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““Is the flow monocellular or multicellular?’’ This question was first raised by Dantzig 13
years ago. It was about the nature of the fluid flow for the gallium melting problem in a
rectangular cavity heated from the side. Following Dantzig’s work, several publications
have appeared on the same problem, with fewer than a handfull reporting a multicellular
structure. To date, all experimental results support the monocellular structure, yet some
researchers claim that the monocellular solution is incorrect. A similar controversy was
reported for the problem of tin melting, suggested in 1998 as a benchmark problem. Several
arguments have been suggested to explain the discrepancies, but there does not seem to be a
commonly accepted answer to the problem in the scientific community. In this work, we
summarize earlier works and present a grid-refinement study for several discretization
schemes with emphasis on tin melting and some results for gallium melting. Simulations are
carried out with the enthalpy method. The flow cell structure is analyzed in detail, while
some results are provided for the heat transfer and the melting rate. Our results show that
the multicellular structure is the correct numerical solution and that the flow structure has a
strong influence on other features of the solution. We also provide a detailed discussion of
earlier results in order to clarify important issues and bring a final answer to the controversy.
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NOMENCLATURE

ap central node coefficient v y-velocity component
a old time coefficient v velocity vector
A porosity constant w cavity width
Ar cavity aspect ratio (= H/W) X,y Cartesian coordinates
¢ specific heat o thermal diffusivity (=/pc,)
C porosity constant B coefficient of thermal expansion
/L liquid fraction AH latent enthalpy content
g gravity acceleration € numerical solidification 7 range
h sensible enthalpy (=c¢,T) € outer iterations convergence tolerance
H cavity height K thermal conductivity
L Latent heat of fusion n dynamic viscosity
Nu Nusselt number (= Q,,/0.) % kinematic viscosity
P pressure p density
Pr Prandtl number (=v/a) Vinin minimum streamfunction value
q porosity constant ® underrelaxation parameter
Q. total heat flux without convection
O heat flux through the hot wall Subscripts
Ra Rayleigh number c cold wall

[=gB(Ty — T H? Jav] f melting or freezing
St Stefan number [=c,(T) — T.)/L] h hot wall
t time L liquidus
T temperature ref reference value at Ty
u x-velocity component S solidus

1. INTRODUCTION

Phase-change problems often involve nonlinearities, strong couplings, and a
moving boundary [1]. As a result, only the simplest configurations are amenable to
analytical tools, while solving most problems of interest requires the use of numerical
methods. An additional difficulty is introduced due to the necessity of assessing the
accuracy of the numerical solution. This is done by testing the code on test problems
with known solutions, called benchmarks problems. Neither analytical solutions nor
benchmark solutions are currently available for phase-change problems involving
convection in the melt. Hence, the assessment of numerical solutions in past studies
was done by comparison with experimental results or other numerical results, usually
obtained by alternative numerical techniques.

The problem of gallium or tin melting in a rectangular cavity heated from the
side has been used extensively by researchers for the assessment of phase-change
numerical methods. Indeed, when convection in the melt is involved, this is one of
the few problems available in the literature for comparison purposes. Gallium
melting has been studied both numerically [2-25] and experimentally [26, 27]. Several
distinct configurations have actually been considered. Cavity aspect ratio values
Ar=1[6, 10-13], Ar=0.714 (the most common) [2, 3, 6, 7, 14, 16, 18-20, 22-27],
Ar= 051[4,6,7,9, 15, 17, 21, 24, 27-29], and Ar = 0.286 [24, 26, 27] have been
investigated. Moreover, some authors have considered several values of the Rayleigh
number, Ra, and Stefan number, St, for a given aspect ratio choice. The most
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frequent sets of parameters are Ra = 6x 10° and St = 0.04 for Ar=0.714,
Ra=2.2x10> and St=0.04 for Ar=0.5, and Ra=4x 10" and St=0.04 for
Ar=0.286. For tin melting, both experimental [30] and numerical [5, 23, 30-33]
results are available. Most studies for tin melting have focused on the configuration
with Ar=0.75, Ra=1.2 x 10°, St=0.0085, and Pr=0.016. Two other choices of
values for Ra have been considered in the experimental work of Wolff et al. [30],
while the aspect ratio Ar=1 has been investigated numerically in [23,31]. More
recently, Lequere and Gobin [34] promoted tin melting as a benchmark exercise.
They suggested two sets of parameter values slightly different from those used in
earlier studies, and called for contributions in order to perform a comparison among
independent results and ultimately obtain a reference solution. The exercise, which
resulted in two conference presentations and two publications [35, 36], has not
yielded a reference solution yet. The tin melting configuration with Ar=1,
Ra=2.5x10° St=0.01, and Pr = 0.04 is very similar to the gallium melting
problem with Ar=0.7.

Although the problems of gallium and tin melting have been employed
extensively for comparison purposes, the accuracy of past results has never been
clearly demonstrated. This problem has actually been offset by a controversy about
the flow structure in the melt. How could researchers focus on the accuracy of results
if they could not even agree on the global features of the solution? Here, the term
“global features” refers to the number of cells observed in the fluid flow during the
melting process. The controversy originated from the work of Dantzig [3], who
found in his work on gallium melting a melt flow structure with several rolls. Prior to
Dantzig’s work, only one-roll patterns had been reported [2]. Moreover, the findings
of Dantzig were apparently in contradiction with experimental results [27], while
those of Brent et al. [2] seemed to match experiments rather well. Dantzig’s findings
led him to argue: ““The most interesting point to pursue is the difference in the nature
of the flow found in the gallium melting problem,” and open up the controversy with
his question: “Is the multiple cell solution or the single cell solution correct?”
Dantzig, who used the commercial code FIDAP, argued that upwinding and too
coarse grids were the reasons for the failure of earlier studies in predicting a mul-
ticellular flow structure. Dantzig showed that, early in the melting process, the use of
upwinding for convective terms resulted in the suppression of eddies which were
observed with a centered scheme. Dantzig did not succeed in supporting his second
argument, for his code failed to converge when coarser grids were employed.

Following the work of Dantzig [3], numerous publications [6, 7, 14, 16, 18, 22]
reported results consistent with the findings of Brent et al. [2], i.e., a single cell
structure. In 1994, Campbell and Koster [26] performed experiments in order to
check earlier results from Gau et al. [27], which were criticized for lack of well-
defined setup. Although their results did not agree very well with those of Gau et al.
(and actually brought up another problem, which they attributed to a possible
density anomaly), their findings seemed to confirm that a single-roll structure was the
right solution for the problem of gallium melting. The findings of Dantzig were
recently confirmed by the work of Stella and Giangi [19], who used very fine grids
(several times finer than in earlier studies) along with the centered discretization
scheme. In an attempt to explain the disagreement of earlier numerical results with
experimetnal resuls of Gau et al., Cerimele, Mansutti, and Pistella [20] suggested that
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numerical simulations performed for the gallium melting problem were not con-
sistent with the experimental procedure, which involved a pour-in/pour-out proce-
dure that resulted in an actual restart of the fluid in the melt from uniform
temperature and zero fluid velocity. This fact was not taken into account in earlier
numerical studies. Later, Cruchaga and Calentano [24] performed numerical simu-
lations showing two recirculations early during the melting process and three later.
This confirmed earlier results by Dantzig, but the number of rolls obtained was
different. More recently, Wintruff and Gunther [25] presented results which match
very well those of Stella et al. and indicate an initial roll structure with four rolls, but
they did not provide details for the numerical parameters.

Prior to the benchmark exercise suggested by Lequere et al. [34], all results for
tin melting simulations were in rather close agreement. In contrast, the newly sug-
gested configuration resulted in the very same controversial observation as for gal-
lium melting. However, the discrepancies were among numerical results, since no
experimental results were available. The contributors to this benchmark exercise
were divided into two groups. Contributors in the first group found a single-roll
solution, while the second group reported a two-roll solution. Discrepancies in Nu
plots were also reported: sudden drops and oscillations were observed in results with
several-roll patterns. In their first publication [35], the contributors to the benchmark
exercise argued that a reference solution for the second test problem was probably
out of reach for some time, due to an unexpected instability. They also suggested
that difficulties in satisfying experimentally hypotheses accepted by numerical
simulations could explain discrepancies between numerics and experiments. In their
last article [36], they concluded that the problem was in need of further investigation,
emphasizing the need for a full description of the physical phenomena, verification of
codes, grid-refinement studies, and better experiments.

In past studies about tin or gallium melting, many authors claimed their
solutions were grid-converged, but few actually reported results for the grid-refine-
ment study. Dantzig [3] failed to obtain results with coarse grids. Viswanath et al. [7]
performed a refinement from a 30 x 30 grid to a 50 x 50 grid. They indicated at 3%
change in main flow values and concluded that their solution was satisfactory.
Similar arguments were presented by Rady and Mohanty [12], who refined the grid
from 20 x 20 to 35 x 35. To the authors’ knowledge, the only published refinement
study is the one of Stella et al. [19]. They called their study a mesh sensitivity analysis
because they did not actually try to obtain a grid-converged solution but rather
limited their analysis to determining a grid that would capture the correct number of
rolls in the liquid. Moreover, their results from various grids differed only slightly.

Comparisons among discretization schemes have been reported in three pub-
lications. Dantzig [3] switched from the centered scheme to first-order upwind and
showed that, early in the melting process, eddies were suppressed. However, it is
rather surprising that he was able to find as many as six rolls early in the melting
process with the coarse grid he used; Stella et al. [19] found only four rolls (almost
five) with the same scheme and a grid five times finer. Shyy et al. [13], who actually
focused on gallium melting with Ar=0.5 (not the focus of the present study),
compared first- and second-order upwind schemes, and showed that there is an
increase in number of rolls when the order of the discretization scheme is increased.
More recently, Kim et al. [23] presented a comparison of four discretization schemes
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(upwind, hybrid, centered, power law) for the gallium melting problem. Due to their
use of too coarse grids, there were no significant differences among the results from
the various schemes, all showing a single roll.

The main points of the controversy about tin and gallium melting problem may
be summarized as follows.

1. Contributors who found a multicellular flow pattern generally used finer
grids and/or higher-order discretization schemes, while those who found a
single-cell pattern generally used coarse grids and/or lower-order dis-
cretization schemes.

2. Coarse-grid and lower-order-scheme solutions agree better with experi-
mental results than fine-grid and higher-order discretization solutions.

3. There is no unanimously accepted explanation for the disagreement between
higher-order solutions and experimental observation.

4. No convergence study has been performed, although one grid-
refinement study is available for gallium.

5. No clear comparison among various discretization schemes is available.

The present work aims at providing results that clearly show what the correct
solutions to the gallium and tin melting problems are, while providing explanations
and arguments for erroneous earlier interpretations. As a result, future directions for
the problem considered are clarified.

2. PHYSICAL PROBLEM

Two problems are considered in the present study: the configuration for gal-
lium melting of Brent et al. [2] and the second test problem of Lequere et al. [34] for
tin melting. The general configuration is shown in Figure 1 and the flow parameters
are given in Table 1 for both gallium and tin. The cold boundary is undercooled for
gallium (7, < Ty) and at melting temperature for tin (7, = Ty). In both problems, the

Insulated boundary

N W

Insulated boundary

Figure 1. Tin and gallium melting problems configuration.
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Table 1. Tin and gallium parameters for melting problem

Parameter Symbol Tin Gallium Units
Reference density Pref 7.5%10° 6.093 x 10° kg/m?
Specific heat p 200. 381.5 J/kgK
Dynamic viscosity n 6.x 107 1.81x10 3 N's/m?
Thermal conductivity K 60. 32. W/mK
Coefficient of volume expansion B 2.67x1074 120x 104 K !
Latent heat of fusion L 6.x 10° 8.016 x 10* J/kg
Fusion temperature Ty 505. 302.78 K
Hot wall temperature Ty 508. 311. K
Cold wall temperature T, 505. 301.3 K
Cavity height H 0.1 0.0635 m
Cavity width w 0.1 0.0889 m
Cavity aspect ratio (H/W) Ar 1. 0.714

Gravity acceleration g 10. 10. m/s>
Rayleigh number Ra 2.25x 10° 7. % 103

Stefan number St 0.01 0.046

Prandtl number Pr 0.04 0.0216

material in the cavity is initially solid at temperature 7.. The temperature of the left
wall is suddenly raised to 7T}, at time ¢ = 0, and melting of the solid starts. Convection
in the melt results in one or several recirculations.

3. MATHEMATICAL MODEL

The basic formulation of our mathematical model is that of Brent et al. [2]. The
model assumes the fluid to be a porous medium with a porosity undergoing a sharp
change at the melting temperature. The setting is two-dimensional, incompressible,
unsteady, and laminar. The fluid, a single-component metal, is Newtonian, and has
constant thermophysical properties throughout the temperature range of study.
Buoyancy effects are dealt with the Boussinesq approximation. This results in the
model Egs. (1).

d
SAV(pVp) =0 (1a)
Opu _ oP
E—I—V-(qu)—V-(uVu)—a—Au (1b)
Opv e oP PretgB(h — hrer)
o + V- (pVv) =V - (uVo) 3 Av + ; (I¢)
op/ ~ OpAH .
Py (pPh)=V- <5w> PRy (pVAH) (1d)
ot cp ot

The constant 4 in the source terms of the momentum equations (15)—(1¢) is provided
by Eq. (2), where C and ¢ are two constants whose values depend on the problem
considered.
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Ji1t+4q
In the mushy zone Ts< T < T, the liquid fraction f; is related to temperature T
through a linear relationship, with values ranging from 0 in the solid to 1 in the
liquid.

The mathematical model is complemented with appropriate initial and
boundary conditions. On the boundary, both velocity components are set to zero.
Both top and bottom boundaries are assumed to be thermally insulated, while the
temperature is specified on the lateral walls. Numerical simulations are started from
fluid at rest and at uniform temperature 7= T,.

4. NUMERICAL METHOD AND PARAMETERS

The conservation equations (1) are discretized by a finite-volume method on a
uniform Cartesian grid. Approximations for the various terms are second-order-
accurate. However, the convective terms may be handled by any of the following five
schemes: upwind, hybrid, centered, power law, and exponential. A fully implicit
Euler method is employed for time discretization. The coupling energy—liquid frac-
tion, resulting from the use of an enthalpy formulation, is handled by the procedure
suggested in [2]. The resulting nonlinear and coupled system of equations is handled
by the SIMPLER algorithm. Linear systems are solved by two iterative methods:
BICGSTAB-SIP for nonsymmetric systems, and CG-SSIP for symmetric systems.

For both tin and gallium melting, the flow equations are solved in a reduced
domain containing the liquid. This practice is also used with the energy equation for
tin melting, since the solid is isothermal. The numerical melting range is chosen as
follows: for gallium melting, 7, = Ty+¢€/2 and Ts= T, — €/2; while for tin melting,
T, = T/'+€ and Tg= T/:

The simulations are carried out with the following numerical parameter values:
€=0.025, Ar=0.1 to 0.01s (decreases as melting proceeds), C=10"°, ¢=10"°,
oAp=0.2, 0,=®,=0.7, ©p=0.9, and ®,=0.8. Inner iterations (for linear systems)
are stopped when the residual is reduced by a factor 107, while outer iterations are
stopped when the residual of the conservation equation is less than €y, where € is set to
10~ for momentum and energy, and 10~ for mass in the case of gallium, and 8 x 1072,
107", and 107> for momentum, energy, and mass, respectively in the case of tin.

The code used for the present study has been thoroughly verified on a series of
test problems. Each component of the code has been checked separately. A final test
problem has been used to assess the good functioning of the coupling among the
various solvers. Details of the verification procedure may be found in [37].

5. RESULTS FOR TIN
5.1. Streamlines and Roll Pattern

Figures 2-4 display the streamlines and solid-liquid interface obtained at
several times during the melting process. Three discretization schemes (upwind,
hybrid, and centered) and three grids (100 x 100, 200 x 200, and 400 x 400) are
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Figure 2. Streamlines and interface at times 200s and 450s for three grids and three discretization
schemes.

considered for the comparison. Each time corresponds to a set of nine pictures, with
each scheme corresponding to a row and each grid size to a column. Numerically, the
least accurate of the nine pictures at one particular time is the top left, while the most
accurate is the bottom right. The left boundary of each picture corresponds to the
left hot wall, while the top and bottom boundaries represent the isothermal walls.
The isothermal solid to the right of the solid liquid interface has been truncated to
allow the pictures to fit in a single page. The spacing between two major tickmarks in
each direction corresponds to one-tenth of the total height (width). The solid-liquid
interface is determined by the liquid fraction contour f; =0.5.

Several important conclusions may be drawn from Figures 2-4. First, the
number of rolls increases as the grid is refined. Although most plots convey this
observation quite well, this is better exemplified by the three plots obtained at time
200 s with the hybrid scheme: the number of rolls is seen to increase from two to four
as the grid is refined. Similarly, at time 450s for the same scheme (hybrid), the
number of rolls increases from one to three as the grid is refined. Second, the number
of rolls increases as the order of the discretization scheme increases. This is best shown



RESOLVING THE CONTROVERSY OVER TIN AND GALLIUM MELTING 261
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Figure 3. Streamlines and interface at times 550s and 1,000s for three grids and three discretization
schemes.

on the plots obtained at time 200s with the 100 x 100 grid: the number of rolls
obtained is one for upwind, two for hybrid, and three for centered. Third, the dis-
crepancy among the results obtained by the three schemes and the three grids decreases
with time, as all of them end up with one single roll at time 2,000s. However, the
single cell is located farther down in the cavity for finer grids and for higher-order
schemes. This indicates that melting is faster at the bottom and slower at the top for
more accurate solutions. Fourth, the rolls are well rounded for higher-order schemes
and flat for lower-order schemes, as may be seen on the plots obtained at time 550s,
for example.

Also notice that the number of rolls obtained with the centered scheme does
not change significantly when the grid is refined. This indicates that the solution is
close to grid-converged, a good hint to undertake a grid convergence study. The
largest difference in roll number at a given time is expected to be between the top left
(upwind—100 x 100) and the bottom right (centered—400 x 400) plots. Notice that
the difference decreases with time. At time 200s, the most accurate solution shows
four rolls and the least accurate has one roll. We use the notation (4:1) to refer to this
fact. Then, at time 4505, the roll contrast is (3:1), at time 1,000s (2:1), and at time
2,000 (1:1).

As a general rule, we may conclude that more accurate solutions exhibit a larger
number of rolls. In particular, the number of rolls is greater for finer grids. This rule,
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Figure 4. Streamlines and interface at time 2,000 s for three grids and three discretization schemes.

as sound as it looks, is nevertheless seriously contradicted by the results obtained by
the centered scheme at time 550s. As may be seen in Figure 3a, three rolls are dis-
played by the 100 x 100 grid solution, while only two are displayed by each of the
200 x 200 and 400 x 400 solutions. One has to look at the melting history in order to
explain this rather strange result. The 100 x 100 grid is too coarse to capture the
four-roll structure that prevails early in the melting process (at time 200s). When a
roll merging occurs for the 400 x 400 grid solution, the locations of the three
resulting rolls are not the same as for the 100 x 100 grid. Subsequently, the rolls grow
at their initial locations. Because the top two rolls are closer in the 400 x 400 solution
than in the 100 x 100 solution, where the rolls are more evenly spaced, the pairing
occurs 130 earlier. A similar explanation holds for the 200 x 200 grid result, which
captures four rolls only during a short time interval near ¢t =140s. This observation
has a very important bearing: any initial discrepancy in roll location, due either to a
perturbation or to insufficient resolution, will influence the entire fluid flow for a very
long time. Therefore, it is very important to capture the initial roll structure with
enough resolution. As an example of resulting incorrect behavior, we mention that
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one of our simulations (100 x 100—centered) resulted in four major roll mergings,
while other simulations showed only three roll mergings.

Comparison with earlier results is also necessary in order to draw conclusions.
Notice that the coarsest grid used in the present study (100 x 100) is actually finer
than any of the grids used by the tin-melting benchmark contributors [36] who found
a single roll structure. Moreover, those contributors also used first-order dis-
cretization schemes. Our work shows that a monocellular structure was to be
expected from such a combination. The few contributors who used higher-order
discretization reported a multicellular structure, although no results with streamlines
were published.

A summary sketch of the roll structure obtained for each choice of grid size
and discretization scheme as a function of time is shown in Figure 5. Each line on the
plot corresponds to one particular combination of scheme and grid. A step change
corresponds to a bifurcation or a roll merging. The number of rolls prevailing during
a particular time interval (between two consecutive steps) is indicated by a corre-
sponding number of small circles. Usually, the number of rolls decreases by one after
a roll merging. An exception to that is the third roll merging; there are two rolls,
both before and after the merging.

Notice that at any given time the number of rolls in the cavity is larger for finer
grids and higher-order discretization schemes (except for the 100 x 100 centered
solution that was mentioned earlier in this section). The number of rolls is roughly
the same for the hybrid and centered schemes when the 400 x 400 grid is being used.
Therefore, one may conclude that the numerical solution is close to converged and
that the expected pattern is: one roll early, four rolls after time 120, three rolls after
time 220 s, two rolls after time 460s, then merging at time 1,050 s, resulting in the
same number of rolls, two. The number of rolls decreases afterwards to one in a
continuous way.

Both the upwind scheme with a 100 x 100 grid and the hybrid scheme with a
50 x 50 grid show only one roll during the entire numerical simulation. This is in
accordance with earlier results of tin melting as well as gallium melting, where coarse

Time (s)
Grid 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
100x100 =
200 x 200 o [Flee Joo °
00%400 Eolsco s <,. o o
Upwind
Blfurcation Roll merging
50 x50 2
100x100 = oo I
200x200 = J531s00 I o 2
400 x 400 3 Joso: Toce Joc 122 o
A
LN Hybrid
25x25 2 e o o
50x 50 ) s Toso 55 oo o
100x100 [Bloo Js 1o o5 g
200x200 = MElaee fes lee =
400 x 400 o Ioooo: j LI Joo g Teg. o
Centered

Figure 5. Roll structure as a function of time for three discretization schemes and five grid sizes.
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grids (from 15 x 15 to 80 x 80) and overall first-order schemes were used. Among the
13 contributors of the tin benchmark problem [36], nine participants fall in this
category.

The centered scheme has often been criticized for being nonmonotone, gen-
erating oscillations, and being prone to numerical unstability. This fact was an
additional argument in favor of those who found a one-cell structure for the gallium
melting problem and whose results agreed quite well with experiments. As the pre-
sent work shows, even the upwind scheme captures the four rolls early in the melting
process with a sufficiently fine grid (400 x 400). This eliminates any doubt about the
validity of the numerical solution and the multicellular nature of the flow.

In conclusion, the solution of the mathematical model selected for the
numerical simulation of the tin melting problem is expected to be multicellular.
Further refinement is needed in order to obtain a grid-converged solution.

5.2. Solid-Liquid Interface

The shape and location of the solid—liquid interface at several times during the
melting process is provided in Figure 6. Results are provided for three discretization
schemes and five grids (25 x 25, 50 x 50, 100 x 100, 200 x 200, and 400 x 400). Each

01

o1

450

200
I 100x100
———= 200200

100
3 400x400 ]

L » i L n . L L
0.1 0.1

{ 3
F"
H]
|
s
i/
3 Grid 3
450 450
A Ty A 25x25 L Sch
200 - 50x50 200 cheme
3 —-s—--— 100x100 o - Upwind
100 ———— 200x200 100 - Hybrid
400x400 7 3 Centered
P TR TS
0.1 0.1
(c) Centered (d) All schemes

Figure 6. Solid-liquid interface for three schemes and several grid sizes.
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of the first three subfigures, 6a—6¢, corresponds to the results for one particular
scheme. As melting proceeds, the solid—liquid interface moves to the right.

At time 100s, the interface is flat and identical for all schemes and all grids.
This is due to the fact that convection is still weak, and the problem is driven by heat
conduction, rendering all schemes equivalent, centered differencing being used for
the diffusion terms by all of them. At time 200 s, the interface becomes wavy, due to
faster melting near the roll locations. The number of bumps reflects the number of
rolls in the melt. As melting proceeds, the depth of the troughs increases, resulting in
larger discrepancies among the interface location obtained by different schemes and
grids. A 15% discrepancy between coarse and fine grid results may be noticed at time
450s for both hybrid and upwind schemes.

At time 1,000s, find-grid (400 x 400) solutions exhibit a two-bump interface,
while low-accuracy solutions (upwind—25 x 25 to 100 x 100, hybrid—25 x 25 to
100 x 100, and centered—25 x 25) show only one bump. In their second publication
[36], the contributors to the tin melting exercise were divided into two groups. In the
first group (the larger), contributors found a one-bump interface, while in the second
group, a two-bump interface was reported. Contributors in the first group used
lower-order schemes and coarse grids (less than 100 x 100), while in the second
group, grids were finer and discretization schemes of higher order. Hence, one can
conclude from the present results that the single-bump interface results from insuf-
ficient numerical resolution.

As shown on the plots at time 2,000s, faster melting occurs at the bottom for
finer grids and more accurate schemes. Hence, even at later times in the melting
process, interface shape is strongly affected by the grid size and the roll pattern in the
flow. This contradicts the results of the tin-melting benchmark exercise contributors
[36], who indicated rather good agreement among all the solutions at time 2,500s.
The unavailability of most accurate numerical solutions at time 2,500 s, as well as the
use of large time steps by some contributors, could explain the results in [36].

To allow a comparison among the three schemes, the solid-liquid interface
obtained with a 400 x 400 grid at various times during the melting process is sket-
ched in Figure 6d (at time 2,000s, the results for the centered scheme are from a
300 x 300 grid, due to the unavailability of the 400 x 400-grid solution). Notice the
very good agreement between the results for hybrid and centered schemes. This fact
is generally a good indicator that the solution is close to converged.

5.3. Nusselt Number Plots

The average Nusselt number, Nu, at the hot wall is a good indicator of how
convection affects overall conduction through the cavity. A correlation for Nu,
derived in [36], is used for comparison purposes. Nu results from three grids and
three schemes are shown in Figure 7. For both upwind and hybrid schemes, the
100 x 100-grid solution agrees quite well with the correlation, a very smooth curve.
As the grid is refined, Nu assumes values larger than those of the correlation. In
addition, sudden drops of the Nu plot appear at times corresponding to roll pairings.
The drops are more pronounced for finer grids and higher-order schemes. More
accurate solutions also exhibit oscillations prior and after roll mergings. The high-
frequency oscillations shown on the centered plot after time 1,300s are possibly of
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Figure 7. Average Nusselt number at the hot wall as a function of time for three schemes and three grids.

numerical origin, due to the use of a nonmonotone, centered scheme. Further
investigation is necessary in order to check this assertion. The centered, 100 x 100,
and 400 x 400 results are not shown in the figure, being very similar to the 200 x 200
solution.

5.4. Volume of Melt

From an engineering point of view, the rate of melting is one of the most
important parameters of the problem. The time evolution of the total liquid fraction in
the cavity (ratio of volume of melt to volume of cavity) is a factor that has been widely
used as a monitoring parameter in earlier publications. From the liquid fraction-
versus-time plot, one can get both the rate of melting (slope of the tangent line at a
given time) and the average melting rate (ratio of current liquid fraction and time).

Figure 8 displays the time evolution of the total fraction of liquid in the cavity.
The effect of grid-refinement is shown in Figure 8« for the hybrid scheme. It may be
noticed that the liquid fraction increases as the grid is refined. This is also true for the
upwind and centered schemes. A comparison among the three discretization schemes
is also shown in Figure 8b for the 200 x 200 grid. Again, the liquid fraction is seen to
increase as the discretization scheme order is increased. Therefore, one may conclude
that more accurate numerical solutions are expected to return higher melting rates,
an expected result since convection is stronger for these solutions.

The value of the total liquid fraction in the cavity at time 2,500 s obtained in
the present study with the 200 x 200—centered simulation is about 0.6, a value 5%
larger than the largest prediction from the tin-melting benchmark exercise con-
tributors [36].

Contrary to the Nusselt-number plot, the liquid fraction-versus-time plot is a
very smooth curve, free of oscillations, sudden drops, and peaks. This is understood,
since the melting time scale is much larger than the convection time scale.
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A comparison among three schemes is provided in Figure 9 for the convergence
pattern under grid refinement. Two parameters are considered: the minimum value
of the streamfunction in the melt, ,,;,, and the total liquid fraction in the cavity.
The abscissa shows to the number of nodes in one direction (same number in both
directions). For all schemes, the solutions converge toward a common value. The
centered solution tends to converge faster than the hybrid and upwind solutions; 200
nodes are enough to get an accurate solution at time 1,000s, while 300 nodes are
needed at time 200s, earlier in the melting process.
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Figure 9. Convergence of minimum streamfunction value and cavity liquid fraction under grid refinement.

6. RESULTS FOR GALLIUM

In order to check the accuracy of the numerical solution for the gallium melting
problem, a grid-refinement study is presented first. All simulations were done with
the centered discretization scheme. Figure 10 displays the streamlines and solid—
liquid interface at time 32s obtained with several grids. As may be seen, the results
with the two finest grids, 840 x 600 and 1,120 x 800, agree quite well. Consequently,
we present results obtained with the 840 x 600 grid. Notice that the grid used for
gallium is finer than the grids used for tin. This is necessary because Ra is larger and
more cells are to be captured.

Figure 11 shows the time evolution of the flow pattern (streamlines) and solid—
liquid interface. The results are from an 840 x 600 uniform grid, except for the plot
at time 280s, which is from a 560 x 400-grid calculation. However, the initial dis-
crepancy between the two grids is very small, and the picture is believed to be very
close to the exact solution.

It is interesting that the streamlines obtained in the present work show only
four rolls, and a not very well formed and unstable five-roll structure at some point
early in the melting process. Our solution is in excellent agreement with the results of
Stella et al. [19] at time 325s. Dantzig [3] reported a roll structure with six rolls. Our
grid-refinement study indicates that the roll structure of Stella et al. seems to be
correct. Moreover, the very coarse grid used by Dantzig makes the six-roll pattern
shown in his plots questionable. The use of two nonmonotone schemes, for space
and time, in combination with a very coarse grid, could explain Dantzig’s results.
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Figure 10. Gallium melting: streamlines and interface at time 32s for four grids.

Later, the number of rolls decreases through a process of roll merging, always
involving the top two rolls. The present results at time 42's, 85, and 155 agree very
well with those of Stella et al. Interestingly, the selection of plot output times was
made on the sole basis of inspecting our results. These times correspond to roll
mergings. Those times turned out to be the same as the ones used by Stella et al. for

20s 32s 36s 42s 85s 155s 280s

Figure 11. Gallium melting: streamlines and interface at several times during the melting process.
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their output. This underscores the strong agreement between our results and those of
Stella et al.

7. DISCUSSION
7.1. Why Use Coarse Grids and Lower-Order Schemes?

Most earlier studies of gallium and tin melting were done with coarse grids, due
to the limitations of computer capabilities. Many authors [17, 28, 30] actually
acknowledged that their choice of grid size was a compromise between numerical
accuracy and cost of computations. Even on the computers of today, the simulations
are highly demanding in CPU time, due to the multiscale nature of the problem. In
the present study, the 200 x 200-grid simulation up to time 2,500s required 2,400
CPU h, 111 runs (restarts), and 3 months of calculations on a Compaq Alpha
(667 MHz, ev67) processor. Checking the solution of the gallium melting problem up
to time 32s with the 1,120 x 800 grid has required about 980 CPU hours.

Similarly, lower-order discretization schemes are usually preferred due to their
simplicity and monotonicity. Moreover, linear system solvers converge faster on the
resulting matrices. Second-order schemes have the drawback of being unstable
(oscillatory). However, alternative treatments such as TVD and ENO schemes could
be considered [38].

7.2. Disagreement between Numerics and Experiments:
A Tentative Explanation

As mentioned in the Introduction, Cerimele et al. [20] suggested an interesting
idea to explain the disagreement between experimental and numerical results for the
gallium melting problem. They argued that the pour-in/pour-out procedure
employed by Gau et al. [27] in their experiments to perform measurements was
actually leading to a problem different from the one considered in numerical simu-
lations. The experimental procedure involves a fluid restart from rest and from
uniform temperature, whereas in the numerical simulations, no such restart is con-
sidered. To support their argument, Cerimele et al. performed two calculations, one
consistent with the experimental procedure, and one consistent with earlier numer-
ical studies. For the situation consistent with past numerical simulations, Cerimele
et al. obtained a very irregular and distorted interface that does not agree with
experimental results, and consequently attributed the discrepancies to the inade-
quacy of the numerical assumptions. However, if one looks more closely at the
interface shape they obtained, it appears that this interface shape does not agree with
earlier numerical studies either. The irregular interface shape they obtained is very
likely due to a numerical instability resulting from insufficient convergence of energy;
we observed similar erroneous results in some of our simulations. Moreover, the
results of Cerimele et al. for the simulation corresponding to the experimental
procedure actually do not improve on past numerical studies, since they also show a
two-bump interface as in Dantzig [3], which indicates that their results do not agree
with experiments. Consequently, it does not seem that a positive result has been
obtained for the argument invoked in their study.
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7.3. The Myth of Grid-Converged Solution

A closer look at past published works about the gallium and tin melting
problems shows that most authors claimed their solution was grid-converged. A
large number of authors [2, 4-7, 10-12, 29-33] did not report results for grid
refinement and contented themselves with assertions such as ““Further refinements in
grid or time step did not produce discernible improvements,” “After conducting a
grid refinement study, a 42 x 32 grid was chosen,” or ‘““Similar results were obtained
with a 51 x 51 grid.” Very few authors actually presented grid-refinement results.
Viswanath et al. [7] showed the evolution of the volume of melt as the grid was
refined from 30 x 20 to 50 x 40 and concluded that a change in 3% was acceptable.
Rady et al. [12] presented the evolution of the extrema of streamfunction, Nusselt
number, and volume of melt values for grids ranging from 20 x 20 to 35 x 35.

Although most authors in earlier studies have argued that their numerical
solutions were grid-converged or close to grid-converged, it is clear from the present
study that the single-roll solution they obtained is not grid-converged. Since most
earlier studies used the upwind discretization scheme, or a scheme such as hybrid and
power law, which reverts to upwind for high values of the Peclet number, an
explanation to this anomaly may be provided by the comment of Leonard [39] about
low-order schemes:

The convergence rate of such methods is usually so anomalously slow .. .in some
grid refinement studies. .., that in the absence of other solution or experimental
data, one can easily convince oneself that a “grid-converged solution” has been
reached (to some level of accuracy). (p. 54)

This shows that tougher measures are necessary in order to check the accuracy of
numerical solutions for this kind of problem.

7.4. Too Coarse Grids Early in the Melting Process

The results presented in our study have shown that the number of rolls early in
the melting process needs to be correct in order for the numerical solution to be
accurate later. It was shown that a rather coarse grid can capture the correct number
of rolls at later times, due to the fact that the rolls grow larger. Later, however, the
locations of these rolls would be incorrect. For example, three rolls are obtained with
the 100 x 100 and the 400 x 400 grids (and the centered scheme) at time 450, but
their locations are different. As a result, merging of the top two rolls happens 130s
earlier for the 400 x 400 grid. A typical result in this category is the one presented by
Cruchaga et al. [24] for the gallium melting problem. Due to too coarse a grid,
Cruchaga et al. captured only two rolls early in the melting process. Later, the
number of rolls increased to three.

Another issue related to using too coarse grids early along with the centered
scheme is the problem of flow unstabililty. In our results with a 50 x 50 grid and the
centered discretization scheme, we noticed large overshoots and undershoots for the
extrema of streamfunction values (about 200%) as well as an unclear roll structure,
constantly evolving. It was actually difficult to decide on a number of rolls and the
roll locations (flat shape). This phenomenon could explain the failure of Dantzig [3]
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to obtain results for coarse grids. Dantzig reported that his code could not converge
when coarse grids were employed. His use of a nonmonotone second-order dis-
cretization scheme for time may have worsened the situation.

7.5. Validation versus Verification

The existence of a controversy for gallium and tin melting problems is due
partly to confusion between two very important concepts known as verification and
validation (Roache [40]). Verification amounts to checking that a computer code
designed for solving a given set of partial differential equations (model) is free of any
bug. This is achieved through testing on problems with known solutions, performing
grid-refinement studies, and ensuring that the convergence pattern is consistent with
the order of the discretization scheme. Validation, on the other hand, is concerned
with the adequacy of a mathematical model for a particular physical application.
Validation is performed by comparing a verified numerical solution to the selected
mathematical model with physical observations.

For the problem at hand, gallium or tin melting, the correct numerical solution
is the one that represents the converged solution for the mathematical model
selected. It may or not agree with experimental observation. On the other hand, a
nonconverged numerical solution is unacceptable even if it agrees with experimental
observation, since it is not a correct solution to the mathematical model selected.

Consequently, multicellular flow pattern is the correct answer to the numerical
simulations, while further investigations will be necessary in order to determine
whether the model is inadequate, or previous experimental studies were not con-
sistent with the assumptions made in the numerical simulations.

7.6. Checking Accuracy without a Reference Solution

In the absence of a reference solution (benchmark solution or analytical
solution), two procedures have been commonly employed to assess the accuracy of
numerical results for phase change involving convection: comparison with experi-
mental results and comparison with other numerical results. However, neither pro-
cedure is a valid method to assess accuracy. Direct comparison with experiments
bypasses the verification and validation processes, while comparison with another
numerical result is valid only if that result has itself been assessed. Arguments of this
type have been used in [14] to support the single-cell solution.

A reference solution could actually be obtained by a simple grid-convergence
study. It is a simple computational exercise that does not require any experimental
check. The numerical solution obtained would be a true reference solution for the
selected mathematical model, and researches would be able to use it to verify their
own codes.

7.7. Is the Multicellular Solution Physically Correct?

Since the muticellular pattern in the gallium and tin melting problems has not
been reported experimentally, it is legitimate to question its validity. A multicellular
pattern has indeed been reported in the experimental work of Chikhaoui et al. [41],
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as indicated by Dantzig [3]. Chikhaoui et al. found six cells in an experiment
involving natural convection of air in a vertical slot. Involving a melting time scale
much larger than the convection time scale, the problems of gallium and tin melting
may actually be compared to pure natural convection in a vertical slot with vertical
boundaries corresponding to the left wall and the solid-liquid interface. In a separate
experimental study involving natural convection in a vertical differentially heated
cavity with large aspect ratio, Vest and Arpaci [42] observed nine cells. Later the
problem was simulated numerically by Leonard et al. [38], who obtained the same
roll pattern with a 3% error. Hence, one may conclude that the possibility of a
multicellular flow structure for the problems of tin and gallium melting is viable.

7.8. What Should Be Done Next

The present contribution has shown clearly that the solution to the mathe-
matical model commonly adopted for the numerical simulation of the tin and gal-
lium melting problems is multicellular. This does not agree with published
experimental observations. The various ideas linked to the problem have been
reviewed and clarified. Here, two possible directions are suggested for future work:
checking the mathematical model and checking the experimental procedure.

If the experimental results turn out to be correct (single cell), then the math-
ematical model will have to be modified. Several assumptions may be questioned:

The situation is two-dimensional.

Thermophysical properties are constant (independent of temperature).
Thermal conductivity of solid gallium is isotropic.

Thermophysical properties of solid and liquid are equal.

Melting does not involve expansion.

Other effects, such as surface tension, are neglected.

AR e

Among these possibly inappropriate assumptions, two deserve particular attention.
Assumption 5 is one that can lead to important changes. Gallium actually shrinks
upon melting, by about 3.8%. Therefore, a free interface (gas—liquid) would result
upon melting, and surface tension effects might have to be included in the model. On
the other hand, three-dimensional effects would result if filling in of liquid gallium
was allowed to compensate for volume loss. Also, assumption 1 definitely needs
closer examination, as the following comment of Frederic and Quiroz [43] suggests:

...two-dimensionality is only an approximation to the actual behavior, which is
always three dimensional. Not all the problems of confined natural convection

possess a two-dimensional version,.... A three-dimensional assumption being
more realistic, can detect phenomena not seen in the two-dimensional version.
(p. 1699).

Questioning the validity of the experimental procedure is another alternative
that several researchers [19, 35, 36] have supported. Do the experiments meet the
assumptions of the physical problem? In particular, it is interesting to evaluate to
which level of compliance the following are met:
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1. Boundary conditions (isothermal and adiabatic walls)

2. Initial conditions (sudden increase of temperature)

3. Purity of gallium

4. Two-dimensional assumption (is the cavity wide enough?)

Two additional problems associated with experiments are the difficulties in per-
forming three-dimensional measurements and the visualization of streamlines in an
opaque melt.

8. CONCLUSION

In the present study, numerical simulations for tin and gallium melting in a
rectangular cavity heated from a vertical wall have been performed. A thorough
comparison among three common discretization schemes and several grid sizes has
been presented. A lengthy discussion focusing on the controversy regarding the flow
structure and related problems has been provided.

The present contribution has shown that the issues of grid size and dis-
cretization scheme, both suggested as an explanation to the discrepancies in earlier
results, are actually a problem of convergence of the numerical solution. Earlier
arguments suggested to explain discrepancies between experiments and numerical
solutions could be termed simply “improper convergence of the numerical solution,”
and a reference solution can indeed be obtained regardless of agreement between
experiments and numerics. It was shown that as the solution converges, the flow
structure becomes multicellular. Hence the solution to the mathematical model
selected for the numerical simulation is multicellular and earlier results with one
single cell are erroneous, due to insufficient grid convergence. The controversy is now
easily explained; since the solution of the selected mathematical model does not agree
with experimental results, either the mathematical model is inadequate or the
experimental procedure did not meet the assumptions of the mathematical model;
Future directions include checking earlier experiments by overcoming experimental
difficulties or finding a more appropriate model to the problems of tin and gallium
melting.
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