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Abstract. The area of proof-based verified computation (outsourced computation built atop probabilistically check-
able proofs and cryptographic machinery) has lately seen renewed interest. Although recent work has made great
strides in reducing the overhead of naive applications of the theory, these schemes still cannot be considered practi-
cal. A core issue is that the work for the prover is immense, in general; it is near-practical only for hand-compiled
computations that can be expressed in special forms.

This paper addresses that problem. Provided one is willing to batch verification, we develop a protocol that
achieves the efficiency of the best manually constructed protocols in the literature yet applies to most computations.
Our protocol is built on the observation that the recently-proposed QAPs of Gennaro et al. (ePrint 2012/215) yield
a linear PCP that works with the efficient argument protocol of Setty et al. (ePrint 2012/598, Security 2012, NDSS
2012), itself based on the proposal of Ishai et al. (CCC 2007). The consequence is a prover whose total work is not
much more than linear in the running time of the computation. We implement the protocol in the context of a built
system that includes a compiler and a GPU implementation. The result, as indicated by an experimental evaluation, is
a system that is almost usable for real problems—without special-purpose tailoring.

1 Introduction
The rise of third-party and cloud computing has led to renewed emphasis on a basic systems security prob-
lem: allowing one party to check the output of a computation outsourced to a separate, potentially undepend-
able party. While the first party could in principle carry out the computation itself as a check, that would
defeat the purpose of having outsourced the computation in the first place. For example, a typical use of
cloud computing is performing large-scale simulations. Given the risk of incorrect program execution, users
want to know that the answers that are returned are correct—and local checking is not an option.

There are many approaches to solving this problem that rely on assumptions about the computation or
usage model. Replication [4, 19, 32, 38] assumes that failures are uncorrelated. Trusted hardware [45] and
attestation [43, 46] can work for any failure model but assume a chain of trust that is inconsistent with
many applications. Auditing [40] can be effective for highly structured computations but assumes detailed
knowledge of the intermediate results.

In principle, there are solutions that make almost no such assumptions. These solutions, which we refer
to as verified computation protocols, use modern cryptography coupled with seminal work in complexity
theory on probabilistically checkable proofs (PCPs) [6, 7]. In these solutions, a remote server returns not
only the result of the computation but also a proof of correctness, encoded to enable efficient checking
by a client. The theoretical guarantees are very strong: there are no assumptions about the server (besides
standard cryptographic ones) or about the computation. Indeed, any program can be compiled into such a
protocol—in principle.

The stumbling block has been practicality. Although there are many protocols for general-purpose ver-
ified computation in the literature [26, 30, 31, 33, 34] and have been for a long time [8], the theory, if

*This is longer version of a previous publication [48]. This version includes some proofs that were elided for space.
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implemented naively, is preposterously expensive: hundreds of trillions of CPU-years or more to verify
simple computations [49].

Very recently, researchers have started adapting these protocols for use in real systems [23, 47, 49, 51,
52]. The good news is that this work has produced massive performance improvements over naive imple-
mentations (e.g., 20 orders of magnitude [49, 51]). The bad news is that these systems are still essentially
impractical. Indeed, the overhead for both verifier and server remains excessive, owing to the proof en-
coding needed to make the proof efficiently checkable. For general computations, the prover runs in time
quadratic in the running time of the computation. To support claims to plausibility, existing work introduces
a tradeoff between generality and efficiency. Specifically, by restricting themselves to computations that
can be expressed in special forms, they achieve better performance; Setty et al. [51] achieve efficiency for
hand-tailored protocols for particular computations (e.g., matrix multiplication), and the work of Thaler et
al. [23, 52] is restricted a priori to computations that are efficiently parallelizable and can be expressed as
concise arithmetic circuits.

This paper resolves this conflict:
(1) Using a new formalism [27], we introduce a novel linear PCP that works over constraints (these

terms are explained in Section 2) and plugs into the framework of Ginger (the verified computation system
of [51]) to provide a proof encoding that is now linear, instead of quadratic, in computation running time
plus program length (encoded as constraints).1 As a theoretical matter, this resolves an open problem posed
by Ishai et al. [33] (who speculated that such an encoding was possible) and results in a protocol in which
the server’s overhead is nearly linear (there are two logarithmic factors, as we explain later). As a practical
matter, this demolishes costs: the server’s overhead on all computations is similar to the overhead for the
best manually constructed computations in prior work [23, 51, 52].

(2) Using the Ginger implementation as a base, we have integrated our refined linear PCP into a built
system for verified computation, called Zaatar. Zaatar adapts the compiler from Ginger (itself descended
from the Fairplay compiler [37]) to produce the constraints needed by the new linear PCP. This allows
Zaatar to take a high-level language as input and to leverage Ginger’s GPU implementation.

(3) We perform a detailed experimental evaluation of Zaatar. We examine real programs that are ex-
pressed in a high-level language and compiled automatically (by contrast, most of the evaluated computa-
tions in prior work were manually constructed [23, 49, 51, 52]). For various realistic benchmark compu-
tations, including sorting, clustering, and shortest paths, Zaatar’s prover is significantly more efficient than
that of its base, Ginger. For instance, with the benchmark problems that we experimented with, the prover’s
costs usually reduce by 3–6 orders of magnitude, depending on the input size. The verifier’s costs drop by
similar amounts. Therefore the verifier can batch-verify a plausibly small set (thousands) of computations
and still gain from outsourcing. As one would expect, Zaatar’s measured scaling behavior (linear) is far
more favorable than Ginger’s (quadratic).

Although we are not quite ready to start a company, these results are encouraging. They apply in realistic
scenarios: regimes in which batching (verifying multiple instances of the same computation on different
inputs) is acceptable and users are willing to pay something for security guarantees. These requirements are
consistent with current uses of cloud computing. For instance, large-scale simulations in scientific computing
often have repeated structure, as does the map phase of MapReduce computations (however, our system does
not yet apply in situations where the verifier does not locally have all of the input).

The next section provides a tutorial in the fundamentals. Subsequent sections describe the innovations
in this paper.

1The observation that the formalism of [27] yields linear PCPs has been independently made in a theoretical context [17], as detailed
in Section 6.

2



Ψ, x

y

queries

prover (P) 

responses

verifier (V) 

tests

{Z1Z2+Z3=0,
Z4+Z6=0, ...}Ψ 

π

Ψ {Z1Z2+Z3=0,
Z4+Z6=0, ...}

z1, z2, ...

accept/
reject

1 1

2

33
3

Figure 1—Our framework at a high level. V specifies a computation, Ψ. Step À: V and P compile Ψ to constraints.
Step Á: P solves the constraints. Step Â: P produces a proof π, and V queries P; the responses prove to V that P has
solved the constraints. This latter step uses an efficient argument system built atop PCPs.

2 Framework and background
This section describes our framework (§2.1) and the machinery that forms Zaatar’s base (§2.2).

2.1 Problem statement and approach

Problem statement. A verifier V sends a description of a computation Ψ and input x to a prover P . P
computes y = Ψ(x), and returns y to V . Then, V and P interact in such a way that: (1) if y = Ψ(x),
V accepts y as correct; but (2) if y 6= Ψ(x), V rejects y, with high probability. The interaction should be
cheaper for V than computing Ψ(x). Furthermore, the guarantees should depend only on V and not on, say,
whether P obeys the protocol (although we will make standard cryptographic assumptions about the limits
of P’s computational power).

Our high-level solution is depicted in Figure 1. The first step is for V to express its computation in a
constraint formalism. For our purposes, a set of constraints C will mean a system of equations that uses field
operations (addition and multiplication) over variables (X, Y , Z) in a finite field, F (for example, {Z1 · Z2 +
Z3 = 0, Z4 · Z5 = 0}). The variables X and Y will be distinguished input and output variables; for now, we
will assume one of each for expositional simplicity. The notation C(X=x, Y=y) denotes C with variable X
bound to x and variable Y bound to y. If there exists a setting of the remaining (or unbound) variables that
makes all of the equations hold simultaneously, then the set of constraints is satisfiable; such a setting is
called a satisfying assignment.

For a given computation Ψ, expressed in a high-level language, we say that a set of constraints C is
equivalent to Ψ if: for all x, y, we have y = Ψ(x) if and only if C(X=x, Y=y) is satisfiable. As an example,
decrement-by-3 is equivalent to {X − Z = 0, Y − (Z − 3) = 0}.

In the second step, P obtains y = Ψ(x) by executing Ψ, and in the process of doing so, identifies z, a
satisfying assignment of C(X=x, Y=y), where C is the set of constraints equivalent to Ψ.

The third step is for P to use the theory of probabilistically checkable proofs (PCPs) to prove to V that
it has a solution. A classical proof for the statement, “These constraints have a solution” would be an actual
satisfying assignment, e.g., z, which the verifier could plug into C to check that each constraint is satisfied.
This checking procedure requires the verifier to read the entire proof.

The surprising content of the PCP theorem [6, 7] in our context is that for any set of constraints
C(X=x, Y=y), there is a randomized verification algorithm, V , that inspects suitably encoded proofs prob-
abilistically. Specifically, V inspects a constant number of randomly chosen locations in a purported proof
(the constant is independent of the constraint set), runs some checks against the results, and satisfies:

• Completeness. If the constraints are satisfiable—that is, if y=Ψ(x)—then there exists a suitably encoded
proof (a PCP) that makes V accept.

• Soundness. If the constraints are not satisfiable—that is, if y6=Ψ(x)—V’s probability of accepting any
given proof is very small. This probability is over V’s random choices.
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Figure 2—The Ginger protocol [51], which is Zaatar’s base; Zaatar modifies the shaded pieces. Ginger and Zaatar
verify multiple instances of Ψ in a batch; this is not depicted. Also not depicted are Ψ’s equivalent constraints, C.

Unfortunately, the naturally-implementable “textbook” PCPs [41] are too large to be transferred (and
other PCPs, while asymptotically short [13, 14, 24], appear to have prohibitive constants). However, we can
handle long PCPs with cryptography: if we assume a standard bound on the prover’s computational abilities,
we can use efficient argument systems. The high-level idea [34] is that the prover commits to the contents of
the proof by publishing a digest. Then V asks for the values of the proof at particular locations and verifies
that the responses are consistent with the digest. In this way, P is forced to simulate a fixed proof. That is,
an interaction between V and a fixed proof string becomes an equivalent interactive protocol between two
actors, V and P .

Below, we describe Ginger [51], which is an efficient argument system that implements the idea above,
building on the foundations of Ishai et al. [33] and Pepper [49].

2.2 Our starting point: Ginger

Figure 2 depicts Ginger. We first describe its constraints, then its commitment protocol, and then its PCP.

Computations and constraints. Ginger represents a broad class of computations as degree-2 constraints
over F, meaning constraints in which the product terms have no more than two elements. The computations
can have field operations, primitive floating-point types, if-then-else constructions, logical tests, logical con-
nectives, and inequality comparisons [51]. As a simple example, the construct X != Z can be represented as
{0 = (X−Z) ·M−1}, where M is an auxiliary variable. Ginger’s compiler uses this equivalence and others
to transform a high-level language into degree-2 constraints. This transformation is detailed in [18]; very
broadly speaking, it works as follows. The compiler turns a program (even if it has conditionals and loops)
into a list of assignment statements. Then it produces a constraint or pseudoconstraint for each statement.
Pseudoconstraints abstract certain operations; for instance, order comparisons expand to O(log |F|) actual
constraints.

Linear commitment. Ginger’s commitment protocol leverages PCP constructions [6] in which the proof
is encoded as a linear function; Ishai et al. call these constructions linear PCPs [33].2 A linear function π is
one for which π(a) +π(b) = π(a + b) for all a, b in the domain of π. Note that a linear function π : Fn 7→ F
is determined by a vector. Specifically, there exists a vector u ∈ Fn such that π(a) = 〈a, u〉, for all a ∈ Fn.
Here, F is the same field as above and 〈a, b〉 is the inner (or dot) product of two vectors.

The protocol has two phases [49]. In the first phase, V asks P to apply its function to an encrypted
vector;3 this forces P to commit to some fixed function π. In the second phase, V submits the queries given

2To avoid confusion, we note that the term “linear” is relevant in two ways in this paper. First, “linear PCPs” refers to the form
of the proof (rather than its overhead, which used to be quadratic). Second, the current paper constructs linear PCPs that have
near-linear overhead.

3For this purpose, Ginger requires homomorphic encryption but not fully homomorphic encryption [28]; Ginger uses ElGamal [25].
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by the PCP protocol (see below) to the function π; note that P commits to π before P sees these queries.
V then uses the protocol to check that P’s responses are given by π. If not, V immediately rejects. If so, V
treats the responses as the PCP responses, and runs the PCP checks (described below) on these responses.

A linear PCP. A PCP is normally described as an oracle π (a fixed function to which V has access). Since
the commitment protocol allows V to treatP as implementing that oracle [33, 49, 51], we will be loose about
whether V’s queries are submitted to an oracle π or a prover P . Below, we explain the PCP protocol [6],
starting with the PCP itself, then V’s queries and checks, and then the costs and guarantees.

Recall that V begins with Ψ and x, receives y, and wishes to check whether y = Ψ(x); to that end,
V is looking to be convinced that C(X=x, Y=y) has a satisfying assignment. A correct prover encodes
that satisfying assignment z in a vector u = (z, z ⊗ z), where a ⊗ b denotes the outer product (the vector
consisting of all pairs of products of the components) of a and b. This vector u is the linear PCP π. That is,
π = (π1,π2), where π1(·) = 〈·, z〉 and π2(·) = 〈·, z⊗ z〉. We explain the relevance of outer products below;
for now, we just note that π will enable V to probabilistically check whether z is a satisfying assignment.
Before proceeding, we give some notation. Let |C| denote the number of constraints in C. Further, let Z
denote the unbound variables in C(X=x, Y=y); that is, Z is the set of variables in C that remain after X and
Y are fixed.

The protocol constructs a polynomial Q(V , Z)—we say “the protocol constructs” because the polyno-
mial is never fully materialized by either party—that depends on C and (x, y), where V = (V1, . . . , V|C|) are
variables that V will set with random choices. We do not give the construction [6, 33, 49] here but state the
properties: the construction ensures that Q probabilistically “detects” whether a given assignment z satisfies
C(X=x, Y=y). Specifically, (1) If z is a satisfying assignment, then Q(V , z) = 0 for all possible values of
V; but (2) If z is not a satisfying assignment, then for randomly chosen v ∈ F|C|, Q(v, z) 6= 0, except with
probability 1/|F| (and |F| is large; see Section 5.1).

Thus, V makes a random choice of v ∈ F|C|; if Q(v, z) = 0, then V accepts, and otherwise rejects.
This probabilistic check of whether the z held by P is a satisfying assignment is justified because of Q’s
properties (1) and (2), stated above.

But how, without direct access to z, does V check whether Q(v, z) = 0? The answer is that Q(V , Z),
when evaluated at a value V = v, is a degree-2 polynomial in Z (see [6, 33, 49] for details), which implies
that we can write Q(v, Z) as:

Q(v, Z) = 〈γ2, Z ⊗ Z〉+ 〈γ1, Z〉+ γ0,

where the random {vj} determine γ0 ∈ F, γ1 ∈ F|Z|, and γ2 ∈ F|Z|2 . With Q(v, Z) in this form, V can obtain
Q(v, z) by asking P for π2(γ2) = 〈γ2, z⊗ z〉 and π1(γ1) = 〈γ1, z〉, and adding γ0. Thus, to check whether
Q(v, z) = 0, V checks whether π2(γ2) + π1(γ1) + γ0 = 0. (Now we can see why P forms the outer product
z⊗ z: to answer the “γ2 queries”.)

The above test consists of issuing circuit queries (γ1 and γ2) and applying a particular check to the
results. There are two further sets of queries. V must check that π indeed is a linear function, and that this
linear function has the form (z, z⊗ z) (else, the circuit test is meaningless). For these two purposes, V issues
to π1 and π2 linearity queries and quadratic correction queries, and applies a very efficient check to the
results. These tests are run multiple times, with independent random choices; the number depends on the
desired soundness (see below).

Notice that constructing queries requires formulating inputs to π1 and π2 and that these inputs are at least
as large as |Z|, which itself is roughly the same size as the computation. For this reason, Ginger amortizes
the cost of generating the {vj} and the other queries over a batch of size β: a set of computations with the
same Ψ but different inputs. Thus, the protocol above should be read as processing in parallel multiple inputs
x(1), . . . , x(β), multiple outputs y(1), . . . , y(β), and multiple proofs π(1), . . . ,π(β). Given this batched model,
cost reductions for V will show up in V’s break-even batch size, defined as the point at which V gains from
outsourcing: this is the minimum batch size at which the cost of query construction is less than the cost to
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run the computations locally.
We now state the guarantees. If P computes correctly, then V accepts the proof and hence believes that

y = Ψ(x). If P does not compute correctly—if it does not participate in the commitment protocol correctly,
if it commits to a function that is not linear, if it commits to a linear function not of the form (z, z⊗ z), or if
it commits to a linear function (z′, z′ ⊗ z′) where z′ is not a satisfying assignment—then V rejects the proof
with probability ≥ 1 − ε, where ε is less than one part in a million, for |F| = 2128 (see [50, Apdx. A.2] for
details). This soundness can be made arbitrarily close to 1 by repeating queries (to reduce the PCP error)
and increasing the field size (to reduce the commitment error, if needed).

3 Collapsing proof length in Zaatar
Ginger [51] faces a severe obstacle to plausible practicality: the prover’s per-instance work and the verifier’s
query setup work are quadratic in the size of the computation. We make this statement more precise below,
but for now recall that the server’s proof vector u is (z, z⊗ z), so |u| = |z|+ |z|2. Ginger addresses this issue
by manually tailoring the proof vector and the queries, but this works only for some computations.

In this section and the next, we describe how Zaatar addresses the issue in general. This section describes
Zaatar’s encoding, in which the proof vector size and the verifier’s setup work are linear in the size of the
computation.4 However, this encoding imposes costs. Section 4 weighs these costs against the benefits,
finding that Zaatar is far more favorable than the alternative.

The high-level idea in Zaatar’s encoding is to retain Ginger’s structure but to replace the linear PCP
of Arora et al. [6] with a new linear PCP that is based on Quadratic Arithmetic Programs (QAPs), a circuit
encoding introduced by Gennaro et al. [27, §7–8]. This substitution works because (a) the linear commitment
protocol requires only that the PCP is a linear function; and (b) QAPs have a linear query structure that
yields a PCP, a key observation of Zaatar (Bitansky et al. [17] concurrently make a similar observation; see
Section 6). To obtain this QAP-based PCP, we extract the essence of Gennaro et al.’s construction (which
is more complex because geared to a different regime; see Section 6). Once we do so, we inherit a prover
whose proof vector is, to first approximation, the satisfying assignment itself.

Since PCPs “derive their magic” from a highly redundant encoding of the proof, it may seem surpris-
ing that we have a protocol in which the proof vector needs little redundancy. However, as Ishai et al.
observed [33], a linear PCP contains implicit redundancy because the actual proof is not the vector but
rather the linear function, which is exponentially larger than the classical proof (if written out as a string, it
would contain an entry for every point in its domain). For this reason, Ishai et al. speculated that avoiding
redundancy in the proof vector might be possible; the construction described below resolves this conjecture.

Loosely speaking, QAPs achieve this compaction by encoding circuits (we adapt the encoding to con-
straints) as high-degree polynomials, in contrast to the low-degree polynomials of Section 2.2.

Details. As in Ginger, Zaatar takes as a given a constraint set C, over the variables (X, Y , Z), that is equiv-
alent to a computation Ψ. (Recall that X is the set of input variables, Y is the set of output variables, Z are
the unbound variables, and let |C| be the number of constraints in C.)

The protocol constructs two polynomials. The construction is somewhat analogous to the description in
Section 2.2; we will mention some of the parallels. The first polynomial, which we call the divisor polyno-
mial, D(t), is univariate (and over F) and fixed for all computations Ψ of a given size; V explicitly materi-
alizes D(t). The second polynomial, Px,y(t, Z), depends on the constraints C, the input x, and the purported
output y. We write this polynomial as P(t, Z); it is analogous to the polynomial Q(V , Z) in Section 2.2,
though here t ∈ F, versus V ∈ F|C|. As with Q(V , Z), neither party fully materializes P(t, Z). We give the

4These costs include an extra log factor applied to the number of steps in the computation. The reason is that the size of our field
F must be larger than the number of steps in the computation, and meanwhile each entry in the proof is log |F| bits. However, we
neglect this factor in our description by referring to “the size of the computation”, which captures the field size.
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complete construction in Appendix A.1 and here state the relevant properties.
The construction ensures that given z, P(t, z) can be factored as D(t) · Hx,y,z(t) for some Hx,y,z(t) if

and only if z satisfies C(X=x, Y=y). Meanwhile, this factoring (and hence satisfiability) can be checked
probabilistically, as follows. Let τ be a random choice from F. Then (1) If z satisfies C(X=x, Y=y), then the
polynomials factor, so we have D(τ)·Hx,y,z(τ) = P(τ , z), for all possible τ ∈ F; but (2) If z is not a satisfying
assignment, then for all polynomials H̃(t), we have D(τ)·H̃(τ) 6= P(τ , z), except with probability 2·|C|/|F|.
This is because polynomials that are different are equal almost nowhere in their domains (an extreme case
is two lines, which cross at most once). Since our fields are large (§5.1), the preceding probability is very
small.

The query procedure and P’s proof vector, then, are designed to allow V to check whether D(t) ·
Hx,y,z(t) = P(t, z), by checking whether this relation holds at a point τ . Specifically, they allow V to ob-
tain the values H(τ) ∈ F and P(τ , z) ∈ F, where: V chooses τ randomly from F, P holds the polynomial
H(t) and the assignment z (V has no direct access to either), and neither party materializes P(t, Z). (The
analogy here is with the queries that allow V to obtain Q(v, z), in Section 2.2.) If D(τ) ·H(τ) = P(τ , z), then
V accepts and otherwise rejects. (The analogy is with the condition that Q(v, z) = 0, in Section 2.2.) This
procedure probabilistically checks whether z is a satisfying assignment; it is complete and sound because of
properties (1) and (2) above.

The proof vector. A correct proof vector u is (z, h), where z is a purported satisfying assignment to
C(X=x, Y=y), and h = (h0, . . . , h|C|) ∈ F|C|+1 are the coefficients of the polynomial Hx,y,z(t), introduced
above. As in Section 2.2, this proof vector u can be regarded as two linear functions, which we denote
πz(·) = 〈·, z〉 and πh(·) = 〈·, h〉. Thus, the proof vector’s length is equal to the number of variables plus the
number of constraints, or |Z|+ |C|.

The queries and check. To carry out the probabilistic check described above, V must first ensure that P
is holding a linear function, so V issues linearity queries (as in Section 2.2).

Next, V must obtain the value Hx,y,z(τ) ∈ F. To do so, V submits qh = (1, τ , τ 2, . . . , τ |C|) to P and asks
for πh(qh), which equals 〈qh, h〉 =

∑|C|
i=0 hi · τ i = Hx,y,z(τ).

V also needs the value P(τ , z) ∈ F. As shown in Appendix A.1, P(t, Z) is a polynomial in t and Z, with
the form

P(t, Z) =

 |Z|∑
i=1

Zi · Ai(t) + A′(t)

 ·
 |Z|∑

i=1

Zi · Bi(t) + B′(t)

−
 |Z|∑

i=1

Zi · Ci(t) + C′(t)

 ,

for some polynomials {Ai(t), Bi(t), Ci(t)}i=1...|Z| and {A′(t), B′(t), C′(t)}. Now, observe that evaluating P(t, Z)
at t=τ yields P(τ , Z), a polynomial in Z with the form:

P(τ , Z) = (〈qa, Z〉+ La) · (〈qb, Z〉+ Lb)− (〈qc, Z〉+ Lc) ,

where {qa, qb, qc} ∈ F|Z| depend on τ , and {La, Lb, Lc} ∈ F depend on τ , x, and y. Finally we can say how
V obtains P(τ , z): it asks P for πz(qa),πz(qb), and πz(qc).
V’s check is then the following. V computes D(τ) and {La, Lb, Lc}, and checks

D(τ) · πh(qh)
?
= (πz(qa) + La) · (πz(qb) + Lb)− (πz(qc) + Lc) .

The full protocol and its analysis are in Appendix A; as in Section 2.2, the soundness error is less than one
part in a million. We now turn to costs.

4 Cost-benefit analysis
Given our goal of removing prover overhead, the Zaatar protocol is very promising. However, we need
to consider its benefits against the cost of its additional requirements. This section performs an analysis,
summarized in Figure 3.
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Ginger [51] Zaatar

proof vector size (|uginger| or |uzaatar|) |Zginger|+ |Zginger|2 |Zzaatar|+ |Czaatar| = 2 · (|Zginger|+ K2)

worst case proof vector size |Zginger|+ |Zginger|2 |uginger| · (1 + δ), where δ is 2/(|Zginger|+ 1)

P’s per-instance CPU costs
Construct proof vector T + f · |Zginger|2 T + 3f · |Czaatar| · log2 |Czaatar|
Issue responses (h + (ρ · `+ 1) · f ) · |uginger| (h + (ρ · `′ + 1) · f ) · |uzaatar|

V’s per-instance CPU costs
Construct computation-specific queries ρ · (c · |Cginger|+ f · K)/β ρ · (c + (fdiv + 5f ) · |Czaatar|+ f · K + 3f · K2)/β
Construct computation-oblivious queries (e+2c+ρ·(2ρlin·c+(`+1)·f ))·|uginger|/β (e + 2c + ρ · (2ρlin · c + `′ · f )) · |uzaatar|/β
Process responses d + ρ · (2`+ |x|+ |y|) · f d + ρ · (`′ + 3|x|+ 3|y|) · f
Cginger, Czaatar: Ginger and Zaatar constraint sets for Ψ (§2.1) T: running time of Ψ (§5.2)
|Zginger|: number of variables in Cginger (§2.1) |Zzaatar| (= |Zginger|+ K2): number of variables in Czaatar (§4)
|Cginger| (= |Zginger|): number of constraints in Cginger (§4) |Czaatar| (= |Zginger|+ K2): number of constraints in Czaatar (§4)
K: number of additive terms in Cginger (§4) |x|, |y|: number of elements in input, output (§2.1)
K2 (≤ K): number of distinct additive degree-2 terms in Cginger (§4) β: batch size (number of instances) (§2.2, §5.2)
ρlin, ρ: number of linearity tests, number of PCP repetitions ` = 3ρlin + 2: number of (high-order) PCP queries in Ginger [50]
e, d: cost of encrypting, decrypting an element in F (§5.1) `′ = 6ρlin + 4: number of (total) PCP queries in Zaatar (§A.1)
h: cost of ciphertext add plus multiply (§5.1) f : cost of multiplying in F (§5.1)
c: cost of pseudorandomly generating an element in F (§5.1) fdiv: cost of division in F (§5.1)

Figure 3—Costs to prover and verifier to verify a computation Ψ, under Zaatar and Ginger (the text explains this
choice of baseline). Zaatar increases the number of constraints and variables, and requires additional bookkeeping for
the prover and verifier, but these effects are dominated by a vast reduction in the proof encoding, so the Zaatar prover
and verifier are far more efficient overall. The term K2 is key to the comparison; this term is large only for degenerate
computations (see text). The table assumes that the constraints Cginger and Czaatar have been generated by our compilers.
Computation-specific queries refer to those that depend on the structure of the computation and its constraints, while
computation-oblivious queries depend only on the length of the proof vector.

Our chosen baseline for this analysis is the encoding in Ginger [51]; Ginger was previously the most ef-
ficient verified computation scheme that is both a system and general-purpose. (See Section 6 for discussion
of this assertion.)

Summary of the analysis. Zaatar requires more constraints over a larger set of variables than Ginger does
for the same computation; all other things being equal, this slight blowup would increase the prover’s and
the verifier’s costs. Also, Zaatar requires additional bookkeeping from the prover (when constructing the
proof encoding) and the verifier (when constructing queries). However, these two effects are dwarfed by a
vast reduction in the size of the proof encoding under Zaatar. The consequence is a correspondingly vast
improvement in both the prover’s work and the verifier’s query setup work (and hence the break-even batch
size, as defined in Section 2.2). Finally, while there are cases when Zaatar is worse than Ginger, they are
contrived computations with a particular structure (e.g., evaluation of dense degree-2 polynomials); none of
the computations that we have investigated (§5) comes close to this degenerate behavior.5

Below, we present the analysis. The comparison depends heavily on the number of constraints and
variables in Zaatar versus the alternative, so we begin with these quantities.

Constraints in Zaatar versus Ginger. Whereas Ginger requires only that constraints are degree-2 (§2.2),
Zaatar imposes an additional requirement. Under Zaatar, each constraint Qj must be in the form pA ·pB = pC,
where pA, pB, and pC are degree-1 polynomials over the variables in the constraint set. We call this quadratic
form; the requirement stems from the way that Zaatar, via QAPs, encodes constraints in polynomials (Ap-
pendix A.1 gives detail).

We can obtain constraints Czaatar in quadratic form, given a set of Ginger constraints Cginger; indeed, our
compiler first compiles to Ginger constraints and then performs the following transformation. For every

5Also, the degenerate cases are detectable, so the compiler could simply choose to use Ginger (or [23, 52]) over Zaatar; see [54].
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constraint in Cginger, we retain all of the degree-1 terms and replace all degree-2 terms with a new variable.
For example, if a constraint in Cginger is {3 · Z1Z2 + 2 · Z3Z4 + Z5 − Z6 = 0}, then Czaatar would replace that
constraint with the following constraints, which are all in quadratic form: {(3 · Z′1 + 2 · Z′2 + Z5) · (1) =
Z6, Z1Z2 = Z′1, Z3Z4 = Z′2}.

We bound the number of variables and constraints in Czaatar as follows. Letting |Zzaatar| (resp., |Zginger|)
equal the number of variables in Czaatar(X=x, Y=y) (resp., Cginger(X=x, Y=y)), by construction of Czaatar we
have |Zzaatar| = |Zginger|+ K2, where K2 is the number of distinct degree-2 terms that appear in all of Cginger.
Similarly, |Czaatar| = |Cginger|+ K2.

We analyze the drop in proof vector size at the end of this section; see also the first two lines of Figure 3.

The prover’s work. Because of the shorter proof vector length, the prover’s work to reply to queries drops,
usually dramatically (see the “Issue responses” row in Figure 3). However, the prover has an additional cost
under Zaatar.

The prover must compute the coefficients of the polynomial Hx,y,z(t) = P(t, z)/D(t) (see Section 3). As
a starting point in this computation, the prover knows values taken by the polynomials {Ai(t), Bi(t), Ci(t)}
and {A′(t), B′(t), C′(t)} at well-known values of t. Using operations based on the FFT (interpolation [35],
polynomial multiplication [21], and polynomial division), the prover obtains the coefficients of Hx,y,z(t) in
time ≈ 3 · f · (|Czaatar| · log2 |Czaatar|), as depicted in Figure 3. The process is detailed in Appendix A.3.

The verifier’s work. Like the prover, the verifier in Zaatar also gains from the shorter proof vector; see the
“Computation-oblivious queries” line in Figure 3. However, the Zaatar verifier incurs two additional costs,
which we summarize immediately below and detail in Appendix A.3.

The first is the cost to construct the query, which is depicted in the “Computation-specific queries” line
in the figure. Under Ginger, the verifier must compute γ1 and γ2 in order to issue a circuit query (§2.2); this
requires generating a pseudorandom number for each constraint and then multiplying it with each term in the
given constraint, yielding amortized costs of ρ · (c · |Cginger|+ f ·K)/β for a batch of size β. The analog under
Zaatar is computing queries to z and to h, which costs for the batch ρ·(c+(fdiv +5f )·|Czaatar|+f ·K +3f ·K2).
The second cost is that Zaatar’s verifier requires two more operations per input and output, owing to the
details of query construction (see Appendices A.1 and A.3).

Detailed analysis of |u|. For a given computation, Ginger’s proof vector has length |uginger| = |Zginger| +
|Zginger|2 (per Section 2.2). By contrast, Zaatar’s proof vector has length |uzaatar| = |Zzaatar| + |Czaatar| (per
Section 3); recalling that |Zzaatar| = |Zginger| + K2 and |Czaatar| = |Cginger| + K2, we can write |uzaatar| =
|Zginger| + |Cginger| + 2K2. However, |Cginger| ≈ |Zginger|, and we will in fact take |Cginger| = |Zginger|: our
compiler, when configured to output Ginger constraints, creates roughly one new variable for each constraint
that it introduces.6 Thus, we get |uzaatar| = 2 · (|Zginger|+ K2).

To compare |uzaatar| to |uginger|, we make three points. First, |uzaatar| is less than |uginger| as long as

K2 < K∗2
def
= (|Zginger|2 − |Zginger|)/2. Indeed, we expect that for most computations, K2 will be far smaller

than K∗2 . Roughly speaking, this fails to occur only when the computation involves adding the product of
many multiplications; the reason is that (a) K∗2 corresponds to a computation in which the average number
of distinct degree-2 terms per Ginger constraint is (|Zginger| − 1)/2, and (b) our compiler produces a Ginger
constraint with more than (|Zginger| − 1)/2 terms only when compiling a program excerpt that involves
summing many terms that are degree-2 (or higher).7 If most of the constraints have this form, it means that
most of the computation involves such sums, which is a degenerate case. An example is degree-2 polynomial
evaluation, for which the Ginger encoding is actually very concise [49].

6A careful analysis of the compiler indicates that the actual bound is |Cginger| ≤ (1+α) · |Zginger|, for α = 4/(log2 |F|+3). However,
our fields are large (§5.1), which is why the text treats α as equal to 0.

7The other constructs that produce constraints with degree-2 terms (< and ==) produce only an average of one or two distinct
degree-2 terms per constraint and add at least twice as many new variables.
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Second, even in the degenerate cases, |uzaatar| is very close to |uginger|. The worst case is when K2 is
maximal, which happens when every pair of variables in Zginger appears as a degree-2 term in Cginger; that is,
the maximum value of K2 is K2 = |Zginger| · (|Zginger|+ 1)/2. Recalling that |uzaatar| = 2 · (|Zginger|+ K2), we
get |uzaatar| ≤ 2·|Zginger|+|Zginger|·(|Zginger|+1) = 3·|Zginger|+|Zginger|2. But |uginger| = |Zginger|+|Zginger|2,
so |uzaatar| ≤ |uginger| · (1 + 2/(|Zginger|+ 1)), which is indeed close to |uginger|.

Third, for all of the computations that we investigate and evaluate, K2 is far smaller than K∗2 (i.e., we are
nowhere close to the degenerate cases), leading to vast improvements in the length of the proof vector, and
hence breakeven batch sizes.

5 Evaluation
In this section, we study the empirical effect of Zaatar’s refinements on the end-to-end costs (§5.2) and
the proof encoding (§5.3). We also discuss the expressibility of constraints and the limitations of Zaatar
itself (§5.4).

5.1 Implementation, benchmarks, and method

We implemented Zaatar in C++ (about 6000 lines, per [55]). Both the verifier and the prover can offload
their cryptographic operations to GPUs using CUDA [1]; in addition, the prover can be distributed over
multiple machines, with each machine computing a subset of a batch. Zaatar’s compiler is derived from
Ginger’s compiler [51]; we added about 1500 lines of Java and about 500 lines of Python (again, per [55]),
to translate computations written in SFDL [37] to constraints in quadratic form (§4). For encryption (see
Figure 2 and the “linear commitment” paragraphs in Section 2.2), we use ElGamal [25] with 1024-bit keys;
for a pseudorandom generator, we use the ChaCha stream cipher [15].

Our experiments examine the CPU cost of Zaatar for a set of benchmark computations: (a) Partitioning
Around Medoids (PAM) clustering [53], (b) root finding via bisection, (c) Floyd-Warshall all-pairs short-
est paths [22], (d) the Fannkuch benchmark [3], and (e) the longest common subsequence (LCS) problem.
Computations (a), (d), and (e) use 32-bit signed integers as inputs with a 128-bit prime as the field modulus.
Computation (b) uses rational number inputs with 32-bit numerators, 5-bit denominators, and a field mod-
ulus of 220 bits. Computation (c) also has rational inputs, with 32-bit numerators, 32-bit denominators, and
128-bit field modulus. The details of rational number handling and representation are given in [51].

In evaluating Zaatar’s CPU costs, we compare to two baselines: local computation and Ginger [51]. We
report the prover’s per-instance costs, including the CPU time to execute the computation and to participate
in the verification protocol. For the verifier, we report the breakeven batch size (the term is defined in
Section 2.2). Note that this quantity captures only the point at which the verifier’s CPU is better off verifying
a batch versus executing the batch; this quantity does not take into account the prover’s CPU costs or the
network costs. However, one could apply our measurements and cost models (see Figure 3 and [51, Fig. 2])
to evaluate these quantities and a breakeven point in terms of, say, dollars.

Our comparisons are aided by our cost model (Figure 3), whose parameters we now estimate with
microbenchmarks. We run a program that executes each operation 1000 times and report the average CPU
time immediately below, for two field sizes (standard deviations are within 5% of the means). The results
are immediately below:8

field size e d h flazy f fdiv c

128 bits 65 µs 170 µs 91 µs 68 ns 210 ns 2 µs 160 ns
220 bits 88 µs 170 µs 130 µs 90 ns 320 ns 3 µs 260 ns

8The flazy parameter is not explicitly in Figure 3, but some of the instances of f in the figure should be read as flazy, which is the cost
of a field multiplication that does not require applying “mod p”.

10



10
0

10
3

10
6

10
9

10
12

PAM
clustering

root finding
by bisection

all-pairs
shortest path

Fannkuch
benchmark

longest common
subsequence

ru
n
n
in

g
 t

im
e 

(s
ec

o
n
d
s)

G
in

ge
r

G
in

ge
r

G
in

ge
r

G
in

ge
r

G
in

ge
r

 Z
aa

ta
r

 Z
aa

ta
r

 Z
aa

ta
r

 Z
aa

ta
r

 Z
aa

ta
r

Figure 4—Per-instance running time of the prover under Zaatar and Ginger for various benchmark computations.
Zaatar’s theoretical refinements improve the running time by 1–6 orders of magnitude compared to the estimated costs
of Ginger. The y-axis is log-scaled.

prover’s costs under Zaatar

computation (Ψ) local solve constraints construct u crypto ops. answer queries e2e CPU time

PAM clustering (m = 20, d = 128) 51.6 ms 8.6 s 5.0 min 5.3 min 2.4 min 12.8 min
root finding by bisection (m = 256, L = 8) 0.8 s 6.3 s 3.3 min 4.1 min 1.4 min 8.9 min
all-pairs shortest path (m = 25) 8.1 ms 1.4 s 6.5 min 5.2 min 2.8 min 14.4 min
Fannkuch benchmark (m = 100) 0.8 ms 7.5 s 4.8 min 5.1 min 2.3 min 12.3 min
longest common subsequence (m = 300) 1.4 ms 13.7 s 12.2 min 10.1 min 5.6 min 28.2 min

Figure 5—Per-instance cost of the Zaatar prover compared to the baseline of local computation (executed with the
GMP library [2]), under various computations. The “e2e CPU time” (last column) is decomposed into its contributions
(u refers to the proof vector). The end-to-end running time of Zaatar’s prover is far more than the cost to execute the
computation. However, the costs do not scale up: when batching computations, the latency of the batch is roughly
equal to the latency of an instance; see Figure 6.

We use our cost model to validate our experimental results for Zaatar; we find that the empirical CPU
costs are 5-15% larger than the model’s predictions. We also use the estimates above to parameterize a cost
model of Ginger (see [51, Fig. 2]), and use this model to estimate Ginger’s end-to-end performance; we use
estimates, rather than empirics, because the computations would be too expensive under Ginger.

Our experiments connect the verifier and the prover to a local network. The prover runs in various
configurations (single core, distributed over multiple machines, using GPU acceleration); if the configuration
is not specified, the prover uses a single core. The machines in our experiments have an Intel Xeon processor
E5540 2.53 GHz with 48GB of RAM and two NVIDIA Quadro FX 5800 GPUs (each GPU has 240 CUDA
cores and 4GB of device memory). We measure CPU time of the prover and verifier using getrusage. Each
reported result will be the mean of three experiments (with standard deviations within 8% of the means).

5.2 End-to-end performance

Prover’s end-to-end running time. We report on Zaatar’s and Ginger’s provers with the following com-
binations of benchmark computations and input sizes: (a) PAM clustering with 2560 data points (m=20
samples with d=128 dimensions clustered into two groups), (b) root finding for degree-2 polynomials with
m=256 variables and L=8 iterations (c) Floyd-Warshall with m=25 nodes, (d) Fannkuch with m=100 per-
mutations of {1, . . . , 13}, and (e) LCS between two strings of length m=300.

Figure 4 depicts the results. Since Zaatar’s proof vectors are much shorter (§4, §5.3), the end-to-end run-
ning time of the Zaatar prover is orders of magnitude smaller than the estimated running time of the Ginger
prover. For most of the depicted quantities, the difference is 3–6 orders of magnitude. In root finding, the
depicted difference is between one and two orders of magnitude because this computation has a relatively
efficient representation under Ginger (see Figure 9, Section 5.3). Also, as we increase the number of itera-
tions, L, for instance to 100, the gap between Zaatar and Ginger widens to 3 or more orders of magnitude
(however, this configuration requires a higher field size).

We also compare Zaatar’s prover to the cost of running the computation locally; see Figure 5. The prover
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Figure 7—Breakeven batch sizes under Zaatar and Ginger; Zaatar’s proof encoding reduces the amount of work done
by the verifier, and hence the breakeven batch sizes reduce by several orders of magnitude versus in Ginger. The y-axis
is log-scaled.

in Zaatar is substantially slower than local computation. We find that about 35% of the work done by the
prover is in cryptographic operations, about 40% of the work is in computing the proof vectors, and the
remainder is in answering queries.

While this computational burden is heavy, the latency can be tamed. Specifically, we expect that (a)
hardware acceleration (e.g., GPUs) reduces latency per-instance, and (b) distributing the prover over more
machines makes the latency of a batch not much greater than the latency of a single instance. We experi-
ment by running Zaatar under various hardware configurations (multiple machines, GPUs, etc.), measuring
the latency at the verifier. Figure 6 depicts the results. GPU acceleration improves per-instance latency by
roughly 20%, and distribution indeed achieves near-linear speedup.

Breakeven batch sizes. We compute Zaatar’s breakeven batch sizes by measuring the cost to locally ex-
ecute a computation instance and to verify one; we decompose the latter into setup costs (which will be
amortized) and per-instance costs. We use these quantities to project the breakeven batch sizes. For Ginger,
we estimate the breakeven batch sizes using its cost model (as described in Section 5.1).

Figure 7 depicts the results: Zaatar’s breakeven batch sizes are several orders of magnitude smaller than
Ginger’s. This improvement stems from the reduced proof vector size (§5.3), since the verifier’s queries are
proportional to the length of the prover’s proof vector.

Scalability. We measure the CPU costs of Zaatar’s prover as we vary the input sizes: (a) for PAM cluster-
ing, m={5, 10, 20} (and d=128); (b) for root finding, m={64, 128, 256} (and L=8); (c) for Floyd-Warshall,
m={5, 10, 20}; (d) for Fannkuch, m={25, 50, 100}; and (e) for LCS, m={75, 150, 300}. We also estimate
Ginger’s costs at these input sizes. Figure 8 depicts the results. As expected, Zaatar scales better than Ginger.

5.3 Computation encodings

We analyze, as a function of input sizes, the number of variables and constraints in the constraint set repre-
sentation of our benchmark problems; we perform this analysis for both Zaatar’s constraints and Ginger’s
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Figure 8—Running time of the prover under Zaatar and Ginger for various benchmark computations with varying
input sizes (for each computation and each system, we double the input size twice and report three running times; text
has details). Zaatar’s prover’s work scales linearly; Ginger’s, quadratically. The y-axis is log-scaled.

computation encoding proof encoding

computation (Ψ) O(·) |Zginger| |Zzaatar| |Cginger| |Czaatar| |uginger| |uzaatar|

PAM clustering O(m2d) 20m2d 60m2d 20m2d 60m2d 400m4d2 120m2d
root finding by bisection O(m2L) 2mL m2L 2mL m2L 4m2L2 2m2L
all-pairs shortest path O(m3) 84m3 84m3 89m3 89m3 7140m6 173m3

Fannkuch benchmark O(m) 2200m 2200m 2200m 2200m (4.8 · 106) · m2 4400m
longest common
subsequence O(m2) 43m2 43m2 43m2 43m2 1849m4 86m2

Figure 9—Zaatar’s and Ginger’s computation encodings (i.e., the number of variables and the number of constraints).
The |Z| columns give the number of variables, the |C| columns give the number of constraints, and the |u| columns
give the number of terms in the proof encoding. m denotes input size, L denotes the number of iterations in root finding
via bisection, and d denotes the number of dimensions in the input sample; see §5.2 for details. For all computations,
Zaatar’s proof vector is significantly shorter than Ginger’s.

constraints. We also compute the size of the proof vectors in Zaatar and Ginger. Figure 9 depicts these quan-
tities. The size of Zaatar’s proof encoding is linear in the original running time of the computation and is
significantly smaller than Ginger’s.

5.4 Discussion and limitations

This section has established that (a) Zaatar produces vast performance improvements over the prior state-of-
the-art implemented systems, (b) Zaatar’s verifier wins only after batching many computations, and (c) Za-
atar’s prover is substantially more expensive than simply executing the computation. Points (b) and (c) are
consequences of the fact that the computation must be encoded as constraints and because of intrinsic costs
of the verification machinery.

The constraint formalism is expressive: Degree-2 constraints can represent any computation that termi-
nates in polynomial time (this is implied by Pippenger and Fischer’s result [44]). That is, in principle any
program for which an upper-bound on running time can be established at compile time can be represented.

However, some programming idioms translate into constraints more efficiently than others. Straight-line
arithmetic operations translate directly. Other program structures can produce a large number of constraints
for relatively simple operations (for instance, we require O(log |F|) constraints for inequality comparisons;
see Section 2.2). Worse, under natural translations of computations, indirect memory accesses (for instance,
array indices that are not known at compile time) produce an excessive number of constraints.

Less fundamentally, our compiler lacks support for certain program constructs, such as bitwise op-
erations, division, and square root operations. However, this is engineering (e.g., bitwise operations are
supported elsewhere [42]).

Given a computation expressed as constraints, the verification machinery imposes further limitations.
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First, verification requires touching each input and output, so the client saves CPU cycles only when out-
sourcing computations that take time superlinear in the input size. Second, the sheer size of the queries
introduces a substantial setup cost for the verifier; the batched model (§2.2) addresses this cost but the veri-
fier “breaks even” only when it has enough instances to batch. Third, the proof encoding introduces overhead
for the prover. Finally, the cryptographic operations are a burden on the verifier and prover, particularly the
prover.

6 Related work
Ideally, a protocol for verified computation would be unconditional, general-purpose, and practical. The
systems literature contains many practical, implemented systems (see recent surveys [43, 49]); however,
these are either special-purpose or conditional (e.g., they require trusted hardware).

Very recently, general-purpose work has emerged that uses tools from cryptography and complexity
theory, and relies only on cryptographic assumptions. For example, several protocols [20, 26] employ fully
homomorphic encryption (FHE) [28] in protocols for non-interactive verifiable computation. Unfortunately,
despite advances in the efficiency of FHE [29], it remains highly impractical.

In a more plausible vein, several authors have worked on succinct arguments that do not rely on FHE [27,
31, 36]. Early work in this area [31, 36] supported only Boolean circuits and suffered from quadratic prover
overhead. Gennaro et al. [27] (GGPR) remove these limitations, by coupling QAPs (and a related formalism,
called QSPs) with sophisticated cryptography.

Zaatar uses QAPs but without the cryptographic machinery of GGPR; this results in a protocol with
different characteristics. For instance, GGPR provides public verifiability (anyone can check a purported
proof) while Zaatar does not. And unlike Zaatar, GGPR is non-interactive, a property that it achieves by
encrypting query-like values and reusing them across computations. This reuse obviates batching and slashes
network costs but results in a one-time key setup cost that is likely to be higher (by small constant factors)
than Zaatar’s per-batch cost. For similar reasons, Zaatar’s prover, on a per-instance basis, should be lower
overhead than the GGPR prover (Zaatar’s prover answers most of its queries in the clear, while the GGPR
prover computes over encrypted queries). A more detailed performance comparison to an implemented
GGPR refinement [42] is ongoing work.

Independent of us, Bitansky et al. [17] also observe that QAPs yield linear PCPs. However, unlike Zaatar,
Bitansky et al. incorporate the resulting linear PCPs into linear interactive proofs and then into succinct non-
interactive arguments. This work is part of a theoretical literature that is establishing promising foundations
for systems [11, 12].

The work most closely related to Zaatar is several projects aimed at implementing interactive protocols
for verified computation, built on different foundations.

One such effort is our prior work [47, 49, 51], which depends on the IKO protocol [33]. IKO coupled
a classical linear PCP [6] with a linear commitment primitive to derive an efficient argument. Following a
position paper [47], Pepper [49] strengthened this commitment primitive, exploited batching, and applied
the approach to arithmetic circuits. Subsequently, Ginger [51] refined the protocols to further reduce costs,
extended the computational model to the constraints in Section 2, and implemented the system on GPUs and
with a distributed prover.

Another strand is the protocols of Cormode et al. [23, 52], which are based on the work of [30]. These
protocols do not need cryptography or batching, and have excellent performance for the verifier. However,
results for the prover are more equivocal [51]. Moreover, these protocols require computations to be effi-
ciently parallelizable and expressible as concise arithmetic circuits, ruling out many programming constructs
that Ginger (and Zaatar) contain (e.g., conditionals, order comparisons).
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7 Summary and conclusion
The top-level insight in this paper is that the efficient circuit encoding in the QAPs of Gennaro et al. [27] can
yield a linear PCP that works with the efficient argument protocol of Setty et al. [49, 51] (itself based on the
proposal of Ishai et al. [33]). This observation shows a close relation between QAPs and PCPs, extracting
the essence of QAPs—its elegant and efficient encoding—from the cryptographic context in which it was
proposed (as observed independently [17]).

This observation leads to the paper’s next contributions: a protocol for verified computation whose
prover has good overhead—nearly linear—for all computations; an implementation of this protocol in the
context of a built system, Zaatar, that includes a compiler and a parallel GPU implementation; and a detailed
experimental evaluation, which indicates that Zaatar improves performance by orders of magnitude over the
prior state-of-the-art.

Despite these improvements, Zaatar’s prover is substantially more expensive than simply executing the
computation; the expense enters because the computation must be encoded as constraints (which generalize
arithmetic circuits) and because of intrinsic costs of the protocol.

Nevertheless, we expect assurance to have a price, and indeed, there are regimes in which Zaatar’s costs
are not ridiculous. As an example, consider outsourcing data-parallel computations in the cloud. This setup
has (a) an abundance of cheap computing power, meaning that the prover’s overhead might be tolerable; and
(b) a computation structure that precisely matches the batching requirement of Zaatar’s verifier.

In any case, the theoretical underpinnings of Zaatar were thought to be laughably impractical several
years ago. As a result of prior work and this paper’s work, many of the next steps are now systems problems;
we consider that progress!

A A linear PCP protocol based on QAPs
This section describes a new linear PCP [33] protocol, which is used by Zaatar. (Recall that Zaatar’s pre-
decessors [33, 49, 51] use the linear PCP protocol of Arora et al. [6].) This protocol is based on Quadratic
Arithmetic Programs (QAPs), a construction of Gennaro et al. [27].

Our description will be tailored to our context. In particular, the PCP protocol will check the satisfiability
of constraints that are assumed to represent a computation (§2.1). However, this generalizes to checking
the satisfiability of any degree-2 constraint set. Since degree-2 constraint satisfaction is an NP-complete
problem [5], the PCP that we present here generalizes to checking NP relations. The core idea is to transform
a set of constraints to a set of polynomials in such a way that the constraints are satisfiable if and only if the
polynomials have a particular algebraic relation.

A.1 The construction

Notation. We are given a constraint set C over the variables W = (X, Y , Z), where X is the set of distinguished
input variables, Y is the set of distinguished output variables, and Z is the set of remaining variables. Let
|C| denote the number of constraints in C. Also, let n = |W| and n′ = |Z|. The following indexing will
be convenient: the variables in Z are labeled as W1, . . . , Wn′ , and the variables in X and Y are labeled as
Wn′+1, . . . , Wn. We will be working over a finite field, F.

Building blocks. The building blocks described in the next several paragraphs are borrowed from QAPs [27],
though our notation and phrasing is different, and we work with constraints explicitly.

We require that each constraint is in quadratic form (§4). That is, constraint j has the form pj,A(W) ·
pj,B(W) = pj,C(W), where pj,A, pj,B, and pj,C are degree-1 polynomials over W. Now, for variable Wi (which
will be a member of X, Y , or Z), let ai,j be the coefficient of Wi in pj,A. Similarly, let bi,j be the coefficient
of Wi in pj,B, and let ci,j be the coefficient of Wi in pj,C. Finally, for constraint j, let a0,j, b0,j, and c0,j be the
constant terms in pj,A, pj,B, and pj,C.

We will construct polynomials that encode these constraints. On the way there, it will be helpful to
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visualize three (n + 1) × |C| variable-constraint matrices: A, B, C. In each of these matrices, each row
represents a variable in W (as a special case, row i = 0 represents the constant terms), and each column
represents a constraint in C. In the A (resp., B and C) matrix, the (i, j) cell contains ai,j (resp., bi,j and ci,j);
thus, this cell is non-zero if variable i appears in constraint j in the pj,A (resp., pj,B and pj,C) component.
Observe that the matrices A, B, C encode the constraints; we will now turn these matrices into polynomials.

We construct degree-|C| polynomials {Ai(t)}, {Bi(t)}, {Ci(t)}, for i ∈ [0..n], by interpolation. Take
distinguished non-zero points σ1,σ2, . . . ,σ|C| ∈ F, and for each i require that Ai(σj) = ai,j, Bi(σj) = bi,j,
and Ci(σj) = ci,j; at this point, there are |C| point-value pairs constraining each of the Ai(t), Bi(t), and Ci(t).
Finally, require Ai(0) = Bi(0) = Ci(0) = 0; this gets us to |C|+1 points and evaluations, which fully defines
the polynomials Ai(t), Bi(t), and Ci(t), by interpolation. Moreover, we can represent each Ai(t), Bi(t), and
Ci(t) in terms of their evaluations at the values {σj}. That is, we can write:

A0(t) = (a0,1, a0,2, . . . , a0,|C|) B0(t) = (b0,1, b0,2, . . . , b0,|C|) C0(t) = (c0,1, c0,2, . . . , c0,|C|)

A1(t) = (a1,1, a1,2, . . . , a1,|C|) B1(t) = (b1,1, b1,2, . . . , b1,|C|) C1(t) = (c1,1, c1,2, . . . , c1,|C|)

...
...

...

An(t) = (an,1, an,2, . . . , an,|C|) Bn(t) = (bn,1, bn,2, . . . , bn,|C|) Cn(t) = (cn,1, cn,2, . . . , cn,|C|)

Now, construct the divisor polynomial, D(t):

D(t) =
∏

j∈[1..|C|]

(t − σj).

Finally, encode all of the constraints in a single polynomial P(t, W) over t and the constraint variables
W:

P(t, W) =

(
n∑

i=0

Wi · Ai(t)

)
·

(
n∑

i=0

Wi · Bi(t)

)
−

(
n∑

i=0

Wi · Ci(t)

)
.

We now give some notation and conventions. We will write Px,y(t, Z) to mean P(t, W) with X=x and
Y=y. We will take w = (x, y, z) ∈ Fn to mean an assignment to the variables (X, Y , Z); by convention,
w0 = 1. Thus, Px,y(t, z) means P(t, W=w), for some w; we often write P(t, W=w) as Pw(t). Observe that
Px,y(t, Z) has the following form, as claimed in Section 3: Px,y(t, Z) = (

∑n′
i=1 Zi · Ai(t) + A′(t)) · (

∑n′
i=1 Zi ·

Bi(t) + B′(t))− (
∑n′

i=1 Zi · Ci(t) + C′(t)), where A′(t) is a linear combination of A0(t), An′+1(t), . . . , An(t),
the coefficients given by 1, x, y, and analogously for B′(t) and C′(t).

Claim A.1. Let w = (x, y, z) be an assignment to the variables (X, Y , Z). Then D(t) divides Pw(t) if and
only if z satisfies C(X=x, Y=y).

Proof. Assume D(t) divides Pw(t). Fix a constraint j ∈ [1..|C|]. By definition of D(t), the polynomial t− σj

is a factor of Pw(t), so σj is a root of Pw(t). Thus, 0 = Pw(σj) =
(∑n

i=0 wi · Ai(σj)
)
·
(∑n

i=0 wi · Bi(σj)
)
−(∑n

i=0 wi · Ci(σj)
)

. By construction of {Ai(t), Bi(t), Ci(t)}, we have (
∑n

i=1 wi · ai,j + a0,j)·(
∑n

i=1 wi · bi,j + b0,j) =∑n
i=1 wi · ci,j + c0,j. That is, constraint j is satisfied at w=(x, y, z), by definition of ai,j, bi,j, ci,j. But we chose

j arbitrarily, so z satisfies all constraints in C(X=x, Y=y).
For the other direction, if the z “piece” of w satisfies C(X=x, Y=y), then every constraint is satis-

fied, which implies Pw(σj) = 0 for all {σj}, so all {σj} are roots of Pw(t), so Pw(t) can be factored into
(t − σ1) · · · (t − σ|C|) · Hw(t)= D(t) · Hw(t), for some Hw(t).

The QAP-based proof oracle. Let z be the prover’s purported assignment to C(X=x, Y=y). A correct
proof oracle is π = (πz,πh), where πz(·) = 〈·, z〉 and πh(·) = 〈·, h〉. Here, h = (h0, . . . , h|C|) ∈ F|C|+1

represents the coefficients of a polynomial H(t); that is, H(t) =
∑|C|

j=0 hj · tj. In a correct proof oracle for a
correct computation, H(t) satisfies D(t) · H(t) = Pw(t).
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A linear PCP based on QAPs [27]

The verifier V interacts with a proof oracle π as follows. A correct proof oracle encodes z and h, where z satisfies
C(X=x, Y=y), and h is the coefficients of a polynomial Hw(t) that satisfies D(t) · Hw(t) = Pw(t), for w = (x, y, z).

Loop ρ times:
• Generate linearity queries: Select q5, q6 ∈R Fn′ and q8, q9 ∈R F|C|+1. Take q7 ← q5 + q6 and q10 ← q8 + q9.

Perform ρlin − 1 more iterations of this step.
• Generate divisibility correction queries:

–– Select τ ∈R F.
–– Take qa ← (A1(τ), A2(τ), . . . , An′(τ)), and q1 ← (qa + q5).
–– Take qb ← (B1(τ), B2(τ), . . . , Bn′(τ)), and q2 ← (qb + q5).
–– Take qc ← (C1(τ), C2(τ), . . . , Cn′(τ)), and q3 ← (qc + q5).
–– Take qd ← (1, τ , τ 2, . . . , τ |C|), and q4 ← (qd + q8).

• Issue queries: Send q1, . . . , q4+6ρlin to oracle π, getting back π(q1), . . . ,π(q4+6ρlin).
• Linearity tests: Check that π(q5) + π(q6) = π(q7) and that π(q8) + π(q9) = π(q10), and likewise for the other
ρlin − 1 iterations. If not, reject.

• Divisibility correction test: Return reject unless

D(τ) · (π(q4)− π(q8)) =

(
π(q1)− π(q5) +

n∑
i=n′+1

wi · Ai(τ) + A0(τ)

)
·

(
π(q2)− π(q5) +

n∑
i=n′+1

wi · Bi(τ) + B0(τ)

)

−

(
π(q3)− π(q5) +

n∑
i=n′+1

wi · Ci(τ) + C0(τ)

)
.

If V makes it here, accept.

Figure 10—See the text for the definition of D(t) and Pw(t), and the construction of {Ai(t)}, {Bi(t)}, {Ci(t)}, and
recall that x and y are labeled as {wn′+1, . . . , wn}.

The PCP protocol. The protocol is depicted in Figure 10. A detail is that queries qa, qb, qc, qd are self-
corrected (see [6, §5] or [41, §7.8.3]). The soundness of the protocol is at least 1−κρ; Section A.2 establishes
this bound and quantifies κ. We state the high-order verifier costs immediately below and give details in
Section A.3.

The verifier’s running time is proportional to |Z| + |C| and so is the randomness that it must generate;
the constant of proportionality depends on the cost of field operations. These costs are almost linear in
the number of steps in the computation; there is actually an extra logarithmic term (since the field size,
which must be larger than the number of steps in the computation, affects the costs). However, to reflect the
practical reality, we mostly disregard this term by referring to “the size of the computation”, which captures
the field size. Of course, costs that are proportional to the computation itself do not save the verifier work;
thus, we amortize these costs over multiple instances of the computation (§2.2), in the context of the efficient
argument system described below.

The efficient argument system. Zaatar is an efficient argument system [33, 34] that composes the PCP
in Figure 10 with Ginger’s linear commitment primitive [49, 50] (which strengthens a primitive of Ishai et
al. [33]). The soundness error of the argument system is upper-bounded by κρ + 9 · µ · |F|−1/3, where µ
is the number of PCP queries; see the analysis in [50, Apdx A.2]. The verifier incurs additional costs from
the linear commitment primitive; these costs are proportional to the computation size. The prover’s costs
stem from constructing the proof vector (treated in Section A.3) plus responding to queries (the costs are
proportional to the size of the computation). The network costs are (a) a full query sent from V to P , and (b)
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a random seed from which V and P derive the PCP queries pseudorandomly (see [50, Apdx A.3]).

A.2 Correctness

A verifier V is given access to a proof oracle π, which is supposed to establish the satisfiability of C(X=x, Y=y).

Lemma A.2 (Completeness). If C(X=x, Y=y) is satisfiable, if π = (πz,πh) is constructed as above, and if
V proceeds according to Figure 10, then Pr{V accepts} = 1.

Proof. If π is constructed properly, then it is a linear function, so it passes the linearity tests. Next we
consider the divisibility test. Let w = (x, y, z). If C(X=x, Y=y) is satisfiable by z, then by Claim A.1, there
exists Hw(t) such that D(t) · Hw(t) = Pw(t). Also, if π is constructed properly, then V obtains πz(qa) as
πz(q1) − πz(q5), where πz(qa) =

∑n′
i=1 wi · Ai(τ). Similarly, V obtains πz(qb) as πz(q2) − πz(q5), where

πz(qb) =
∑n′

i=1 wi · Bi(τ). Likewise πz(q3)− πz(q5) = πz(qc) =
∑n′

i=1 wi · Ci(τ). Finally, V obtains πh(qd)

similarly, where πh(qd) =
∑|C|

j=0 hj · τ j = Hw(τ). Thus, the divisibility test is checking the following:

D(τ) · Hw(τ)
?
=

(
n∑

i=0

wi · Ai(τ)

)
·

(
n∑

i=0

wi · Bi(τ)

)
−

(
n∑

i=0

wi · Ci(τ)

)
= Pw(τ), (1)

which holds, since D(t) · Hw(t) = Pw(t). Thus, both tests pass, so V accepts.

Lemma A.3 (Soundness). There exists a constant κ < 1 such that if C(X=x, Y=y) is not satisfiable and if
V proceeds according to Figure 10, then Pr{V accepts} < κ for all purported proof oracles π̃.

Proof. Assume for now that π̃ is a linear function (this restricts the proof oracle’s power to cheat, and we
will revisit this in a moment). Consider π̃(qa), π̃(qb), and π̃(qc); these equal 〈qa, z̃〉, 〈qb, z̃〉, and 〈qc, z̃〉, for
some z̃ chosen by the prover. Likewise, π̃(qd) equals H̃(τ), for some polynomial H̃(t), chosen by the prover.
Thus, the divisibility test is checking whether D(τ) · H̃(τ) = Pw̃(τ), for w̃ = (x, y, z̃).

However, C(X=x, Y=y) is not satisfiable, so there is no H̃(t) for which D(t) · H̃(t) = Pw̃(t) (by
Claim A.1). Thus, Equation (1) holds only if τ is a root of the polynomial Q(t) = Pw̃(t) − D(t) · H̃(t).
But by the Schwartz-Zippel lemma, Prτ{Q(τ) = 0} ≤ 2 · |C|/|F|, since the degree of Q(t) is bounded by
2 · |C| and τ is randomly chosen from F.

We now address the possibility that π̃ is not a linear function. Take κ > max{(1 − 3δ + 6δ2)ρlin , 6δ +
2 · |C|/|F|}, for 0 < δ < δ∗, where δ∗ is the lesser root of 6δ2 − 3δ+ 2/9 = 0. The following claim implies
the lemma: if, for some π, the tests pass with probability greater than κ, then C(X=x, Y=y) is satisfiable.
We will now argue this claim.

If the linearity tests pass with probability greater than (1− 3δ + 6δ2)ρlin , then π is δ-close to linear; this
follows from results of Bellare et al. [9, 10]; see the analysis in [50, Apdx. A.2]. Next, consider the divisibil-
ity correction test (DCT). Assuming the proof oracle is δ-close to linear, the probability of passing the DCT
is > κ ≥ 6δ + 2 · |C|/|F|. But the probability that any of the six queries in this test (q1, q2, q3, q4, q5, q8)
“hit” π where it is not linear is upper-bounded by 6δ, by the union bound. So with probability > 2 · |C|/|F|,
the tests pass if querying the closest linear function to π. But then C(X=x, Y=y) is satisfiable because, as
argued above, if C(X=x, Y=y) is not satisfiable and V queries a linear function, the probability of passing
the tests ≤ 2 · |C|/|F|.

As in [50, Apdx A.2], we choose δ to minimize break-even batch sizes. We neglect the ratio 2 · |C|/|F|,
since |C| roughly captures the size of the computation and |F| is astronomical (e.g., |F| = 2192). We choose
δ = 0.0294 and ρlin = 20, and hence κ = 0.177 suffices. We then take ρ = 8 for an upper-bound on
soundness error of κρ < 9.6× 10−7.
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A.3 Costs in more detail

Earlier in the paper (Figure 3 and Section 4), we stated the costs of Zaatar. This section fleshes out some of
those claims.

We repeat the observation of Gennaro et al. [27] that the polynomials {Ai(t)}, {Bi(t)}, and {Ci(t)} can
be represented efficiently, in terms of their evaluations at the {σj}. That is, Ai(t) can be written as a list
{(j, ai,j) | ai,j 6= 0, j ∈ {1, . . . , |C|}}, and similarly for Bi(t) and Ci(t). For convenience, we let σ0 = 0 and
ai,0 = bi,0 = ci,0 = 0.

The prover. To construct the πh component of its proof vector (§A.1), the prover must compute the coeffi-
cients of Hw(t), where D(t) ·Hw(t) = Pw(t). Section 4 states that the cost to do so is 3 · f · |C| · log2 |C|. We
now detail the process. It is three steps (well-explained in [39, Chapter 1.7]).

Step 1 is writing Pw(t) in the form A(t) · B(t) − C(t), for degree-|C| polynomials {A(t), B(t), C(t)}, to
obtain the coefficients of {A(t), B(t), C(t)}. The prover constructs the set {(σj,

∑
i wi ·ai,j) | j ∈ {0, . . . , |C|},

which is the evaluations of A(t). The prover then uses multipoint interpolation [35, Chapter 4.6.4] to compute
the coefficients of A(t), in time ≈ f · |C| · log2 |C|. The prover does likewise for B(t) and C(t). Step 2 is
computing the coefficients of Pw(t) in time ≈ f · |C| · log |C|, using multiplication based on the fast Fourier
transform (FFT) [21]. Step 3 is computing the coefficients of Pw(t)/D(t) = Hw(t) in time ≈ f · |C| · log |C|,
using FFT-based polynomial division.

The verifier. We will be focused on Figure 10. We stated V’s query setup costs as (§4):

c + (fdiv + 5f ) · |C|+ f · K + f · 3K2.

We now explain these costs. Selecting τ costs c. Generating qd = (1, τ , . . . , τ |C|) costs f · |C|. Most of the
remaining costs are generating (A0(τ), A1(τ), . . . , An(τ)), (B1(τ), . . . , Bn(τ)), and (C1(τ), . . . , Cn(τ)).

Gennaro et al. [27] observe that a Lagrange basis is useful for this purpose; we give the details here. We
can write each polynomial Ai(t) as follows (and analogously for Bi(t), Ci(t)):

Ai(t) =

|C|∑
j=0

ai,j · `j(t), where `j(t) =
∏

0≤k≤|C|
k 6=j

t − σk

σj − σk
.

We can use Barycentric Lagrange interpolation [16] to write:

Ai(t) = `(t) ·
|C|∑
j=0

ai,j ·
vj

t − σj
, where

`(t) = (t − σ0)(t − σ1) · · · (t − σ|C|), and

vj = 1/
∏

0≤k≤|C|
k 6=j

(σj − σk).

We now explain the remaining costs. Computing `(τ) takes |C| multiplications; then, computing D(τ) takes
one division and one multiplication, as D(τ) = (1/τ) · `(τ). Computing {vj} can be done efficiently via
a careful choice of the {σj} (the protocol permits any distinct, non-zero values here): if we arrange for
σ1, . . . ,σ|C| to follow an arithmetic progression (a convenient choice is 1, 2, . . . , |C|), then computing 1/vj+1
from 1/vj requires only two operations. Since one can compute 1/v0 using |C|multiplications, the total time
to compute the {vj} is (fdiv + 3f ) · |C| operations.

Finally, given {vj} and `(τ) and using the representation above, one can compute {Ai(τ)}, {Bi(τ)}, and
{Ci(τ)}with a number of multiplications equal to the total number of non-zero {ai,j, bi,j, ci,j}. This number is
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computation-dependent (see §A.1), but we can bound it in our framework. Recall that our compiler obtains
Zaatar constraints by transforming Ginger constraints (§4). The Zaatar constraints, when written in quadratic
form, induce no more than K + 3K2 non-zero {ai,j, bi,j, ci,j}, where K and K2 are as defined in Section 4.

In Section 4, we stated that the verifier requires three operations per input and output. This cost comes
from computing the following quantities in the divisibility correction test:

∑n
n′+1 wi ·Ai(τ),

∑n
n′+1 wi ·Bi(τ),

and
∑n

n′+1 wi · Ci(τ).
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