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ABSTRACT

We describe a new method of extracting the spectra of stars from observations of crowded stellar fields with integral field spectroscopy
(IFS). Our approach extends the well-established concept of crowded field photometry in images into the domain of 3-dimensional
spectroscopic datacubes. The main features of our algorithm follow. (1) We assume that a high-fidelity input source catalogue already
exists, e.g. from HST data, and that it is not needed to perform sophisticated source detection in the IFS data. (2) Source positions
and properties of the point spread function (PSF) vary smoothly between spectral layers of the datacube, and these variations can be
described by simple fitting functions. (3) The shape of the PSF can be adequately described by an analytical function. Even without
isolated PSF calibrator stars we can therefore estimate the PSF by a model fit to the full ensemble of stars visible within the field of
view. (4) By using sparse matrices to describe the sources, the problem of extracting the spectra of many stars simultaneously becomes
computationally tractable. We present extensive performance and validation tests of our algorithm using realistic simulated datacubes
that closely reproduce actual IFS observations of the central regions of Galactic globular clusters. We investigate the quality of the
extracted spectra under the effects of crowding with respect to the resulting signal-to-noise ratios (S/N) and any possible changes in
the continuum level, as well as with respect to absorption line spectral parameters, radial velocities, and equivalent widths. The main
effect of blending between two nearby stars is a decrease in the S/N in their spectra. The effect increases with the crowding in the field
in a way that the maximum number of stars with useful spectra is always ∼0.2 per spatial resolution element. This balance breaks
down when exceeding a total source density of one significantly detected star per resolution element. We also explore the effects of
PSF mismatch and other systematics. We close with an outlook by applying our method to a simulated globular cluster observation
with the upcoming MUSE instrument at the ESO-VLT.
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1. Introduction

The observation of spatially resolved, but densely populated stel-
lar fields, such as star clusters or the inner regions of very nearby
galaxies, poses a severe challenge because of crowding. At finite
angular resolution each star is represented by the point spread
function (PSF) characteristic of the system. Observable is only
the superposition of many scaled and shifted PSFs, according to
brightness and position of the stars in the field of view. It is then
a major task to disentangle the various overlapping PSFs in or-
der to measure the corresponding stellar fluxes as accurately as
possible.

In imaging photometry, this challenge was already addressed
many years ago, and dedicated analysis tools have been devel-
oped to perform what is commonly termed “crowded field pho-
tometry”. daophot (Stetson 1987) is the most widely used of

⋆ Based on observations collected at the Centro Astronómico
Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-
Planck Institut für Astronomie and the Instituto de Astrofísica de
Andalucía (CSIC).
⋆⋆ Based on observations made with the NASA/ESA Hubble
Space Telescope, and obtained from the Hubble Legacy Archive,
which is a collaboration between the Space Telescope Science
Institute (STScI/NASA), the Space Telescope European Coordinating
Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre
(CADC/NRC/CSA).

such tools and it has been applied extensively and with great
success. At the core of daophot (and similar software) is a code
that fits a PSF model simultaneously or in succession to all stars
within a given field. The resulting photometry is unbiased with
respect to overlapping stellar images (within the accuracy of the
PSF model and as long as the list of fitted stars is complete), so
that even heavily blended stars can be recovered.

However, the astrophysically desirable move from photom-
etry to spectroscopy is still fraught with difficulties when it
comes to crowded stellar fields. Traditional long-slit (or multi-
slit) spectroscopy is clearly limited by the amount of blend-
ing within the slit aperture, which under conditions of heavy
crowding may almost be impossible to control. The same is true
for fibre-fed multiplexing spectroscopy using single apertures.
Consequently, investigations using this type of equipment have
typically restricted themselves to regions with modest crowding,
such as the outer parts of star clusters or galaxies, and/or focused
on the brightest sources in the fields of interest. A notable excep-
tion is the study by van der Marel et al. (2002) and Gerssen et al.
(2002) who performed HST long-slit spectroscopy of the centre
of the globular cluster M15. Here the improved spatial resolu-
tion of HST helped in dealing with the limitations of traditional
spectroscopy.

Potentially much more powerful in this domain is the direct
combination of imaging and spectroscopy. Integral field spec-
troscopy (IFS) – often also called 3D or IFU spectroscopy (IFU
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= integral field unit) – has matured into a widely used observ-
ing technique over the last decade. It is particularly powerful for
extended objects such as galaxies, by providing access to spec-
troscopic information across the full spatial extent of the target.
Integral field spectroscopy has strongly advanced our knowl-
edge of galaxies, both in the local universe (e.g., de Zeeuw et al.
2002; Cappellari et al. 2011) and at higher redshifts (e.g., Förster
Schreiber et al. 2009).

Beyond the ability to trace the variation of observable prop-
erties across the field of view (FoV), IFS data also provide
the user with an unprecedented access to single out individ-
ual objects surrounded by (and possibly blended with) other
sources. This can be done in increasing levels of sophistication.
A straightforward approach in stellar fields is to identify spa-
tial pixels that are dominated by the contribution of a single star
and obtain a spectrum of that star by summing the spectra in
only those pixels. An example is the recent work by Evans et al.
(2011), who used IFS to obtain spectra of massive stars in the
Tarantula nebula (30 Doradus). A similar treatment was applied
to near-infrared IFS observations of stars in the Galactic centre
by Eisenhauer et al. (2005) and Pfuhl et al. (2011). While scien-
tifically very successful, this approach is obviously still limited
to moderate crowding conditions.

To facilitate the extraction of the spectra, knowledge of the
spatial shape of the sources must be incorporated. Especially
when dealing with barely resolved or still unresolved sources,
a proper knowledge of the PSF becomes extremely important.
Unfortunately, the fields of view of existing IFS instruments are
so small that they often do not contain any undisturbed PSF cali-
brator. In order to proceed, it thus becomes necessary to estimate
the PSF directly from the data. Several authors have presented
solutions to this task, although ones usually restricted to specific
science applications. For the severely background-limited spec-
trophotometry of planetary nebulae (PN) in the bulge of M 31,
Roth et al. (2004) estimated the PSF from a bright PN image
in [O ] and fitted this to each wavelength bin of the datacube.
Fabrika et al. (2005) applied the cplucy algorithm (Lucy 1994)
with input from high spatial resolution HST images to extract
spectra of LBV candidates in M 33, while fully accounting for
a highly variable unresolved background. Technical details of
these two applications are discussed in Becker et al. (2004). In a
similar spirit, the bright nuclear emission lines of quasars can be
used to “self-calibrate” the PSF for the analysis of quasar host
galaxies (Jahnke et al. 2004; Christensen et al. 2006; Husemann
et al. 2011). However, due to the lack of emission-line point
sources, these procedures cannot be applied to arbitrary stellar
fields. Another limitation lies in the fact that emission lines pro-
vide the PSF only at specific wavelengths, and an extrapolation
to the full spectral range may be doubtful.

A more general approach was explored by Wisotzki et al.
(2003) who deblended the four overlapping components of the
gravitationally lensed QSO HE 0435-1223 from IFS data by as-
suming a purely analytic (but wavelength-dependent) PSF shape
that was iteratively optimized. The main limitation of this par-
ticular solution was its computational inefficiency, which would
make an application to fields with many more sources pro-
hibitive. Sánchez et al. (2007) extended this approach to non-
point sources in an IFS study of the galaxy cluster Abell 2218,
where they used the morphological information on individual
galaxies obtained from high-resolution imaging to deblend the
overlapping data into individual galaxy spectra.

In this paper we present a new algorithm for the spec-
trophotometric analysis of generically crowded stellar fields ob-
served by integral field spectroscopy. The algorithm determines

a fully self-calibrated wavelength-dependent PSF model that is
subsequently fitted to the entire datacube. In many aspects the
algorithm is an extension of the well-established “crowded field
photometry” approach, but the spectroscopic dimension requires
the addition of some genuinely new features. While we were
completing this paper, Soto et al. (2012) published an analysis
of IFS observations in the Galactic bulge, which includes PSF
estimation and bears some generic resemblance to our approach.
Unfortunately, not many details are provided in that paper on the
algorithm itself and its performance.

The purposes of the present paper are twofold. Firstly, the pa-
per provides the methodical foundations for a number of subse-
quent articles focusing on the central regions of globular clusters
(Kamann et al., in prep.). Here we use some of those data only
for illustration purposes. Secondly, we also want to highlight the
huge potential of IFS for crowded field spectroscopy in general,
especially in view of the upcoming wide-field panoramic inte-
gral field spectrograph MUSE at the ESO-VLT.

The paper is organized as follows. In Sect. 2 we start by de-
scribing the basic considerations that went into developing our
method. An overview of the observational data that motivated
this study and of the simulated data that we created to test our
algorithm is given in Sect. 3. The analysis algorithm itself is pre-
sented in detail in Sect. 4. Section 5 describes the extensive tests
that we carried out to validate its performance. A discussion of
potential sources that could systematically influence the perfor-
mance of the algorithm is presented in Sect. 6. In Sect. 7 we
briefly demonstrate the application of our method to data that
will soon be obtained with the MUSE instrument. We wrap up
our conclusions in Sect. 8.

2. Basic concepts

In a simplified picture, an integral field datacube can be consid-
ered a sequence of monochromatic images, hereafter called lay-
ers. A straightforward approach would then be to use existing
methods to analyse the data cube layer by layer, i.e. to perform
crowded field photometry individually on each layer, and com-
bine the results afterwards, and yet, as we demonstrate in the
following, such an approach does not use the full potential of
IFS data.

The development of our new algorithm was guided by the
following thoughts:

(1) For many objects, such as most globular clusters or several
nearby galaxies, high-resolution images are already available
(e.g., the HST/ACS survey of Galactic globular clusters by
Sarajedini et al. 2007). The depth reached by these images is
usually sufficient to assume that all stars that can be resolved
with a (seeing-limited) IFU have been detected, and that their
relative positions are known. Thus, an inventory of stars in
the observed field already exists, and there is no need to per-
form sophisticated source detection on the integral field data.
But of course the question remains which sources from an
available catalogue can be recovered in the datacube. Given
the typically lower spatial resolution of IFS data, only a sub-
set of the catalogued sources will be accessible to the analy-
sis. We describe in Sect. 4.5 how we derive an optimal subset
of sources from a catalogue that can be extracted reliably.

(2) The individual monochromatic layers of a data cube are not
independent of one another. Because all of them were ob-
served simultaneously, temporal effects like seeing variabil-
ity, atmospheric dispersion, and instrument flexure affect all
images in such a way that properties such as the PSF or
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source positions are interconnected. While they may vary
from layer to layer, these variations will be smooth with
wavelength. We thus should use the whole datacube to de-
termine one (wavelength-dependent) PSF model and one set
of (wavelength-dependent) coordinates. The potential of IFS
to obtain coordinates with a precision beyond that achiev-
able with a single image at the same spatial resolution has
been demonstrated previously (e.g., Mediavilla et al. 1998;
Wisotzki et al. 2003).

(3) For the current generation of integral field spectrographs, the
relatively small field of view often implies that sufficiently
bright and isolated PSF calibrator stars are not available
within a science exposure. Dedicated (i.e. non-simultaneous)
observations of isolated stars are of very limited use for accu-
rate PSF modelling because of the temporal variations in the
PSF. In the future it may become possible to predict the PSF
from adaptive optics wavefront sensor data (e.g., Jolissaint
et al. 2010). For the present, however, we are bound to esti-
mate the PSF directly from the crowded field science data.
Nevertheless, this information is actually there – not in indi-
vidual stars, but encased in the ensemble of all stars in the
field. In Sect. 4.2 we present an iterative procedure to con-
struct a global PSF model by simultaneous fitting of the full
ensemble.

(4) Besides the spectra of individually resolved stars, an IFS data
cube may also contain a background of fainter and possibly
unresolved stars and/or nebular emission. This quasi-diffuse
component can be a major nuisance as a source of systematic
errors during the extraction of stellar spectra, but it is also
possible that the scientific focus is mainly directed towards
this component. For these reasons we made a special effort to
find an appropriate solution to account for such a non-trivial
background component in the analysis. This is explained in
detail in Sect. 4.

3. Data

3.1. Observations of globular clusters

We recently collected 3D spectroscopy data of a sample of
Galactic globular clusters with the instruments PMAS (Roth
et al. 2005) and ARGUS (Pasquini et al. 2002). In each clus-
ter we mapped the central region out to a distance comparable to
the core radius of the cluster. The main scientific aims are (1) to
search for binary stars and (2) to place constraints on the pos-
sible presence of intermediate-mass black holes in the clusters.
The results from these observations will be presented in forth-
coming papers (Kamann et al., in prep.).

The instrument setups in these observations varied a little
from campaign to campaign, but were generally chosen to facili-
tate a kinematic analysis given the expected velocity dispersions
of the clusters. The typical spectral resolution R = λ/∆λ was
∼8000, and the spectral range was targeted at the calcium triplet
(λλ8498 Å, 8542 Å, 8662 Å). To sample the PSF in the best pos-
sible way, we always selected the smallest available spaxel scale
(spaxel = spatial pixel), 0.′′3 for ARGUS and 0.′′5 for PMAS.
With 16 × 16 spaxels for PMAS and 22 × 14 for ARGUS, we
thus covered an area per pointing of 8′′ × 8′′ and 6.′′6 × 4.′′2,
respectively. The seeing conditions were variable, with ∼0.′′7 in
the best and 1.′′4 in the worst case. Some whitelight images are
presented in Fig. 1 to give an impression of the data. The crucial
dependence of the data quality on the seeing during the observa-
tions is clearly visible.

3.2. Simulated data

To assess the the performance of our algorithm and to validate
the quality of the deblended spectra we carried out extensive
simulations. In line with our main scientific interest we focus
on globular clusters, but the results are of course applicable to
any sort of crowded stellar fields. At any rate the central regions
of globular clusters display some of the most challenging cases
of crowding that current instruments are capable of dealing with.

The preparation of the simulated data can be summarized
as follows. We used the V- and I band photometry of the glob-
ular cluster 47Tuc from Sarajedini et al. (2007) and Anderson
et al. (2008). To assign a realistic spectrum to each star, we
constructed a single isochrone (t = 13 Gyr, Z = 0.0045), us-
ing the tool of Marigo et al. (2008)1. For each star we thus ob-
tained estimates of Teff and log g that were in turn used to se-
lect an appropriate spectrum from the stellar library of Munari
et al. (2005). The library spectra have an intrinsic spectral reso-
lution of R = 20 000 and cover the entire wavelength range from
2500 Å to 10 000 Å. In order to resemble our observational data,
we extracted only the region around the calcium triplet and con-
volved the spectra with a Gaussian to obtain a final resolution of
R ∼ 7000.

To simulate realistic datacubes, random fields of 8′′×8′′ (the
FoV of the PMAS instrument) were selected from the central re-
gion of 47Tuc. Stars in those fields were represented by their re-
spective spectra, and a velocity drawn randomly from a normal
distribution with σ = 10 km s−1, similar to the velocity disper-
sion in the centre of this cluster (McLaughlin et al. 2006), was
assigned to each spectrum. Using an analytical PSF profile with
a full width at half maximum (FWHM) corresponding to a see-
ing around 1.0′′, cubes with 16×16 spatial pixels were prepared.
Finally, appropriate noise was added. The resulting spatial sam-
pling was 0.5′′/pixel, again to resemble observational data ob-
tained with PMAS. An example of the simulated data is given
in Fig. 2. In the following, we refer to those datacubes as the
“crowded field datacubes”.

Besides these rather realistic datacubes, we also prepared
idealized cubes containing only two stars. We used these to in-
vestigate different aspects of the deblending procedure in iso-
lation. The spectra of the stars were assigned using the same
procedure as for the crowded field datacubes. We refer to these
simulated data as the “two star datacubes”.

4. Deblending and extraction of spectra: Algorithm

4.1. Global model

We first clarify our adopted symbol and naming scheme. The
datacube at hand is supposed to have pixel values di, j,k, where
the first two indices relate to spatial coordinates and the index
k to the spectral axis. To denote different stellar sources in the
datacube we use the superscript n while background components
have a superscript m. A model datacube is then described as the
sum of all sources that contribute flux,

mi, j,k =
∑

n

f n
k psfn

i, j,k +
∑

m

bm
i, j,k. (1)

In Eq. (1), f n
k

is the total monochromatic flux of star n in layer k,
and psfn

i, j,k is the fraction of f n
k

in the considered pixel. This
fraction is equal to the value of the normalized PSF of star n
at the spatial position (i, j) and at spectral pixel k. The flux in

1 Available at http://stev.oapd.inaf.it/cgi-bin/cmd_2.3
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Fig. 1. Impressions from the observations of several globular clusters that we obtained using the integral field spectrographs PMAS and ARGUS.
The upper row shows a 20′′ × 20′′ cut-out from an HST/ACS image with the footprint of a single integral field observation. A whitelight image of
each integral field data cube is shown below. In each image, north is up and east is left.

each pixel of background component m is given by bm
i, j,k

. For a
spatially constant background (such as the night sky), bm

i, j,k
will

only depend on k. An example for a background whose intensity
varies across the field of view is the contribution of unresolved
stars to the observed flux; this will be discussed in Sect. 4.6. The
second sum in Eq. (1) can be expanded further to also include
spatially resolved sources that might be present in the datacube.
An example for such a component might be gaseous line emis-
sion in the observation of a young star cluster. Here we restrict
the discussion to fields in where the flux is dominated by stellar
continuum sources.

Starting from Eq. (1), we then search for the best (in a least-
squares sense) model for a given dataset. We therefore have to
minimize

χ2 =
∑

i, j,k

(

di, j,k −
∑

n f n
k

psfn
i, j,k −

∑

m bm
i, j,k

)2

σ2
i, j,k

· (2)

Here, σ2
i, j,k

is the variance tailored to each pixel value.
Unfortunately, straightforward minimization of Eq. (2) is com-
putationally very demanding for the large parameter space that
needs to be covered: in each layer k, a stellar source will con-
tribute three free parameters ( f n

k
, xn

k
, and yn

k
), and a background

component will contribute at least one additional free parameter.
In addition, several free parameters might be needed to find a
suitable model for the PSF of the observation. A further com-
plication is that Eq. (2) represents a non-linear minimization
problem.

To make the search for a solution feasible, we split the opti-
mization into three tasks: (i) an optimization for the PSF; (ii) an
optimization for the source coordinates; and (iii) an optimization
for the fluxes. In each step, the model is optimized only with re-
spect to one of these three properties, while the other two remain
fixed to their current value. After one step has converged, the
model parameters currently in focus are updated to their best-fit
values and the model is optimized for the next set of parameters.
On each layer k, the steps (i) to (iii) are then iteratively repeated
until convergence is found for the fluxes of the sources.

The practical implementation of our approach can be sum-
marized as follows. We start with an initial guess for the PSF and
the source coordinates and use them to fit the fluxes in the cen-
tral layer of the datacube. The reason for starting at the central
layer is that the efficiency of the spectrograph should be high-
est at the centre of the covered wavelength range, and therefore
the data should give the tightest constraints on the model. After
the iteration has converged to a solution for the central layer, we
continue with the two adjacent layers. In this way, the analysis
proceeds simultaneously to the red and blue ends of the covered
wavelength range. An integral field datacube provides a conve-
nient structure for such an iterative approach, as the changes in
the PSF or source coordinates between two adjacent layers are
always small, so the best-fit model of the previous layer is al-
ready a very good starting point for the analysis of the next one.
A potential drawback of this approach is that if a single layer
returns a strongly deviating model, such as is caused by an un-
detected cosmic-ray hit or strong telluric absorption, it will affect
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Fig. 2. Illustration of how the simulated data was produced and processed. Left panel: input color–magnitude diagram of 47Tuc. Overplotted is the
isochrone that was used to assign spectra to the individual stars. Upper panels: cut-out from an HST image of 47Tuc (upper middle); whitelight
image of a simulated crowded field datacube centred on the HST footprint (upper right). The lower right panel shows the deblended spectrum of
the star marked with a white circle. The input spectrum of this star is overplotted.

the analyses of subsequent layers. To avoid this, we generate ini-
tial guesses by averaging over the best-fit models of the last N
layers, with N typically being of the order of 10.

In general, we do not consider cosmic ray hits as a major
problem. The structure of raw IFS data actually allows for a con-
venient method to remove cosmic rays before performing the
data reduction (Husemann et al. 2012). Additionally, it is pos-
sible to significantly reduce the influence of undetected cosmic
rays in the analysis. Stetson (1987) presented a robust scheme
that dynamically reduces the weights of pixels with strong resid-
uals, and it is also applicable to IFS data.

After all layers of the cube have been processed, their re-
spective best-fit models are combined to produce a coherent
wavelength-dependent PSF model and to determine source co-
ordinates as a smooth function of wavelength. Using this infor-
mation, the datacube is then processed for a second time, yet this
time only the fluxes are fitted and we obtain the final spectra of
the sources.

After a few layers have been analysed, the analyses of the red
and blue halves of the datacube proceed independently of each
other. Thus, comparing the results obtained at the red and blue
end can be used to check the reliability of the obtained model.

4.2. Modelling the PSF

The usual approach to determining the PSF in crowded field pho-
tometry is to select a number of relatively isolated stars and fit
them with an analytical function. To account for possible mis-
matches between the analytical profile and the shape of the true
PSF, an empirical look-up table correction is frequently applied
afterwards.

As discussed above, this approach cannot be applied to IFS
datacubes without modification, mainly because of the very
small FoV. Our adopted approach is to instead use the full en-
semble of resolved stars within a field to reconstruct a global
PSF model, obtained by means of a least squares fit of Eq. (2)
to the data. The approach to recovering the PSF using all stars
in the field has previously been used by Schechter et al. (1993).
A notable difference of our implementation is that the PSF is fit-
ted to all stars simultaneously instead of in a sequential manner.
Similar to Schechter et al. (1993), we restrict the PSF descrip-
tion to a purely analytical model, since the construction of a re-
liable look-up table requires not only sufficiently isolated stars,
but also a very well-sampled PSF. With the somewhat coarse
spatial sampling of many IFUs, this cannot always be taken for
granted. But as the typical signal-to-noise ratio (S/N) per spec-
tral pixel is much lower than in broad-band images, an analytical
model should be adequate in most cases.

To define an analytical PSF model we follow the approach
adopted in GALFIT (Peng et al. 2002). In general, the PSF will
not be round but rather have an elliptical shape, with ellipticity e
and position angle θ. To account for the ellipticity, the pixel co-
ordinates x and y are first transformed into a coordinate system
(x̂, ŷ) centred on the origin of the star, and its x̂-axis is aligned
with the semi-major axis of the PSF:

x̂ = (x − xn) cos θ − (y − yn) sin θ, (3)

ŷ = (x − xn) sin θ + (y − yn) cos θ, (4)

with (xn, yn) being the pixel coordinates of source n. The dis-
tance to the centre of the PSF can now be written as as an
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Fig. 3. Radial surface brightness profile of the star BD+33D2642 as
measured in a PMAS datacube. Small grey dots show the flux in indi-
vidual pixels, the black squares were obtained by radially binning the
data. We used a Moffat profile and a simple Gaussian profile as the
analytical PSF description and fitted the star with both PSF models.
The blue solid line shows the best-fit PSF when using the Moffat, the
green dashed line shows the best-fit PSF for the Gaussian profile.

angle-dependent quantity,

r(x, y) =

√

x̂2 +

(

ŷ

1 − e

)2

· (5)

To describe the radial shape of the PSF we adopt the Moffat
profile, with a functional form given as

M(x, y) = Σ0

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 +

(

r(x, y)
rd

)2⎞
⎟

⎟

⎟

⎟

⎟

⎠

−β

· (6)

The width of the Moffat profile is mainly determined by the dis-
persion radius rd, while the β-parameter defines the kurtosis of
the profile, i.e the broadness of the wings of the PSF. The FWHM
of the Moffat profile can be expressed in terms of rd and β as

FWHM = 2
√

21/β − 1 rd . (7)

This leaves us with four free PSF shape parameters per layer:
β, FWHM, e, and θ. Depending on the quality of the data to
be analysed, the number of free parameters can be reduced, for
example by assuming a Gaussian instead of a Moffat profile or
by enforcing a circular PSF. The central intensity Σ0 of the PSF
is directly tied to the monochromatic flux of a source.

For each star n in the analysis, an empty array of the same
size as a layer of the datacube is created. Its pixel values are
set to the intensity of a normalized PSF at a radius r(x, y), us-
ing the current best-fit values for the source coordinates (xn

k
, yn

k
).

Nonetheless directly using Eq. (6) to determine the pixel values
psfn

i, j,k can lead to systematic errors close to the origin of the pro-
file if the sampling of the PSF approaches critical values. In such
cases, the change of M(x, y) within one pixel is so strong that its
value at the centre of a pixel is not a good approximation for the
integrated PSF intensity in that pixel. Currently, we solve this
problem by supersampling each pixel within a certain distance
to the centre of the PSF by a factor of typically 25–100 and cal-
culating the intensity for each subpixel. The final value of each
pixel is then obtained by summing over its subpixels. Numerical

Fig. 4. Example for the recovery of the PSF in a datacube. Shown is the
accuracy of the recovered PSF parameters β (top) and FWHM (bottom)
in comparison to their true values (blue dashed line). The grey solid
line gives the best-fit values of the PSF parameters obtained in each
layer and the final parameters of the PSF model obtained from these
values are shown as a solid green line. The analysis was started at the
central image of the datacube and proceeded simultaneously to the red
and blue ends of the cube.

integration schemes such as the one presented by Buonanno &
Iannicola (1989) can significantly reduce the number of required
subpixels and will be considered in our ongoing development of
the algorithm. Once a PSF has been prepared for each source,
we can use Eq. (2) to optimize the PSF model for each layer of
the datacube. After all layers have been processed, the results
of the individual layers are modelled as a smooth function of
wavelength for each free parameter of the PSF model. Following
Wisotzki et al. (2003), we use low order polynomials for this
task. This way we finally obtain the wavelength-dependent PSF.

To illustrate that our approach results in a valid description
of the PSF in integral field data we analysed one of our PMAS
datacubes of the standard star BD+33D2642. The datacube con-
tains a single star and thus allows for a precise measurement
of the PSF even in the faint wings. We analysed the data in the
way just described, using a single point source and a background
component. In Fig. 3 a comparison is shown between a PSF as it
is measured from our PMAS data and our analytical profiles. It
is obvious that a Moffat profile provides a good overall represen-
tation of the PSF. On the other hand, using a Gaussian severely
underestimates the wings of the PSF.

We used the simulated “crowded field datacubes” to investi-
gate how well our approach can recover the PSF in a dense stellar
field. We produced 100 cubes based on a wavelength-dependent
PSF represented by a Moffat profile with constant β and varying
FWHM. An example for the PSF recovery is shown in Fig. 4.
It demonstrates that the constraints on the PSF in an individual
layer are not very stringent, as can be seen by the large scatter
especially for the β fits, and yet the final combination of all in-
dividual fits yields a wavelength-dependent model that is a very
close representation of the true PSF.
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Fig. 5. Comparison between recovered and input PSF parameters for 100 simulated crowded field datacubes. The PSF was modelled using a Moffat
profile with wavelength-dependent FWHM and constant β parameter. Shown is the mean fractional difference in percent, between recovered and
true FWHM (left) and β parameter (right), respectively, as a function of the input values. A single outlier of ∆β ∼ 60% falls out of the plotted
range and is shown as a lower limit.

To obtain a statistical impression of the accuracy of the PSF
recovery, we analysed the full sample of 100 simulated “crowded
field datacubes” and compared the recovered PSF parameters to
the input. The results of this comparison are shown in Fig. 5.

These plots show that the FWHM of the PSF can usually be
recovered to an accuracy of 1–2%, while the recovered value of
β usually agrees with the input value to within 10%. Thus, the
PSF width is better constrained than the β parameter, similar to
what we observed in Fig. 4. This is well known and is because β
governs the outer wings of the PSF where the signal is generally
low. But this also implies that errors in β do not influence the
overall optimization (Eq. (2)) as much as mismatches in FWHM.

Furthermore, it is reassuring that the recovered values of the
FWHM are unbiased in the sense that they scatter around the
“true” value. This is not strictly the case for β, which tends to
come out slightly too high (by a few percent), thus corresponding
to a PSF with slightly less pronounced wings than was put into
the simulations. This is probably because for high source densi-
ties, the ensemble of faint wings of each PSF can be misidenti-
fied as being part of the background; so apparently a very small
fraction is, on average, transferred out of the wings of the stars
used for the PSF estimation and into the background component.
We discuss the consequences of the achievable PSF accuracy on
the quality of the extracted spectra in detail in Sect. 5.

4.3. Source positions

We assume that a source catalogue based on high-resolution
imaging already exists. The task is thus to find a global trans-
formation from a reference system (i.e. the source coordinates
in the catalogue) to the coordinate system of the datacube. At
least four parameters are required to describe this transforma-
tion: a rotation angle α, a pixel scaling factor ξ, and a shift along
both spatial axes, C and D. If we denote the coordinates of an
object in the reference system by (un, vn), we can write down the
coordinate transformation for a single layer as

xn
k = ξk (cosαk un + sinαk v

n) +Ck, (8)

yn
k = ξk (− sinαk un + cosαk v

n) + Dk. (9)

Substituting Ak = ξk cosαk and Bk = ξk sinαk, Eqs. (8) and (9)
can be rewritten as

xn
k = Ak un + Bk v

n +Ck, (10)

yn
k = Ak v

n − Bk un + Dk. (11)

Equations (10) and (11) define a system of 2N linear equations,
where N is the number of sources taken into account. While the
transformation will be wavelength dependent, this dependency
can be further constrained taking into account that:

(i) for instruments such as PMAS or ARGUS, where each
spaxel is coupled to an optical fibre guiding the light into the
spectrograph, neither α nor ξ should depend on wavelength,
and

(ii) the variation in both C and D with wavelength due to at-
mospheric dispersion can be predicted using a model for the
wavelength-dependent atmospheric refractive index during
the observation. Such predictions as a function of airmass
and parallactic angle have been derived, e.g., by Filippenko
(1982); also see Sandin et al. (2012) for an overview of dif-
ferent approaches. For the range of airmasses (�2) of our
PMAS data, an offset up to 0.′′2 (equivalent to 0.4 spaxels) is
predicted across the covered wavelength range, quite similar
to the values we actually measure.

One might use this information to already eliminate the wave-
length dependency in Eqs. (10) and (11) in the data reduction and
then assume a single transformation for all layers of the cube.
However, such a correction would involve resampling the data,
which we believe is to be avoided as much as possible. Instead,
we start by finding a best-fit solution for every layer separately
and then use the information to constrain the transformation a
posteriori: After all layers have been analysed, we determine the
IFU coordinates xn and yn of every source as a smooth function
of wavelength. To fix the rotation angle and the pixel scaling to
a common value for all layers of the datacube, the polynomial
fits can be coupled in such a way that the change in xn and yn

with wavelength is the same for all sources n. Furthermore, that
slope can be fixed to the one predicted by atmospheric disper-
sion. This approach is very flexible with respect to how much a
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Fig. 6. Comparison between the recovered and true source coordinates for the sources in 100 simulated crowded field datacubes, expressed as the
mean deviation in x- and y-direction relative to the FWHM of the PSF as a function of the position of each source, in units of the FoV size. Dashed
vertical lines indicate the FoV edges. The median deviation along x and y is marked by a solid black line, the 68.3% and 95.4% percentiles of both
distributions are indicated by the dotted and dashed black lines, respectively. A few outliers are out of the plotted range and indicated by upper
limits.

priori information should be used in determining the coordinates
(e.g., the determination of the refractive index depends on an ac-
curate knowledge of atmospheric properties such as humidity or
air pressure that is not always available) and it uses the informa-
tion from all layers together to obtain a final result.

Instead of fitting the parameters of Eqs. (10) and (11), we
directly fit a low-order polynomial to each xn and yn. This is
done because the variation in A to D with wavelength is not
completely independent of one another. For example, to a cer-
tain extent a change in the scale factor ξ (and thus A and B)
might be compensated by changes in the shifts C and D, espe-
cially when the S/N in a layer is low. Such correlated variations
in the parameters on small wavelength scales would be washed
out by a polynomial fit, causing larger errors in the recovered
IFU coordinates.

In this simple linear model, Eqs. (10) and (11) do not account
for distortions of the FoV. Given the small number of spatial pix-
els provided by most IFUs, this approximation should always
be valid. If that should not be the case, a solution would be to
expand the coordinate transformation to also include higher or-
der terms of un and vn. This will likely become important for
more complex instruments such as MUSE (cf. Sect. 7), where
the FoV is split into 24 different parts that follow independent
optical paths through the instrument before finally getting dis-
persed by different spectrographs.

One important feature in our procedure is that the global
transformation model can include sources with centroids actu-
ally outside of the FoV. Of course the accuracy of the positions
will decrease with increasing distance since the transformation
itself can only be constrained inside the FoV, but we are mainly
interested in sources close to the observed field that can still have
an influence on the light distribution inside the FoV, especially
in the case of bright stars.

Again, we used our 100 simulated crowded field datacubes to
assess the accuracy of the recovered positions. In Fig. 6 we plot
the offsets between the input and the recovered source positions,
in units of the PSF FWHM in each cube, so that the results pro-
vide a generic measure of the achieved accuracy relative to the
achieved spatial resolution.

We find that the standard deviations of the recovered coordi-
nates from the true ones are ∼1–2% of the FWHM of the PSF.
The highest accuracy is achieved in the centre of the FoV where
the coordinate transformation is best constrained. The scatter in-
creases only slightly towards the edges of the FoV, but there is
also a small systematic offset in the sense that at small x- or
y-coordinates, the recovered values are on average lower than
the true ones, while they are higher on average for large coordi-
nates. With regard to the coordinate transformation, this implies
that the scale factor of the transformation ξk is recovered too
large. This behaviour can be attributed to the small FoV that we
have to deal with. It leads to a significant fraction of sources that
contribute to the observed flux distribution having their centres
outside the FoV. In case of a small mismatch between the recov-
ered and the true position, the strongest residuals will emerge
in the region around those two positions. The more this region
is pushed away from the observed field, the weaker its effect
on χ2 will be. Thus χ2(ξ) is asymmetric towards higher values
of ξ, causing the observed trend. One can obviously avoid this
behaviour by making assumptions about the coordinate trans-
formation and fixing the value of ξi. However, in this case the
pixel scale of the integral field spectrograph must be known very
precisely, to better than 0.01′′ to achieve a comparable accuracy.
We emphasize that this trend is extremely small and that in many
cases the uncertainties of the individual high-resolution coordi-
nates will already be higher.

4.4. Extraction of spectra

Once the PSF model and all source positions are known with suf-
ficient accuracy, the least-square solution for the source spectra
becomes a linear equation. We have to minimize

χ2 = |Âa − b|2. (12)

We denote Â the “PSF matrix” because it contains the PSF
of every source in the fit. a contains the object fluxes we aim
at and b is the data. Note that, because of the 3-dimensional
data structure, a and b are also 3-dimensional and Â is even
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4-dimensional. We can then express the individual components
of Eq. (12) as

An
i, j,k =

psfn
i, j,k

σi, j,k

, (13)

an = f n, (14)

bi, j,k =
di, j,k

σi, j,k

· (15)

If we want to solve Eq. (12) in a least-squares sense we have
to properly take into account the uncertainty σi, j,k of each data
value. To achieve this, both the data and the PSF coefficients
have to be divided by the uncertainties (Press et al. 1992). It
can easily be verified that substitution of Eqs. (13) to (15) into
Eq. (12) yields Eq. (2).

The solution to Eq. (12) is obtained separately in each layer
of the datacube without any coupling of the fluxes of an in-
dividual star in adjacent layers. In this sense, it is similar to
performing photometry on each star in each layer (with known
PSF and source coordinates) and obtaining the spectrum of each
star as the combination of its individual monochromatic fluxes.
However, in contrast to common crowded field photometry, the
monochromatic fluxes in one layer are obtained simultaneously
for all stars instead of measuring star after star.

For each spectrum that is obtained by solving Eq. (12) we
can estimate the S/N per layer via

S/Nk = fk

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

i, j

psf2
i, j,k

σ2
i, j,k

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

1/2

· (16)

We note that Eq. (16) only takes the noise expected due to the
pixel uncertainties σi, j,k into account and therefore gives only
an upper limit that does not include any noise contributions in-
troduced by connecting the pixels in the analysis. As we show
below, the true S/N in a deblended spectrum can be significantly
lower.

It is worth spending a few more words on the handling of un-
certainties in the analysis. Throughout this paper we assume that
the uncertainties are known and correct, i.e that the true variance
in each pixel is σ2

i, j,k
. The reduction of integral field data usually

requires at least one step of resampling the data onto a regular
grid. Resampling always introduces covariances between neigh-
bouring pixels, although they are usually neglected in the further
analysis. Consequently, the provided variance tends to underes-
timate the true uncertainty of a pixel value. However, this has no
effect on the optimization, which is based on χ2 minimization.
Only the interpretation of absolute χ2 values with respect to con-
sistency between a model and the data may become doubtful.

Since Eq. (12) describes a linear least squares problem, its
solution does not require any starting values and can be directly
obtained by matrix inversion. For a realistic number of a sources
this is not a computationally intensive process, even if applied to
all layers in a cube. Furthermore, the computing time required
for the solution of Eq. (12) can be very significantly decreased
further by considering that the contribution of any star is lim-
ited to the pixels in its vicinity. Each element n of the PSF ma-
trix Â therefore contains a large number of pixels with essen-
tially zero values. For this reason, Â can be written as a sparse
matrix, for which there are dedicated efficient algorithms avail-
able (e.g., Paige & Saunders 1982). With these provisions it be-
comes possible to fit the fluxes of even several thousand sources
in a MUSE datacube simultaneously (see Sect. 7 below). The

computation time required to analyse a datacube is almost ex-
clusively determined by the time required to obtain the PSF and
the coordinate transformation. The computation time scales lin-
early with the number of sources. When fitting ∼20 sources for
an instrument comparable to PMAS, one iteration on a single
layer takes around 10 s on a single CPU. For the typical number
of iterations and layers in a cube, the total time required for a
whole datacube is around 10–20 h on a single CPU. Some parts
of the code have already been parallelized, others will be in the
future, so that the actual time required for the analysis can be
strongly reduced.

4.5. Construction of the source list

When the input catalogue of sources in the field is constructed
from high-resolution imaging, it will typically reach magnitudes
where the S/N level in the IFS data is too low to produce mean-
ingful spectra. We thus need to construct a subsample of stars
whose spectra can possibly be deblended in an available dat-
acube. By design, this subsample will contain stars over a large
range in magnitudes and expected S/N levels. Even if we are in-
terested mainly in the stars bright enough to yield a spectrum
with a sufficient S/N for some analysis, we also need to account
for the effects of blending with the (more numerous) fainter ob-
jects. There is a limit, however: When true source confusion sets
in, the deblending process and the flux assignment to individ-
ual sources becomes to some extent arbitrary. In Sect. 5 we ex-
plore quantitatively by means of simulations where this limit is
reached.

The decision of whether or not to include a particular source
will depend on several criteria: (i) the brightness of the source;
(ii) the distance to other nearby sources and their relative bright-
nesses; (iii) the position of the source, in particular if it is lo-
cated close to the edge of the FoV (or even outside, see below).
Effectively, the first two criteria can be combined into a single
one based on S/N, taking the degradation of S/N due to crowd-
ing into account.

The practical sequence of constructing a source list is as fol-
lows. We first estimate a limiting magnitude where confusion
becomes dominant, based on a global characterization of the ex-
posure, given its depth, resolution etc., in comparison with the
input catalogue. We then select a preliminary source list on the
condition that the source magnitudes are brighter than the confu-
sion limit. For those sources we predict the continuum S/N using
simulations as explained below, accounting for the overall effects
of crowding, as well as for the influence of close-by bright stars.
The final source list is then based only on the expected S/N of
the spectra.

In this process there will be stars with magnitudes brighter
than the confusion limit that do not pass the second selection
stage, given their proximity to a brighter star. Yet the influence
of those stars has to be taken into account in the analysis. In such
cases we generate a modified PSF for the close-by bright star
that approximates the contribution of its fainter companion using
the broad-band magnitudes of the two stars and their distance.
The extracted spectrum will then be a combined one, and will be
flagged accordingly in the resulting catalogue of spectra.

We note that the selection using S/N ratios will also take care
of picking the sources close to the edges of the FoV that con-
tribute significantly to the observed data. Eq. (16) is a sum over
all spatial pixels, the flux that enters in the S/N calculation is the
fraction of flux that is recorded by the detector. For a given posi-
tion, this fraction is determined by the PSF. The further a source
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is located outside the FoV, the smaller this fraction, and thus the
S/N will be.

4.6. Treatment of background

So far we concentrated our discussion on the resolved sources.
But the data will always contain some flux contribution from un-
resolved background components. One such contribution is the
night sky, the intensity of which we assume to be constant over
the field of view. Just like any other flux component that is spa-
tially flat, it can be easily accounted for by expanding the PSF
matrix Â by a component whose values are inversely propor-
tional to the uncertainties σi, j,k

Of greater interest is another background component that is
produced by stars below the confusion limit, i.e. those that are
not included in our source list discussed in Sect. 4.5. This back-
ground will in general not be spatially flat, but instead the distri-
bution of the stars will produce a grainy structure, known from
the surface brightness fluctuations observed in nearby galax-
ies. Our approach allows us to actually model these fluctua-
tions. The sources above the confusion limit provide us with
a model of the PSF in the observation. Additionally, from the
high-resolution imaging in combination with our model for the
coordinate transformation discussed in Sect. 4.3, we obtain pre-
cise IFU coordinates even for the sources below the confusion
limit. Furthermore, we can use the photometry provided by the
high-resolution imaging to estimate the relative brightness of the
sources. With PSF, positions, and relative brightnesses in hand,
we can predict the relative brightness of the grainy background
in every spatial pixel of the datacube. This prediction can then
be included (again after division by σi, j,k) in the PSF matrix.

Another physical background component could be in the
form of gaseous emission, e.g., from filaments in an H  region.
Obviously, such a component is not to be expected in globular
clusters, but we want to provide a tool that is useful in any kind
of crowded stellar field. We also mention again that the scientific
focus might actually not lie on the resolved stars but the nebular
emission. One might be interested in the kinematics or emission
line ratios and wish to remove the contamination of the bright
stars. In their work on extragalactic planetary nebulae, Roth et al.
(2004) show that integral field spectroscopy is capable of sepa-
rating individual point sources from diffuse emission of the ISM.
The ISM component will be line emission and thus be restricted
to a few layers in the datacube, so even if it strongly biases the
PSF fit in those layers, a reliable PSF model can be obtained by
interpolation of the results obtained bluewards and redwards of
the emission line. One might then start from some initial guess
for the spatial intensity distribution of the gaseous emission that
is included in Eq. (12) and iteratively improve it based on the
residuals observed in the layers under consideration.

5. Performance of the deblending process

The quality of the spectrum extracted from a datacube contain-
ing a single isolated star will depend almost exclusively on the
brightness of that star. This is different for the extraction from
crowded fields, where several effects may contribute to degrade
the spectrum. We investigated the performance of our deblend-
ing and extraction algorithm on the basis of our simulated data-
cubes. We employed several criteria to quantitatively measure
the quality of the extracted spectra:

The first two criteria are purely formal indicators. (i) We
measured how the S/N in the continuum behaves under crowding

Fig. 7. Degradation of the S/N in the spectrum of a star with a nearby
neighbour, as a function of the distance to the neighbouring source (nor-
malized to the width of the PSF) and of the magnitude difference (star
minus neighbour) between the two stars. We define the relative S/N as
the ratio between the measured value and the value expected for an iso-
lated star. For clarity, small horizontal offsets have been applied to the
plotted datapoints for the different magnitude differences.

conditions, relative to the value in isolated stars of the same mag-
nitude. (ii) We also tested how robustly the continuum level is
recovered, in terms of a potential systematic error in the broad
band magnitude.

To facilitate a discussion of the astrophysical possibilities
and limitations of crowded field spectroscopy, we also consid-
ered the behaviour of two types of derived spectral parameters
on crowding: (iii) radial velocities; and (iv) equivalent widths of
strong absorption lines.

In the following we illustrate and discuss the performance
of our code for each of these parameters. We first illustrate and
quantify crowding effects for the restricted scenario of only two
stars within a cube, with varying angular distance and bright-
ness difference. We then explore the global performance in real-
istic situations using the “crowded field datacubes” representing
mock PMAS observations of a real globular cluster, constructed
as described in Sect. 3.2.

5.1. “Crowding” of two stars

5.1.1. Signal to noise ratio and continuum level

To assess how the S/N is affected by crowding, we compared
the S/N expected using Eq. (16) to the one actually measured
in the deblended spectra. To measure the S/N of a deblended
spectrum we did the following. We subtracted the (noise free)
input spectrum from the deblended one. To account for possible
mismatches in the continuum level and slope of the extracted
spectrum we fitted the residuals with a low-order polynomial
that was then also subtracted. The residuals should now scat-
ter around zero with a standard deviation equal to the noise level
of the deblended spectrum. We determined the standard devia-
tion in a window around the central wavelength and divided the
mean flux of the deblended spectrum in that window by it to
yield an S/N.

For two stars of varying angular separation and magnitude
difference, Fig. 7 shows the dependence of the S/N degradation
on source separation dn and flux ratio. For separations greater
than the FWHM of the PSF, no degradation occurs as expected.
For smaller separations, the S/N decreases steadily and is only
half that of an isolated star for d12 ≃ 0.3 FWHM. The reason
for this degradation is an increasing degeneracy in Eq. (13). As
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Fig. 8. The average error in the continuum level of the deblended spec-
tra (expressed as a magnitude difference) as a function of the distance
of the source to a neighbour (again normalized to the width of the PSF)
and its relative brightness. As in Fig. 7, datapoints for different flux ra-
tios are plotted with small horizontal offsets for clarity.

the locations of the two stars approach each other, their PSF im-
ages become nearly the same, and the solution of Eq. (13) is no
longer unique; any linear combination of the two stars that main-
tains the total flux will yield an almost equally likely result (in
terms of χ2). Practically speaking, this means that in every layer
a different amount of flux will be transferred from one star to the
other.

An interesting aspect revealed by Fig. 7 is that the decline
in S/N seems to be almost independent of the flux ratio between
the two stars. This is unexpected at first sight – one might expect
a bright companion to have a higher impact on the deblended
spectrum of a faint star than vice versa. But in fact the observed
behaviour follows directly from Eq. (16). For small separations,
the expected noise (the inverse of the square root in Eq. (16))
will be almost the same for the two sources. But the final noise
will also be the same for both sources because it is determined
by the amount of flux that is shuffled back and forth between
the two. Of course, the absolute S/N will still be higher for the
brighter source because its signal is higher.

It is interesting to view the results depicted in Fig. 7 in light
of the Rayleigh criterion, which states that two point sources
are resolved if their separation is larger than the FWHM of the
PSF. It is of course well known that this criterion is not a strict
limit but only indicative for the spatial resolving power. Figure 7
shows that in the case where the relative positions of the two
sources are known, it is possible to deblend stars with distances
well below the FWHM of the PSF, although at the price of a
reduced S/N.

We also investigated how well the continuum level of the
stars could be recovered. To this aim we characterize the contin-
uum by dividing each deblended spectrum by the corresponding
input spectrum and converting the result into a magnitude. In
Fig. 8 the dependence of the average continuum error on source
separation and flux ratio is shown. It is remarkable that the strong
decrease in S/N visible in Fig. 7 does not cause a similar degra-
dation of the continuum level. This implies that the increase
in noise is indeed purely random and does not introduce any
systematics in the deblended spectra. That the actual deblend-
ing of the spectra (after PSF and source positions have been
determined) does not require initial guesses makes it very ro-
bust against systematics. Especially in cases like those discussed
above where the two stars are very close to one another and the
χ2 value becomes insensitive to the flux ratio between the two

Fig. 9. Accuracy in the recovered radial velocities (bottom) and equiv-
alent widths of strong absorption lines (top) for a blended star, as a
function of source separation and for different flux ratios. The lines de-
pict the median velocity difference (measured − true, thick solid) and
the 75% percentiles (thin dashed) for a distribution of 1000 stellar pairs
per separation value.

stars, the outcome of a fit that requires an initial guess would
strongly depend on the value of that guess.

We do observe a small overestimation of the continuum level
in the case of a very bright neighbour. However, the systematic
error stays below 0.1mag and one should keep in mind that in
this cases we are trying to measure the flux of a star that has a
companion well inside the extent of the PSF that is at least 15×
brighter.

5.1.2. Radial velocities and equivalent widths

We now consider the recovery of astrophysical quantities. We
determined radial velocities by cross-correlating the extracted
spectra with the noise-free input spectra used to generate the
datacube. The quantity of interest is then the “measured minus
true” velocity difference ∆v. Recall that the spectral resolution
adopted in the simulations was λ/∆λ = 7000, thus correspond-
ing to a velocity resolution of 42.9 km s−1 (FWHM).

The outcome of running our deblending code on a large num-
ber of simulated “two star datacubes” (1000 realizations per sep-
aration setup) is depicted in the lower panel of Fig. 9. The scat-
ter of the velocity differences increases as the source separation
decreases, which is of course expected as an immediate conse-
quence of the declining S/N. However, the median values of ∆v
stay comfortingly close to zero, although the two stars have ran-
domly assigned velocity differences of the order of 10 km s−1

(see Sect. 3.2). This is even so if the neighbouring star is much
brighter than the analysed source.
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But Fig. 9 also shows clearly that the impact of partial blend-
ing in terms of the scatter on ∆v is strongest if the nearby star is
significantly brighter. At first sight this behaviour might be seen
as different from what we observe for the S/N (cf. Fig. 7), but it
can be easily explained by the fact that the accuracy in the radial
velocity measurement depends on the actual S/N, rather than on
the S/N degradation.

To check whether the deblending process might lead to a sys-
tematic error in ∆v we divided our sample of stars into two sub-
samples, one with all stars that were assigned a positive “true”
velocity relative with respect to their neighbours and one with
all stars with negative “true” velocity. For both subsamples we
found that the recovered median ∆v values are statistically indis-
tinguishable from zero.

To investigate the behaviour of absorption line equivalent
widths we focused on the calcium triplet at λλ8498, 8542,
8662 Å. The equivalent width (EWCaT) of this feature is widely
used to estimate the metallicity of stars (e.g., Battaglia et al.
2008), and it is therefore important to look into the integrity of
this quantity under crowding conditions.

The behaviour that we observe for the recovered values of
EWCaT is very similar to what was just described for the radial
velocities. The upper panel of Fig. 9 shows the median deviation
and 75% percentiles between the equivalent widths measured
in the deblended spectra and those measured in the input spec-
tra. On average there is again no bias, but the scatter increases
with decreasing separation and with increasing brightness of the
neighbouring star, as expected.

5.2. Performance in realistic crowded fields

In the last section, we showed how we can predict the expected
S/N of a deblended spectrum under crowding (cf. Fig. 7), us-
ing the idealized case of only two stars. But when analysing a
crowded stellar field, we have to take also another effect into ac-
count. Below a certain magnitude, the confusion limit, the stellar
density of similarly bright stars will be so high that they form a
“pseudo background”. When this limit is reached, longer inte-
gration times will not lead to an increase in the number of re-
solved sources, though the average S/N will still increase.

To facilitate the following discussion, we first introduce the
term resolution element as the area covered by a circle whose
diameter is equal to the FWHM of the PSF. When dealing with
source densities, it is quite useful to specify them as numbers of
sources per resolution element because this measure is indepen-
dent of the specific instrument characteristics (number of spax-
els, spaxel size) and observing conditions (seeing). When stating
source densities in the following, we refer to the density of stars
brighter than a given limit.

Imaging studies are usually considered to be fairly complete
down to source densities of 0.1 stars per resolution element. Of
course, there is no sharp cut between detected and undetected
sources at this limit as some brighter sources will already re-
main undetected, while some fainter ones will still be found. Our
analysis is based on an existing inventory of sources, so there is
no need for a source detection. Instead, we define a resolvable
source as one that still improves the overall quality of the de-
blending process when it is included. Later, we also discuss the
subset of useful resolvable sources, which are those for which
physical parameters can be recovered to a given accuracy.

The aims we pursue in this section are twofold. First, we
want to obtain a well-founded determination of the confusion
limit, i.e. the transition from resolvable sources to unresolvable

Fig. 10. The recovered continuum level of extracted spectra as a func-
tion of the number of stars in the source list, from the analysis of
100 simulated crowded field datacubes. The number of stars is given
per datacube in the bottom and per resolution element in the top label.
A thick dashed line is used to indicate the median continuum error of the
brightest 10 stars per cube, and dotted lines enclose the 75% percentiles
of the distribution.

sources, and investigate the effects of selecting either too few or
too many stars. This is an important aspect for the source selec-
tion process that was presented in Sect. 4.5. Second, we want
to verify whether the effects we discussed for the crowding of
two stars (cf. Sect 5.1) can also be identified in realistic crowded
stellar fields.

We used the crowded field datacubes and tested how the
number of stars included in the deblending process influences
the results by including all stars in the deblending process
brighter than a limiting magnitude mcut. mcut was varied over
a range that corresponded to average source densities between
5 and >100 stars per simulated datacube. In the following dis-
cussion, we use two measures for the source density: besides
the number of sources per resolution element we also give the
number of stars per datacube, since absolute numbers are quite
intuitive. In our application cases, one crowded field datacube
contains 256 spatial pixels (reproducing the characteristics of
the PMAS instrument), and because the FWHM of the PSF is
two pixels, the number of resolution elements per cube is ∼80.

5.2.1. Continuum biases

We first checked whether the continuum level of the stellar spec-
tra becomes biased after extraction from a crowded stellar field.
Again we converted the fraction between recovered and true
spectrum into a magnitude, so in the case of systematic flux
transfer to or from other stars due to source confusion, we ex-
pect a non-zero offset ∆ f . We performed the deblending experi-
ment on 100 simulated datacubes and measured the distribution
of ∆ f for the set of the ten brightest stars in each datacube, as
a function of the total number of stars in the source list. Recall
that for each cube, the total number of stars in the source list
was varied from a few to >100 per field. The results are based
on the ten brightest stars per cube to allow for a fair compar-
ison between the individual simulations. Using all deblended
stars would penalize the simulations in which many stars were
included because stars with fainter magnitudes will on average
have deblended a spectrum with a lower S/N.
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Fig. 11. Estimated S/N of extracted spectra as a function of the number
of deblended stars per field or per resolution element, respectively, again
using the 10 brightest stars per simulated cube. The thick solid line
indicates the median of the distribution. As in Fig. 7, we show the ratio
of the S/N measured in a deblended spectrum and that expected based
on Eq. (16).

Figure 10 shows the median and 75% percentiles of ∆ f and
its dependence on the number of stars in the source list. The me-
dian value of ∆ f is nearly always very close to zero, implying
that on average, the continuum level remains essentially unbi-
ased under these crowding conditions. Only a very minor sys-
tematic offset to fainter magnitudes of ∼0.01 mag is observed.
We expect that the missing flux is lost in the wings of the PSF
and transferred into the background as it would agree with the
fact that the PSF is recovered with slightly less pronounced
wings (cf. Fig. 5).

It also becomes clear from Fig. 10 that individual stars can
show significant deviations in their continuum levels. The accu-
racy in the recovered continuum is actually worst when only the
few brightest stars (<10 stars per simulated crowded field dat-
acube) are extracted because in that case stars falling just below
the selection cut are still well resolved, and yet their contribu-
tion is not accounted for during the deblending. mcut is signif-
icantly brighter than the confusion limit and thus the stars are
extracted against a very inhomogeneous “pseudo”-background.
This behaviour is quite similar to what is reported by Moehler
& Sweigart (2006) when performing multi-object spectroscopy
of horizontal branch stars in the globular cluster NGC6388: the
contribution of close-by stars could not be accounted for and, as
suggested by the authors, very likely did influence the results.
Our results show that such problems are essentially avoided
when applying PSF-fitting techniques on IFS datacubes. The re-
covery of the continuum level is significantly increased upon in-
cluding more sources in the deblending process.

5.2.2. S/N degradation

The median relative S/N of the ten brightest sources in each
cube is shown in Fig. 11. Apparently, the S/N in a given stellar
spectrum decreases when the total number of sources taken into
account is increased. This decrease can only be due to source
confusion; in Sect. 5.1 we discussed the consequences of de-
blending sources with a small mutual distance. Now, if we in-
crease the number of stars in the process without taking the en-
vironment of a selected source into account, it becomes more

Fig. 12. Accuracy of the equivalent widths (top) and radial velocities
(bottom) determined from the recovered spectra of the brightest 10 stars
per cube as a function of the number of sources included. Line types are
as in Fig. 10.

likely that stars are included whose mutual distance is close to
or even smaller than the minimum distance at which the spatial
resolution of the data allows for a clean separation of the two. If
one tries to deblend those sources nevertheless, this will lead to
an increase in the noise of the extracted spectra, but the compar-
ison with Fig. 10 also shows that this flux reshuffling is essen-
tially random, because individual stars on average do not receive
flux or loose flux. Only their spectra get somewhat noisier.

In the source selection scheme that we have adopted, such
behaviour is avoided by including the expected S/N in the selec-
tion process. For each source, the S/N is estimated using Eq. (16)
and applying the correction found in Fig. 7. Then only sources
above a threshold in S/N are considered resolvable whilst others
are added to a brighter neighbour.

5.2.3. Recovery of spectral parameters

To quantify the influence of the number of deblended sources
on our ability to recover physical parameters from the spec-
tra, Fig. 12 shows the accuracy of measured radial velocities
and equivalent widths as a function of the number of deblended
sources.

When only the few brightest stars in each cube are de-
blended, the true EWCaT are underestimated. This can be easily
explained as a consequence of flux transfer from unaccounted
fainter to brighter stars, because the EWCaT increases as one
moves up the red giant branch. Once the source list accounts
for those fainter stars, this bias disappears entirely.

More interesting is the behaviour of the radial velocity accu-
racy ∆v, which has a broad but clearly defined minimum. This
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Fig. 13. The fraction of recovered sources plotted as a function of the
source density, using three different values for the required accuracy in
the recovered radial velocity. The curves have been obtained using the
same data that yielded the most accurate results in Fig. 12.

suggests that there is actually an optimal number of stars to be
used in the deblending process. The reason for the occurrence of
such a minimum is that two counteracting effects influence the
results, as we have identified previously. Inclusion of too few
stars leads to systematic errors because the fluxes of fainter (yet
still resolved) stars are not accounted for. Including too many
stars, on the other hand, causes a drop in the S/N of the de-
blended spectra that renders the determination of stellar param-
eters less accurate.

The source density at which those two effects are best bal-
anced is ∼30 stars per simulated cube, corresponding to 0.4 stars
per resolution element. If we adopt this number as the confusion
limit and compare to the value of 0.1 stars per resolution element
in crowded field photometry, we can quantify the improvement
we get from using a pre-defined source catalogue instead of hav-
ing to detect the sources in the datacube. Furthermore, we can
use this value to give requirements on the quality of the input
source catalogue in order to avoid being limited by the num-
ber of sources it contains: the stellar density of detected sources
should be at least four times higher than the spatial resolution of
the integral field data would allow for. Thus, the spatial resolu-
tion of the observation used to create the input catalogue must
be at least twice the spatial resolution of the datacube.

So far, we have counted all stars as resolvable that yielded
on average better results when included in the deblending pro-
cess. Clearly, not every single star of those will yield a use-
ful spectrum. The subsample of useful resolvable stars will
strongly depend on the science goals. To demonstrate this, we
used the simulations that yielded the most accurate results, i.e.,
where 0.4 stars per resolution element were deblended and de-
termined the recovery fraction as a function of source density
when requesting different levels of accuracy in the recovered ra-
dial velocities. The recovery fractions we obtained are shown
in Fig. 13. For the very stringent condition that uncertainties are
�1 km s−1, the completeness already drops to 50% at 0.1 sources
per resolution limit. On the other hand, under more relaxed con-
ditions, the completeness drops to below 50% only at sources
densities >0.2 sources per resolution limit.

Finally, we note that the recovered velocities have a very
small systematic offset of −0.2 km s−1, independently of the

number of stars; for the present study this is, however, of no
concern.

5.3. Influence of crowding

Our crowded field datacubes represent realistic integral field ob-
servations of a globular cluster, with stellar densities typical for
globular clusters. We now want to investigate the performance
of our method in different regimes of crowding. Over a cer-
tain range in stellar density we expect a trade-off between the
crowding and the achievable depth: The more crowded the stel-
lar field, the more our analysis will have to be restricted to the
brightest stars, but with increasing stellar density, it will also get
more challenging to deblend clean single object spectra at all be-
cause the contrast between the individual sources decreases. In
the limiting case the stellar density will already be so high for
the brightest sources that the stellar field is entirely unresolved.

In this section we aim to quantify up to what amount of
crowding our approach yields useful results before it breaks
down. Quantifying this limit is important when making predic-
tions about whether a stellar field can be accessed by means of
crowded field 3D spectroscopy. This will not only be applica-
ble to globular clusters but to any type of crowded stellar field.
In nearby galaxies, for instance, projected stellar densities can
significantly exceed those of a typical globular cluster. Thus it
would be very helpful to know up to what source density we can
still obtain good results.

To test the influence of the crowding, we modified our sim-
ulations of crowded field datacubes in the following way. We
identified as a bright star every source in the catalogue with a
visible magnitude brighter than the horizontal branch (F606W <
13.5 for 47Tuc), i.e we concentrated on the brightest giants. For
each simulated datacube, we randomly picked stars from the cat-
alogue and placed them in the datacube until a certain number
of bright stars was reached. The number of bright stars picked
varied between 4 and 400. The further processing of the cubes
was then similar to the simulations described in Sect. 3.2.

In total, 200 datacubes were prepared that were all anal-
ysed using our algorithm. To quantify its performance for a
single cube we counted the number of bright stars whose de-
blended spectra fulfilled an accuracy criterion. Two different ac-
curacy criteria were used: an error in the recovered continuum
of <0.1 mag and an offset in the recovered radial velocity of
<2 km s−1. In Fig. 14 we show the number of recovered sources
as a function of the crowding. “Crowding” here is defined as the
number of bright sources in a datacube. Furthermore, we again
normalized the star counts by the number of resolution elements,
for the reason mentioned above.

As Fig. 14 shows, both accuracy criteria yield comparable
results: we observe that up to a crowding of 0.2 sources per
resolution element, the number of accurately deblended sources
increases approximately linearly with the number of existing
sources. For a higher crowding of 0.2–1.0 sources per resolution
element, we observe a plateau with an average of ∼0.2 accu-
rately deblended sources per resolution element. If the crowding
increases beyond one source per resolution element, the number
of deblended sources that fulfil our accuracy criteria starts to de-
crease again, indicating that we have reached an “overcrowding
regime” where our approach breaks down.

We note that the distributions shown in Fig. 14 can also be
very helpful for judging whether single-star spectra can be de-
blended in a certain crowded stellar fields and for specifying
what spatial resolution would be required for its investigation.
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Fig. 14. The impact of crowding on the efficiency of the deblending algorithm. We show the number of useful deblended spectra as a function of
the number of bright sources in the simulation. To obtain a measure of the crowding that does not depend on the specific simulation setup (seeing,
size of the field of view) we have normalized the number of sources by the number of resolution elements. Two criteria were used to identify a
usefully deblended spectrum: a magnitude offset <0.1mag (left) and an offset in radial velocity <2 km s−1 (right) between the input spectrum and
the recovered one. Each plotted datapoint corresponds to the analysis of one mock datacube. In both panels, a grey solid line indicates the optimal
case where a useful spectrum could be deblended for every bright star in the field of view.

6. Potential sources for systematic errors

6.1. Influence of the PSF

In Sect. 4.2 we discussed to what accuracy the PSF can typically
be determined in a crowded field datacube. We now investigate
the effects of any possible mismatch between the true and the
reconstructed PSF on the quality of the deblended spectra. To
this aim, we modified the analysis of our two-star datacubes. The
PSF assumed in the deblending process did now systematically
deviate from the one that that was used to create the cubes. We
describe the mismatch in terms of the FWHM of the PSF, as this
is a quantity that is relatively easily accessible in observations.
The analysis of Sect. 4.2 showed that we can recover the FWHM
to an accuracy of usually ∼1–2%, with some outliers at the 10%
level. Based on these results, we simulated PSF mismatches of 1,
2, 5, and 10% in FWHM.

Qualitatively, we expect the effect of an inaccurate PSF to
be the following: The deblending process will leave residuals in
the vicinity of every star. The amplitude of such residuals will
scale with the brightness of the star. Close-by stars will then be
deblended on top of the residuals and the extracted spectrum will
be a combination of the true spectrum and the residuals.

Quantitatively we wanted to know by how much these resid-
uals bias a deblended spectrum and the derived astrophysical
quantities. We again measured the radial velocities and Ca triplet
equivalent widths in the deblended spectra, took the differences
to the input values, and checked the ensemble of results for sys-
tematic deviations.

For obvious reasons the impact of any PSF mismatch will
be strongest for relatively faint sources in the vicinity of signif-
icantly brighter ones. We therefore considered two cases: (i) A
moderate brightness contrast between the source in question and
its neighbour (1 < ∆m < 3); and (ii) a strong brightness con-
trast of 3 < ∆m < 5. A contrast of 5 mag would be roughly the
expected value for a star in the red clump of a globular cluster
apparently close to a star at the tip of the red giant branch.

In Fig. 15, we present the median absolute difference be-
tween the measured and true radial velocities as a function of
the degree of PSF mismatch, in two panels corresponding to the

different contrast classes. To distinguish between random and
possible systematic errors, the median absolute difference is also
shown for the case of a perfect PSF (Fig. 15). In this case, the off-
set should be completely caused by random errors, i.e. the lim-
ited S/N of the deblended spectra. Any increase in the offset can
then be attributed to the imperfect PSF. With increasing influ-
ence of the PSF residuals of the brighter neighbouring star, the
median of the distribution will approach the assumed velocity
dispersion.

As expected, the influence of the PSF increases with the
brightness contrast between source and neighbour. This can be
verified by comparing with the two panels of Fig. 15. For mod-
erate brightness contrast, the introduced systematics are small if
the FWHM of the PSF is determined to an accuracy of <5%,
whereas in the case of a strong brightness contrast, offsets of 2%
already introduce measurable systematics. At this contrast level,
the residuals caused by the PSF mismatch if the errors in the
FWHM are ≥5% are so strong that the signal of the fainter star
basically disappears and no useful spectrum can be deblended
any more. On the other hand, Fig. 15 also shows that PSF mis-
match only becomes an issue for source separations comparable
to or smaller than the FWHM. We find similar results regarding
the accuracy of the recovered values of EWCaT.

Recall that for crowded fields in Galactic globular clusters
we typically can recover the PSF width to an accuracy of <2%.
The simulations presented in this subsection demonstrate clearly
that this will be sufficient to deblend an unbiased spectrum of a
star in the close vicinity, to even a small fraction of the PSF
width, of a neighbour that is ∼10× brighter. Only in the extreme
case where the brightness contrast between the two stars is sig-
nificantly greater than a factor of 10, significant biases are to be
expected. Nevertheless, such cases will be known from the input
catalogue and can thus be easily flagged and excluded from the
further analysis.

6.2. Further sources for systematic errors

An imperfect PSF is not the only potential source of systematic
errors. Another such source are the positions of the individual
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Fig. 15. Difference between recovered and true radial velocity of a sim-
ulated apparent binary star, as a function of source separation and of the
degree of PSF mismatch, for two ranges of flux ratios between the two
stars. The curves show the median of the absolute velocity difference
of each stellar pair. Also shown is the median offset for the case of a
perfect PSF (red line) to show the behaviour expected in the absence
of any systematic error. For clarity, deviations larger than the velocity
dispersion have been set to a value of 10 km s−1, the assumed velocity
dispersion in the cluster.

stars in the field. For reasons like measurement errors or proper
motions, the source coordinates that are given in the input cata-
logue can be offset from their true values. The strength of such
effects is essentially a property of the specific input catalog that
is used and cannot be predicted like the achieved accuracy of the
PSF. For this reason, we did not try to quantify the influence of
these effects on the deblended spectra.

A further error source related to the input catalogue is the
issue of missing stars or spurious detections. Those effects will
occur mainly in the regime of the fainter stars that are inacces-
sible to the integral-field observations (that have a lower spatial
resolution). Under certain circumstances, however, they might
also play a role amongst the brighter stars that are accessible.
One such example are catalogues that are compiled from obser-
vations with the Advanced Camera for Surveys (ACS) onboard
HST. In the case of globular clusters, those observations are usu-
ally targeted at the numerous faint main-sequence stars, and the
brightest giants appear heavily saturated in the exposures and
cause strong bleeding features on the CCD that might cover rel-
atively bright stars (see Fig. 16 for an example). Again this effect
will largely depend on the quality of the used input catalogue.

7. MUSE

MUSE (Bacon et al. 2010) is an integral field spectrograph cur-
rently being built by a consortium of 6 European institutes and

Fig. 16. Simulated MUSE observation of the globular cluster 47Tuc.
Left: cut-out from an HST/ACS observation of the central arcmin of the
cluster in the F606W-passband. A red cross denotes the cluster centre.
Right: reconstructed broadband image from the mock MUSE data of the
same region, obtained by integrating the datacube with the F606W fil-
tercurve. The seeing in the simulation was set to 0.8 arcsec. Red squares
indicate the two 20 × 20 arcsec fields that are discussed in the text.

ESO. It is scheduled to see its first light at the Very Large
Telescope (VLT) in 2013. The instrument provides a FoV of
1arcmin2 with spaxels of 0.2 × 0.2 arcsec2, and a wavelength
coverage of 4650–9300 Å. The combination of a large FoV with
a spatial sampling sufficient to properly sample the PSF even
under good seeing conditions makes MUSE a unique instrument
for a variety of science applications. Although the main motiva-
tion for developing this new instrument is the observation of faint
galaxies at medium-to-high redshift, some very promising appli-
cations exist for investigating crowded stellar fields. To demon-
strate this, we outline in the following the analysis of a simulated
MUSE datacube of the globular cluster 47Tuc.

The simulations are again based on the HST-photometry
obtained in the HST/ACS survey of Galactic globular clus-
ters. Based on broadband colours and an isochrone fit to the
color−magnitude diagram of 47Tuc, each star was assigned a
spectrum based on a new library of model atmospheres and syn-
thetic spectra calculated by Husser et al. (2012) using the stellar
atmosphere code PHOENIX (Hauschildt & Baron 1999).

To simulate the effect of missing stars in the vicinity of
brighter stars, we applied the following correction to the input
catalogue. We counted the surface density of stars at a given
magnitude in the vicinity of brighter stars and compared it to
the overall density of those stars across the field covered by the
catalogue. Stars were then randomly added in the vicinity of the
brighter ones until the two densities matched.The catalogue that
was later used in the analysis did not include those stars.

In the final step of the simulation, a datacube was created us-
ing dedicated software developed within the MUSE consortium
(Bacon, priv. comm.). It creates a datacube containing the pro-
vided sources and a sky spectrum. Each spectrum is convolved
with the line spread function of MUSE. The seeing in the simu-
lation was set to 0.8 arcsec. This value is internally translated to
a wavelength-dependent PSF. The final simulated datacube is a
combination of three snapshot exposures, each with an exposure
time of 30 s. Figure 16 shows a whitelight image of this datacube
together with an HST image.

We concentrate our discussion on two 20 × 20 arcsec sub-
cubes, highlighted in Fig. 16 (right) by red squares. In both re-
gions, we deblended the stellar spectra using our crowded field
spectroscopy code.
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Fig. 17. Visualization of our source deblending algorithm applied to simulated MUSE data. For each of the two fields highlighted in Fig. 16, we
show a cut-out from an HST/ACS image (left), a white light image of the simulated data (centre), and a residual image after fitting the sources
(right). Each location where a useful spectrum was deblended has been marked by a green circle.

The algorithm itself was slightly modified in order to handle
the significantly larger amount of data of a MUSE cube com-
pared to PMAS or ARGUS. The size of the FoV of MUSE is
large enough that some relatively isolated bright stars should
exist within the FoV that can be used as PSF calibrators. We
therefore used the existing photometry to select suitable PSF
stars on the condition that within a given radius there are no
neighbours brighter than a given flux ratio. The search radius is
chosen such that the PSF contribution outside this radius is es-
sentially zero. After each fit to the object fluxes during the itera-
tion, we then subtract all stars except those previously identified
and determine the coordinate transformation and the PSF using
only those stars. This significantly speeds up the analysis and we
achieve computational times similar to our PMAS or ARGUS
datacubes. Nevertheless, the actual extraction of the spectra still
is performed on all stars simultaneously.

In Fig. 17 we show a close-up of the two regions, again us-
ing an HST/ACS image and a whitelight image of the mock
MUSE data. We also show a whitelight image for each region
with the MUSE data where the deblended sources were already
subtracted. Closer inspection of these residuals reveals that some
stars have been missed by our source selection; these are the stars
added to the incomplete source catalogues as discussed above.
Such sources can be easily identified in the residuals and then
added manually to the catalogue.

To visualize the efficiency of our deblending approach we
marked the position of every source for which a useful spectrum

was deblended. Sources for which the extracted spectra have an
S/N that is too low for a reliable radial velocity determination
are not marked in Fig. 17. The total number of useful spectra
that were deblended is 580 in subfield #1 and 610 in subfield #2.
Interpolating these numbers to a full datacube, we estimate that
from a single MUSE observation obtained under average seeing
conditions we can obtain ∼5000 useful spectra. Under very good
seeing conditions this number may even be 3–4× higher.

The extended wavelength range of MUSE allows us to di-
rectly determine broadband colours from the spectra by apply-
ing the filtercurves of the HST/ACS F606W and F814W filters
(hereafter called V and I, respectively) and compare them to the
“true” (i.e., input) colours. In Fig. 18, the deviation in V − I is
plotted as a function of V band magnitude. The comparison of
the two fields gives a good impression of the effect of crowding.
In the less crowded part of the simulated data (field #1), we ob-
tain useful spectra for fainter stars than in the direct vicinity of
the cluster centre (field #2), and yet in both fields we are able
to probe below the main sequence turn-off. Taking into account
that the simulation assumed only average seeing conditions and
that MUSE is also designed to work with adaptive optics, this
demonstrates the unique capabilities provided by the instrument.

Finally, we take a look at the accuracy achievable in the
measured radial velocities. The spectral resolution provided by
MUSE is lower than what we used in our previous simulations
and that of our existing PMAS and ARGUS data. However, the
wider wavelength range at least partly compensates for this. As
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Fig. 18. Deviation in V − I color recovered from the deblended spectra
as a function of a stellar magnitudes for the two subfields highlighted
in Fig. 16. The median of the distribution is shown as a thick solid
line, dashed lines give the 75% percentiles of the distribution. A verti-
cal dashed line is used to indicate the main-sequence turn-off in both
panels.

Fig. 19 shows, radial velocities of bright giants can be deter-
mined with an accuracy of a few km s−1. Around the main se-
quence turn-off of the cluster, the typical error of the obtained
radial velocities is still comparable to the velocity dispersion.

8. Conclusions

The application of PSF-fitting techniques to integral field spec-
troscopy is a powerful approach to observe crowded stellar
fields. We developed an algorithm to deblend the spectra of many
stars within a single datacube simultaneously, and validated the
method by applying it to realistic simulated observations of the
central regions of globular clusters. The combination of linear
least-squares fitting with the use of sparse matrices makes the
code computationally efficient and affordable even for a modest
workstation.

One central assumption for our algorithm is that an input
catalogue of the sources in the field already exists. Typically this
catalogue would be obtained by other means, such as by running
a classical crowded field photometry code on high-resolution
HST images. It is of course also possible to perform the source
detection in the IFS datacubes themselves, e.g. from a collapsed
white-light image. But our simulations show that by using prior
knowledge of the locations of sources in the field, the number of
correctly deblended sources is increased by up to a factor of ∼4
compared to the case where the source detection is performed on
the IFU data.

We extensively tested the performance of our code as a func-
tion of the degree of crowding, expressed as the number of
sources per field or per spatial resolution element. A conven-
tional rule of thumb for crowded field photometry states that
deblending performs well up to a stellar density of ∼0.1 per
resolution element. We showed that the spectroscopic deblend-
ing works at even considerably higher source densities than that.

Fig. 19. Deviation of the radial velocities determined from the de-
blended spectra, again plotted as a function of a star’s brightness for
the two fields highlighted in Fig. 16. Radial velocities were determined
by cross-correlating each deblended spectrum with its input spectrum.
The line types are as in Fig. 18.

This gain is partly due to the application of prior knowledge as
discussed above, and partly due to the continuity enforcement
over many simultaneously evaluated image layers in a datacube.

While unbiased spectra can be extracted even for heavily
blended sources, such spectra will suffer from a significantly re-
duced S/N level, with the degradation being driven by the prox-
imity to and the brightnesses of nearby stars. We showed that
this reduction of S/N due to blending can be accurately mod-
elled and predicted for a given dataset from the input catalogue.
Consequently, an optimal source list for the final extraction can
be constructed according to the expected S/N of the final spec-
tra. This is a very useful feature for statistical investigations in
crowded stellar fields, since it allows one to maximize the num-
ber of “meaningful” spectra that can be obtained from a given
dataset.

Under conditions of strong crowding, the number of stars per
field for which spectral parameters can be reliably determined
is approximately independent of the actual source density and
corresponds to roughly 0.2 stars per spatial resolution element.
This “plateau” exists because of the mutually opposing effects
of higher source densities, on the one hand, and more severe
S/N degradation due to crowding, on the other. Only when the
observed density of stars of comparable brightness passes a def-
inite “overcrowding limit” of ∼1 star per resolution element, the
extraction of useful individual spectra breaks down entirely.

The degree of crowding in a given field also depends, of
course, on the depth and angular resolution of the data. We
constructed our simulated datacubes in view of our own exist-
ing observations of Galactic globular clusters, using present-day
IFUs under seeing-limited conditions. Even in the very central
regions of these clusters we found that the source density of stars
bright enough to produce meaningful spectra was still well be-
low the overcrowding limit. However, this could change rapidly
if the data were going deeper down the color–magnitude dia-
gram, especially once the main sequence is being probed. We
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demonstrated that with the upcoming MUSE instrument this do-
main will actually be reached. Improving the angular resolution,
for example through ground-layer adaptive optics as envisaged
for MUSE, will then become crucial.

The spectroscopy of crowded stellar fields may be of inter-
est for other classes of astronomical objects, such as compact
open clusters, dwarf galaxies, or dense regions in the bulge of
the Milky Way. The methodical work presented in this paper will
enhance the capabilities of “crowded field 3D spectroscopy” be-
yond our own application topic of globular clusters. For the ben-
efit of the community, we plan to make our code available to the
public in the future.
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