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Abstract: Let � be a triangulated category with a proper class ξ of triangles and � be a subcategory of �.

We first introduce the notion of �-resolution dimensions for a resolving subcategory of � and then give

some descriptions of objects having finite �-resolution dimensions. In particular, we obtain Auslander-

Buchweitz approximations for these objects. As applications, we construct adjoint pairs for two kinds of

inclusion functors and characterize objects having finite �-resolution dimensions in terms of a notion of

ξ -cellular towers. We also construct a new resolving subcategory from a given resolving subcategory and

reformulate some known results.
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1 Introduction

Approximation theory is the main part of relative homological algebra and representation theory of alge-

bras, and its starting point is to approximate arbitrary objects by a class of suitable subcategories. In

particular, resolving subcategories play important roles in approximation theory (e.g., [1–3]). As an impor-

tant example of resolving subcategories, Auslander and Buchweitz [4] studied the approximation theory of

the subcategory consisting of maximal Cohen-Macaulay modules over an artin algebra, and Hernández

et al. [5] developed an analogous theory for triangulated categories. Using the approximation triangles

established by Hernández et al. [5, Theorem 5.4], Di and Wang [6] constructed additive functors (adjoint

pairs) between additive quotient categories. On the other hand, Zhu [7] studied the resolution dimension

with respect to a resolving subcategory in an abelian category, and Huang [8] introduced relative preresol-

ving subcategories in an abelian category and defined homological dimensions relative to these subcate-

gories, which generalized many known results (see [4,9,10]).

In analogy to relative homological algebra in abelian categories, Beligiannis [11] developed a relative

version of homological algebra in a triangulated category � , that is, a pair �( )ξ, , in which ξ is a proper

class of triangles (see Definition 2.4). Under this notion, a triangulated category is just equipped with a

proper class consisting of all triangles. However, there are lots of non-trivial cases, for example, let � be

a compactly generated triangulated category, then the class ξ consisting of pure triangles is a proper class

([12]), and the pair �( )ξ, is no longer triangulated in general. Later on, this theory has been paid more

attentions and developed (e.g., [13–17]). It is natural to ask how the approximation theory acts on this

relative setting of triangulated categories. In [18], Ma et al., introduced the notions of (pre)resolving
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subcategories and homological dimensions relative to these subcategories in this relative setting, which

gives a parallel theory analogy to that of abelian categories [8]. In this paper, we devote to further studying

relative homological dimensions in triangulated categories with respect to a resolving subcategory. The

paper is organized as follows:

In Section 2, we give some terminology and some preliminary results.

In Section 3, some homological properties of resolving subcategories are obtained. In particular, we

obtain Auslander-Buchweitz approximation triangles (see Proposition 3.10) for objects having finite resol-

ving resolution dimensions. Our main result is the following:

Theorem. Let� be a resolving subcategory of � and�, a ξxt-injective ξ -cogenerator of�. Assume that� is

closed under hokernels of ξ -proper epimorphisms or closed under direct summands. For any �∈M , if �∈M ,

then the following statements are equivalent:

(1) � - ≤M mres.dim .

(2) �( ) ∈MΩn for all ≥n m.

(3) ��( ) ∈MΩn for all ≥n m.

(4) ( ) =ξxt M H, 0ξ
n for all >n m and all �∈H .

(5) ( ) =ξxt M L, 0ξ
n for all >n m and all �∈L .

(6) M admits a right �-approximation →φ X M: , where φ is ξ -proper epic, such that =K Hoker φ satis-

fying � - ≤ −K mres.dim 1.

(7) There are two triangles

⟶ ⟶ ⟶W X M WΣM M M

and

⟶ ⟶ ⟶M W X MΣM M

in ξ such that XM and XM are in � and �- ≤ −W mres.dim 1M , � �- = - ≤W W mres.dim res.dimM M .

In Section 4, we will further study objects having finite resolution dimensions with respect to a resol-

ving subcategory �. We first construct adjoint pairs for two kinds of inclusion functors. Then we charac-

terize objects having finite resolution dimensions in terms of a notion of ξ -cellular towers.

As an application, in Section 5, given a resolving subcategory � of �, we construct a new resolving

subcategory���( )ξ with a ξxt-injective ξ -cogenerator� �∩ ⊥ , which generalizes the Gorenstein projective

subcategory ��( )ξ given by Asadollahi and Salarian [13]. Applying the obtained results to ���( )ξ , we

generalize some known results in [13–15].

Throughout this paper, all subcategories are full, additive, and closed under isomorphisms.

2 Preliminaries

Let � be an additive category and � �→Σ : an additive functor. One defines the category �( )Diag , Σ as

follows:

• An object of �( )Diag , Σ is a diagram in � of the form ⟶ ⟶ ⟶X Y Z XΣ
u v w

.

• A morphism in �( )Diag , Σ between ⟶ ⟶ ⟶X Y Z XΣi

u

i

v

i

w

i
i i i

, =i 1, 2, is a triple ( )α β γ, , of morphisms in �

such that the following diagram:

commutes.
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A triangulated category is a triple �( ), Σ, Δ , where � is an additive category and � �→Σ : is an auto-

equivalence of� (called suspension functor), and Δ is a full subcategory of �( )Diag , Σ which is closed under

isomorphisms and satisfies the axioms ( )T1 –( )T4 in [11, Section 2.1] (also see [19]), where the axiom ( )T4 is

called the octahedral axiom. The elements in Δ are called triangles.

The following result is well known, which is an efficient tool in studying triangulated categories.

Remark 2.1. [11, Proposition 2.1] Let � be an additive category and � �⟶Σ : an autoequivalence of �,

and Δ a full subcategory of �( )Diag , Σ which is closed under isomorphisms. Suppose that the triple �( ), Σ, Δ

satisfies all the axioms of a triangulated category except possibly of the octahedral axiom. Then, the follow-

ing statements are equivalent:

(1) Octahedral axiom. For any two morphisms ⟶u X Y: and ⟶v Y Z: , there exists a commutative

diagram

in which all rows and the third column are triangles in Δ.

(2) Base change. For any triangle ⟶ ⟶ ⟶X Y Z XΣ
u v w

in Δ and any morphism ′⟶α Z Z: , there

exists the following commutative diagram:

in which all rows and columns are triangles in Δ.

(3) Cobase change. For any triangle ⟶ ⟶ ⟶X Y Z XΣ
u v w

in Δ and any morphism ⟶ ′β X X: , there

exists the following commutative diagram:

in which all rows and columns are triangles in Δ.

Throughout this paper, � �= ( ), Σ, Δ is a triangulated category.
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Definition 2.2. [11] A triangle

⟶ ⟶ ⟶X Y Z XΣ
u v w

is called split if it is isomorphic to the triangle

( )
⟶ ⊕ ⟶ ⟶( )

X X Z Z XΣ .

1
0 0,1 0

We use Δ0 to denote the full subcategory of Δ consisting of all split triangles.

Definition 2.3. [11] Let ξ be a class of triangles in �.

(1) ξ is said to be closed under base change (resp. cobase change) if for any triangle

⟶ ⟶ ⟶X Y Z XΣ
u v w

in ξ and any morphism ′⟶α Z Z: (resp. ⟶ ′β X X: ) as in Remark 2.1(2) (resp. Remark 2.1(3)),

the triangle

⟶ ′⟶ ′⟶ ( ′⟶ ′⟶ ⟶ ′)′ ′ ′ ′ ′ ′
X Y Z X X Y Z XΣ resp. Σ

u v w u v w

is in ξ .

(2) ξ is said to be closed under suspension if for any triangle

⟶ ⟶ ⟶X Y Z XΣ
u v w

in ξ and any �∈i (the set of all integers), the triangle

⟶ ⟶ ⟶(− ) (− ) (− ) +X Y Z XΣ Σ Σ Σi
u

i
v

i
w

i
1 Σ 1 Σ 1 Σ

1
i i i i i i

is in ξ .

(3) ξ is called saturated if in the situation of base change as in Remark 2.1(2), whenever the third vertical

and the second horizontal triangles are in ξ , then the triangle

⟶ ⟶ ⟶X Y Z XΣ
u v w

is in ξ .

Definition 2.4. [11] A class ξ of triangles in � is called proper if the following conditions are satisfied.

(1) ξ is closed under isomorphisms, finite coproducts and ⊆ ξΔ0 .

(2) ξ is closed under suspensions and is saturated.

(3) ξ is closed under base and cobase change.

Throughout this paper, we always assume that ξ is a proper class of triangles in � .

Definition 2.5. [11] Let

⟶ ⟶ ⟶X Y Z XΣ
u v w

be a triangle in ξ . Then, the morphism u (resp. v) is called ξ -proper monic (resp. ξ -proper epic), and

u (resp. v) is called the hokernel of v (resp. the hocokernel of u).

We use vHoker to denote the hokernel of ⟶v Y Z: . Dually, we use uHocok to denote the hocokernel of

→u X Y: . For any triangle,

⟶ ⟶ ⟶X Y Z XΣ

in ξ . We say that� is closed under ξ -extensions if X , �∈Z , it holds that �∈Y . We say that� is closed under

hokernels of ξ -proper epimorphisms (resp. hocokernels of ξ -proper monomorphisms) if Y , �∈Z (resp. X ,

�∈Y ), it holds that �∈X (resp. �∈Z ).
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Definition 2.6. (see [11, 4.1]) An object P (resp. I ) in � is called ξ -projective (resp. ξ -injective) if for any

triangle ⟶ ⟶ ⟶X Y Z XΣ in ξ , the induced complex

� � �⟶ ( )⟶ ( )⟶ ( )⟶P X P Y P Z0 Hom , Hom , Hom , 0

� � �( ⟶ ( )⟶ ( )⟶ ( )⟶ )Z I Y I X Iresp. 0 Hom , Hom , Hom , 0

is exact. We use �( )ξ (resp. �( )ξ ) to denote the full subcategory of � consisting of ξ -projective (resp.

ξ -injective) objects.

We say that � has enough ξ -projective objects if for any object �∈M , there exists a triangle ⟶K P

⟶ ⟶M KΣ in ξ with �∈ ( )P ξ . Dually, we say that � has enough ξ -injective objects if for any object

�∈M , there exists a triangle ⟶ ⟶ ⟶M I K MΣ in ξ with �∈ ( )I ξ .

Remark 2.7. �( )ξ is closed under direct summands, hokernels of ξ -proper epimorphisms, and ξ -exten-

sions. Dually, �( )ξ is closed under direct summands, hocokernels of ξ -proper monomorphisms, and

ξ -extensions.

Definition 2.8. Let � be a subcategory of � .

(1) A triangle

⟶ ⟶ ⟶X Y Z XΣ

in ξ is called �� ( −)Hom , -exact (resp. �� (− )Hom , -exact) if for any object E in �, the induced complex

� � �⟶ ( )⟶ ( )⟶ ( )⟶E X E Y E Z0 Hom , Hom , Hom , 0

� � �( ⟶ ( )⟶ ( )⟶ ( )⟶ )Z E Y E X Eresp. 0 Hom , Hom , Hom , 0

is exact.

(2) [13] A ξ -exact complex is a complex

⟶⋯⟶ ⟶ ⟶⋯+ −
+

X X Xn

d

n

d

n1 1
n n1 (2.1)

in � such that for any �∈n , there exists a triangle

⟶ ⟶ ⟶+ +K X K KΣn

g

n

f

n

h

n1 1
n n n (2.2)

in ξ and the differential dn is defined as = −d g fn n n1 . A ξ -exact complex as (2.1) is called �� ( −)Hom , -

exact (resp. �� (− )Hom , -exact) if the triangle (2.2) is �� ( −)Hom , -exact (resp. �� (− )Hom , -exact) for any

�∈n .

Asadollahi and Salarian [13] introduced the notion of ξ -Gorenstein projective objects.

Definition 2.9. [13, Definition 3.6] Let � be a triangulated category with enough ξ -projective objects and X

an object in �. A complete ξ -projective resolution is a �� (− ( ))ξHom , -exact ξ -exact complex

⋯⟶ ⟶ ⟶ ⟶⋯−P P P1 0 1

in � with all P ξi -projective objects. The objects Kn as in (2.2) are called ξ -Gorenstein projective objects. We

use ��( )ξ to denote the full subcategory of � consisting of all ξ -Gorenstein projective objects.

Throughout this paper, we always assume that � is a triangulated category with enough ξ -projective

objects and ξ -injective objects.

Let M be an object in �. Beligiannis [11] defined the ξ -extension groups (− )ξxt M,ξ
n to be the nth right

ξ -derived functor of the functor � (− )MHom , , that is,

	 �(− ) ≔ (− )ξxt M M, Hom , .ξ
n

ξ
n
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Remark 2.10. Let

⟶ ⟶ ⟶X Y Z XΣ

be a triangle in ξ . By [11, Corollary 4.12], there exists a long exact sequence

⟶ ( )⟶ ( )⟶ ( )⟶ξxt Z M ξxt Y M ξxt X M0 , , ,ξ
0

ξ
0

ξ
0

( )⟶ ( )⟶ ( )⟶⋯ξxt Z M ξxt Y M ξxt X M, , ,ξ
1

ξ
1

ξ
1

of “ξxt” functor. If � has enough ξ -injective objects and N is an object in �, then there exists a long exact

sequence

⟶ ( )⟶ ( )⟶ ( )⟶ξxt N X ξxt N Y ξxt N Z0 , , ,ξ
0

ξ
0

ξ
0

( )⟶ ( )⟶ ( )⟶⋯ξxt N X ξxt N Y ξxt N Z, , ,ξ
1

ξ
1

ξ
1

of “ξxt” functor.

Following Remark 2.10, we usually use the strategy of “dimension shifting,” which is an important tool

in relative homological theory of triangulated categories.

Now, we set

� � �= { ∈ ∣ ( ) = ∈ }⊥ ≥M ξxt X M X, 0 for all ,ξ
n 1

� � �= { ∈ ∣ ( ) = ∈ }⊥ ≥M ξxt M X X, 0 for all .ξ
n 1

For two subcategories � and � of �, we say � �⊥ if � �⊆ ⊥ (equivalently, � �⊆ ⊥).
Taking 
 � �= = ( )ξ in [18, Definitions 3.1 and 3.2], we have the following definitions.

Definition 2.11. (cf. [18, Definition 3.1]) Let � and � be two subcategories of � with � �⊆ . Then, � is

called a ξ -cogenerator of � if for any object X in �, there exists a triangle

⟶ ⟶ ⟶X H Z XΣ

in ξ with H an object in � and Z an object in �. In particular, a ξ -cogenerator � is called ξxt-injective

if � �⊥ .

Definition 2.12. (cf. [18, Definition 3.2]) Let � be a triangulated category with enough ξ -projective objects

and � a subcategory of �. Then, � is called a resolving subcategory of � if the following conditions are

satisfied.

(1) � �( ) ⊆ξ .

(2) � is closed under ξ -extensions.

(3) � is closed under hokernels of ξ -proper epimorphisms.

3 Resolution dimensions with respect to a resolving subcategory

Taking � �= ( )ξ in [18, Definition 3.5], we first have the following definition.

Definition 3.1. Let� be a subcategory of� andM an object in�. The�-resolution dimension ofM , written

�- Mres.dim , is defined by

�

� �

- = { ≥ ∣ -
⟶ ⟶⋯⟶ ⟶⟶ ⟶ ⟶ }

M n ξ

X X X M X

res.dim inf 0 there exists a exact complex

0 0 in with all objects in .n i1 0

For a ξ -exact complex

⋯⟶ ⟶⋯⟶ ⟶ ⟶ ⟶+
X X X M 0

f

n

f f f

1 0
n 1 2 1 0
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with all �∈Xi . The −fHoker n 1 is called an nth ξ -�-syzygy of M , denoted by �( )MΩn . In case for � �= ( )ξ ,

we write �- ≔ -ξ M Mpd res.dim and �( ) ≔ ( )( )M MΩ Ωn
ξ

n . In case for� ��= ( )ξ ,�- Mres.dim coincides with

�-ξ Mpd defined in [13] as ξ -Gorenstein projective dimension. We use � to denote the full subcategory of

� whose objects have finite �-resolution dimension.

Lemma 3.2. Let � be a triangulated category and � a resolving subcategory of �. For any object �∈M , if

⟶ ⟶⋯⟶ ⟶ ⟶ ⟶X X X M0 0n 1 0

and

⟶ ⟶⋯⟶ ⟶ ⟶ ⟶Y Y Y M0 0n 1 0

are ξ -exact complexes with all Xi and Yi in � for ≤ ≤ −i n0 1, then �∈Xn if and only if �∈Yn .

Proof. For �∈M , there exists a ξ -exact complex

⟶ ⟶ ⟶⋯⟶ ⟶ ⟶ ⟶−K P P P M0 0n n 1 1 0

with �∈ ( )P ξi for ≤ ≤ −i n0 1.

Consider the following triangle:

⟶ ⟶ ⟶K X M KΣM M
1 0 1

in ξ . As a similar argument to that of [11, Proposition 4.11], we get the following ξ -exact complex

⟶ ⟶ ⊕ ⟶ ⊕ ⟶⋯⟶ ⊕ ⟶ ⊕ ⟶ ⟶− − −K X P X P X P X P X0 0.n n n n n1 1 2 2 1 1 0 0

Similarly, we have the following ξ -exact complex

⟶ ⟶ ⊕ ⟶ ⊕ ⟶⋯⟶ ⊕ ⟶ ⊕ ⟶ ⟶− − −K Y P Y P Y P Y P Y0 0.n n n n n1 1 2 2 1 1 0 0

Set

≔ ( ⊕ ⟶ ⊕ )− − − −X X P X PHoker n n n n1 2 2 3

and

≔ ( ⊕ ⟶ ⊕ )− − − −Y Y P Y PHoker .n n n n1 2 2 3

Since � is resolving, we have that X and Y are objects in �. Consider the following triangles:

⟶ ⊕ ⟶ ⟶−K X P X KΣn n n n1

and

⟶ ⊕ ⟶ ⟶−K Y P Y KΣn n n n1

in ξ , we have that �⊕ ∈−X Pn n 1 if and only if �∈Kn if and only if �⊕ ∈−Y Pn n 1 .

But from the following triangles in ξ

⟶ ⊕ ⟶ ⟶ ⟶ ⊕ ⟶ ⟶− − − −X X P P X Y Y P P YΣ and Σ ,n n n n n n n n n n1 1

0

1 1

0

we have that �∈Xn if and only if �⊕ ∈−X Pn n 1 , and �∈Yn if and only if �⊕ ∈−Y Pn n 1 . Thus, �∈Xn if and

only if �∈Yn . □

Using the above, we can get:

Proposition 3.3. Let � be a resolving subcategory of � and �∈M . Then, the following statements are

equivalent:

(1) �- ≤M mres.dim .

(2) �( ) ∈MΩn for ≥n m.

(3) ��( ) ∈MΩn for ≥n m.

Proof. Apply Lemma 3.2. □
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Now we can compare resolution dimensions in a given triangle in ξ as follows.

Proposition 3.4. Let � be a resolving subcategory of �, and let

⟶ ⟶ ⟶A B C AΣ

be a triangle in ξ . Then, we have the following statements:

(1) �- � �≤ { - - }B A Cres.dim max res.dim , res.dim .

(2) �- � �≤ { - - − }A B Cres.dim max res.dim , res.dim 1 .

(3) �- � �≤ { - + - }C A Bres.dim max res.dim 1, res.dim .

Proof. For any �∈A , if �- =A mres.dim , by Proposition 3.3, we have the following ξ -exact complex

⟶ ⟶ ⟶⋯⟶ ⟶ ⟶ ⟶−P P P P A0 0m
A

m
A A A

1 1 0

in � with �∈ ( )P ξi
A for ≤ ≤ −i m0 1 and �∈Pm

A .

(1) Assume �- =A mres.dim and � - =C nres.dim . We proceed it by induction on m and n. The case

= =m n 0 is trivial. Without loss of generality, we assume ≤m n, then we can let =P 0i
A for >i m. As a

similar argument to that of [11, Proposition 4.11], we get the following ξ -exact complex:

⟶ ⊕ ⟶ ⊕ ⟶⋯⟶ ⊕ ⟶ ⟶− −P P P P P P B0 0n
A

n
C

n
A

n
C A C

1 1 0 0

in �. Thus, �- ≤B nres.dim and the desired assertion are obtained.

(2) Assume �- =B mres.dim and �- =C nres.dim . We proceed it by induction on m and n. The case

= =m n 0 is trivial. Without loss of generality, we assume ≤ −m n 1, then we can let =P 0i
B for >i m.

By [18, Theorem 3.7], there exist a ξ -exact complex

⟶ ⊕ ⟶ ⊕ ⟶⋯⟶ ⊕ ⟶ ⟶ ⟶− − −P P P P P P K A0 0n
C

n
B

n
C

n
B C B

1 1 2 2 1

and a triangle

⟶ ⊕ ⟶ ⟶ [ ]K P P P K 1C B C
1 0 0

in ξ , it follows that �∈ ( )K ξ by Remark 2.7. Thus,�- ≤ −A nres.dim 1 and the desired assertion is obtained.

(3) Assume �- =A mres.dim and �- =B nres.dim . We proceed it by induction on m and n. The case

= =m n 0 is trivial. Without loss of generality, we assume + ≤m n1 , then we can let =P 0i
A for >i m.

By [18, Theorem 3.8], we have the following ξ -exact complex

⟶ ⊕ ⟶⋯⟶ ⊕ ⟶ ⊕ ⟶ ⟶ ⟶−P P P P P P P C0 0n
B

n
A B A B A B

1 2 1 1 0 0

in � , thus �- ≤A nres.dim and the desired assertion is obtained. □

As direct results, we have the following closure properties for the subcategory �.

Remark 3.5. If � is a resolving subcategory of �, then � is closed under hokernels of ξ -proper epi-

morphisms, hocokernels of ξ -proper monomorphisms, and ξ -extensions.

Corollary 3.6. Let � be a resolving subcategory of �, and let

⟶ ⟶ ⟶A B C AΣ

be a triangle in ξ . Then, we have the following statements:

(1) (cf. [18, Proposition 3.11]) Assume that C is an object in �. Then, �- �=Ares.dim - Bres.dim .

(2) Assume that B is an object in �. Then, either �∈A or else �- �=Ares.dim - −Cres.dim 1.

(3) (cf. [18, Proposition 3.13]) Assume that A is an object in � and neither B nor C in �. Then, �- =Bres.dim

�- Cres.dim .
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Proposition 3.7. Let � and � be two subcategories of � with � �⊆ .

(1)  � �⊆ .

(2) If � is resolving, then for any �∈M , � �- = -M Mres.dim res.dim if and only if� � �∩ = .

In particular, if � �⊥ , and � is closed under hokernels of ξ -proper epimorphisms or closed under

direct summands, then� � �∩ = .

Proof.

(1) It is clear.

(2) (⇒) Clearly, � � �⊆ ∩ . Let � �∈ ∩M . By the assumption, we have� �- = - =M Mres.dim res.dim 0,

then �∈M , so� � �∩ ⊆ . Thus,� � �∩ = .

(⇐) Let �∈M . Suppose�- =M nres.dim and�- =M mres.dim . Clearly, ≤m n. Consider the following

ξ -exact complexes:

⟶ ⟶⋯⟶ ⟶ ⟶H H M0 0n 0

and

⟶ ⟶⋯⟶ ⟶ ⟶X X M0 0m 0

with �∈Hi and �∈Xj for all ≤ ≤i n0 and ≤ ≤j m0 . Since � �⊆ , we have �� ( ) ∈MΩm by Lemma 3.2.

Then, � � �� ( ) ∈ ∩ =MΩm , and thus, � - ≤M mres.dim and the desired equality is obtained.

Now, we assume that � �⊥ and � is closed under hokernels of ξ -proper epimorphisms or closed

under direct summands. Clearly, � � �⊆ ∩ . Conversely, let � �∈ ∩M . There exists a ξ -exact complex

⟶ ⟶ ⟶⋯⟶ ⟶ ⟶−H H H M0 0.n n 1 0

Set = ( → )−K H HHokeri i i 1 for ≤ ≤ −i n0 2, where =−H M1 . Since � is resolving, we have �∈Ki , and

hence, � �∈ ∩Ki . Consider the following triangle:

⟶ ⟶ ⟶− −H H K HΣn n n n1 2 (1)

in ξ . Since ( ) =−ξxt K H, 0ξ n n
1

2 by the assumption that � �⊥ , we have that the triangle (1) is split. It follows

that ≅ ⊕− −H H Kn n n1 2 and there exists a triangle

⟶ ⟶ ⟶− − −K H H KΣn n n n2 1

0

2

in ξ . Since � is closed under hokernels of ξ -proper epimorphisms or closed under direct summands by

assumption, we have �∈−Kn 2 . Repeating this process, we can obtain each �∈Ki , hence, �∈M and

� � �∩ ⊆ . Thus,� � �∩ = . □

Now we give the following definition.

Definition 3.8. Let� be a subcategory of � andM an object in � . A ξ -proper epimorphism ⟶X M is said

to be a right �-approximation of M if  
� �( )⟶ ( )⟶X X X MHom , Hom , 0 is exact for any  �∈X . In this

case, there is a triangle ⟶ ⟶ ⟶K X M KΣ in ξ .

We need the following easy and useful observation.

Lemma 3.9. Let � and � be two subcategories of �.

(1) If � �⊥ , then � �⊥ . In particular, if � �⊥ , then � �⊥ .

(2) If �∈ ⊥M , then �∈ ⊥M .

Proof. Apply Remark 2.10. □
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The following is an analogous theory of Auslander-Buchweitz approximations (see [4,5]).

Proposition 3.10. Let � be a subcategory of � closed under ξ -extensions, and let � be a subcategory of �

such that � is a ξ -cogenerator of �. Then, for each �∈M with � - = < ∞M nres.dim , there exist two

triangles

⟶ ⟶ ⟶K X M KΣ (2)

and

⟶ ⟶ ′⟶M W X MΣ (3)

in ξ , where X , �′ ∈X , � - ≤ −K nres.dim 1 and �- ≤W nres.dim (if =n 0, this should be interpreted as

=K 0).

In particular, if � �⊥ , then the ξ -proper epimorphism ⟶X M is a right �-approximation of M .

Proof. We proceed by induction on n. The case for =n 0 is trivial. If =n 1, there exists a triangle

⟶ ⟶ ⟶X X M XΣ1 0 1 (4)

in ξ with X0, �∈X1 . Since � is a ξ -cogenerator of �, there is a triangle

⟶ ⟶ ′⟶X H X XΣ1 1 1

in ξ with �∈H and �′ ∈X1 . Applying cobase change for the triangle (4) along the morphism ⟶X H1 ,

we get the following commutative diagram:

Since ξ is closed under cobase changes, we obtain that the triangle

⟶ ′⟶ ⟶H X M HΣ0 (5)

is in ξ with �- =Hres.dim 0. Note that ′ =α u α is ξ -proper epic, so we have that ′α is ξ -proper epic by

[16, Proposition 2.7]; hence, the triangle

⟶ ′⟶ ′⟶X X X XΣ0 0 1 0

is in ξ . Since� is closed under ξ -extensions by assumption,wehave �′ ∈X0 . So, (5) is the first desired triangle.

For ′X0, there is a triangle

′ ⟶ ⟶ ″⟶ ′X H X XΣ0 0 0 0

in ξ with �∈H0 and �″ ∈X0 . Applying cobase change for the triangle (5) along the morphism ′ ⟶X H0 0,

we get the following commutative diagram:

(6)
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Note that ′ =u βu is ξ -proper monic by [16, Proposition 2.6], so the third horizontal triangle is in ξ . Since

′ ′ =γ v γ is ξ -proper epic, ′γ is ξ -proper epic by [16, Proposition 2.7]. So the triangle

⟶ ⟶ ″⟶M U X MΣ0

is in ξ with �- ≤Ures.dim 1 and �″ ∈X0 , which is the second desired triangle.

Now suppose ≥n 2. Then, there is a triangle

′⟶ ⟶ ⟶ ′K X M KΣ0 (7)

in ξ with �- ′ ≤ −K nres.dim 1 and �∈X0 . For ′K , by the induction hypothesis, we get a triangle

′⟶ ⟶ ⟶ ′K K X KΣ2

in ξ with�- ≤ −K nres.dim 1 and �∈X2 . Applying cobase change for the triangle (7) along the morphism

′⟶K K , we get the following commutative diagram:

Note that ′ =λ κ λ is ξ -proper epic, then ′λ is ξ -proper epic by [16, Proposition 2.7], so the triangle

⟶ ⟶ ⟶X X X XΣ0 2 0

is in ξ . It follows that �∈X from the assumption that � is closed under ξ -extensions. Since ξ is closed

under cobase changes, we obtain the first desired triangle

⟶ ⟶ ⟶K X M KΣ (8)

in ξ with �- ≤ −K nres.dim 1 and �∈X .

For X , since � is a ξ -cogenerator of �, we get the following triangle

⟶ ⟶ ′⟶X H X XΣ1

in ξ with �∈H1 and �′ ∈X .

Applying cobase change for the triangle (8) along the morphism ⟶X H1, we get the following com-

mutative diagram:

As a similar argument to that of the diagram (6), we obtain that the triangles

⟶ ⟶ ⟶K H W KΣ1

and

⟶ ⟶ ′⟶M W X MΣ (9)

are in ξ . Thus, (9) is the second desired triangle in ξ with �- ≤W nres.dim and �′ ∈X .
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In particular, suppose � �⊥ , by Lemma 3.9, we have � �⊥ . Then, ( ) =ξxt X K, 0ξ
1 for any  �∈X ,

it follows that  
� �( )⟶ ( )⟶X X X MHom , Hom , 0 is exact. Thus, the ξ -proper epimorphism ⟶X M is

a right �-approximation of M . □

Proposition 3.11. Keep the notion as Proposition 3.10. Assume �∈M with � - = < ∞M nres.dim .

(1) If � is resolving, then in the triangles (2) and (3), we have � - = −K nres.dim 1 and �- =Wres.dim

� - =W nres.dim .

In particular, if� �⊥ , then the ξ -proper epimorphism →X M in the triangle (2) is a right�-approx-

imation of M , such that �- = −K nres.dim 1 (if =n 0, it should be interpreted =K 0).

(2) If � �⊥ and � is resolving, then there is a triangle

⟶ ′⟶ ⟶M M X MΣ

in ξ with �′ ∈ ⊥M , �∈X and � �- = - ′M Mres.dim res.dim .

(3) (a) Let � �� = ∩⊥ω . If �ω is a ξ -cogenerator of� and� is closed under ξ -extensions, then � �⊥ ω
if and only if � � �⊥ ( ∩ )⊥ .

(b) If � is a resolving and � �� = ∩ ⊥ω is a ξ -cogenerator of � and �∈ ⊥M , then � �- = -M ωres.dim

Mres.dim .

(4) Suppose that � and � are resolving. If � �� = ∩ ⊥ω is a ξ -cogenerator of � and � �⊥ ω , then M

admits a right �-approximation ′⟶X M such that ″⟶ ′⟶ ⟶ ″K X M KΣ is a triangle in ξ, where

�- ″ = −K nres.dim 1. In fact, we have � - ″ = −ω K nres.dim 1.

Proof.

(1) Suppose � is resolving. Applying Corollary 3.6(2) to the triangle (2) yields that �- = −K nres.dim 1. On

the other hand, since� �⊆ , we have � �− = - ≤ - ≤ −n K K n1 res.dim res.dim 1. Thus,�- =Kres.dim

−n 1.

Moreover, applying Corollary 3.6(1) to the triangle (3) implies � �- = - =W M nres.dim res.dim . So,

� �= - ≤ - ≤n W W nres.dim res.dim . Hence,� �- = - =W W nres.dim res.dim .

The last assertion follows from the above argument and Proposition 3.10.

(2) Since � �⊥ , we have � �⊥ by Lemma 3.9, and so the result immediately follows from (1).

(3) (a) (⇐) Suppose � � �⊥ ( ∩ )⊥ . Clearly, � � � � �� = ∩ ⊆ ∩ ⊆⊥ ⊥ ⊥ω , that is, � �⊥ ω .

(⇒) Suppose � �⊥ ω . Let � �∈ ∩⊥L . By Proposition 3.10, there exists a triangle

′⟶ ⟶ ⟶ ′K H L KΣ0

in ξ with �∈H0 and �� - ′ ≤ - − < ∞ω K Lres.dim res.dim 1 . Note that �′ ∈ ⊥K by Lemma 3.9,

so �∈ ⊥L implies �∈ ⊥H0 . Then, �∈H ω0 , and so, �∈L ω . Since � �⊥ ω , we have �∈ ⊥L by

Lemma 3.9. Thus, � � �⊥ ( ∩ )⊥ .

(b) Suppose �- =M nres.dim , by (1), there exists a triangle

⟶ ⟶ ⟶K X M KΣ0

in ξ with � �∈0 and �- = −ω K nres.dim 1. Note that �∈ ⊥M and �∈ ⊥K , so �∈ ⊥X0 , and hence,

�∈X ω0 . It followsthat �- ≤ω M nres.dim .But � �= - ≤ - ≤n M ω M nres.dim res.dim , thus� - =Mres.dim

�-ω Mres.dim .

(4) Suppose �- =M nres.dim , by (1), there exists a triangle

⟶ ⟶ ⟶K X M KΣ0 (10)

in ξ with � �∈0 and �- = −K nres.dim 1. By (2), there is a triangle

⟶ ″⟶ ⟶K K H KΣ
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in ξ with �∈H , �″ ∈ ⊥K and � �- ″ = -K Kres.dim res.dim . Then, � �″ ∈ ∩⊥K . Applying cobase

change for the triangle (10) along the morphism ⟶ ″K K , we get the following commutative diagram:

One can see that the triangle

″⟶ ′⟶ ⟶ ″K X M KΣ (11)

is in ξ and �′ ∈X . Note that � �⊥ ω , so � � �⊥ ∩⊥ by (3)(a). Then, ( ″) =ξxt X K, 0ξ
1 for any  �∈X ,

and so,  
� �( ′)⟶ ( )⟶X X X MHom , Hom , 0 is exact. Thus, the ξ -proper epimorphism ′⟶X M is a right

�-approximation of M and �- ″ = −K nres.dim 1 in the triangle (11). Note that �″ ∈ ⊥K , so we have

�� - ″ = - ″ = −ω K K nres.dim res.dim 1 by (3)(b). □

Lemma 3.12. Let� be a subcategory of � with� �⊥ . Assume that� is closed under hokernels of ξ -proper

epimorphisms or closed under direct summands. Then, � � �= ∩ ⊥ .

Proof. Clearly, � � �⊆ ∩ ⊥ .

Conversely, let � �∈ ∩ ⊥M . Consider the following ξ -exact complex:

⟶ ⟶ ⟶⋯⟶ ⟶ ⟶−H H H M0 0.n n 1 0

Set = ( → )−K H HHokeri i i 1 for ≤ ≤ −i n0 2, where =−H M1 . Then, �∈ ⊥M yields �∈ ⊥Ki , and so the triangle

⟶ ⟶ ⟶− −H H K HΣn n n n1 2

is split. It follows that ≅ ⊕− −H H Kn n n1 2 and there exists a triangle

⟶ ⟶ ⟶− − −K H H KΣn n n n2 1

0

2

in ξ . Since � is closed under hokernels of ξ -proper epimorphisms or closed under direct summands

by assumption, we have �∈−Kn 2 . Repeating this process, we can obtain �∈Ki , hence �∈M and

� � �∩ ⊆⊥ . Thus,� � �∩ =⊥ . □

Proposition 3.13. Let � be a resolving subcategory and � a ξxt-injective ξ -cogenerator of �. Assume that �

is closed under hokernels of ξ -proper epimorphisms or closed under direct summands. Then, � � �= ∩ =⊥

� �∩ ⊥ .

Proof. Clearly, � � �⊆ ∩ ⊥ and  � � � �∩ ⊆ ∩⊥ ⊥ .

Now, let � �∈ ∩ ⊥M . Then, by Lemma 3.9, we have � �∈ ∩ ⊥M , and hence,  � � � �∩ ⊆ ∩⊥ ⊥
.

On the other hand, by Proposition 3.10, there is a triangle

⟶ ⟶ ⟶K X M KΣ (12)

in ξ with �∈X and�- < ∞Kres.dim . Note that �∈ ⊥M implies �∈ ⊥K , and hence, � � �∈ ∩ =⊥K by

Lemma 3.12. Note that ( ) =ξxt M K, 0ξ
1 , so the triangle (12) is split; hence, ≅ ⊕X K M . Consider the following

triangle
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⟶ ⟶ ⟶M X K MΣ
0

in ξ . It follows that �∈M from the assumption that � is resolving. Thus, � � �∩ ⊆⊥ . □

Our main result is the following.

Theorem 3.14. Let � be a resolving subcategory of � and� a ξxt-injective ξ -cogenerator of �. Assume that

� is closed under hokernels of ξ -proper epimorphisms or closed under direct summands. For any �∈M , if

�∈M , then the following statements are equivalent:

(1) �- ≤M mres.dim .

(2) �( ) ∈MΩn for all ≥n m.

(3) ��( ) ∈MΩn for all ≥n m.

(4) ( ) =ξxt M H, 0ξ
n for all >n m and all �∈H .

(5) ( ) =ξxt M L, 0ξ
n for all >n m and all �∈L .

(6) M admits a right �-approximation →φ X M: , where φ is ξ -proper epic, such that =K φHoker satis-

fying �- ≤ −K mres.dim 1.

(7) There are two triangles

⟶ ⟶ ⟶W X M WΣM M M

and

⟶ ⟶ ⟶M W X MΣM M

in ξ such that XM , �∈XM and �- ≤ −W mres.dim 1M , � �- = - ≤W W mres.dim res.dimM M .

Proof. ( ) ⇔ ( ) ⇔ ( )1 2 3 It follows from Proposition 3.3.

( ) ⇔ ( )1 6 It follows from Proposition 3.11(1).

( ) ⇔ ( )1 7 It follows from Proposition 3.11(1).

( ) ⇒ ( )1 4 Suppose �- ≤M mres.dim . There is a ξ -exact complex

⟶ ⟶⋯⟶ ⟶ ⟶X X M0 0m 0

with all Xi in �. Since � is a ξxt-injective ξ -cogenerator of �, we have ( ) =≥ξxt X H, 0ξ
k

i
1 for all �∈H .

So, ( ) ≅ ( ) =−ξxt M H ξxt X H, , 0ξ
n

ξ
n m

m for >n m.

( ) ⇒ ( )4 5 It follows from Lemma 3.9.

( ) ⇒ ( )5 4 It is clear.

( ) ⇒ ( )4 1 Since �∈M , by Proposition 3.11(1), there is a triangle ⟶ ⟶ ⟶K X M KΣ in ξ with

�- < ∞Kres.dim and �∈X . Then, ( ) ≅ ( )+ξxt K H ξxt M H, ,ξ
i

ξ
i 1 for �∈H and ≥i 1 since ( ) =≥ξxt X H, 0ξ

i 1 .

So, ( ) =≥ξxt K H, 0ξ
i m . Note that �- < ∞Kres.dim , so we have the following ξ -exact complex

⟶ ⟶⋯⟶ ⟶ ⟶H H K0 0n 0

with all �∈Hi . Then,

�( ( ) ) ≅ ( ) =− + −ξxt K H ξxt K HΩ , , 0ξ
i m

ξ
i m1 1

for ≥i 1 and all �∈H , which means �� ( ) ∈− ⊥KΩm 1 . Note that � �- ( ) < ∞− Kres.dim Ωm 1 , hence, � ( ) ∈− KΩm 1

� �∩ ⊥ . It follows that �� ( ) ∈− KΩm 1 fromLemma3.12, so�- ≤ −K mres.dim 1. Thus,�- ≤M mres.dim . □
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4 Additive quotient categories and ξ-cellular towers with respect

to a resolving subcategory

In this section, we will further study objects having finite resolution dimension with respect to a resolving

subcategory �. We first construct adjoint pairs for two kinds of inclusion functors. Then, we characterize

objects having finite resolution dimension in terms of a notion of ξ -cellular towers.

4.1 Adjoint pairs

Suppose that � and � are two subcategories of �. Denote by �[ ] the ideal of � consisting of morphisms

factoring through some object in � . Thus, we have a quotient category � �/[ ], which is also an additive

category.

Lemma 4.1. Let � be a resolving subcategory of � and � a ξxt-injective ξ -cogenerator of �. Assume that

⟶f X M: is a morphism in � with �∈X and �∈M , then the following statements are equivalent:

(1) f factors through an object in �.

(2) f factors through an object in�.

Proof. It suffices to show that ( ) ⇒ ( )2 1 . Suppose that f factors through an object �∈L . Then, =f gh,

where →h X L: and →g L M: . Consider the following triangle

′⟶ ⟶ ⟶ ′L H L LΣ

in ξ with �∈H and �′ ∈L . Note that � is a ξxt-injective ξ -cogenerator of �, by Lemma 3.9, we have

( ′) =ξxt X L, 0ξ
1 . So, h factors through H , it follows that f factors through H . □

Lemma 4.2. Let� be a resolving subcategory of� and� a ξxt-injective ξ -cogenerator of�, and let �∈M N, .

Assume that →f M N: is a morphism in �, consider two triangles

⟶ ⟶ ⟶ ⟶ ⟶ ⟶W X M W and W X N WΣ ΣM

α

M

p

M N

β

N

q

N

in ξ with XM , �∈XN andWM , �∈WN (see Proposition 3.10), then we have the following statements:

(1) There exists a morphism →g X X: M N such that =qg fp.

(2) If g , ′ →g X X: M N are two morphisms such that =qg fp and ′ =qg fp, then[ ] = [ ′]g g in � � ( )/[ ] X XHom ,M N .

Proof.

(1) Apply Proposition 3.10.

(2) Suppose g , ′ →g X X: M N are twomorphisms such that =qg fp and ′ =qg fp, then ( ′ − ) = ′ − =q g g qg qg 0,

and so there exists a morphism →h X W: M N such that ′ − =g g βh, that is, there is a commutative diagram as

follows:

Note that �∈WN , so ′ − →g g X X: M N factors through an object in � by Lemma 4.1. Thus, [ ] = [ ′]g g in

� � ( )/[ ] X XHom ,M N . □

By Lemma 4.2, there exists a well-defined additive functor
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� � �→ /[ ]F : ,

which maps an object �∈M to XM and a morphism �→ ∈ ( )f M N M N: Hom , to � �[ ] ∈ ( )/[ ]g X XHom ,M N as

described in Lemma 4.2.

Clearly, we have ( ) =F H 0 for any object �∈H . Hence, F factors through � �/[ ]. That is, there exists

an additive functor � � � �/[ ] → /[ ]μ : making the following diagram commutes

where π is the canonical quotient functor.

Now we show that the additive functor μ defined above and the inclusion functor between additive

quotients � �/[ ] and � �/[ ] are adjoint.

Theorem 4.3. Let � be a resolving subcategory of � and � a ξxt-injective ξ -cogenerator of �. Then, the

additive functor � � � �/[ ]⟶ /[ ]μ : defined above is right adjoint to the inclusion functor � � � �/[ ]⟶ /[ ].

Proof. Let �∈X and �∈N . By Proposition 3.10, there is a triangle

⟶ ⟶ ⟶W X N WΣN

β

N

q

N

in ξ with �∈WN and �∈XN . Note that the additive map

� � � �[ ] ( ( ))⟶ ( )∗ /[ ] /[ ]q X μ N X N: Hom , Hom ,

is natural in both X and N by Lemma 4.2. We claim that [ ]∗q is an isomorphism.

Indeed, since � is a ξxt-injective ξ -cogenerator of �, by Lemma 3.9, we have ( ) =ξxt X W, 0ξ N
1 , and

hence, � �( ) → ( )X X X NHom , Hom ,N is an epimorphism, so [ ]∗q is still an epimorphism.

Now, assume that →g X X: N is a morphism such that � �[ ] = [ ][ ] = [ ] [ ] = [ ] ∈ ( )∗ /[ ]qg q g q g X N0 Hom , .

Then, there exists an object �∈H such that =qg ts as the following commutative diagram:

Note that ( ) =ξxt H W, 0ξ N
1 by assumption, so there exists a morphism →θ H X: N such that =t qθ. Since

( − ) = − = − =q g θs qg qθs ts ts 0, so −g θs factors throughWN . By Lemma 4.1, −g θs factors through an

object in�. It follows that � �[ − ] = ∈ ( )/[ ]g θs X N0 Hom , . Since � �= ∈ ( )/[ ]θs X N0 Hom , , we have = [ ] ∈g0

� � ( )/[ ] X NHom , . So [ ]∗q is a monomorphism, and thus, [ ]∗q is an isomorphism. □

Corollary 4.4. Let� be a resolving subcategory of� and� a ξxt-injective ξ -cogenerator of�. Assume that�

is closed under direct summands. For any �∈N , the following statements are equivalent:

(1) �∈N .

(2) There is a triangle

⟶ ⟶ ⟶W X N WΣN N

q

N

in ξ with �∈WN and �∈XN such that � �[ ] = [ ] ∈ ( )/[ ]q X N0 Hom , .

Proof. The assertion ( ) ⇒ ( )1 2 follows from Lemma 4.1. It suffices to show ( ) ⇒ ( )2 1 . Note that the adjunction

isomorphism established in Theorem 4.3 implies that the additive map
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� � � �[ ] ( )⟶ ( )∗ /[ ] /[ ]q X X X N: Hom , Hom ,N N N

is isomorphic. Since � �[ ] [ ][ ] = = [ ] = [ ] ∈ ( ) =∗ /[ ]q q q X Nid id 0 Hom , 0X X NN N , so � �[ ] = [ ] ∈ ( )/[ ] X Xid 0 Hom ,X N NN ,

and thus, idXN factors through an object �∈H . It follows that XN is a direct summand ofWN . Since� is closed

under direct summands, we have �∈XN . Thus, �∈N . □

Next, we compare additive quotients� �/[ ] and � �/[ ].

Lemma 4.5. Let� be a resolving subcategory of� and� a ξxt-injective ξ -cogenerator of�, and let �∈M N, .

Assume that →f M N: is a morphism in �, consider two triangles

⟶ ⟶ ⟶ ⟶ ⟶ ⟶M W X M and N W X NΣ Σ
s

M
l

M
t

N
r

N

in ξ with �∈X X,M N andWM, �∈WN (see Proposition 3.10), then, we have the following statements:

(1) There exists a morphism →g W W: M N such that =gs tf .

(2) If g , ′ ⟶g W W: M N are twomorphisms such that =gs tf and ′ =g s tf , then[ ] = [ ′]g g in � � ( )/[ ] X XHom ,M N .

Proof.

(1) Since � �⊥ by assumption, we have ( ) =ξxt X W, 0ξ
M N1 by Lemma 3.9. So, there exists a morphism

⟶g W W: M N such that =gs tf .

(2) Suppose g , ′ ⟶g W W: M N are two morphisms such that =gs tf and ′ =g s tf , then ( ′ − ) = ′ −g g s g s gs

= 0, and so there exists a morphism ′ →h X W: M N such that ′ − = ′g g h l, that is, there is a commutative

diagram as follows:

Note that �∈XM , so ′ − →g g W W: M N factors through an object in �. Thus, [ ] = [ ′]g g in � � ( )/[ ]W WHom ,M N .

□

By Lemma 4.5, there exists a well-defined additive functor

� � �→ /[ ]G : ,

which maps an object �∈M toWM and a morphism �→ ∈ ( )f M N M N: Hom , to � �[ ] ∈ ( )/[ ]g W WHom ,M N

as described in Lemma 4.5.

Clearly, we have ( ) =G X 0 for any object �∈X . Hence, G factors through � �/[ ]. That is, there exists

an additive functor � � � �/[ ] → /[ ]η : making the following diagram commutes

where η is the canonical quotient functor.

Now we show that the additive functor η defined above and the inclusion functor between additive

quotients� �/[ ] and � �/[ ] are adjoint.

Theorem 4.6. Let � be a resolving subcategory of � and � a ξxt-injective ξ -cogenerator of �. Then, the

additive functor � � � �/[ ] → /[ ]η : defined above is left adjoint to the inclusion functor � � � �/[ ] → /[ ].
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Proof. Let K be an object in� and M an object in �. By Proposition 3.10, there is a triangle

⟶ ⟶ ⟶M W X MΣ
s

M
l

M

in ξ with �∈WM and �∈XM . Note that the additive map

 � � � �[ ] ( ( ) )⟶ ( )∗
/[ ] /s η M K M K: Hom , Hom ,

is natural in both M and K by Lemma 4.5. We claim that [ ]∗s is an isomorphism.

Indeed, since� is a ξxt-injective cogenerator of �, by Lemma 3.9, we have ( ) =ξxt X K, 0ξ
M1 , and hence,

� �( ) → ( )W K M KHom , Hom ,M is an epimorphism, so [ ]∗s is still an epimorphism.

Now, assume that →g W K: M is a morphism such that � �[ ] = [ ][ ] = [ ] [ ] = [ ] ∈ ( )∗
/[ ]gs g s s g M K0 Hom , .

Then, there exists an object �∈X such that =gs kv. Since � is a ξxt-injective ξ -cogenerator of �, there

exists a triangle

⟶ ⟶ ′⟶X H X XΣ

in ξ with �∈H and �′ ∈X . Note that ( ) =ξxt X H, 0ξ
M1 and ( ′ ) =ξxt X K, 0ξ

1 , so we get the following com-

mutative diagram:

It follows that � �[ ″ ′] = [ ] ∈ ( )/v v W K0 Hom ,M as �∈H . Since � �″ ′ = = ∈ ( )/[ ]v v s kv gs M KHom , , byLemma4.5(2),

we have � �[ ] = [ ″ ′] ∈ ( )/[ ]g v v W KHom ,M , and hence, [ ] =g 0. So [ ]∗s is a monomorphism, and thus, [ ]∗s is

an isomorphism. □

Corollary 4.7. Let� be a resolving subcategory of� and� a ξxt-injective ξ -cogenerator of�. Assume that�

is closed under direct summands. For any �∈N , the following statements are equivalent:

(1) �∈N .

(2) There is a triangle

⟶ ⟶ ⟶N W X NΣ
s

N N

in ξ with �∈WN and �∈XN such that � �[ ] = [ ] ∈ ( )/[ ]s N W0 Hom , N .

Proof. The assertion ( ) ⇒ ( )1 2 is obvious. It suffices to show ( ) ⇒ ( )2 1 . Note that the adjunction isomorphism

established in Theorem 4.6 implies that the additive map

 � � � �[ ] ( )⟶ ( )∗
/[ ] /s W W N W: Hom , Hom ,N N N

is isomorphic. Since � �[ ] [ ][ ] = = [ ] = [ ] ∈ ( ) =∗
/[ ]s s s N Wid id 0 Hom , 0W W

NN N , so � �[ ] = [ ] ∈ /[ ]id 0 HomWN

( )W W,N N , and thus, idWN factors through an object �′ ∈X . It follows thatWN is a direct summand of ′X .

Since � is closed under direct summands, we have �∈WN . Thus, �∈N . □
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4.2 A characterization of finite resolution dimension via ξ-cellular towers

For �∈M , there exists a triangle

⟶ ⟶ ⟶K X M KΣ
f g h

1 0 1
0 0 0 (13)

in ξ with �∈X0 and �∈K1 . Similarly, there exists a triangle

⟶ ⟶ ⟶K X K KΣ
f g h

2 1 1 2
1 1 1

in ξ with �∈X1 and �∈K2 . Continuing the above procedure for Kn, there exists a triangle

⟶ ⟶ ⟶+ +K X K KΣn

f

n

g

n

h

n1 1
n n n

in ξ with �∈Xn and �∈+Kn 1 .

Applying cobase change for the triangle (13) along the morphism ⟶h K K: Σ1 1 2, we get the following

commutative diagram:

where the triangle

⟶ ⟶ ⟶K C M KΣ Σ
u v

2 2
2

2
2 2 (14)

is in ξ . Next consider the triangle (14) along the morphism − ⟶h K KΣ : Σ Σ2 2
2

3, we get the following

commutative diagram:

where the triangle ⟶ ⟶ ⟶K C M KΣ Σ
u v

2
3 3

3
3

3 3
is in ξ .

Continuing in this manner, we obtain the following commutative diagram:

where all the horizontal triangles are in ξ .
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Set =C 00 and =C X1 0. The above construction produces a tower

⟶ ⟶ ⟶⋯⟶ ⟶ ⋯−
−

C C C C0 ,
γ γ

n

γ

n1 2 1
n1 2 1

which we call the ξ -cellular tower of M with respect to �.

According to the above construction, one can obtain the following result by Proposition 3.3.

Theorem 4.8. Let � be a resolving subcategory of �. For any �∈M , if �∈M , then the following statements

are equivalent:

(1) �- ≤M nres.dim .

(2) For each >i 0, the morphisms →+ +v C M:n i n i of the ξ -cellular tower of M with respect to � constructed

above are isomorphisms.

5 Applications

In this section, we will construct a new resolving subcategory from a given resolving subcategory, which

generalizes the notion of ξ -Gorenstein projective objects given by Asadollahi and Salarian [13]. By applying

the previous results to this subcategory, we obtain some known results in [13–15].

Definition 5.1. Let � be a subcategory of � and M an object in �. A complete � �( )ξ -resolution of M is

a �� (− )Hom , -exact ξ -exact complex

⋯⟶ ⟶ ⟶ ⟶ ⟶⋯P P X X1 0
0 1

in � with all �∈ ( )P ξi , � �∈ ∩ ⊥X i such that both

⟶ ⟶ ⟶ ⟶ ⟶ ⟶K P M K M X K MΣ and Σ1 0 1
0 1

are corresponding triangles in ξ . The ���( )ξ -Gorenstein category is defined as

�� � � ��( ) = { ∈ ∣ ( ) - }ξ M M ξadmits a complete resolution .

Remark 5.2.

(1) Since � is a resolving subcategory of �, we have � �( ) ⊆ξ , so � � �( ) ⊆ ∩ ⊥ξ . Then, we have

���∈ ( )K ξ1 .

(2) If ���∈ ( )M ξ , then �( ) ≅ ( )ξxt M X M X, Hom ,ξ
0 and ( ) =ξxt M X, 0ξ

1 for any �∈X . In fact, the following

ξ -exact complex:

⋯⟶ ⟶ ⟶ ⟶P P M 01 0

is a ξ -projective resolution of M (see [11]), which is �� (− )Hom , -exact.

Evidently, ���∈ ( )M ξ if and only if �( ) ≅ ( )ξxt M X M X, Hom ,ξ
0 and ( ) =ξxt M X, 0ξ

1 for any �∈X ,

and M admits a �� (− )Hom , -exact ξ -exact complex

⟶ ⟶ ⟶ ⟶⋯M X X0 0 1

with � �∈ ∩ ⊥X i .

(3) If � �= ( )ξ , then we have � � �∩ = ( )⊥ ξ by Lemma 3.12, and thus, ���( )ξ coincides with ��( )ξ
defined in [13].

We have the following result.
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Theorem 5.3. Let � be a resolving subcategory of �. Then, ���( )ξ is a resolving subcategory of �.

Proof. Let P be a ξ -projective object. Consider the following ξ -exact complex:

⋯⟶ ⟶ ⟶ ⟶ ⟶⋯P P0 0
0 id 0P

in �. Clearly, it is �� (− )Hom , -exact. In particular,

⟶ ⟶ ⟶ ⟶ ⟶ ⟶P P P P P0 0 and 0 Σ
0 id 0 id 0 0P P

are corresponding triangles in ξ . Since � �∈ ∩ ⊥P by Remark 5.2(1). we have � ���( ) ⊆ ( )ξ ξ .

As a similar argument to the proof of [18, Theorem 4.3(1)], we obtain that ���( )ξ is closed under

ξ -extensions and hokernels of ξ -proper epimorphisms. Thus, ���( )ξ is a resolving subcategory of �. □

Lemma 5.4. Let � be a resolving subcategory of � satisfying � � ���∩ ⊆ ( )⊥ ξ . Then, � �∩ ⊥ is a ξxt-injec-

tive ξ -cogenerator of ���( )ξ and is closed under hokernels of ξ -proper epimorphisms.

Proof. Let ���∈ ( )M ξ . There is a �� (− )Hom , -exact triangle

⟶ ⟶ ⟶M X K MΣ0 1 (15)

in ξ with � � ���∈ ∩ ⊆ ( )⊥X ξ0 . For any  �∈X , applying the functor 
� (− )XHom , to the triangle (15) yields

the following commutative diagram:

where the two isomorphisms follow from the assumption that X0, ���∈ ( )M ξ and Remark 5.2(2). It follows

that ( ) =ξxt K X, 0ξ
1 1 and  

�( ) ≅ ( )ξxt K X K X, Hom ,ξ
0 1 1 , so ���∈ ( )K ξ1 by Remark 5.2(2), then� �∩ ⊥ is a ξ -co-

generator of ���( )ξ . Obviously, � �∩ ⊥ is a ξxt-injective ξ -cogenerator of ���( )ξ .

It is obvious that � �∩ ⊥ is closed under hokernels of ξ -proper epimorphisms. □

As an application of Theorem 3.14, we have:

Proposition 5.5. Let� bea resolvingsubcategoryof � satisfying� � ���∩ ⊆ ( )⊥ ξ and �∈M . If ���∈ ( )M ξ ,

then the following statements are equivalent:

(1) ���( )- ≤ξ M mres.dim .

(2) ���( ) ∈ ( )M ξΩn for all ≥n m.

(3) ���� ��
( ) ∈ ( )( ) M ξΩ ξ

n for all ≥n m.

(4) ( ) =ξxt M H, 0ξ
n for all >n m and all � �∈ ∩ ⊥H .

(5) ( ) =ξxt M L, 0ξ
n for all >n m and all � �∈ ∩ ⊥L .

(6) M admits a right ���( )ξ -approximation →φ X M: , where φ is ξ -proper epic, such that =K φHoker

satisfying �- ≤ −K mres.dim 1.

(7) There are two triangles

⟶ ⟶ ⟶W X M WΣM M M

and

⟶ ⟶ ⟶M W X MΣM M

in ξ such that XM , ���∈ ( )X ξM and � �∩ - ≤ −⊥ W mres.dim 1M , � � ���∩ - = ( )-⊥ W ξres.dim M

≤W mres.dim M .
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Immediately, we have:

Corollary 5.6. Let � be a triangulated category and �∈M . If ��∈ ( )M ξ , then the following statements are

equivalent:

(1) ��( )- ≤ξ M mres.dim .

(2) ��( ) ∈ ( )M ξΩn for all ≥n m.

(3) ���� ( ) ∈ ( )( ) M ξΩ ξ
n for all ≥n m.

(4) ( ) =ξxt M H, 0ξ
n for all >n m and all �∈ ( )P ξ .

(5) ( ) =ξxt M L, 0ξ
n for all >n m and all �∈ ( )L ξ .

(6) M admits a ��( )ξ -approximation →φ X M: , where φ is ξ -proper epic, such that =K φHoker satis-

fying - ≤ −ξ K mpd 1.

(7) There are two triangles

⟶ ⟶ ⟶W X M WΣM M M

and

⟶ ⟶ ⟶M W X MΣM M

in ξ such that XM and XM are in � and - ≤ −ξ W mpd 1M , ��- = ( )- ≤ξ W ξ W mpd res.dimM M .

Remark 5.7. As in Corollary 5.6, ( ) ⇔ ( ) ⇔ ( )1 2 6 is [13, Theorem 4.6 ( ) ⇔ ( ) ⇔ ( )ii iii iv ], ( ) ⇔ ( )1 5 is [13,

Proposition 3.19]. ( ) ⇔ ( )1 4 is [14, Remark 2.14].

Following Theorems 4.8 and 5.3, we have the following result, which is a generalization of [15, Proposi-

tion 5.1].

Proposition 5.8. Let � be a resolving subcategory of �. For any �∈M , if ���∈ ( )M ξ , then the following

statements are equivalent:

(1) ���( )- ≤ξ M nres.dim .

(2) For each >i 0, the morphisms →+ +v C M:n i n i of the ξ -cellular tower of M with respect to ���( )ξ con-

structed above are isomorphisms.
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