Help_OpenRec, Help_Tag
channel out char* Retrieve_OpenRec, Retrieve_CloseRec, Retrieve_Value, Retrieve_Tag
channel in char* Query

Main = out(ProgramName) → Args.
Args = out(ProgramArguments) → Args [?] in(ProgramReturnCode) → done.

channel out char* ProgramName
channel out stream char* ProgramArguments
channel in int ProgramReturnCode

Ware ListenForMessages = in(ZephyrNotices) → Classify; ListenForMessages
[] out(ThreaderDone) → done.

Classify = (out(NewMessage) → done [?] Classify)
[?] out(NewThread) → out(NewMessage) → done.

channel in stream (char*, char*, char*, char*, char*, char*) ZephyrNotices
channel out int ThreaderDone
channel out char* NewThread
channel out (char*, char*, char*, char*, char*, char*, char*) NewMessage

139

Conversion

Coroutines

char *sender, *instance, *timestring, *fingername;
channel out stream (char*, char*, char*, char*, char*, char*) ZephyrNotices;

int getRecord()
{

channel in char* Retrieve_Tag;
channel in char* Retrieve_Value;
channel in char* Retrieve_OpenRec;
channel in char* Retrieve_CloseRec;
char *tag, *ignored, *v, *MESSAGE = "MESSAGE";

alt {
in(Retrieve_Tag, tag): {

alt {
in(Retrieve_Value, v): {

if (strcmp(tag, "sender") == 0) sender = v;
else if (strcmp(tag, "signature") == 0)fingername = v;
else if (strcmp(tag, "timestring") == 0) timestring = v;
else if (strcmp(tag, "instance") == 0) instance = v;
else if (strcmp(tag, "body") == 0)

out(ZephyrNotices, MESSAGE, instance, sender, timestring, fingername, v);
}
in(Retrieve_OpenRec, ignored): { while (getRecord()) ; return 1; }

}
}
in(Retrieve_CloseRec, ignored): return 0;

}
}

coroutine void StartTranslation()
{

channel in char* ProgramName;
channel in stream char* ProgramArguments;
channel out int Start;
channel out int Retrieve;
channel out int BeginListeningToSock;
channel out int ProgramReturnCode;
channel out char* Query;
char* ignored; static char* query;
extern hash_table ThreadTable;
extern linked_list ThreadList;

in(ProgramName, ignored);
out(BeginListeningToSock, 1);
out(Start, 1);
in(ProgramArguments, query);
out(Retrieve, 1);
out(Query, query);

CiaoStreamOpen(ZephyrNotices);
getRecord();
CiaoStreamClose(ZephyrNotices);

print_messages(ThreadList, ThreadTable);
out(ProgramReturnCode, 0);

}

140

coroutine void GatherMessages()
{

channel in char* NewThread;
channel in (char*,char*,char*,char*,char*,char*,char*) NewMessage;
channel in int TheaderDone;
char *thread, *zclass, *zinst, *sender, *time, *finger, *body;
int done = 0;
extern hash_table ThreadTable;
extern linked_list ThreadList;

while (!done) {
alt {

in(NewThread, thread):
list_append(ThreadList, thread);
hash_table_put(ThreadTable, thread, new_list());

in(NewMessage, thread, zclass, zinst, sender, time, finger, body):
linked_list list = hash_table_get(ThreadTable, thread);
message* msg = (message*)malloc(sizeof(message));
msg->instance = zinst;
msg->sender = sender;
msg->time = time;
msg->fingername = finger;
msg->body = body;
list_append(list, msg);

in(TheaderDone, done):
done = 1;

}
}

}

Channel map (none)

141

Chat message announcer No ware + ActiveX control–TCP/IP socket stream

An ActiveX control that receives Zephyr messages from a socket and
announces them as ActiveX events. The control provides no functionality;
it is just a bridge between a socket connection and ActiveX.

Packaging

description

ZephyrSocketBridge_Interface: interface SocketActiveXControl with

ZEchoClient: player RequestReplyProtocolSocketStream with
hostname: "128.2.198.16"; -- "springer.arch.cs.cmu.edu"
port: 17763;
rrprotocol: RRProtocol [

(Request ("Sub", MacroString("subscribe $ZephyrClass$ $ZephyrInstance$\\n")),
Reply (Grammar (value(InternetLexemes), "

Top: (Zgram)* ;
Zgram: ClassLine InstanceLine SenderLine TimeLine FingernameLine BodyLine EndLine ;
ClassLine: STRING $ZClass$ NEWLINE ;
InstanceLine: STRING $ZInstance$ NEWLINE ;
SenderLine: STRING $Sender$ NEWLINE ;
TimeLine: STRING $Time$ NEWLINE ;
FingernameLine: STRING $Fingername$ NEWLINE ;
BodyLine: STRING $Body$ NEWLINE ;
EndLine: STRING LENGTH_ENCODED_STRING NEWLINE ;
ZClass: LENGTH_ENCODED_STRING;
ZInstance: LENGTH_ENCODED_STRING;
Sender: LENGTH_ENCODED_STRING;
Time: LENGTH_ENCODED_STRING;
Fingername: LENGTH_ENCODED_STRING;
Body: LENGTH_ENCODED_STRING;

")))
];

end

library_iid: RegistryFormat{719A8400-BAD5-11d2-9FE7-00104B33709D};
coclass_iid: RegistryFormat{719A8401-BAD5-11d2-9FE7-00104B33709D};
name: "ZephyrSocketBridge";
help_string: "Zephyr Socket Bridge for DeLine’s Thesis";

-- (continued on next page)

C10

142

IZephyrSocketBridge: player COM_Interface with
iid: RegistryFormat{7CF18AA2-36FF-11d2-9FD5-00104B33709D};
help_string: "The ZephyrSocketBridge control reads Zephyr notices from over a socket and reports

them with ActiveX events. This control is only necessary because Zephyr/Kerberos are not
available on WindowsNT.";

Subscribe: player COM_Method with
id: 1;
signature: (["BSTR zclass", "BSTR zinstance"], "void");
help_string: "Begin receiving Zephyr notices of the given class and instance.";

end

Quit: player COM_Method with
id: 2;
signature: (["void"], "void");
help_string: "Stop receiving Zephyr notices.";

end

end

Events: player OutgoingInterfaces with
IZephyrNoticeEvents: player COM_Interface with

iid: RegistryFormat{C12EF3F0-BBB0-11d2-9FE9-00104B33709D};
help_string: "This interface is for receiving events about Zephyr notices.";
OnZephyrNotice: player COM_Method with

id: 1;
signature: (["BSTR zclass", "BSTR zinstance", "BSTR sender", "BSTR fingername",

"BSTR time", "BSTR body"], "void");
help_string: "Event raised whenever a new Zephyr notice (message) arrives.";

end
OnError: player COM_Method with

id: 2;
signature: (["BSTR message"], "void");
help_string: "Event raised whenever an error occurs.";

end
end

end
end

143

Packager listen_to_socket = in(BeginListeningToSock) → in(Sub) → Sub_do_output; Sub_parse; done.
Sub_parse = Sub_Top.
Sub_Top = Sub_Top1.
Sub_Top1 = Sub_Zgram; Sub_Top1 [?] done.
Sub_BodyLine = out(Sub_Body) → done.
Sub_SenderLine = out(Sub_Sender) → done.
Sub_TimeLine = out(Sub_Time) → done.
Sub_FingernameLine = out(Sub_Fingername) → done.
Sub_ClassLine = out(Sub_ZClass) → done.
Sub_Zgram = Sub_ClassLine; Sub_InstanceLine; Sub_SenderLine; Sub_TimeLine;

Sub_FingernameLine; Sub_BodyLine; done.
Sub_InstanceLine = out(Sub_ZInstance) → done.
Sub_do_output = in(ZephyrClass) → in(ZephyrInstance) → done.

channel in int BeginListeningToSock
channel in int Sub
channel out char* Sub_Fingername, Sub_ZClass, Sub_ZInstance, Sub_Body, Sub_Sender, Sub_Time
channel out (unsigned short*, unsigned short*) Subscribe
channel in stream char* ZephyrInstance, ZephyrClass

Control = out(Init) → Calls.
Calls = out(Paint) → Calls [?] out(Done) → done.

channel out int Init
channel out struct { struct { long left; long bottom; long top; long right; }* rect; void* hdc; } Paint
channel out int Done

ActiveXEventLoop = in(OnZephyrNotice) → ActiveXEventLoop [] in(OnError) → ActiveXEventLoop.

channel in unsigned short* FireOnError
channel in (unsigned short*, unsigned short*, unsigned short*, unsigned short*, unsigned short*,

unsigned short*) FireOnZephyrNotice

ReportErrors = in(ErrorMessage) → ReportErrors.

channel in char* ErrorMessage

Thread map listen_to_socket ListenForMessage

EventLoop ListenForMessages

Channel map ZephyrClass ZephyrClass channel in BSTR windows_string;
channel out char* c_string;
BSTR bstr;
char* cstr = (char*)malloc(100);
in(windows_string, bstr);
sprintf(cstr, \"%S\", bstr);
out(c_string, cstr);

ZephyrInstance ZephyrInstance (same as above)

144

Chat message cgi script No ware + cgi script–tcp/ip socket stream

A cgi script that takes a Zephyr archive query from a text entry on a web
page and produces an html document containing the results of the query.
This component is a bridge between the cgi script protocol and the Zephyr
archive protocol.

Packaging

description

ZArchiveCGI_Interface: interface CGISocket with
ZEchoClient: player RequestReplyProtocolSocketStream with

hostname: "128.2.181.72"; -- "zarchive.cs.cmu.edu"
port: 19981;
status_only_response: Grammar(value(InternetLexemes), "

Top: $Code$ STRING NEWLINE ;
Code: CODE ;

");
record_response: Grammar (value(InternetLexemes), "

Top: $Code$ STRING NEWLINE OptRecord ;
OptRecord: Record | /*nothing*/ ;
Code: CODE ;
Record: Tag RecordEnd NEWLINE ;
RecordEnd: $Value$ | $OpenRec$ (NEWLINE)* (Record)* (NEWLINE)* $CloseRec$;
OpenRec: ’[’ ;
CloseRec: ’]’ ;
Tag: STRING ;
Value: LENGTH_ENCODED_STRING ;

");
rrprotocol: RRProtocol [

(Request ("Start", MacroString("")),
Reply (value(status_only_response))),

(Request ("Help", MacroString("HELP\\n")),
Reply (value(record_response))),

(Request ("Retrieve", MacroString("RETRIEVE $QueryToRetrieve$\\n")),
Reply (value(record_response)))

];
end
activate: (ZEchoClient, WithMyThread);

query_method: PostMethod;
query_names: ["Query"];

end

C11

145

Packager listen_to_socket = in(BeginListeningToSock) →
(in(Start) → Start_do_output; Start_parse; done

[] in(Help) → Help_do_output; Help_parse; done

[] in(Retrieve) → Retrieve_do_output; Retrieve_parse; done).
Retrieve_do_output = in(QueryToRetrieve) → done.
Retrieve_parse = Retrieve_Top.
Retrieve_Top = out(Retrieve_Code) → Retrieve_OptRecord; done.
Retrieve_RecordEnd1 = Retrieve_Record; Retrieve_RecordEnd1 [?] out(Retrieve_CloseRec) → done.
Retrieve_RecordEnd = out(Retrieve_Value) → done [?] out(Retrieve_OpenRec) → Retrieve_RecordEnd1.
Retrieve_OptRecord = Retrieve_Record; done [?] done.
Retrieve_Record = out(Retrieve_Tag) → Retrieve_RecordEnd; done.
Help_do_output = done.
Help_parse = Help_Top.
Help_Top = out(Help_Code) → Help_OptRecord; done.
Help_Record = out(Help_Tag) → Help_RecordEnd; done.
Help_OptRecord = Help_Record; done [?] done.
Help_RecordEnd1 = Help_Record; Help_RecordEnd1 [?] out(Help_CloseRec) → done.
Help_RecordEnd = out(Help_Value) → done [?] out(Help_OpenRec) → Help_RecordEnd1.
Start_do_output = done.
Start_parse = Start_Top.
Start_Top = out(Start_Code) → done.

channel in int BeginListeningToSock
channel in int Start, Help, Retrieve, Done
channel out char* Help_CloseRec, Help_Value, Help_OpenRec, Help_Tag
channel out int Help_Code
channel out int Start_Code
channel out char* Retrieve_OpenRec, Retrieve_CloseRec, Retrieve_Value, Retrieve_Tag
channel out int Retrieve_Code
channel in stream char* QueryToRetrieve

Main = out(Query) → Main [?] GetHTML.
GetHTML = in(HTMLOutput) → GetHTML [?] done.

channel out char* Query
channel out int BeginListeningToSock
channel in stream char* HTMLOutput

ReportError = in(ErrorMessage) → done.

channel in char* ErrorMessage

146

Conversion

Coroutines

char *sender, *instance, *timestring, *fingername;
channel out stream char* HTMLOutput;

int getRecord()
{

channel in char* Retrieve_Tag;
channel in char* Retrieve_Value;
channel in char* Retrieve_OpenRec;
channel in char* Retrieve_CloseRec;
char *tag, *ignored, *v, *MESSAGE = "MESSAGE";

alt {
in(Retrieve_Tag, tag): {

alt {
in(Retrieve_Value, v): {

if (strcmp(tag, "sender") == 0) sender = v;
else if (strcmp(tag, "signature") == 0)fingername = v;
else if (strcmp(tag, "timestring") == 0) timestring = v;
else if (strcmp(tag, "instance") == 0) instance = v;
else if (strcmp(tag, "body") == 0){

static char buf[1000];
sprintf(buf, "<p><i>%s</i> (<i>%s</i>) (%s) [%s]\r<pre>\r%s</pre>\r\r\r",

fingername, sender, instance, timestring, v);
out(HTMLOutput, buf);

}
return 1;

}
in(Retrieve_OpenRec, ignored): { while (getRecord()) ; return 1; }

}
}
in(Retrieve_CloseRec, ignored): return 0;

}
}

static
void die(int c, char* when)
{

static char buf[100];
out(HTMLOutput, "<html><head><title>Zephyr Query Results</title></head><body>");
sprintf(buf, "Unable to contact the zephyr archive (return code %d) %s", c, when);
out(HTMLOutput, buf);
out(HTMLOutput, "</body></html>");

}

147

coroutine void Fixup()
{

channel in int Start_Code;
channel in int Retrieve_Code;
channel out int Start;
channel out int Done;
int c;

out(Start, 1);
in(Start_Code, c);
open_stream(HTMLOutput);
if (c / 100 != 2) {

die(c, "on startup");
} else {

in(Retrieve_Code, c);
if (c / 100 != 2) {

die(c, "after retrieve request");
} else {

out(HTMLOutput, "<html><head><title>Zephyr Query Results</title></head><body>\r");
out(HTMLOutput, "<h1>Zephyr Archive Search Results</h1>\rThe following are the zgrams

matching your query:\r");
getRecord();
out(HTMLOutput, "</body></html>");

}
}
close_stream(HTMLOutput);
out(Done, 1);

Channel map Error ErrorMessage

Query QueryToRetrieve channel in char* QueryIn;
channel out char* QueryToRetrieveOut;
channel out int Retrieve;
char* q;
in(QueryIn, q);
out(QueryToRetrieveOut, q);
out(Retrieve, 1);

148

Spreadsheet lister No ware + Batch program–Excel spreadsheet–text stream

A batch program that dumps cells from a spreadsheet to an output text
stream. This component is a bridge between a spreadsheet and a filter.

Packaging

description

ExcelDumperPackaging: interface SpreadsheetAccessorPackaging, FilterPackaging with
PhoneNumbers: player SpreadsheetAccess with

filename: Filename("Records.xls");
range: CellRange ((Col "A", Row "1"), (Col "I", FirstEmptyCell));
access: CellRead;

end
output: player StreamOut with

format: MacroString("$PhoneNumbers_A$, $PhoneNumbers_B$, $PhoneNumbers_C$,
$PhoneNumbers_D$, $PhoneNumbers_E$, $PhoneNumbers_F$,
$PhoneNumbers_G$, $PhoneNumbers_H$, $PhoneNumbers_I$");

end
activate: (PhoneNumbers, WithMyThread);
activate: (output, WithMyThread);

end

Packager Spreadsheet = Access0.
Access0 = out(PhoneNumbers_A) → out(PhoneNumbers_B) → out(PhoneNumbers_C) →

out(PhoneNumbers_D) → out(PhoneNumbers_E) → out(PhoneNumbers_F) →
out(PhoneNumbers_G) → out(PhoneNumbers_H) → out(PhoneNumbers_I) → Access0

[?] done.

channel out stream char* PhoneNumbers_A, PhoneNumbers_B, PhoneNumbers_C, PhoneNumbers_D,
PhoneNumbers_E, PhoneNumbers_F, PhoneNumbers_G, PhoneNumbers_H, PhoneNumbers_I

channel in int StartExcelAccess

output = in(PhoneNumbers_A) → in(PhoneNumbers_B) → in(PhoneNumbers_C) →
in(PhoneNumbers_D) → in(PhoneNumbers_E) → in(PhoneNumbers_F) →
in(PhoneNumbers_G) → in(PhoneNumbers_H) → in(PhoneNumbers_I) → output [] done.

channel in stream char* PhoneNumbers_A, PhoneNumbers_B, PhoneNumbers_C, PhoneNumbers_D,
PhoneNumbers_E, PhoneNumbers_F, PhoneNumbers_G, PhoneNumbers_H, PhoneNumbers_I

channel in int Start_output

Main = out(ProgramName) → Args.
Args = out(ProgramArguments) → Args [?] done.

channel out char* ProgramName
channel out char* ProgramArguments
channel out int Start_output
channel out int StartExcelAccess

Channel map (none)

C12

149

Database lister No ware + Batch program–text stream–relational database

A batch program that dumps the results of an SQL query on a database to
an output text stream. This component is a bridge between a database and
a filter.

Packaging

description

DatabaseDumperPackaging: interface DatabaseAccessorPackaging, FilterPackaging with
access: player DBAccess with

server_name: "C:\\Program Files\\Common Files\\ODBC\\DataSources\\NewPhone.dsn";
sql_statement: Select;
columns: [("Name", ODBC_Char(50)), ("Nighttime Phone", ODBC_Char(50))];
from: ["Records"];

end
output: player StreamOut with

format: MacroString("$NameOut$: $PhoneOut$");
end
activate: (access, WithMyThread);
activate: (output, WithMyThread);

end

Packager DBAccess = GetName [?] done.
GetName = out(Name) → GetNighttimePhone [?] GetNighttimePhone.
GetNighttimePhone = out(NighttimePhone) → DBAccess [?] DBAccess.

channel out int Start_output
channel out stream unsigned char* NighttimePhone
channel in int Start_output
channel out int StartAccess
channel in int StartAccess
channel out stream unsigned char* Name

output = in(NameOut) → in(PhoneOut) → output [] done.

channel in stream char* NameOut
channel in stream char* PhoneOut

Main = out(ProgramName) → Args.
Args = out(ProgramArguments) → Args [?] done.

channel out char* ProgramName
channel out stream char* ProgramArguments

Channel map Name NameOut channel in unsigned char* In; unsigned char* s1;
channel out char* Out; char* s2;
in(In, s1);
s2 = (char*)s1;
out(Out, s2);

NighttimePhone PhoneOut channel in unsigned char* In; unsigned char* s1;
channel out char* Out; char* s2;
in(In, s1);
s2 = (char*)s1;
out(Out, s2);

C13

150

151

 Evaluation

The experiments in the previous chapter provide a basis for analyzing
the merits of Flexible Packaging. First, I describe how the experiments
demonstrate how Flexible Packaging handles several complexities of
component packaging: packagings with idiosyncratic construction
steps; packagings whose computations are driven by the functionality;
packagings that are inherently multithreaded; and heterogeneous pack �
agings. Next, I discuss how Flexible Packaging copes with the unavoid �
able mismatches that arise when combining wares with packagers. I then
use the vocabulary of component interaction from Chapter 2 to describe
those aspects of interaction that are encapsulated in the packager and
those that are not. Finally, I describe how the experiments validate the
thesis claim from Chapter 1.

6.1 handling packaging complexity

The packagings that I created for the experiments reflect several com �

plexities that arise in practice. First, several of the packagings require the
production of non-code artifacts and the use of packaging-specific con�
struction and installation tools. Second, many of the packagers must
handle asynchronous requests from wares. Third, several of the packag �
ers are inherently multithreaded. Finally, most of the packagings are het �
erogeneous, their packagers the product of several packaging generators.

6.1.1 Packagers with construction complexities

For a component to have a given packaging often requires the creation of
non-code artifacts and the invocation of packaging-specific construc�
tion and installation steps. Several of the experimental packagings
involve these construction complexities. The table in Figure 6.1 summa-
rizes these construction complexities for those experimental packagings
that have them. The details behind the entries in this table are covered in
the packaging catalog in Chapter 5. Were such complexities not to
appear in the experiments, one could criticize Flexible Packaging as
being inapplicable to many of today’s most popular packagings.

6.1.2 Packagers with additional coroutines

As discussed in previous chapters, a Ciao module can use an alt state �
ment to allow another module to select which of several services to pro �
vide. This use of alt is handy when the choice among services can be

152

localized to a particular program location. Often, however, a module is
always willing to perform a given service. Rather than tediously using alt
everywhere, a module can instead use a coroutine dedicated to this ser�
vice. Several of the packaging generators use this strategy, for example,
for error reporting. The packaging generators for ActiveX controls,
Netscape plug-ins, and Windows applications each generate a coroutine
of the following form:

coroutine void ReportErrors()
{

channel in char* ErrorMessage;
char* msg;

while (1) {
in(ErrorMessage, msg);
/* report error in packaging-specific way */

}
}

Because this computation is in its own coroutine, the packager need not
anticipate when the ware will report an error; the packager is always
ready to accept an error message.

The ActiveX packaging generator uses the same strategy for announc �
ing events. The generator outputs a coroutine like that above with the
following statements inside the while loop:

Packaging Non-code artifacts Constructions tools Installation steps

ActiveX control IDL file
registry file
resource file

IDL compiler
registry compiler
linker switch

com installer

Netscape plug-in registry file registry compiler copy to directory

Windows application resource file linker switch —

CGI script — — copy to directory

Excel spreadsheet — compiler construct —

figure 6.1 Those
packagings that involve the

creation of non-code artifacts
and the invocation of special

construction tools and
installation steps.

153

alt {
in(Event1, args1): announce Event1 with args1
in(Event2, args2): announce Event2 with args2
...
in(Eventk, argsk): announce Eventk with argsk

}

The coroutine allows the ware to announce an event by sending data to
the channel corresponding to that event.

The final example of this strategy is the text stream packaging genera �
tor. For each input stream, the generator produces a separate coroutine
that loops reading from the input stream and reporting the resulting data
on an out channel. For each output stream, the generator produces a sep �
arate coroutine that loops reading from an in channel and reporting the
result on the output stream. This allows the ware to produce and con �
sume data to and from the streams in whatever order it will. This use of
coroutines represents a well known solution to an old problem: the
problem of structure clash.²⁷ A classic example is the problem of copying
an input file with 80 characters per line to an output file with 120 charac�
ters per line. A solution in a typical imperative language cannot be
implemented with two straightforward loops, one from one to 80, one
from one to 120; one of the two loops must be folded into the structure of
the other. With coroutines, each of the two loops can be placed in its own
coroutine and retain its straightforward structure. The text stream pack �
aging generator uses this same approach on a similar problem.

In the simple case where there are two coroutines – one in the ware,
one in the packager – the thread of control simply passes back and forth
between them. Scheduling the thread among the coroutines is simple:
when the current module executes an in or out statement, the thread
resumes in the other module. When there are more than two coroutines,
however, thread scheduling is more complicated: when the current mod �
ule executes an in or out statement, there is more than one “other” mod �
ule in which the thread could resume. Furthermore, scheduling the
wrong coroutine can lead to incorrect component behavior.

Consider a ware that is packaged as an rpc server that reports errors
to a log file, shown in Figure 6.1(a). The thread of control begins, as
always, in the packager, in this case with a remote procedure call to
SetAge. When the thread reaches the out statement on Age, the thread
may either resume the coroutine Ware or the coroutine ReportErrors. If
ReportErrors is selected, the thread would become blocked on the in
statement on Error. If Ware is selected, execution proceeds until the out
statement on Error. At this point, there is an interesting scheduling
choice. If ReportErrors is scheduled, the error is reported as expected.
However, if SetAge is scheduled instead, the thread of control is returned
to the rpc caller, without the error being reported.

If the procedure SetAge had a return value, it would contain an in
statement before the return in order to get the value to return to the
caller. This extra in statement would prevent the bad behavior just dis �

154

coroutine void Ware()
{

channel in int Age;
channel out char* Error;
int i;
in (Age, i);
if (i < 0)

out(Error, “bad age”);
}

RPC_STATUS SetAge(int a)
{

channel out Age;
out(Age, a);
return RPC_OKAY;

}

coroutine void ReportErrors()
{

channel in char* Error;
char* msg;
while (1) {

in(Error, msg);
fprintf(LOGFILE, “%s\n”, msg);

}
}

figure 6.1 (a) A compo�
nent that manifests a potential

scheduling problem. (b) An
overly restrictive solution to

the problem. (c) The use of a
barrier to solve the problem.

coroutine void Ware()
{

channel in int Age;
channel in int Dummy;
channel out char* Error;
int i;
in (Age, i);
if (i < 0)

out(Error, “bad age”);
out(Dummy, 1);

}

RPC_STATUS SetAge(int a)
{

channel out Age;
channel in Dummy;
int ignored;
out(Age, a);
in(DummyReturn, ignored);
return RPC_OKAY;

}

coroutine void ReportErrors()
{

channel in char* Error;
char* msg;
while (1) {

in(Error, msg);
fprintf(LOGFILE, “%s\n”, msg);

}
}

coroutine void Ware()
{

channel in int Age;
channel in int Dummy;
channel out char* Error;
int i;
in (Age, i);
if (i < 0)

out(Error, “bad age”);
}

RPC_STATUS SetAge(int a)
{

channel out Age;
out(Age, a);
CiaoBarrier();
return RPC_OKAY;

}

coroutine void ReportErrors()
{

channel in char* Error;
char* msg;
while (1) {

in(Error, msg);
fprintf(LOGFILE, “%s\n”, msg);

}
}

(a)

(b)

(c)

155

cussed. Given this, one solution to the scheduling problem, shown in
Figure 6.1(b), is for SetAge to contain an in statement (conveying no use-
ful value) before the return and for Ware to contain the corresponding
out statement. Although this ensures that ReportErrors is scheduled
before SetAge returns, this approach imposes more of the packager’s
control structure onto the ware, making the ware less reusable.

Instead, the Flexible Packaging method uses a barrier construct. In
Figure 6.1(c), SetAge contains a call to CiaoBarrier before the return
statement. A call to CiaoBarrier blocks until all other coroutines are
blocked on in statements or calls to CiaoBarrier. In this case, because
ReportErrors is ready to run, the call to CiaoBarrier would block until
ReportErrors is run, reports its error, and gets stuck on the next in state�
ment. To ensure that the component’s computation has made as much
progress as it can, a packager makes a call to CiaoBarrier at every pro �
gram point just before the thread to control leaves the component. Each
packaging generator is responsible for ensuring that the packagers that it
produces make the appropriate calls to CiaoBarrier. This barrier solu �
tion prevents the unwanted thread scheduling without reducing the abil �
ity to mix-and-match packagers and wares.

6.1.3 Packagers with multiple threads

Several of the experimental packagers inherently require multiple
threads of control. Consider component C8, the chat message ActiveX
control, which is simultaneously an ActiveX control and a tcp/ip socket
client. When one ActiveX control calls another control’s com method,
the caller gives its thread to the called control, in the style of remote pro �
cedure call. The called control is expected to perform its service, then
return the thread back to the caller. Were the called control to hold the
thread indefinitely, the caller could be left without any active threads,
leading to such bad behavior as an unresponsive user interface. Hence,
no com method should compute indefinitely, for example, by contain�
ing a loop that executes for an arbitrarily long time. Component C8,
however, needs exactly such a loop for listening to the socket. Since a
message could appear on the socket at any time, processing the message
soon after it arrives requires either blocking on the socket or frequently
polling the socket. As previously mentioned, component C8 cannot
block a caller’s thread, nor can it use a caller’s thread to poll since the
caller would then determine the polling frequency. In short, component
C8 needs an independent thread for listening to the socket. Thus, com �

ponent C8 is inherently multithreaded: one thread arises from another
control calling its methods; one thread is needed for blocking on the
socket. Component C10, similar to C8, is the only other experimental
component that is multithreaded.

Multiple threads for multiple control loops This use of multiple
threads of control is one solution to Garlan, Allen, and Ockerbloom’s
multiple control loop problem.¹⁹ As part of building a software architec �

156

ture editor, they created a component that interacts through remote pro �
cedure calls, messages, and a graphical user interface. Each of these
forms of interaction requires a control loop: a loop to listen for in-com �

ing remote procedure calls; a loop to listen for in-coming messages; and
a loop to handle user interface events. Because these loops must execute
simultaneously, Garlan, Allen, and Ockerbloom revised the source code
for these tools to combine the three loops into one. Using a different
threads of control for each control loop solves the problem while main �
taining the tools’ abstraction boundaries. This ability to combine control
loops without inspecting their implementations is vital for Flexible Pack �
aging, since these control loops are the product of packaging generators
that independent packaging specialists author.

Combining coroutines and threads Care must be taken when imple�
menting coroutines in the face of multiple threads of control. For Flexi �
ble Packaging, a coroutine is thought to “belong” to a thread: a thread
starts the execution of a coroutine, and the coroutine always executes
within that thread. This coroutine ownership model raises the question
of how to assign coroutines to threads.

Deciding whether two coroutines should execute within the same
thread is not a question of their sharing channels but a question of
whether their computations need to run together. Returning to the chat
message ActiveX control (component C8), there are two threads: a
thread that enters the control when one of its com methods is called
(represented by Control in the channel signature); and a thread that sits
and listens to the socket (represented by listen_to_socket). There are
three other coroutines: ReportErrors in the packager; ActiveXEventLoop
in the packager; and ListenForMessages in the ware. Given the system
architect’s intentions for this component, the coroutine ListenFor�Mes-
sages should be run with listen_to_socket, since the former processes the
Zephyr messages that the latter produces. Similarly, the coroutine
ActiveXEventLoop should be run with ListenForMessages, since the latter
uses the former to announce new conversations and messages within
conversations. Running either ListenForMessages or ActiveXEventLoop
with Control would be a mistake since the control would then process
and announce Zephyr messages only when a com method call is made.
Since the assignment of coroutines to threads requires human judgment
about the component’s computational goals, the system architect pro �
vides a declarative thread map to describe the desired associations.

6.1.4 Packagers from multiple generators

As discussed in the previous chapter, I split the packagings into two cate �
gories, Component Standard packagings and Data Access packagings. I
created conventions for the two categories of packagers to allow packag �
ers to be composed to implement heterogeneous packagings. The com �

position rules is that a component’s complete packaging must consist of
exactly one Component Standard packaging, plus zero or more Data

157

Access packagings. Any combination of packagings that upholds this
composition rule is a plausible component packaging. Of these possible
combinations, those that the experiments exercised are shown in Figure
6.2, where the Component Standard packagings are in the columns and
combinations of the Data Access packagings are in the rows. The regu �
larity apparent in this table is an accidental artifact of the components
that I chose to build for the experiments. Any entry in the table above is
plausible because of the rule of packaging composition.

6.2 handling modules from multiple authors

In each experiment, I created either a channel map, additional corou �
tines, or both to combine the packager and the ware. The channel map
overcomes differences in channel names and types; the coroutines over �
come any other difference. Channel maps alone were sufficient to com �

bine the packager and the ware in all but three experiments.

6.2.1 Using channel maps

Most of the experiments used channel maps to match channels with dif �
ferent names or datatypes. These uses of channel maps demonstrate
three points. First, the three png components (components C5, C6, and

ActiveX Netscape Win app Batch cgi

(none) C5 C6 C7 C4

Excel C1

Database C2

Text stream C3

Socket C8,C10 C11

Excel + Text C12

Database + Text C13

Socket + Text C9

figure 6.2 The
combinations of Component
Standard and Data Access
packagings that appear in the
experiments. All of the
combinations are plausible.
The regularity of the table
entries is an accidental artifact
of the experiments and is not
significant.

158

C7) point out that channel maps are unavoidable when a ware is com �

bined with multiple generated packagers.
Consider how the png packagers provides the ware with the name of

a png file. For the ActiveX control, this file name comes from a com

property named FileName. The ActiveX packaging generator uses the
property name as the basis for the name of the channel that reports that
property: SetFileName. For the Netscape plug-in, loading a file is event �
oriented due to the network; the browser either incrementally loads the
file and announces the arrival of more data or it loads the file as a whole
and announces that the whole file has been loaded. Hence the Netscape
plug-in packaging generator chooses the name FileLoaded for its chan �
nel. For the Windows application, the file is loaded through the “File/
Open” menu item, hence its packaging generator’s choice of OpenFile as
the channel name. Each of these three channel names makes sense in its
own context but differs from the others; even if a ware author contrived
to use one of these names for his own channel, the ware would not match
either of the other two. This name diversity among the packaging gener �
ators is not gratuitous, but reflects the different sources of the file infor�
mation: a property versus the network versus a dialog box.

Similarly, different data representations are native to different kinds
of interaction. Filters, for example, represent text in ascii; whereas,
ActiveX controls represent text in Unicode. A ware author who chooses
his text representation to be compatible with a filter packager will cause
the ware to be incompatible with an ActiveX packager. In short, the nat �
ural diversity of names and data representations among packagings
makes the use of channel maps unavoidable.

The second point is that a channel map need not connect ware chan �
nels to packager channels, but may connect channels from different
coroutines in the packager. For example, with the area code filter (com�

ponent C3), data on the input stream that is to remain unchanged is
mapped to corresponding data on the output stream. As a second exam �

ple, with the chat message ActiveX control (component C8), the argu �
ments to the Subscribe com method are mapped to the SvrSub socket
command. This example also illustrates mapping a single channel with
compound information to several channels with simpler information.

Finally, a channel map can map a scalar channel to a stream channel,
as the area code cgi script (component C4) illustrates. The compiler
notices the difference in arity and inserts calls to CiaoStreamOpen and
CiaoStreamClose where needed.

6.2.2 Using additional coroutines

In three of the experiments, I added additional coroutines to the compo �
nent when combining the packager and the ware. First, such coroutines
are useful for overcoming mismatches between the ware’s and packager’s
channels when the mismatches are too complicated to overcome with
the channel map. For instance, with the chat message digest (component
C9), I needed to translate between the packager channels that provide

159

information from the Zephyr archive (Tag, Value, OpenRec, and
CloseRec) and the ware channel that consumes Zephyr messages
(ZephyrNotices). This translation requires parsing information from the
packager’s channels and aggregating the information for the ware’s chan �
nel. The information on the packager’s channel is available according to
the following protocol:

Record = out(Tag) → RecordEnd.
RecordEnd = out(Value) → done [?] out(OpenRec) → RecordEnd1
RecordEnd1 = Record; RecordEnd1 [?] out(CloseRec) → done.

These tags and values (like tag “sender”, value “rdeline@cs”) constituent
pieces of a Zephyr message. The translation coroutine records these tags
and values to build up a message to send on the ware’s channel
ZephyrNotices. The chat message cgi script (component C11) uses a
coroutine for a similar translation task.

When the system architect wants to supplement the functionality that
a ware provides, the typical approach is to package the ware into a com �

ponent and to compose that component with other components.
Another approach, useful when the additional functionality is meager, is
to supplement the ware with coroutines that implement the additional
functionality. The chat message digest (component C9) illustrates this.
The ware provides information about the conversation threads through
two channels, one that announces new threads, one that announces new
messages on a thread. The order in which the ware produces output on
the two channels reflects the order in which it receives Zephyr messages,
namely in time order. Rather than showing the messages sorted by time,
the digest bundles them by conversation thread. To accomplish this, I
added a coroutine, called GatherMessages (page 140), to store the mes-
sage announcements into a table and then to display the messages by
thread.

6.3 flexible packaging, aspect by aspect

One way to evaluate the Flexible Packaging method is to use the vocabu �
lary of component interaction introduced in Chapter 2. From the point
of view of Flexible Packaging, reusing a component in a new system
means combining its ware with a new packager. The more the packager
insulates the ware from system-specific interaction dependencies, the
more reusable the ware. To judge how well Flexible Packaging supports
component reuse, then, we could ask the following question: for each
aspect of interaction, how well does the packager insulate the ware from
a change in that aspect? Given this question, the main contribution of
Flexible Packaging is its use of coroutines to insulate the ware from dif �
ferences in the Data and Control Transfer aspect of interaction. Flexible
Packaging also insulates the ware from changes in the Connection Estab �
lishment and Data Representation aspects. Currently, however, Flexible

160

Packaging does not insulate the ware from changes in the Failure, State
Persistence, and State Scope aspects.

6.3.1 Data and Control Transfer

As mentioned in Chapter 3, a change in the Data and Control Transfer
aspect typically has a large impact on a traditionally developed compo �
nent. A change in this aspect, for example, can affect the overall struc�
ture of the code, like whether it is structured using internal control (e.g.
file-based interaction) or external control (e.g. event-based interaction).
In contrast to traditional development, the use of coroutines between the
packager and the ware allows these modules to have independent control
structures. A packager that accesses a file, for instance, can be replaced
with a packager that interacts through messages without changing the
ware, as was illustrated in Figures 3.4 and 3.7 (pages 45–52).

6.3.2 Connection Establishment

Flexible Packaging similarly insulates a ware from differences in the
Connection Establishment aspect, since decisions about how an interac�
tion is initiated and terminated are typically encapsulated within the
packager. Note, however, that the ware provider determines those com �

ponent interactions that he wishes to be flexible (for which he uses chan �
nels) and those he wishes to fix (for which he makes direct i/o library
calls). For example, the png ware makes direct i/o library calls to estab �
lish a connection to the png file, the source of whose name is flexible. A
ware is insulated from changes in the Connection Establishment aspect
only for those interactions that are flexible and therefore entirely encap �
sulated in the packager.

6.3.3 Data Representation

The use of data conversion routines in the channel maps supports
changes in the Data Representation aspect. As previously mentioned,
different forms of interaction often involve different data representa �
tions; these differences must be overcome when combining a ware with
different packagers. Unlike traditional component development, where
decisions about data representation can permeate the component’s
source code, the use of typed channels and channel maps creates a
readily identifiable place for the system architect to cope with difference
in data representation.

Unfortunately, the use of conversion routines to overcome a
difference in Data Representation requires more effort from the system
architect than does the use of coroutines to overcome a difference in
Data and Control Transfer. The use of coroutines requires the system
architect to establish a name mapping between different coroutines’
channels; the use of conversion routines requires the system architect to
write source code.

161

Two experiences from the experiments mitigate the apparent effort.
First, pervasive infrastructures can establish vocabularies of datatypes to
which packagers and wares agree. For instance, with the png compo�
nents, the Microsoft Win32 library provides a set of datatypes for win �
dowing and graphics that the ware and packagers share in common.
Having such established vocabularies of datatypes decreases the need for
conversion routines. Second, the system architect can build up a library
of conversion routines and use the library in the channel map. For exam �

ple, several of the components require a conversion between the bstr

and char* representations of the type string. Because of this, I created a
UniCon property whose value is this conversion routine and referred to
that property in several of the channel maps.

6.3.4 Failure

Flexible Packaging is less successful in insulating the ware from
differences in the Failure aspect. In particular, in and out statements do
not support a notion of failure. Consider a packager that implements
interaction over a network with weak packet delivery guarantees. If the
ware uses an out statement to provide a result to other components, the
ware’s out statement receives no feedback about whether the result is
actually delivered over the network. Similarly, if the ware does an in
statement, the packager is expected to provide data through a corre �
sponding out statement. There is no way for the packager to report a lack
of data due to dropped network packets, for example; the packager must
either provide data in a corresponding out statement or never return
control back to the ware.

Without changing the Flexible Packaging tools, there are three strate �
gies for coping with the absence of a notion of failure with in and out
statements. The first is the use of additional channels to model failure. A
ware could model a possibly failing in statement as an alt statement that
contains the original in statement, plus an in statement on an error�
reporting channel. Similarly, a ware could model a possibly failing out
statement as an out statement followed by an in statement that reports
whether the out failed. The problem with this approach is that it reduces
the compatibility between wares and packagers. For example, a possibly
failing out channel should be compatible with a reliable (never failing) in
channel. Using the extra-channel strategy, the possibly failing out chan�
nel would be modeled with two channels (an out channel, plus an in
channel that reports the success or failure of the out channel). The sys �
tem architect would then face the task of mapping two channels to one.

The second strategy is to supplement channels with other language
features, like exceptions. For example, an in statement that possibly fails
could be modeled as an in statement surrounded with try/catch brackets
to catch an exception representing the failure of the in statement. The
disadvantage of this approach is that the channel signatures and channel
maps would have to be supplemented with documentation about the

The channel maps, as
presented in this thesis, do not
make use of such
abbreviations, in order to
make them more self �
contained.

162

exceptions, documentation that would not affect the check for channel
signature compatibility.

The third strategy is to have a channel’s type include a value that rep �
resents failure, in the style of the option type in Standard ml or sentinel
values like null or Nil in other languages. This turns the question of
compatibility between possibly failing channels and reliable channels
into a datatype compatibility question, for which channel maps provide
a solution. The disadvantage to this approach is that the use of failure
values can turn the source code into a rat’s nest of conditional statements
– a problem that exceptions often improve. Finding an appropriate way
to incorporate a notion of failure into channels is future work.

6.3.5 State Persistence and State Scope

Finally, Flexible Packaging does not insulate the ware from differences in
the State Persistence or State Scope aspects. The ware’s state is private to
the ware, and the packager has no way to affect how long the ware’s state
persists or how much of the ware’s state is affected through channels. An
example of this is the png ware, whose internal state supports only a sin �
gle png image at a time. This is an incompatibility with the Netscape
plug-in packaging, which supports having multiple simultaneous
instances of the plug-in, each with its own state. Hence the png

Netscape plug-in (component C6) behaves correctly only when a web
page contains a single png image. To correct these deficiencies, the ware
could provide the packager with an abstract datatype that represents the
ware’s internal state. To support the State Scope aspect, the abstract type
would support create and destroy operations; to support State Persis �
tence, it would support operations to convert to and from a persistent
representation, like a byte stream. Updating Flexible Packaging to
include these features is future work.

6.4 validation of the thesis claim

In Chapter 1, the dissertation makes the following claim:

It is possible to separate a software component’s functionality from its
packaging so that the following properties hold:

1 The system architect can independently choose a software compo�
nent’s functionality and packaging at the time the component is to be
integrated into a system.

2 She can readily determine whether her choices of functionality and
packaging are compatible.

3 If her choices of functionality and packaging are compatible, she can
automatically produce a software component based these choices. This

163

component’s performance is comparable to the equivalent component
developed by hand.

4 Her functionality and packaging choices are compatible often enough
to allow her to produce a useful variety of components.

5 The component provider and system architect expend less develop�
ment effort on the whole using this approach than they would using
traditional development methods.

The Flexible Packaging method achieves exactly such a separation of
concerns. Using evidence from the experiments, the following sections
describe how Flexible Packaging provides each of the properties that the
claim demands.

6.4.1 Selecting functionality and packaging during system integration

The system architect chooses a software component’s functionality by
selecting a ware. She chooses the component’s packaging by acquiring a
packaging generator for her desired type of packaging and by writing a
packaging description that contains the information that the generator
requires. Both selecting the ware and writing the packaging description
are done at system integration time. Writing the packaging description
at system integration time allows the system architect to tailor the com �

ponent’s interactions to the specific needs of the integration context.

6.4.2 Determining the compatibility of functionality and packaging

Once the system architect has written a packaging description, she runs
the Packgen tool on it to produce a packager. The ware and the packager
each have a channel signature, which allows the compatibility of the ware
and the packager to be checked. To check compatibility, the system
architect first creates a channel map to establish a correspondence
between the two channel signatures. In the process of establishing this
correspondence, she may discover that a channel in one of the modules
has no corresponding channel in the other module. For example, were
she to package the png ware as a filter, she would discover that the ware
has a channel

channel in struct { struct { long left, bottom, top, right; }* rect;
void* hdc; } Paint;

that communicates graphics information, for which there is no corre�
sponding channel in the filter packager. The inability to find a corre�
spondence between the ware and packager’s channel signatures signals
that the functionality and packaging are incompatible.

If she can establish the correspondence, the Ciao compiler uses the
correspondence to check the compatibility of the two channel signa �

164

tures. This check catches more subtle incompatibilities that lead to run �
time deadlock. If the ware’s and packager’s channel signatures pass this
check, no run-time deadlock can occur, and the ware and packager –
and hence the functionality and packaging – are compatible.

6.4.3 Producing a component with reasonable performance

Given a ware and a packager with compatible channel signatures, the
Ciao compiler automatically integrates them to form the final compo�
nent. The only difference between the source code of a component pro �
duced through Flexible Packaging and that of an equivalent component
produced by hand is the use of channels to integrate the packager and
the ware. In a typical traditional component, the source code for the
packager and the ware would be intermingled; there would be no explicit
interface between these pieces of code, hence no performance penalty
for crossing an interface boundary. With Flexible Packaging, there is an
explicit interface between the two pieces of code, one based on shared
data and coroutines. As the timing information in Section 5.3.2 demon�
strates, the performance penalty for this interface is modest.

6.4.4 Producing a useful variety of components

As the experiments indicate, I was able to produce a useful variety of
components from each ware. There are two sense in which the variety is
useful. First, the nine experimental packagings that I used to build the
components are drawn from today’s practice, and hence useful to today’s
developers. In this sense, the components are individually useful. Fur �
ther, I was able to package each ware with several packagings and, in
some cases, with packagings that represent competing component mar �
kets. For example, I was able to package the png component as both a
Netscape plug-in and an ActiveX control, two component standards that
directly compete. Were I a component vendor, I would be able to sell
png components both in the plug-in market and in the control market,
rather than committing myself to a single packaging-based market, as
often happens today. Hence, I was able to produce a variety of compo �
nents, where the variety would allow me to compete in multiple markets.

6.4.5 Producing a component with reasonable effort

The data in the experiments is too preliminary to use as the basis for
quantitative cost estimates. Instead, the experiments can be used to
argue that Flexible Packaging addresses both the direct cost and oppor �
tunity cost associated with component integration in current practice.
As introduced in Chapter 1, when a component integrator must over�
come a packaging mismatch, he faces the direct cost of producing glue
code or of employing some other fix. In the case where the component’s
packaging matches the integration context, he faces the opportunity cost
of disregarding those components who packaging does not match.

165

With respect to the direct cost, the experiments show that a given
ware can be made available through a variety of packagings and hence
can be reused in a variety of systems. The system architect’s direct cost of
integration is typically the cost of producing a channel map and occa �
sionally the cost of producing additional coroutines. The effort required
to do this is less than that of producing glue code, in part because the
former requires only knowledge of the channels involved while the latter
involves detailed knowledge of two or more forms of component inter �
action.

Flexible Packaging also addresses the integrator’s opportunity cost.
This opportunity cost increases with the number of components that the
integrator neglects in order to avoid the cost of overcoming packaging
mismatch. Further, the cost of overcoming a packaging mismatch with
respect to a given component increases with the number of interaction
commitments that are embodied in that component, since each commit �
ment is a potential source of mismatch. Hence, the more interaction
commitments that a component embodies, the more potential it has to
impose a direct integration cost, and the more likely it is to be neglected
to avoid this cost. Because wares embody far fewer interaction commit �
ments than traditional components, they are less likely to be avoided and
therefore impose less of an opportunity cost. Thus, while it is too soon to
measure the cost benefit of using Flexible Packaging, the method does
address both the direct cost and opportunity cost associated with cur �
rent component integration.

6.5 toward flexible packaging in practice

This dissertation’s research focusses on the creation of Flexible Packag �
ing and the validation of its feasibility. Although at this early stage of the
research it is too soon to describe the practice of using Flexible Packag �
ing, here are a few observations about a path to industry adoption, the
design of wares, and the effect of the method on the semantic mismatch
problem.

6.5.1 Adopting Flexible Packaging

One of Flexible Packaging’s disadvantages is that a number of developers
must adopt it before it system architects can reap its benefits. In particu �
lar, until component providers begin to provide wares instead of fully
packaged components, system architects will be unable to find wares in
the market that have the functionality that they require. Further, compo �
nent providers will be uninspired to sell wares until system architects
demonstrate a market for them. The way forward from this chicken �and-
egg problem is the use of Flexible Packaging in-house to produce tradi-
tional components.

Currently, many component providers either produce components
only to a single packaging standard (say, Corba) or bear the expensive of
producing a family of components that differ in their packagings (say,

166

both Corba and ActiveX). For developers in this situation, Flexible Pack �
aging lowers the cost of producing this family. A component provider
could use Flexible Packaging in-house to produce wares. Rather than
selling these wares directly or in addition to it, the component providers
could write their own packaging descriptions and sell the resulting fully
packaged components. For those developers that currently sell a family
of components, using Flexible Packaging would likely lower their costs: it
would provide packaging generators for packagings that currently have
no tools (e.g. Netscape plug-ins); it would bring uniformity to the pro �
cess of packaging components rather than relying on in-house packag �
ing gurus; and it would reduce their version control problems by allow �

ing a component’s functionality to be expressed in a single source
module rather than one version per packaging. Finally, by using Flexible
Packaging in-house, component providers would be prepared to sell
wares directly, when and if the Flexible Packaging community reaches
critical mass.

6.5.2 Composing and decomposing wares

Traditional module systems support a uniform type of compositionality:
smaller modules are composed to form large modules; larger modules
decompose into smaller modules. This uniformity, however, does not
scale up to the largest systems. Although a 10,000-line module may be
composed of 10 1000-line modules, typically a 10,000,000-line system is
not one large module composed of 10 1,000,000-line modules. At some
point while scaling up, modules are not composed to form a larger mod �
ule, but instead to form a component. Whereas interaction between
modules is through mechanisms supported by the programming lan �
guage in which the modules are written (e.g. function call, method call,
shared variables), interaction between components is through such
other mechanisms as pipes, messages, and shared databases. While com �

posing parts to form larger parts, at some point the architect decides that
the interaction among peer parts should no longer be through program �

ming language constructs, but through other mechanisms. Traditionally
when a developer decides that a module will be a component, he com �

mits to the mechanism by which the component interacts with other
components.

Flexible Packaging changes this notion of composition. By supple �
menting the programming language mechanisms by which module
interact with a new mechanism – channels – a ware can be composed
with another ware in two ways. First, the wares can interact directly
through channels, i.e., the wares can be treated as modules, which are
composed to form a larger module. Second, each ware can be packaged
to form a component, and the components can then be composed to
form a larger component or system. The choice between these two types
of composition depends on the interaction mechanism that the integra �
tor finds most suitable. For example, if there is a data flow between the
two wares (one ware does an out, the other does an in), then one possi �

167

bility is to place a channel between the out and the in. However, if the
architect wants the communicated data to be persistent, for example, he
could implement the data flow by packaging one ware to be a file writer
and the other to be a file reader. The person integrating the wares
chooses between these two types of composition by choosing the inter �
action mechanism that has the properties she wants.

In short, Flexible Packaging improves the uniformity of composition.
At the time of developing a traditional developer writes his source code,
he chooses how his part will interact with other parts. If he chooses a
mechanism that the programming language supports, his part is called a
module; if he chooses mechanisms likes pipes, messages, or databases,
the part is called a component. With Flexible Packaging, the same ware
may either be treated as a module (interaction through channels alone)
or as a component (interaction through a packager). Unlike with tradi �
tional development, the ware provider need not anticipate which style of
composition will be used.

6.5.3 Semantic mismatch

The problem of packaging mismatch is very related to the problem of
semantic mismatch. The former occurs when components disagree
about the mechanism they use to exchange data and control; the latter,
when components disagree about concepts that are engendered in the
data that they exchange. Since the type or format of the data that compo �
nents exchange attempts to reflect the meaning of the data, the boundary
between the two problems is blurry. Consider the example mentioned in
Chapter 1. Two inventory databases are to be integrated. Both represent
the number of items on the shelf: one counts individual items (a carton
of eggs counts as 12); one counts units of items (a carton of eggs counts
as 1). If the databases both use the same type to encode the counts (e.g.
type Natural), then the problem is semantic mismatch; if they use
different types (e.g. type Natural versus type Unit-Natural), then the
problem is packaging mismatch. With packaging mismatch, the prob �
lem is manifest in the computing artifacts (for example, in the declared
types of the data) and is therefore amenable to automated or semi-auto �
mated solutions. With semantic mismatch, the problem is implicit and
therefore requires human intervention to solve. This difference in the
classes of applicable solutions is the main reason for drawing the distinc �
tion between the two problems.

Although addressing semantic mismatch is beyond the goal of the
Flexible Packaging research, Flexible Packaging does somewhat amelio �
rate semantic mismatch by making a component’s interactions more
explicit. A given data item, as it enters or leaves a component, is men �
tioned in up to four places: in the packaging description (how the data is
formatted for exchange with other components); in the packager’s chan �
nel signature (how the packager exchanges the item with the ware); in
the ware’s channel signature (how the ware exchanges the item with the
packager); and, if the ware and packager disagree about the data’s type,

168

in the channel map. Unlike with a traditional software component,
where a data item’s type (or, indeed, its presence at all) can be buried
within the source code, Flexible Packaging makes explicit both how the
component types the data, both with respect to its functionality and its
interactions. This explicit treatment at least makes the presence of data
exchange manifest. In the end, however, the deep problem of semantic
mismatch – the fact that formatting or typing does not always encode
semantic intent – is one that Flexible Packaging does not address.

6.6 future directions

With the basic feasibility of the Flexible Packaging method established,
there are several direction in which to take the research.

6.6.1 Examining the human factors of module integration

Some of the questions that this dissertation addresses are not questions
about computations, but questions about people. For example, consider
a question such as this: which modularity mechanism allows a program �

mer use the least effort to combine independently authored modules?
This kind of question cannot be answered by examining modularity
mechanisms in isolation, but requires an examination of how people use
these mechanisms in practice. Bringing the controlled studies and eth �
nographic techniques from human–computer interaction research to
bear on module composition problems would be an interesting direction
in which to take this research.

For instance, the design of channels is intended to allow a developer
to compose two or more independently authored modules into a com �

bined computation. The experiments in Chapter 5 demonstrate that a
developer can use channels to combine two or more modules. However,
the experiments do not demonstrate whether channels support multiple
independent authors, since a single developer created all of the experi �
mental modules. To validate the use of channels to support independent
authors, I intend to run a controlled experiment.

The experiment involves mixing and matching modules that several
programmers independently create. Each programmer would be given a
short tutorial on the use of channels and the same well specified pro�
gramming task. The task would be to create a software component with
specific functionality and a specific packaging, by developing and com�

bining a ware and a packager. Because each programmer would develop
both the ware and the packager, combining them would not require a
channel map or additional coroutines. Indeed, to keep learning to a
minimum, the experiment’s tutorial would not mention these features.
The key to the experiment is that each programmer himself designs the
channel interface between the ware and packager. Together, the n pro �
grammers create n wares and n packagers. With their programming
tasks complete, I, as the experimenter, would try all n² combinations of
wares and packagers to test whether they can be combined at all and, if

169

so, whether I need channel maps or additional coroutines to combine
them. (To reduce the needed manpower in the face of the quadratic
number of combinations, the experimenters could examine a random
subset of the possible combinations or the subjects themselves could be
asked to try combinations. The latter possibility engenders a potential
learning confound.) Witnessing the kinds of channel mismatches that
occur during the experiment would provide either validation that chan �
nels are sufficient to support independently authored modules or would
point out where channels need improvement.

Studying developers under controlled conditions is not the only inter �
esting approach, however. In some cases, developers leave behind a suffi �

ciently rich trail in their development effort that an ethnographic
approach could be revealing. For example, consider this question: What
are the kinds of modifications that developers make in their software for
which current modularity mechanisms (e.g. procedural interfaces) keep
the modifications isolated? What are the kinds of modifications for
which the modularity mechanisms allow the changes to be pervasive?
One might guess that changes in data representation that are encapsu �
lated within abstract datatypes and changes to algorithms encapsulated
within procedures would be well isolated; whereas, that changes to sup �
porting infrastructure, like memory management, would not.

Examining the revision history of actual software projects could pro �
vide concrete evidence to support such conjectures, as well as a possible
classification of the software evolution problems for the research com �

munity to solve. For example, I would examine the revision history doc �
umentation and the actual software revisions of a well documented
project, like many of those from the Open Source movement. Using the
revision history documentation to understand the motivation behind
each change to the software, I would judge the degree of isolation for
each change and look for correlations between the degree of isolation
and both the type of change (change in data representation, change in
algorithm, change in substructure) and the motivation for the change
(cross-platform port, bug fix, feature addition). Even with good tools,
such studies could take considerable effort, given the messiness of real �
world development projects. However, having evidence from actual
projects provides the material both to answer important questions about
the human factors of software composition and to classify the research
problems to be solved.

6.6.2 Supporting the rapid development of system architectures

The software architecture community, over the past several years, has
invented notations for system composition, called architectural descrip �
tion languages (adls). A typical adl describes a system as a configura�
tion of components and connectors: components house the system’s
functionality; connectors mediate the interaction among components.⁴⁹

As mentioned in Chapter 1, today’s software components embody com �

mitments both about functionality and about interaction with other

170

components. The component/connector split in adls reflects this prac�
tice. A description of a component in an adl captures the commitments
that the component makes about interaction. A component might be
described as a Unix filter interacting through text streams, as a proce�
dure library interacting through procedure calls, or as an internet server
interacting through a request/reply protocol. A component’s description
determines the eligible connectors to which it can be attached to form a
system. A Unix filter component can be attached to a pipe connector, but
not a procedure call connector or a socket connector; a procedure
library can be attached to a procedure call connector, but not a pipe or
socket connector; an internet server component can be attached to a
socket connector, but not a pipe or procedure call connector. Creating
type systems that capture the connectivity limitations of current prac �
tices is one of the main achievements of adls.

Because adls reflect current practice, the component/connector sep�
aration does not coincide perfectly with the functionality/interaction
separation. Although connectors in adls are purely about interaction,
components are about both functionality and interaction. The Flexible
Packaging method has taken the first step in bringing these two separa �
tions into alignment. Using Flexible Packaging, developers can create
components (wares) with commitments about functionality, but very
few commitments about interaction. This dissertation advocates a pro �
cess for the system architect that is the least disruption from current
practice. The system architect first gives a ware a concrete packaging,
turning it into today’s notion of a software component. Then, with a
familiar software component in hand, the system architect can follow
current practice, namely composing the component with connectors to
form the final system.

Instead, I intend to explore a new adl in which the component/con �
nector separation coincides with the functionality/interaction separa �
tion. The evolution to this new adl can be pictured as follows:

The first step represents today’s practice, where a system is composed
from components (ovals) and connectors (diamonds), which are
attached (black squares) to form a system. The components themselves
intermix the concerns of functionality (white) and interaction (grey).
Notice that the component/connector distinction (at the black squares)
does not coincide with the functionality/interaction distinction (at the
grey/white border). Flexible Packaging takes the next step: a developer
creates a component by combining a ware, which captures functionality,
and a packager, which captures interaction. Other than its implementa �

3

2

1

In the jargon of adls, the
black square represents the

attachment between a role and
a port/player.

171

tion as a packager and a ware, a software component is otherwise con �
ventional. The two separations still do not coincide. The third step, to be
taken in future research, is to associate the packagers, not with the com �

ponents, but with the connectors. With this regrouping accomplished,
the component/connector boundary and functionality/interaction
boundary coincide.

There are several possibilities that this final step creates. First, one
could create a rapid prototyping environment for component interac �
tion. In current software architecture editors, like those for UniCon and
acme, an architect creates a system description by attaching compo�
nents and connectors, which are depicted as box-and-line diagrams.
These attachments are constrained by the typing restrictions previously
mentioned: filters can only be connected with pipes; procedure-based
modules, with procedure calls; and so on. In this new environment, the
components would be wares, and the connectors would encapsulate
everything about a given type of interaction, including the packaging
generators. This means that an architect can easily try different connec�
tors between the wares to try out different forms of interaction. For
example, if the two wares need to share a data structure, an architect
could insert a database connector between them, which provides non �
interference properties at the expense of slower data access times. If the
database’s performance were too slow, he could change this connector to
a shared memory connector, which provides quicker data access but
provides no guarantees about the absence of interference. Because the
commitments about interaction have been moved out of the compo �
nents and into the connectors, connectors can be more readily substi �
tuted one for the other than they can in current architecture editors. Fur �
ther, such an environment could infer or provide guidance about the
proper connector to select. For example, if the architect’s goal is to place
a connector between one ware’s in channel and another ware’s out chan�
nel, a unidirectional dataflow connector, like a pipe, would be appropri �
ate.

6.6.3 Decomposing functionality

The research in this dissertation concentrates on separating a compo �
nent’s functionality from its packaging. However, a component’s func �
tionality itself should be decomposed into smaller pieces – not as is done
in practice today, with the focus on implementation benefits (e.g. using
the principle of information hiding), but instead in a way to benefit the
work practice of ordinary computer users.

Two trends in modern desktop computing demonstrate the degree to
which we are currently failing to achieve useful software decomposi �
tions. First, common desktop applications, like document editors and
spreadsheets, have become bloated with features that many users either
never use or use only for occasional tasks. The monolithic nature of
these applications makes them difficult to learn and has caused a prolif�
eration of related, but separate tools for similar tasks. Consider docu �

172

ment editing on a Windows desktop machine. The Microsoft Windows
tools Notepad, Wordpad, and Word are all intended to support docu �
ment editing as a primary activity and are designed for users or tasks
that vary in sophistication. Further, other tools like email programs, web
forms, and development environments are primarily designed for a dif �
ferent task but nonetheless involve document editing. All of these docu �
ment editors involve a somewhat different look-and-feel and different
editing capabilities.

The second trend is that people are increasingly incorporating both
applications and data from the web into their daily computing tasks. Due
to the web’s frontier nature, web users confront myriad interface styles
(email-based services, applets, chat rooms, ActiveX components, web
forms, and bots, to name a few), a trend reminiscent of the chaos before
standardized desktop platforms like Macintosh and Windows. In short,
users today face both many application styles and applications that are
internally complex.

To address this, I would decompose the monolithic notion of an
application into a uniform, extendable vocabulary of capabilities that
can be combined to suit a particular user’s knowledge and current task.
For example, someone learning about spreadsheets would start with a
simple grid of numbers and formulas and later add capabilities like mac �
ros and graphs when and if he chooses to learn about them. As another
example, a user creating a document might start only with text editing
capabilities and later add communication capabilities, if he decides to
share the document with colleagues, or typesetting capabilities, if he
decides to publish the document. The uniform nature of the vocabulary
would mean the same capability would support multiple work contexts.
For example, the capability of editing a table of numbers would be the
same whether in the context of a document or a spreadsheet.

This new desktop scenario means rethinking traditional monolithic
user interface abstractions, like windows and pull-down menus, which
are geared toward completely exposing a fixed set of capabilities. It fur �
ther means rethinking traditional software decomposition methods,
which make some decisions hard to change because they either cut
across module boundaries or globally affect a module. For example, a
module (such as an ActiveX control) for document editing would sup �
port very different internal representations depending on whether it
supports such features as the following: spell checking, with the need to
represent words, not just characters; line wrapping, with the need to rep �
resent lines, not just words; typographic styles, with the need to repre �
sent the appearance of words; and justification, with the need to repre�
sent the size of characters and the context in which the text appears. Each
of these variations on a document editing module would also support
different operations to allow access to the different capabilities. We need
a new approach to modularity that would allow an individual feature,
like typographic styles, to be encapsulated so that it could be added or
removed without effecting the other features. In the easier case, a feature
could be added at integration time to allow a developer to create a family

173

of products that vary by feature set. Conquering the static case would
then allow us to build applications with feature sets that vary at run time,
as described above.

6.7 summary

This dissertation presents a new approach to developing and integrating
software components that represents a better distribution of responsibil �
ities than that of current practice. Currently, a component provider is
responsible both for the component’s functionality – the source of its
economic value – and the packaging that makes it available for integra �
tion with other components. Achieving this packaging often requires the
component provider to understand a number of details about the pack �
aging, like the api to an interaction library or the use of packaging�
specific construction tools. Becoming proficient with sophisticated com �

ponent packagings, like com or Corba, often requires months of train�
ing, a level of investment that discourages component providers from
learning about many packagings. In contrast, a ware provider need only
learn about channels, a mechanism far simpler than packagings like
com or Corba.

To relieve the ware provider from learning about packaging details,
the Flexible Packaging method introduces the role of the packaging spe �
cialist. There is one packaging specialist for each type of interaction
between components – one for com, one for Corba, one for Netscape
plug-ins; hence no more than a few dozen people fill this role. A packag �
ing specialist designs two interfaces. First, he reviews the steps needed to
give a component his kind of packaging and selects those decisions
about the packaging that are fundamental. These fundamental decisions
he defers to the system architect. Second, he designs the interface to the
packager, reducing the details of his style of interaction to a set of chan �
nel operations. Designing both of these interfaces requires knowledge
and thoughtfulness, but only a few people need fulfil this high-effort
responsibility.

Finally, Flexible Packaging also changes the nature of the system
architect’s responsibilities. Today, a system architect must often be very
familiar with different component packagings, both to detect whether
his integration task involves packaging mismatch and to resolve packag �
ing mismatches when they occur. For example, overcoming a packaging
mismatch between two components by building a bridge to place
between them typically requires detailed knowledge of the two types of
packagings being bridged. In contrast, Flexible Packaging requires no
detailed knowledge about component packaging. To give a ware a par �
ticular packaging, the system architect makes the high-level decisions
about the packaging; the packaging specialist takes care of the rest. To
combine the packager and the ware to form the final component, the
architect needs to understand channels and how to overcome their dif �
ferences through channel maps and additional coroutines, knowledge
which is gained once and used in every integration task.

174

This dissertation presents a new approach to developing and deploy �
ing software components that greatly reduces one of today’s biggest inte �
gration problems, packaging mismatch. Currently, a system architect
faces either limitations or hard work when assembling a system from
parts: she can limit her choice of architectures to those that fit the parts
that she is reusing; she can limit her choice of parts to those that fit the
architecture that she is using; or she can create “glue code” to overcome
mismatches between the interaction styles of the components and the
architecture. Instead, in a world in which components are flexibly pack�
aged (i.e. where all components are wares), the system architect chooses
a software architecture and writes packaging descriptions to tailor the
reused components to the architecture. In the case where a component
cannot be tailored because the generated packager is incompatible with
the ware, the incompatibility is fundamental – for example, because the
packaging promises a value that the computation cannot not deliver.
Hence, although Flexible Packaging cannot be said to eliminate the
problem of packaging mismatch completely, it reduces the problem
down to fundamental mismatches between the architect’s architectural
and functionality choices. In the world of flexibly packaged components,
the architect concerns herself with whether the architecture and compo �
nents fit the problem at hand, and not with the details of the packaging
technology of the day.

Although Flexible Packaging was designed to address packaging mis �
match, it may also prove helpful to addressing other integration prob �
lems. For example, as previously mentioned, making all of a compo �
nent’s data requirements explicit in its channel signature may help
expose semantic mismatch problems. Further, since channel signatures
provide a uniform interface to all components, they potentially provide a
basis for searching for components in repositories. Other problems are
not particularly different in a world of flexibly packaged components.
For example, the functionality that a flexibly packaged component pro�
vides may differ from the needed functionality (a near-miss) or may be
inconsistent with the component’s documentation. Flexible Packaging
makes these problems no better and no worse. In short, while Flexible
Packaging does not address some integration problems, it does provide a
setting for addressing others and nearly eliminates one of them, the
problem of packaging mismatch.

References

1 Robert Allen.
A Formal Approach to Software Architecture.
Dissertation, Carnegie Mellon University, 1997.
Cited on page 59.

2 Don Batory, Bernie Lofaso, and Yannis Smaragdakis.
JTS: Tools for Implementing Domain-Specific Languages.
In Proceedings of the Fifth International Conference on Software Reuse, Victoria,

Canada, 1998, pages 143–153.
Cited on page 87.

3 A.D. Birrell and B.J. Nelson.
Implementing remote procedure calls.
Cited on page 88.

4 Andrew P. Black.
An asymmetric stream communication system.
In Proceedings of the Symposium on Operating Systems Principles, 1983, pages 4–10.
Cited on page 46.

5 Barry W. Boehm and William L. Scherlis.
Megaprogramming.
In Proceedings of the Software Techonology Conference, darpa, 1992.
Cited on page 1.

6 Kraig Brockschmidt.
Inside OLE.
Microsoft Press, second edition, 1995.
Cited on page 29.

7 John Callahan.
Software Packaging.
Dissertation, University of Maryland, 1993.

Cited on page 57.

8 John R. Cameron.
An overview of jsd.
Transactions on Software Engineering 12(2):222–240.
Cited on page 59.

9 Nicholas Carriero and David Gelernter.
Linda in context.
Communications of the acm 32(4): 444–458, April 1989.
Cited on page 57.

10 David Chappell.
Understanding ActiveX and OLE: A guide for developers and managers.
Microsoft Press, 1996.
Cited on page 36.

11 Melvin E. Conway.
Design of a separable transition-diagram compiler.
Communications of the acm 6(7): 396–408, 1963.
Cited on pages 48 and 58.

12 Robert DeLine.
Avoiding packaging mismatch with Flexible Packaging.
In Proceedings of the International Conference on Software Engineering, Los

Angeles, California, 1999, pages 97–106.
Cited on page 13.

13 Robert DeLine.
A Catalog of Techniques for Resolving Packaging Mismatch.
In Proceedings of the Syposium on Software Reusability, Los Angeles, California,

1999, pages 44–53.

Cited on page 21.

14 Robert DeLine.
Toward user-defined element types and architectural styles.
In Proceedings of the Second International Software Architecture Workshop, San

Francisco, California, 1996, pages 47–49.
Cited on page 72.

15 Robert DeLine, Gregory Zelesnik, and Mary Shaw.
Lessons on converting batch systems to support interaction.
In Proceedings of the International Conference on Software Engineering, Boston,

Massachussets, 1997, pages 195–204.
Cited on page 43.

16 Chrysanthos Dellarocas.
Toward a design handbook for integrating software components.
In Proceedings of the Symposium on Assessment of Software Tools and Technologies,

1997, pages 3–13.
Cited on page 34.

17 Edsger W. Dijkstra.
The structure of the “the” multiprogramming system.
Communications of the acm 11(5): 341–346, May 1968.
Cited on page 44.

18 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns: Elements of reusable object-oriented software.
Addison-Wesley, 1994.
Cited on page 17.

19 David Garlan, Robert Allen, and John Ockerbloom.
Architectural mismatch, or why it’s hard to build systems out of existing parts.
In Proceedings of the Seventeenth International Conference on Software

Engineering, Seattle, Washington, April 1995, pages 179–85.
Cited on pages 1, 33, and 155.

20 David Gelernter and Nicholas Carriero.
Coordination languages and their significance.
Communications of the acm 35(2): 97–107, February 1992.
Cited on page 57.

21 Richard Grimes, Alex Stockton, George Reilly, and Julian Templeman.
Beginning atl com Programming.
Wrox Press, Birmingham, England, 1998.
Cited on page 36.

22 J.V. Guttag, J.J. Horning, and J.M. Wing.
The Larch family of specification languages.
IEEE Software 2(5): 24–36.
Cited on page 44.

23 C.A.R. Hoare.
An axiomatic basis for computer programming.
Communications of the acm 12(10):576–580 and 583, October 1969.
Cited on page 44.

24 C.A.R. Hoare.
Proof of correctness of data representation.
Acta Informatica 1(4):271–281, 1972.
Cited on page 44.

25 C.A.R. Hoare.
Communicating Sequential Processes.
Prentice-Hall International, London, 1985.
Cited on pages 10, 63, and 65.

26 Inmos Ltd.
occam Programming Manual.
Prentice-Hall International, 1984.
Cited on page 49.

27 M.A. Jackson.
Principles of Program Design.
Cited on page 153.

28 Bill Janssen, Mike Spreitzer, Dan Larner, and Chris Jacobi.
The ilu 2.0 Reference Manual.
ftp://ftp.parc.xerox.com/pub/ilu/2.0a13/manual-html/manual_toc.html
Cited on page 28.

29 Gilles Kahn and David B. MacQueen.
Coroutines and networks of parallel processes.
In Proceedings of the ifip Congress, pages 993–998, 1977.
Cited on page 59.

30 Rick Kazman, Paul Clements, Len Bass, and Gregory Abowd.
Classifying architectural elements as foundation for mechanism mismatch.
In Proceedings of the International Computer Software and Applications

Conference, 1997, pages 14–17.
Cited on page 33.

31 Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Videira Lopes, Jean-Marc Loingtier, John Irwin.

Aspect-oriented programming.
In Proceedings of the European Conference on Object-Oriented Programming,

Finland, Springer-Verlag lncs 1241. 1997, pages 220–242.
Cited on page 58.

32 Cristina Videira Lopes and Gregor Kiczales.
D: A language framework for distributed programming.
Technical report spl97-010, p9710047 Xerox Palo Alto Research Center, February

1997.
Cited on page 58.

33 M. D. McIlroy.
Mass produced software components.
In Proceedings of the nato Software Engineering Workshop, Garmisch, Germany,

1968, pages 138–150.
Cited on page 1.

34 Robin Milner, Mads Tofte, Robert Harper, David MacQueen.
The definition of Standard ML.
MIT Press, revised edition, 1997.
Cited on page 73.

35 Diane E. Mularz.
Pattern-based integration architectures.
Chapter 7 in James O. Coplien and Douglas C. Schmidt, editors, Pattern languages

of program design, 1995. Addison-Wesley.
Cited on page 34.

36 Bertrand Meyer.
Object-oriented Software Construction.
Prentice-Hall, 1997.
Cited on page 43.

37 John Ockerbloom.
Mediating among diverse data formats.
Dissertation, Carnegie Mellon University, 1998.
Cited on page 27.

38 Yannis Papakonstantinou, Ashish Gupta, Hector Garcia-Molina, Jeffrey Ullman.
A query translation scheme for rapid implementation of wrappers.
In Proceedings of the International Conference on Deductive and Object-oriented

databases, 1995, pages 161–86.
Cited on page 26.

39 D.L. Parnas.
On the criteria to be used in decomposing systems into modules.
Communications of the acm 15(12): 1053–8, December 1972.
Cited on page 44.

40 D.L. Parnas, P.C. Clements, and D.M. Weiss.
The modular structure of complex systems.
IEEE Transactions on Software Engineering se-11(3): 259–66, March 1985.
Cited on pages 3 and 44.

41 James M. Purtilo and Joanne M. Atlee.
Module reuse by interface adaptation.
Software–Practice and Experience 21(6): 539–56, 1991.
Cited on page 24.

42 John H. Reppy.
Concurrent programming in ML.
Cambridge University Press, 1999.
Cited on pages 59 and 96.

43 John H. Reppy.
CML: A higher-order concurrent language.
sigplan Notices 26(6):293–305, June 1991.

Cited on page 59.

44 A.W. Roscoe.
Model-checking csp.
In A Clasical Mind, Essays in Honour of C.A.R. Hoare, Prentice-Hall, 1994.
Cited on page 89.

45 Mary Shaw.
Architectural issues in software reuse: It’s not just the functionality, it’s the

packaging.
In Symposium on Software Reusability, 1995, pages 3–6.
Cited on page 33.

46 Mary Shaw and Paul Clements.
A field guide to boxology: Preliminary classification of architectural styles for

software systems.
In Proceedings of the International Computer Software and Applications

Conference, 1997, pages 6–13.
Cited on page 33.

47 Mary Shaw, Robert DeLine, Daniel Klein, Theodore Ross, David Young, and
Gregory Zelesnik.

Abstractions for software architecture and tools to support them.
Transactions on Software Engineering 21(4):314–335, April 1995.
Cited on page 71.

48 Mary Shaw, Robert DeLine, Gregory Zelesnik.
Abstractions and implementations for architectural connections.
In Proceedings of the Third International Conference on Configurable Distributed

Systems, Annapolis, Maryland, 1996, pages 2–10.
Cited on pages 22, 33, and 78.

49 Mary Shaw and David Garlan.
Software architecture: Perspectives on an emerging discipline.
Prentice-Hall, 1996.
Cited on page 169.

50 Kevin J. Sullivan and John C. Knight.
Experience assessing an architectural approach to large-scale systematic reuse.
In Proceedings of the Eighteenth International Conference on Software Engineering,

Berlin, Germany, 1996, pages 220–229.
Cited on page 1.

51 Katia Sycara, Keith Decker, Anadeep Pannu, Mike Williamson, and Dajun Zeng.
Distributed intelligent agents.
ieee Expert 11(6):36–46, 1996.
Cited on page 27.

52 Tom Wu.
Behind the scenes of the Adventure Web.
http://www-tjw.stanford.edu/adventure/impl.html
Cited on page 20.

53 Daniel M. Yellin and Robert E. Strom.
Interfaces, protocols, and the semi-automatic construction of software adaptors.
In Proceedings of the Ninth Annual Conference on Object-Oriented Programming

Systems, Languages, and Applications, Portland, Oregon, 1994, pages 176–90.
Cited on page 24.

54 Amy Zaremski and Jeanette Wing.
Signature matching: A tool for using software libraries.
Transactions on Software Engineering and Methodology 4(2):146–70.
Cited on page 1.

	Abstract
	Contents
	Acknowledgements
	1 Introducion
	1.1 A component provider makes packaging choices
	1.2 A system architect makes packaging choices
	1.3 Two participants, one decision
	1.4 A new approach to component development and assembly
	1.5 A demonstration of Flexible Packaging
	1.6 Organization of the dissertation

	2 Packaging & Packaging Mismatch
	2.1 Aspects of component packaging
	2.1.1 Data representation
	2.1.2 Data and control transfer
	2.1.3 Transfer protocol
	2.1.4 State persistence
	2.1.5 State scope
	2.1.6 Failure
	2.1.7 Connection establishment

	2.2 A catalog of mismatch resolution techniques
	2.3 A space of techniques
	2.3.1 No Xexibility
	2.3.2 Flexible connector
	2.3.3 Flexible component(s)

	2.4 Flexible Packaging in this space of techniques
	2.5 Related catalogs and classif�ications

	3 Separating Funcionality from Packaging
	3.1 Shifting and abstracting packaging decisions
	3.1.1 The complexities of component packaging
	3.1.2 The packaging specialist

	3.2 Mixing wares and packagers to produce components
	3.2.1 A component is a ware plus a packager
	3.2.2 Take 1: The packager exports an api to the ware
	3.2.3 Take 2: The ware exports an api to the packager
	3.2.4 Take 3: The ware and packager export channels to one another
	3.2.5 Additional channel features

	3.3 Work related to Flexible Packaging
	3.3.1 Separations of concern
	3.3.2 Concurrency and modularity
	3.3.3 Channel signatures and csp

	3.4 Flexible Packaging at a glance
	3.4.1 The ware provider’s job
	3.4.2 The packaging specialist’s job
	3.4.3 The system architect’s job

	4 Tools for Flexible Packaging
	4.1 Tools for the ware provider
	4.1.1 Channel signatures
	4.1.2 Generating channel signatures
	4.1.3 Accuracy of the generated channel signature

	4.2 Tools for the packaging specialist
	4.2.1 UniCon captures packaging abstractions
	4.2.2 Packgen runs the appropriate generator
	4.2.3 PackagerMaker captures source code generation
	4.2.4 ConWgurationExpert captures non-source generation
	4.2.5 Echo hides UniCon’s internal representations
	4.2.6 GlueCode makes substitutions into text templates
	4.2.7 Macro makes substitutions into abstract syntax trees
	4.2.8 Packaging generators versus “wizards”

	4.3 Tools for the system architect
	4.3.1 Checking the compatibility of channel signatures
	4.3.2 Compiling Ciao and Ciao++ to library calls
	4.3.3 The Ciao channel library

	5 Experiments
	5.1 Experimental wares
	5.1.1 PNG image painting
	5.1.2 Area code translation
	5.1.3 Chat message threading
	5.1.4 Variety of wares

	5.2 Experimental packagings
	5.3 Experimental components
	5.3.1 Components without wares
	5.3.2 Component testing and performance measurement
	5.3.3 Reading the catalog

	6 Evaluation
	6.1 Handling packaging complexity
	6.1.1 Packagers with construction complexities
	6.1.2 Packagers with additional coroutines
	6.1.3 Packagers with multiple threads
	6.1.4 Packagers from multiple generators

	6.2 Handling modules from multiple authors
	6.2.1 Using channel maps
	6.2.2 Using additional coroutines

	6.3 Flexible Packaging, aspect by aspect
	6.3.1 Data and Control Transfer
	6.3.2 Connection Establishment
	6.3.3 Data Representation
	6.3.4 Failure
	6.3.5 State Persistence and State Scope

	6.4 Validation of the thesis claim
	6.4.1 Selecting functionality and packaging during system integration
	6.4.2 Determining the compatibility of functionality and packaging
	6.4.3 Producing a component with reasonable performance
	6.4.4 Producing a useful variety of components
	6.4.5 Producing a component with reasonable eV�ort

	6.5 Toward Flexible Packaging in practice
	6.5.1 Adopting Flexible Packaging
	6.5.2 Composing and decomposing wares
	6.5.3 Semantic mismatch

	6.6 Future directions
	6.6.1 Examining the human factors of module integration
	6.6.2 Supporting the rapid development of system architectures
	6.6.3 Decomposing functionality

	6.7 Summary

	References

