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ABSTRACT

Missing heritability in human diseases represents a major challenge. Although whole-genome
sequencing enables the analysis of coding and non-coding sequences, substantial costs and data
storage requirements hamper its large-scale use to (re)sequence genes in genetically unsolved cases.
The ABCA4 gene implicated in Stargardt disease (STGD1) has been studied extensively for 22 years, but
thousands of cases remained unsolved. Therefore, single molecule molecular inversion probes were
designed that enabled an automated and cost-effective sequence analysis of the complete 128-kb
ABCA4 gene. Analysis of 1,054 unsolved STGD and STGD-like probands resulted in bi-allelic variations
in 448 probands. Twenty-seven different causal deep-intronic variants were identified in 117 alleles.
Based on in vitro splice assays, the 13 novel causal deep-intronic variants were found to result in
pseudo-exon (PE) insertions (n=10) or exon elongations (n=3). Intriguingly, intron 13 variants c.1938-
621G>A and c.1938-514G>A resulted in dual PE insertions consisting of the same upstream, but
different downstream PEs. The intron 44 variant c.6148-84A>T resulted in two PE insertions that were
accompanied by flanking exon deletions. Structural variant analysis revealed 11 distinct deletions, two
of which contained small inverted segments. Uniparental isodisomy of chromosome 1 was identified
in one proband. Integrated complete gene sequencing combined with transcript analysis, identified
pathogenic deep-intronic and structural variants in 26% of bi-allelic cases not solved previously by
sequencing of coding regions. This strategy serves as a model study that can be applied to other

inherited diseases in which only one or a few genes are involved in the majority of cases.

Key words: ABCA4, Stargardt disease, smMIPs, deep-intronic variants, structural variants, pseudo-

exons
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Introduction

High throughput whole-genome sequencing (WGS) has made a huge impact in biology and is
considered the most powerful genetic test to elucidate inherited human diseases (Lupski et al. 2010;
Carss et al. 2017). It allows the unbiased detection of a wide spectrum of genetic variants including
coding and non-coding single nucleotide variants (SNVs), as well as large structural variants (SVs)
(Ellingford et al. 2016). However, sequencing and data storage costs hamper the use of WGS for routine
diagnostics. As WGS can result in ‘incidental genetic findings’, a separate informed consent of the
patients is required (Matthijs et al. 2016).

Based on the advantages and limitations mentioned above, WGS is not the best method to
perform sequence analysis of one or a few genes that are associated with a clinically distinct condition.
Autosomal recessive Stargardt disease (STGD1) due to variants in the ABCA4 gene, represents a nice
example of this concept. STGD1 is the most frequent inherited macular dystrophy with an estimated
prevalence of 1/10,000 (Blacharski et al. 1988). Different combinations of variants result in a spectrum
of clinical phenotypes, ranging from i) pan-retinal dystrophy with an early age at onset due to two
severe or null variants, to ii) adolescent or young adult-onset disease observed in probands with typical
STGD1 due to the combined effect of a severe and a mild variant, and iii) late-onset STGD1 often due
to a severe variant combined with a mild/hypomorphic variant, one of which (p.Asn1868Ile) displays
reduced penetrance (Allikmets et al. 1997; Cremers et al. 1998; Westeneng-van Haaften et al. 2012;
Zernant et al. 2017; Cremers et al. 2018; Runhart et al. 2018). Thus far, 1,180 unique ABCA4 variants
have been reported in 8,777 alleles of 6,684 cases (Cornelis et al. 2017) (www.lovd.nl/ABCA4). A large
proportion of the variants affect non-canonical splice site (NCSS) sequences, with variable effects on
MRNA processing (Schulz et al. 2017; Sangermano et al. 2018; Khan et al. 2019). In addition, several
deep-intronic (DI) variants have been identified (Braun et al. 2013; Zernant et al. 2014; Bauwens et al.
2015; Bax et al. 2015; Bauwens et al. 2019; Fadaie et al. 2019; Khan et al. 2019; Sangermano et al.
2019). Most of these DI variants strengthen cryptic splice sites resulting in the insertion of pseudo-

exons (PEs) in the mature ABCA4 mRNA. A few DI variants display retina-specific PE insertions (Albert
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et al. 2018). SVs seem to be rare in ABCA4 (Maugeri et al. 1999; Yatsenko et al. 2003; Zernant et al.
2014; Bax et al. 2015; Bauwens et al. 2019), although systematic copy number variant analyses have
not been performed in most STGD1 cases.

Due to the relatively large size of the ABCA4 gene (50 exons; 128,313 bp), mutation screening
initially was restricted to mutation-scanning of the exons and flanking splice sites, by methods such as
single strand conformation polymorphism analysis (Maugeri et al. 1999; Klevering et al. 2004),
denaturing gradient gel electrophoresis (Rivera et al. 2000), denaturing high pressure liquid
chromatography (Maia-Lopes et al. 2009), and allele-specific primer extension (Jaakson et al. 2003).
More recently, exons and splice sites have been sequenced using an amplicon tagging protocol
(zernant et al. 2011; Sciezynska et al. 2016), array-based hybridization (Schulz et al. 2017), targeted
gene-panel sequencing (Consugar et al. 2015) or whole exome sequencing (Ortube et al. 2014; Zhou
et al. 2014; Bryant et al. 2018). Sequence analysis of the entire 128-kb gene and up- and downstream
DNA segments was performed using next-generation sequencing platforms after enrichment of ABCA4
sequences using Raindance microdroplet-PCR target enrichment or lllumina TruSeq Custom Amplicon
target enrichment (Zernant et al. 2014), Haloplex-based sequence enrichment (Bauwens et al. 2019;
Sangermano et al. 2019), or WGS (Carss et al. 2017; Sangermano et al. 2019). The scanning techniques
showed poor sensitivity, leaving 50-70% of STGD1 probands genetically unsolved (Maugeri et al. 1999;
Rivera et al. 2000; Jaakson et al. 2003; Klevering et al. 2004; Maia-Lopes et al. 2009). Targeted next-
generation sequencing methods thus far employed have been relatively expensive to analyze ABCA4,
or (e.g. whole exome sequencing) did not cover non-coding regions and thus missed crucial causal
variants.

Identification of all variants in both alleles is important to confirm the clinical diagnosis because
several promising clinical trials are underway based on RNA modulation with antisense
oligonucleotides (Albert et al. 2018; Bauwens et al. 2019; Sangermano et al. 2019), drug based
therapies, such as compounds that inhibit lipofuscin accumulation (Charbel Issa et al. 2015), as well as

gene augmentation (Allocca et al. 2008) and stem cell therapies (Lu et al. 2009). STGD1 cases will only
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be eligible for one of these therapies if both causal alleles are known. In addition, recent studies have
identified alleles carrying a coding variant in cis with a deep-intronic variant, and only these
combinations represented fully penetrant alleles (Bauwens et al. 2019; Sangermano et al. 2019).

Recently, we reported the design and use of 483 single-molecule molecular inversion probes
(smMIPs) to sequence the 50 coding exons and 12 intronic regions carrying 11 pathogenic DI variants
of 412 genetically unsolved STGD1 cases (Khan et al. 2019). In this study, we aimed to design a fully
automated, high throughput, cost-effective and comprehensive sequence analysis of the entire ABCA4
gene which could serve as a model study to investigate human inherited diseases due to variants in
one or a few genes. Using 3,866 smMIPs we sequenced 1,054 genetically unsolved STGD or STGD-like
probands, 123 bi-allelic control cases carrying ABCA4 single nucleotide variants (SNVs), and 15 affected
individuals carrying known heterozygous SVs in ABCA4. Novel NCSS and DI variants were tested in vitro
for splice defects. Additionally, a very high and reproducible read coverage allowed us to perform copy

number variant analysis.
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Results

smMIPs performance and ABCA4 sequencing
A pilot sequencing study was conducted using 15 STGD1 samples and five controls, revealing all
previously identified 34 variants (Supplemental Table S1). The average number of reads for the 20 DNA
samples ranged from 10 to 152,500 per smMIP, with an overall average coverage of 933x for each
smMIP.

In total 1,192 DNA samples were analyzed for variants in ABCA4 using six NextSeg500 runs.
The average number of reads of the 3,866 smMIPs was 377x. As most nucleotide positions are targeted
with two smMIPs, the effective average coverage was ~700x. To determine the coverage of ABCA4 in
more detail, we calculated the average coverage of each nucleotide position for runs 1 to 5 combined
(Supplemental Table S2). To visualize the results, nucleotide positions that were not or poorly covered
(210 reads), moderately covered (11-49 reads) or well covered (=50 reads) are depicted in
Supplemental Fig. S1. From the 128,366 nt of ABCA4, 1,980 nt (1.5%) were not or poorly covered, 1,410
nt (1.1%) were moderately covered, and 124,976 nt (97.4%) were well covered. Although ABCA4
introns carry several repetitive elements (Supplemental Fig. S1), they only had a small effect on
smMIPs design. Several larger repeats are present in up- and downstream regions of ABCA4, which
resulted in the absence - or poor performance - of smMIPs. Sequencing of 1,192 samples yielded a

total of 7,756 unique variants in ABCA4 that are listed in Supplemental Table S3.

Sensitivity and specificity of the smMIPs-based sequencing

To assess the sensitivity of the new smMIPs sequencing platform, we tested 123 previously genotyped
samples (Khan et al. 2019; Sangermano et al. 2019) in three series (runs 2, 3 and 6) (Supplemental
Table S4) as well as 15 control DNA samples carrying 13 different SVs spread throughout the ABCA4
gene (run 6) (Supplemental Table S5). All previously known SNVs (n=300) could be identified, yielding
a sensitivity of 100%. However, six additional variants were found due to low coverage in the previous

studies, while three variants had not been annotated correctly previously.
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ABCA4 gene sequencing and identification of variants

ABCA4 sequencing was performed for 1,054 genetically unsolved STGD and STGD-like patients. This
revealed 323 unique (likely) pathogenic SNVs and 11 SVsin 1,144 alleles (Supplemental Table S6). Sixty-
four of 323 SNVs (26%) and all 11 SVs were novel. Details are provided in Table 1A-C. Thirteen percent
of these alleles were represented by DI variants and SVs and another 10% accounted for NCSS variants
(Fig. 1A). All variants and the respective cases were uploaded into the ABCA4 variant and STGD1 cases

database LOVD, at www.lovd.nl/ABCA4.

Two (likely) pathogenic variants were found in 326 probands, three of them carrying
p.Asn1868lle in a homozygous manner, and one (likely) causal variant in trans with p.Asn1868lle was
found in 125 probands. Only one (likely) causal variant was identified in 174 probands. In 65, the
p.Asn1868lle variant was the only identified variant (Supplemental Table S7). No (likely) causal variants
were found in 364 cases.

Among the SNVs, the most common causal alleles were c.5603A>T (n=134), c.5882G>A (n=84),
c.[5461-10T>C;5603A>T] (n=44), c.[1622T>C;3113C>T] (n=30), c.[4469G>A;5603A>T] (n=27),
€.4539+2001G>A (n=26), c.6079C>T (n=23) and c.4253+43G>A (n=21) (Supplemental Table S6). To
visualize the relative frequency of causal STGD1-causing alleles, we excluded 65 heterozygous
¢.5603A>T alleles that were found as the only ABCA4 allele in these cases, as they were most likely
present because of its high allele frequency (0.06) in the general population (Zernant et al. 2017,

Cremers et al. 2018; Runhart et al. 2018) (Supplemental Fig. S2).

Splice defects due to non-canonical splice site variants

The effect on splicing of nine NCSS variants was tested in nine wild-type splice constructs previously
described (Sangermano et al. 2018) (Supplemental Fig. S3). All of the nine tested novel NCSS variants
showed a splice defect when tested in HEK293T cells. Severity was assigned according to the

percentage of remaining WT mRNA, as described previously (Sangermano et al. 2018). Five NCSS
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variants were deemed severe as they showed no or less than 15% of the WT mRNA, three were
considered moderately severe with WT RNA present between 26% and 51%, and one was deemed

mild as it resulted in 69% WT mRNA (Table 1B; Supplemental Fig. S4).

Deep-intronic variants identification and functional characterization

Fifty-eight DI variants were selected for splice assays. Most of the DI variants were selected as they
strengthen an already existing cryptic splice acceptor site (SAS) or splice donor site (SDS) or create a
new putative splice site with a relative strength of at least 75% in two of five splice strength prediction
algorithms. To test their effects, 27 WT midigenes splice constructs were employed, 23 of which were
described previously (Sangermano et al. 2018), and four of which were new (Supplemental Fig. S3).

Thirteen of 58 tested DI variants showed a splice defect upon reverse transcription (RT)-PCR
and Sanger validation (Table 1C; Fig. 2). For the variants that did not show any splice defect, RT-PCR
results are shown in Supplemental Fig. S5.

Six of the novel DI variants, i.e. variants c.570+1798A>G, c.769-788A>T, c¢.859-640A>G, c.1938-
514A>G, c.2588-706C>T and c.4634+741A>G, resulted in out of frame PE inclusions in the RNA and
were deemed severe (Fig. 2, Fig. 3). Variants ¢.67-2023T>G and c.859-546G>A were classified as
moderately severe as 33% and 36% of the WT products were present, respectively. As predicted due
to the presence of a downstream cryptic SDS, variant ¢.1937+37C>G led to an elongation of exon 13
by 36 nucleotides, which resulted in the introduction of a premature stop codon (p.Phe647%).
Moreover, two intron 13 variants, ¢c.1938-621G>A and c.1938-514A>G, showed a complex splice
pattern and led to the generation of two mutant transcripts each (Fig. 3A-C). Each of these products
contained a shared PE of 134 nt (PE1) as well as mutation-specific PEs, denoted PE2 (174 nt) or PE3
(109 nt) for c.1938-621G>A and ¢.1938-514A>G, respectively (Supplemental Fig. S6). For variant
€.1938-621G>A only 7% of the total cDNA product showed PE inclusion whereas for ¢.1938-514A>G,
87% of the cDNA products were mutant. To investigate the nature of the PE1 insertions, we studied

the exon 12-17 segment of the mRNA obtained from PPCs derived from a control person. As depicted
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in Supplemental Fig. S7, transcripts containing PE1 or PE1 and PE2, were identified when
photoreceptor progenitor cells (PPCs) were grown under nonsense-mediated decay-suppressing
conditions. The sum quantity of these two products was 2.9% of total mRNA suggesting that there are
small amounts of PE insertions involving PE1 in the healthy retina.

Intriguingly, DI variant ¢.6148-84A>T showed a dual effect, leading to the skipping of exon 45
as well as creation of two different PEs. One mutant product showed a 221-nt PE insertion coupled
with the skipping of exon 44, while the other mutant product showed the inclusion of a 173-nt PE (Fig.
3D-F). Finally, variant c.3863-1064A>G showed a complex splice pattern compared to the WT and
variant c.6283-78G>T led to the insertion of a 203-nt PE in intron 45 (Supplemental Fig. S6). However,
the exact boundaries of the presumed PE for variant ¢.3863-1064A>G could not yet be determined due
to technical difficulties.

Overall, 13 novel DI variants were found in 18 alleles. Next to the novel variants, 14 previously
reported pathogenic DI variants (Braun et al. 2013; Albert et al. 2018; Bauwens et al. 2019; Fadaie et
al. 2019; Sangermano et al. 2019) were found in a total of 99 alleles, details of which are shown in Fig.

1B and Supplemental Table S6.

Identification of novel structural variants in STGD1 cases

Among 1,054 STGD and STGD-like patients analyzed, we identified 11 unique novel heterozygous SVs,
all exon-spanning deletions, in 16 patients (Table 2; Supplemental Table S8 to S13). The corresponding
deletions encompass between 1 and 33 exons, ranging from 411 bp to 55.7 kb (Fig. 4). All deletions
were found in a heterozygous state in single cases, except the smallest (c.699 768+341del), which
encompassed part of exon 6 and 341 bp of intron 6, and was found in six unrelated patients of Spanish
origin. Deletion breakpoints were determined employing genomic PCR and Sanger sequencing for 9 of
the 11 deletions. Two deletion junctions (deletions 7 and 11) could not be amplified as the 3’
breakpoint was located downstream of the gene beyond the regions targeted by smMIPs. Surprisingly,

Sanger sequencing revealed two complex rearrangements as deletions 5 and 6 carried inverted
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fragments of 279 and 224 bp respectively, residing between large deletions. These small inversions

could not be identified with the copy number variant (CNV) detection tool.

Microhomologies, repetitive elements and non-B DNA conformation at deletion breakpoints

The breakpoints of the deletions were subjected to extensive bioinformatic analysis to find elements
underlying their formation. The presence of microhomology, repetitive elements and non-B DNA
conformations was investigated except for deletions 7 and 11 as exact boundaries could not be
determined by Sanger sequencing. All other studied SVs presented microhomology at the breakpoint
junctions, ranging in size from 1 to 6 bp (Supplemental Fig. S8), four of which presented short insertions
(Supplemental Table S14). In eight of 11 (72.7%) of the deletion breakpoints, a known repetitive
element was observed, including seven non-Long Terminal Repeats (non-LTR) retrotransposons,
among which there were one SINE and four LINEs, three DNA transposons from the hAT superfamily
and two retrotransposons from the LTR superfamily. However, none of the breakpoints were part of a
known element belonging to the same class and no Alu sequence was observed at the breakpoint
junctions. Finally, the most prevalent non-B conformations observed among our breakpoints are
Oligo(G)n tracts as 21 of these repeats were found in seven SVs (Supplemental Tables S14, S15).
Inverted repeats were observed in five breakpoint regions. No direct repeats or mirror repeats have

been detected, excluding therefore triplex and slipped hairpin structure formation, respectively.

Uniparental isodisomy of chromosome 1

In STGD1 proband DNA14-33085, a causal homozygous DI variant, ¢.859-506G>C
(p.[Phe287Thrfs*32,=]), was identified. Segregation analysis revealed this variant to be present in his
unaffected father, but not in his unaffected mother. To test the possibility that the mother carried a
deletion spanning this variant, we performed CNV analysis in the proband’s ABCA4 gene. No deletion
was identified (Supplemental Table S13) and no heterozygous SNPs were observed in or near ABCA4

in the proband’s DNA. To test whether the chromosome 1 of the father carrying the c.859-506G>C
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ABCA4 variant was passed on to the proband as two copies (uniparental isodisomy, UPD), whole exome
sequencing was conducted for the proband’s DNA. As shown in Supplemental Fig. S9, chromosome 1

of the proband carries only homozygous SNPs, strongly suggesting the occurrence of UPD.


https://doi.org/10.1101/817767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/817767; this version posted October 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

15

Discussion

Employing 3,866 smMIPs, 97.4% of the 128-kb ABCA4 gene could be sequenced robustly in 1,054
genetically unsolved probands with a STGD or a STGD-like phenotype. In this way, 448 (42.5%) of the
probands could be genetically solved. We not only identified nine novel NCSS variants and 13 novel DI
variants, but also, facilitated by a high reproducible average read coverage, 11 novel heterozygous SVs.
The large set-up of this study allowed us to provide a ‘landscape’ overview of the different types of
mutations causing STGD1. As depicted in Fig. 1A, we can appreciate that DI variants constitute a
significant cause of STGD1], i.e. 11.0% of the alleles, identified in 23.7% of bi-allelic probands. Deletions
constitute 1.8% of alleles and were found in 3.5% of bi-allelic cases. Seven probands carried two DI
variants or one DI variant and one SV. Taken together, ‘dark matter’ alleles were found in 116/448
(25.9%) bi-allelic STGD1 probands. However, if we consider only the bi-allelic patients found in the
previously unscreened STGD1 cohort, ‘dark matter’ represents 13/182 (7.1%) of the identified alleles.
Together, these results strongly argue for a complete sequence analysis of the ABCA4 gene to fully

appreciate its mutational landscape.

Current state of knowledge on deep-intronic variants in ABCA4

Twenty-seven different DI variants were identified in 117 alleles. The 13 novel DI variants were all
unique, with the exception of ¢.67-2023T>G (n=3), and were functionally tested. Variants
¢.4539+2001G>A, c.4253+43G>A, ¢.4539+2064C>T and c.5196+1056A>G were the most frequent DI
variants in this cohort.

Interestingly, the two DI variants that were found in intron 13, i.e. ¢.1938-621G>A and ¢.1938-
514G>A, were in close vicinity to two previously described variants, ¢.1937+435C>G (Sangermano et
al. 2019) and c.1938-619A>G (Zernant et al. 2014; Fadaie et al. 2019). As shown in Fig. 3A-C, c.1938-
619A>G and c.1938-621G>A led to the same mutant transcripts with PE inclusion. The smaller and
larger mutant transcript contained PE2, and PE1 and PE2 together, respectively. Nucleotide change

€.1938-619A>G was considered to be a severe variant as it resulted in 80% of mutant product (Fadaie
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et al. 2019), and c.1938-621G>A, based on the in vitro splice assay, was considered to have a mild
effect as the majority of the splice products (93%) was normal. The PE resulting from ¢.1937-514A>G
(PE3) is located adjacent to PE2 as they share a dual SAS/SDS (Fig. 3A-C). The involvement of PE1,
located 491, 493 and 775 nt upstream of variants ¢.1937-621G>A, c.1937-619A>G and c.1937-514A>G,
respectively, is very surprising. Control PPCs also show a small percentage (2.9%) of mRNAs containing
PE1 or PE1-PE2. Interestingly, the SDS of PE1 also can be employed as a SAS which, in theory could
render this intronic SAS/SDS a target for recursive splicing (Hafez and Hausner 2015). Together, these
findings suggest that there is a ‘natural sensitivity’ for PE1 to be recognized as a PE even if the splice
defect is located far downstream. To our knowledge, this has not been described thus far. Also of
interest intron 44 variant ¢.6148-84A>T resulted in a complex splicing pattern involving different PE
insertions with or without flanking exon 44 or 45 deletions. Follow-up studies employing patient-
derived retinal-like cells are required to validate these complex splicing patterns.

In Supplemental Table S16, we listed all published 349 DI variant alleles (Braun et al. 2013;
Zernant et al. 2014; Bauwens et al. 2015; Bax et al. 2015; Schulz et al. 2017; Albert et al. 2018; Zernant
et al. 2018; Bauwens et al. 2019; Fadaie et al. 2019; Khan et al. 2019; Nassisi et al. 2019; Sangermano
et al. 2019). The three most frequent are c.4253+43G>A (n=100), c.4539+2001G>A (n=64) and
¢.5196+1137G>A (n=47). When comparing the effect of ABCA4 DI variants, a fairly high percentage
(18/33; 54.5%) affect existing cryptic splice sites, rather than creating new splice sites (15/33; 45.5%).
For some Dl variants, the splice defects in HEK293T cells or patient-derived PPCs are very small (c.769-
784C>T, ¢.1937+435G>C, ¢.1937-621G>A) (Runhart et al. 2019; Sangermano et al. 2019) (this study) or
smaller than expected (c.4539+2001G>A, c.4539+2028C>T). We hypothesize that retina-specific splice
motifs and factors play a role which are largely missing (HEK293T cells) or underrepresented (PPCs)

compared to the normal retina.

Current state of knowledge on structural variants in ABCA4
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In this study, 11 unique SVs with sizes ranging from 411 bp to 55.7 kb, were readily identified employing
an easy-to-use visual detection tool taking advantage of the high number of reads obtained from
smMIPs based-sequencing. Although this tool needs further automation to increase its performance
for the detection of smaller deletions or duplications, it demonstrated its efficiency for deletions as
small as 411 bp. To our knowledge, 36 different SVs have been identified in STGD1 patients
(Supplemental Table S17), 23 of which have been described elsewhere. Twenty-five are deletions,
ranging in size from 23 bp to complete deletion of the ABCA4 gene. There are six duplications, ranging
from 24 bp to 26 kb, two indels and one small insertion of 24 bp. As shown in Supplemental Fig. S10,
these SVs are spread over the entire gene. All SVs are rare, except for deletions spanning exons 20-22
and exon 6, both found in 6 probands, in Belgium/Germany/Netherlands and from lIberic origin,
respectively, suggesting founder effects. Fifteen large rearrangements in ABCA4 have also been
reported in the general population databases gnomAD and Database of Genomic Variants (DGV)
(Supplemental Table S18). While their sizes range from 53 bp to 45.75 kb, we consider only five of
these to have clinical significance as they span one or more exons. One deletion spanning the 5’ UTR,
exon 1 and intron 1, was present in gnomAD and DGV with allele frequencies of 4.7 x 10° and 2.5 x 10°
4, respectively. In STGD1 cases, the allele frequency of this SV was 4 x 10

While recurrent rearrangements are mostly due to non-allelic homologous recombination
(NAHR) between two low-copy repeat sequences, non-recurrent events can be the result of i) non-
replicative repair mechanisms: like non-homologous end-joining (NHEJ), microhomology-mediated
end-joining (MMEJ) and NAHR between repetitive elements (Alu or L1 for example); and ii) replicative-
based repair mechanisms: fork stalling and template switching, microhomology-mediated break-
induced replication, serial replication slippage (SRS) and break-induced SRS (Lupski 2007). Moreover,
the local genomic architecture (the presence of microhomology, repetitive elements, sequences
forming non-B DNA conformations and sequence motifs) contributes to genomic instability, leading to
genomic rearrangements by impairing the replication process. For example, a microhomology of 1-4

bp may facilitate non-homologous end-joining (Lieber 2010) and longer microhomologies of between
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5-25 bp may favor MMEJ (McVey and Lee 2008). The assessment of the local architecture of deletions
identified in this study lead us to rule out the NAHR hypothesis (as no Alu sequence or L1 at any
breakpoint was observed) and to propose the NHEJ or replication slippage models as the main
implicated mechanisms (Supplemental Table S14; Supplemental Fig. S8). Indeed, the presence of
microhomologies < 5 bp in most of the junctions, and of scars characterized by insertion of several
random nucleotides, could be a signature for NHEJ. Alternatively, several examples of an impaired
replication fork have been noted that supports the replicative-based repair model. Indeed, despite the
absence of repetitive elements of the same class at both sides of the breakpoints, their presence may
initiate the formation of secondary structures, as repetitive elements could be more difficult to
replicate, leading to an increased chance of replication fork stalling or collapsing (Vissers et al. 2009).
Finally, Oligo(G)n tracts displayed a significant overrepresentation in the breakpoint regions. Such
structures can induce tetraplex formation (Bacolla and Wells 2004) and could also trigger

rearrangement.

Uniparental isodisomy chromosome 1

UPD was found in one STGD1 case in this study, which represents the third STGD1 case showing UPD
thus far reported (Fingert et al. 2006; Riveiro-Alvarez et al. 2007). UPD is a rare event, with an
estimated occurrence of 1 in 5,000 or even less individuals (Liehr 2010). UPD was also described in six
other inherited retinal dystrophy patients in which chromosomes 1, 2 and 6 were implicated
(Thompson et al. 2000; Rivolta et al. 2002; Thompson et al. 2002; Wiszniewski et al. 2007; Roosing et
al. 2013; Souzeau et al. 2018). We cannot exclude that there are additional UPD cases in our cohort as
segregation analysis was not performed for all homozygous cases. Our finding stresses the importance
of segregation analysis in the parents’ DNAs as the recurrence risk for future offspring is very low in

UPD families.

Missing heritability
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In 174/1,054 (16.5%) of probands, we identified only one (likely) causal allele. In view of the high carrier
frequency of ABCA4 variants in the general population, estimated to be ~5% (Maugeri et al. 1999;
Cornelis et al. 2017), about one-third of these mono-allelic cases may be explained in this way. This
may even be higher as we intentionally recruited mono-allelic STGD and STGD-like probands for this
study. Some causal variants may have escaped our attention. First, we have not focused on variants
affecting transcription regulation. Thus far, there is limited evidence for ABCA4 variants affecting
transcription (Bauwens et al. 2019), but the reported putative regulatory variants were not found in
this study. As in silico tools (Alamut algorithms, SpliceAl (Jaganathan et al. 2019)) may not predict
retina-specific splice defects, we may have missed some causal variants. Also, smMIPs-based
sequencing may miss heterozygous deletions smaller than ~400 bp and will not detect insertions or
inversions larger than ~40 bp. In the absence of variant data for other maculopathy-associated genes,
digenic inheritance can also not be disregarded as it was shown in CNGA3/CNGB3-associated
achromatopsia (Burkard et al. 2018). Finally, complex alleles constitute a large fraction (10%) of all
ABCA4 alleles in this study. For some, such as c.[2588G>C;5603A>T] there are strong arguments to
believe that these alleles only act as a mild (fully penetrant) allele, when present in trans with a severe
allele (Zernant et al. 2017). It cannot be excluded that more than two variants, each with a very small
contribution for causality, are present in ABCA4 alleles. More refined functional tests of coding and
non-coding ABCA4 variants are needed to understand the full genetic landscape of STGD1.

The major advantages of smMIPs-based ABCA4 sequencing compared to WGS are that: i) it is
at least an order of magnitude cheaper than WGS, ii) results in much smaller data storage, and iii)
requires no separate informed consent regarding incidental findings. However, disadvantages of
smMIPs are that: i) it is restricted to one or a few genes if including introns, ii) it is more cost-effective
when large series are analyzed, iii) the analysis is only suitable for the detection of CNVs but not for
inversions and insertions, and finally, iv) the sequencing procedure and variant calling requires a

specialized set-up.
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In our study a significant fraction of probands carried one (likely) causal variant or c.5603A>T
as a single allele (239; 22.7%) or no causal variant (364; 34.5%). Additionally, three cases were found
homozygous for c.5603A>T, suggesting that missing variants can be identified in other macular-related
genes. A more comprehensive smMIPs-based screening platform for these STGD-like cases would likely
require the sequence analysis of an additional ~80 genes associated with inherited central vision
defects.

As shown in this study, smMIPs-based analysis of the complete sequence(s) of one or a few
genes implicated in clinically well-defined human diseases may allow the (re)analysis of hundreds to
thousands of samples, in particular by targeting cohorts in developing countries in which low-cost
analysis is crucial. For instance, the in-depth coverage of smMIPs-based sequencing could be used for
molecular diagnosis of the most frequent forms of cancer as it allows the detection of clonal events at
very low levels (~5%) (Friedman et al. 2015), as well as the detection of SVs, not only in DNA extracted
from leukocytes but also from paraffin embedded tumors, generating fragmented DNA, as shown for
BRCA1/2 and many other cancer genes (Eijkelenboom et al. 2016; Neveling et al. 2017; Weren et al.
2017). A similar approach can be applied to all other frequent monogenic disorders to find missing
variants in non-coding regions which can be potential targets for RNA-based molecular therapy such
as antisense oligonucleotides (Albert et al. 2018; Bauwens et al. 2019; Sangermano et al. 2019).

In conclusion, comprehensive sequence analysis of ABCA4 in 1,054 unsolved STGD and STGD-
like probands, splice assays in HEK293T cells and SV analysis, resulted in the identification of ‘dark
matter’ variants in 26% of bi-allelic STGD1 probands. Novel complex types of splice defects were
identified for intron 13 and 44 variants. Together with published causal DI variants and SVs, a detailed

genomic and transcriptomic landscape of ABCA4-associated STGD1 was thereby established.

Materials and Methods

Control individuals and STGD1 probands in pilot and main sequencing studies
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To assess the performance of the smMIPs pool, a pilot study was conducted using five control
individuals and 15 STGD1 cases (Supplemental Table S1). To further evaluate the sensitivity of the
smMIPs-based sequencing method in subsequent sequencing studies, 138 bi-allelic STGD1 samples
were included in the study, 123 of which carried ABCA4 SNVs and 15 of which carried a deletion or

duplication in trans with other alleles (Supplemental Table S4, S5).

Unsolved and partially solved STGD1 and macular dystrophy probands

Twenty-one international and four national centers ascertained 1,054 genetically unsolved or partially
solved probands with a STGD or STGD-like phenotype. Two hundred twenty-one of these cases were
not previously molecularly studied (Supplemental Table S19). We discerned two patient groups. The
first patient group consisted of 993 genetically unsolved probands that carried one (n=345) or no
(n=648) ABCA4 allele. For two subjects, DNA was not available and both parents of the probands were
studied, assuming autosomal recessive inheritance. The second patient group consisted of 61 ‘partially
solved’ probands, carrying the c.5603A>T (p.Asn1868Ile) variant in trans with other alleles. This last
group was also investigated as it was suspected that there could be unidentified deep-intronic variants
in cis with c.5603A>T, as the penetrance of c.5603A>T, when in trans with a severe ABCA4 variant, was
~5% in the population (Cremers et al. 2018; Runhart et al. 2018). Samples were collected according to
the tenets of the Declaration of Helsinki and written informed consent was obtained for all patients
participating in the study. DNA samples were quantified, diluted to 15 ng/ul and visually inspected

after agarose gel electrophoresis.

smMIPs design

For the targeted sequencing of the ABCA4 gene, as well as 23.9 kb up- and 14.9 kb downstream
sequences, 3,866 smMIPs were designed using MIPgen pipeline, as described previously (Boyle et al.
2014). Four hundred and ninety-six of the 3,866 smMIPs spanned known single nucleotide

polymorphisms (SNPs) at the extension or ligation arm. Therefore, 3,370 smMIPs effectively capture
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110-nt regions. Details of the smMIPs can be found in Supplemental Table S20. All smMIPs were
designed in a way that each nucleotide position in principle is targeted by two different smMIPs to

increase sensitivity and avoid dropout of alleles due to variants in the smMIP arms.

Sequencing set-up

First, a pilot study was conducted to assess the performance of smMIPs and coverage per sample.
Twenty DNA samples were sequenced on a NextSeg500 platform using an lllumina mid-output
sequencing kit (~130 million reads). Thereafter, 1,192 STGD and STGD-like samples were sequenced
using 100 ng DNA per sample. Sequencing libraries were prepared in a fully automated manner as
described elsewhere (Khan et al. 2019). To sequence these 1,192 cases, six sequencing runs were
performed on an lllumina NextSeq500 platform using high-output kits (~400 million reads). The DNA
of 21 patients was sequenced twice. In the first attempt, not enough DNA was used which resulted in
less than 100,000 reads per sample, whereas the average number of reads for all samples was
1,355,833. These 21 samples were successfully sequenced in the second run with between 641,635

and 2,074,344 reads per sample.

Data processing

Raw sequencing data (FASTQ) files were used for mapping and variant annotation by an in-house
bioinformatics pipeline. Raw reads were aligned to the reference genome (human genome build
GRCh37/hg19). Variant calling and annotation were performed as described previously (Khan et al.
2019). Variants were annotated with predicted effects, gene component information as well as

frequency information from various population databases.

Data analysis and variant classification
To select the causative variants, we applied several filters. First, we retained variants with allele

frequencies (AFs) <0.005 in different population databases such as dbSNP, the Genome Aggregation
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Database (gnomAD; http://gnomad.broadinstitute.org/) and Genome of the Netherlands (GoNL). We

then applied a filter based on a ‘quality score’ of >200, based on the average number of reads targeting
each genomic position in a single run and other standard filters based on the position of SNVs (e.g.
exons, canonical splice sites and known NCSS variants). A number of previously listed causal variants
with relatively high AFs such as ¢.2588G>G, ¢.5461-10T>C, c.5603A>T and c.5882G>A (AFs in gnomAD:
0.00430, 0.00022, 0.04219 and 0.00456 respectively) were selected separately (Cremers et al. 1998;
Cornelis et al. 2017; Schulz et al. 2017; Zernant et al. 2017). To assess the variants, in silico analysis was
performed using online pathogenicity assessment tools such as Sorting Intolerant From Tolerant (SIFT;
https://sift.bii.a-star.edu.sg) (Kumar et al. 2009), Polymorphism Phenotyping v2 (PolyPhen-2)
(Adzhubei et al. 2010), and Mutation Taster (Schwarz et al. 2014). Among others, Grantham and PhyloP
scores were also assessed to predict the physiochemical effect of nucleotide changes on ABCA4 protein
and conservation of nucleotide positions, respectively.

For the selection of known coding and non-coding causal variants, ABCA4 variant databases,

such as the Leiden Open Variation database (LOVD; www.lovd.nl/ABCA4) (Cornelis et al. 2017), and

the Human Genome Mutation Database (HGMD; http://www.hgmd.cf.ac.uk/ac/index.php), were
used. We supplemented the list of SNVs and small indels with additional variants reported in the
literature and employed a script to identify these in an automated manner. Novel candidate variants
were selected based on AFs and in silico predictions. Thereafter, variants were classified according to
the guidelines of the American College of Medical Genetics and Genomics and the Association for
Molecular Pathology (ACMG/AMP) (Richards et al. 2015).

Similarly, we detected previously reported causal splice variants (NCSS variants and DI variants)
by listing all 165 variants previously tested using in vitro splice assays (Braun et al. 2013; Bauwens et
al. 2015; Sangermano et al. 2016; Sangermano et al. 2018; Bauwens et al. 2019; Fadaie et al. 2019;
Khan et al. 2019; Sangermano et al. 2019) or RT-PCR analysis of patient-derived photoreceptor

progenitor cells (PPCs) (Sangermano et al. 2016; Albert et al. 2018).
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Candidate splice defect variant selection

Intronic variants located at positions -14 to -3 upstream of exons and at positions +3 to +6 downstream
of exons were considered NCSS variants, and variants outside these positions were considered DI
variants. Exonic ABCA4 NCSS variants can also be found within the first or the last two nucleotides of
an exon (Cornelis et al, 2017). To select novel NCSS and DI variants for in vitro splice assays, the
following selection criteria were used: i) minor allele frequency <0.005 in general population databases
such as dbSNP, gnomAD and GoNL, ii) difference in wild-type (WT) and mutant splice site scores
obtained by in silico analysis performed by using five different algorithms including SpliceSiteFinder-
like (SSFL), MaxEntScan, NNSPLICE, GeneSplicer, Human Splicing Finder (HSF) via Alamut Visual
software version 2.7 (Biosoftware, 2014; Interactive Biosoftware, Rouen, France;

www.interactivebiosoftware) (Reese et al. 1997; Pertea et al. 2001; Cartegni et al. 2003; Yeo and Burge

2004; Desmet et al. 2009), iii) additional splice site score comparison between WT and mutant was
made by using the SpliceAl program, which unlike other programs searches for altered splice sites up
to 5 kb upstream and 5 kb downstream of the variant (Jaganathan et al. 2019), and iv) enrichment of
variants’ allele frequencies in the patient cohort compared to general population databases such as
gnomAD and GoNL. A list of all the selected candidates for in vitro splice assays and details of in silico

analysis are provided in Supplemental Table S21.

Midigene-based splice assay

The splice effect of nine NCSS variants and 58 deep-intronic variants was assessed by midigene-based
splice assays employing WT constructs described previously (Sangermano et al. 2018), as well as four
newly designed midi- and minigenes, namely BA32 (exons 35-38), BA33 (hg19: intron 1, g.94,585,917-
94,584,820), BA34 (hgl9: intron 1, g.94,582,386-94,581,151) and BA35 (hgl9: intron 1, g.94,581,151-
94,579,996) (Supplemental Fig. S3; Supplemental Table S22). All constructs contained ABCA4 genomic
sequences amplified from DNA of the bacterial artificial chromosome clone CH17-325016 (hg19: insert

g.94,434,639-94,670,492). The WT clones served as templates to generate mutant constructs by site-
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directed mutagenesis, which subsequently were validated by Sanger sequencing. Details of
mutagenesis primers and Sanger sequencing primers are given in Supplemental Table S23. WT and
mutant constructs were transfected in parallel in HEK293T cells. Total RNA was extracted 48 hours
post-transfection and subjected to RT-PCR using ABCA4 exonic primers when possible, as previously
described (Sangermano et al. 2018). Rhodopsin exon 5 amplification was used as transfection and

loading control. RT-PCR primer sequences can be found in the Supplemental Table S24.

Copy number variant analysis
An excel script was employed to detect copy number variants (CNVs) using smMIP read depth. Only
large (>400 bp) deletions and duplications in principle can be identified, but not insertions and
inversions. Therefore the term CNV instead of SV was used in the following section. The read coverage
of a single target was first normalized in comparison to all 3,375 targets by dividing the number of
reads for a single target by the total number of reads for a given DNA sample. The coverage of each
target of a patient was subsequently compared with the coverage of each target in all probands of that
series using the following ratio: R = average coverage of each target of a proband/average coverage of
each target of all probands in the run. In order to identify large deletions and duplications, the following
ranges were defined: homozygous deletions, ratios (R) <0.3; heterozygous deletions, 0.3<R<0.7; no
CNV, 0.8<R<1.2; heterozygous duplications, 1.2<R<1.7; homozygous duplications, R>1.7. To
discriminate actual CNVs from artifacts, ratios per target were compared within each patient and
among all the patients. Candidate CNVs were considered if at least 6 consecutive targets were deleted
or duplicated.

To assess the accuracy of the CNV detection tool, 13 different CNVs spread throughout the
ABCA4 gene were analyzed in a single run in 15 control DNA samples (Supplemental Tables S4; S5).
Since 1,192 probands were sequenced in six NextSeg500 runs, CNV analysis was performed for each
run independently (Supplemental Tables S8 to S13). CNVs were confirmed by PCR amplification using

Tag DNA polymerase (Thermofisher Scientific, Waltham, MA, USA) or Q5 High-Fidelity DNA
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polymerase (New England Biolabs, Ipswich, MA, USA) with an extension time of 45s. Primer details are
shown in Supplemental Table S25. Sanger sequencing was performed with the same primers to

delineate the breakpoints of the rearrangement.

Identification of repetitive elements and presence of microhomology at deletion breakpoints

For a better understanding, breakpoint (BP) numbers were assigned according to their 5’-3’
localization. To characterize the flanking regions of the deletion breakpoints and to identify the
underlying mechanisms of the SV formation, 150-bp segments flanking each breakpoint were analyzed
and submitted to RepeatMasker (http://www.repeatmasker.org) and Censor
(https://www.girinst.org/censor/) online software tools. The presence of microhomology at the
breakpoints was assessed by a multiple sequence alignment between the junction fragment and the
proximal and distal breakpoint regions, using Clustal Omega
(https://www.ebi.ac.uk/Tools/msa/clustalo/). To investigate the possible involvement of non-B DNA
conformation elements on SV formation, they were searched within the same 150-bp regions
surrounding the breakpoint. DNA sequences leading to non-B DNA conformations were assessed with
two different online software tools. Quadruplex forming G-Rich Sequences (QGRS) Mapper

(http://bioinformatics.ramapo.edu/QGRS/analyze.php) allowed the identification of (Oligo)n tracts

forming tetraplex structures and non-B  DNA motif search tool (nBMST) (https://nonb-

abcc.nciferf.gov/apps/nBMST/default) provided location for direct repeats and slipped motifs, G

quadruplex forming repeats, inverted repeats and cruciform motifs, mirror repeats and triplex motifs,

Z-DNA motifs and short tandem repeats.

Semi-quantification of RT-PCR products
To quantify the ratios between correct and aberrant RT-PCR products, densitometric analysis was
performed using Image J software after gel electrophoresis as described elsewhere (Schneider et al.

2012). Only peaks corresponding to ABCA4 bands were taken into account (Supplemental Table S26).
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Uniparental disomy detection

In one STGD1 case (DNA14-33085), we previously identified an apparent homozygous causal Dl variant
(c.859-506G>C) in ABCA4, but only one of the parents was shown to carry this variant. Therefore, a
deletion search and segregation analysis were performed. Furthermore, to test the hypothesis of
uniparental disomy (UPD), a chromosome 1 haplotype was constructed using whole exome

sequencing.
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Figure Legends

Fig. 1: Distribution of different types of alleles and deep-intronic variants in ABCA4. A. The
contribution of each type of variant or allele in bi-allelic, and mono-allelic cases except those carrying
¢.5603A>T, is represented. Protein truncating variants comprise nonsense, frameshift and canonical
splice site variants. The 10% complex alleles only consist of combinations of missense variants, the
most frequent of which were c.[1622T>C;3113C>T] (n=30; 27% of all complex alleles) and
€.[4469G>A;5603A>T] (n=27; 25% of all complex alleles). They do not include the complex alleles which
contain non-canonical splice site (NCSS) variants, deep-intronic variants or protein truncating variants,
when present in cis with other variants. If these would have been included, 16% of the alleles would
consist of complex alleles. B. Deep-intronic variant allele count in this study. Novel deep-intronic
variants are highlighted in red. One hundred and seventeen causal deep-intronic variants were
identified. The deep-intronic variants ¢.4539+2001G>A (n=26) and ¢.4253+43G>A (n=21) were found

most frequently. Most of the novel deep-intronic variants were found in single STGD1 probands.

Fig. 2: Novel splice defects due to deep-intronic ABCA4 variants. Wild-type (WT) and mutant (MT)
midigenes were transfected in HEK293T cells and the extracted RNA was subjected to RT-PCR. Left
panels show the ABCA4-specific RT-PCR products with Rhodopsin exon 5 (RHO e5) RT-PCR as a
transfection efficiency control. In the middle panels, Sanger sequencing results of the RT-PCR products
are given. At the right side pseudo-exons (PE) and an exon elongation are depicted with splice site
strength predictions for WT and MT, with green rectangles representing the splice acceptor sites and
blue rectangles representing the splice donor sites. Red highlighted nucleotides represent the
mutations. Except for c.1937+37C>G (D), which resulted in a 36-nt exon 13 elongation, all deep-intronic

variants lead to PEs. The intron 7 variants in part C result in partially overlapping PEs that share the


https://doi.org/10.1101/817767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/817767; this version posted October 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

35
same splice acceptor site at position ¢.859-685. HSF, human splicing finder; SSFL, slice site finder like;

PE, pseudoexon; n.a., not applicable.

Fig. 3: Splice defects due to variants in ABCA4 intron 13 and 44. A. Genomic structure of intron 13
containing three pseudo-exons (PEs) due to four deep-intronic variants. PE2 and PE3 share a splice
donor site (for PE2) and splice acceptor site (for PE3). Variants c.1938-621G>A and ¢.1938-619A>G
strengthen the same cryptic splice donor site of PE2 slightly or strongly, respectively, as based in the
Human Splicing Finder (HSF). Variant c.1938-514A>G creates a new strong splice donor site of PE3. The
canonical and putative canonical splice sequences are given in bold lettering. The first and last
positions of the PEs are provided. B. Agarose gel analysis of RT-PCR products for intron 13 variants
upon HEK293T cell splice assays. PE2 and PE3 were observed as single insertions, but also in
combination with PE1. #Heteroduplex fragments of the lower bands. C. Schematic representation of
all mutant transcripts identified upon RT-PCR in HEK293T cell splice assays and of PE1 and PE1/PE2
observed as naturally occurring PEs when analyzing photoreceptor progenitor cells (PPCs) derived from
a healthy individual. Interestingly, PE1 was previously shown to be induced by variant c.1937+435C>G
(*Sangermano et al. 2019) and also can be part of mutant transcripts, together with PE2 or PE3. This
is surprising as it is located far upstream of the other causal variants. **Reported by Fadaie et al. 2019.
D. Variant ¢.6148-84A>T strengthens a splice donor site and results in PEla or PE1b by employing
upstream or downstream splice acceptor sites, respectively. These splice acceptor sites are
comparable in predicted strength based on HSF. The canonical splice sequences are given in bold. E.
Agarose gel analysis of RT-PCR products due to c.6148-84A>T. The largest fragment shows a 173-nt PE
insertion between exons 44 and 45. The second largest band contains a 221-nt PE insertion (PE1a) and
skipping of exon 44. The third-largest fragment represents the WT mRNA and the smallest fragment

misses exon 45. The relative amounts of the products are listed at the right side.
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Fig. 4: Novel heterozygous structural variants in ABCA4. Schematic representation of the 11 structural
variants identified. Exons are represented as boxes, black when they are not deleted and grey when
they are deleted. Introns are represented as continuous lines, whereas stippled lines depict the deleted
regions. Question marks denote that the exact location of breakpoints were unknown. Inverted double

arrows represent inverted sequences.

Table Legends

Table 1: Novel rare variants in ABCA4 and their functional classification. A. Novel ABCA4 coding and
canonical splice site variants identified in this study, including genomic positions (human genome
version 19; hg19) and predicted effects at the protein level. SIFT scores range from 0 to 1, amino acid
substitutions are predicted damaging if the score is < 0.05 and tolerated if the score is > 0.05. Mutation
Taster is based on a Bayes classifier that calculates probabilities for the variant to be either a disease
mutation or a polymorphism. PolyPhen-2 scores range between 0.000 to 1.000 (scores close to 1
indicate damaging effect of variants). All the variants were classified according to the ACMG guidelines
from Class 1 -5 (1, benign; 2, likely benign; 3, variant of unknown significance; 4, likely pathogenic; 5,
pathogenic). AF, allele frequency; nFE, non-Finnish European; n.a., not applicable; SIFT, Sorting
Intolerant From Tolerant; ACMG, American College of Medical Genetics and Genomics; Prob. dam,
probably damaging; Pos. dam, possibly damaging. B. Novel causal non-canonical splice site variants. For
the novel non-canonical splice site variants identified in this study, data are provided regarding their
cDNA positions (hg19), RNA and protein effects. Consequences of the splice defects on exons are
indicated. Pathogenicity of the variants was assigned according to the percentage of wild-type mRNA
obtained by semi-quantification of both wild-type and mutant transcripts. WT, wild-type; # variant
already reported, but not tested by Zernant et al, 2014. C. Novel causal deep-intronic ABCA4 variants.
For the novel deep-intronic variants identified in this study, data are provided regarding their cDNA
positions (hg19), RNA and protein effects. Pathogenicity of the variants was assigned according to the

percentage of wild-type mRNA obtained by semi-quantification of both wild-type and mutant
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transcripts. Variants with asterisk do not create a pseudo-exon but led to exon elongations. WT, wild-
type; # variant already reported, but not tested by Zernant et al, 2014; S variants for which Sanger

sequencing is not available

Table 2: Novel large structural variants in ABCA4. For all the novel large deletion variants identified in
this study, data are provided with their genomic and DNA positions (hg19), as well as protein effect
when possible. Genomic positions indicated are the first and the last deleted nucleotides. Sanger

sequencing was performed for all except the ones indicated with an asterisk.
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Table 1. Novel rare variants in ABCA4 and their functional classification

A. Novel coding and canonical splice site variants

In silico analysis

Genomic position DNA variant Protein variant AFinstudy gnomAD_AF SIFT Mutation PolyPhen-2 ACMG
(hg 19) (nFE) (scores) Taster (scores) class
94586555_94586556 c.46_47del p.(Thri6Profs*37) 0.0005 - n.a. n.a. n.a. 5
94578597 c.92G>A p.(Trp31%*) 0.0005 - n.a. n.a. n.a. 5
94577117 c.179C>G p.(Ala60Gly) 0.0009 - Deleterious (0) Disease causing Prob. dam. (0993) 4
94564529 c.589G>C p.(Asp197His) 0.0005 0.00007954 Deleterious (0) Disease causing Pos. dam. (0.943) 3
94564366 c.752del p.(Phe251Serfs*11) 0.0005 - n.a. n.a. n.a. 5
94548932 c.834del p.(Asp279llefs*21) 0.0005 - n.a. n.a. n.a. 5
94546264 c.869G>A p.(Arg290GIn) 0.0005 - Deleterious (0.05) Polymorphism Benign (0.020) 3
94546117 c.1016G>T p.(Trp339Leu) 0.0005 - Deleterious (0) Disease causing Benign (0.205) 3
94544936 c.1181T>A p.(Leu394GIn) 0.0005 - Deleterious (0.01) Disease causing Pos. dam. (0.904) 3
94544209 c.1293G>C p.(Trp431Cys) 0.0005 - Deleterious (0) Disease causing Prob. dam. (1.000) 3
94543441 €.1359T>G p.(Asp453Glu) 0.0005 - Deleterious (0) Disease causing Benign (0.049) 3
94543277 c.1667T>G p.(Met556Arg) 0.0005 - Deleterious (0) Disease causing Benign (0.033) 3
94528751 c.1677G>A p.(Trp559%*) 0.0005 - n.a. n.a. n.a. 5
94528698 c.1730T>A p.(Val577Glu) 0.0005 - Deleterious (0.02) Disease causing Benign (0.034) 3
94528304 ¢.1766G>C p.(Trp589Ser) 0.0005 - Deleterious (0) Disease causing Prob. dam. (0990) 3
94528265 ¢.1805G>T p.(Arg602Leu) 0.0005 - Deleterious (0) Disease causing Benign (0.288) 3
94526295 c.1958G>T p.(Arg653Leu) 0.0005 - Deleterious (0) Disease causing Benign (0.057) 3
94522302 c.2237T>A p.(Met746Lys) 0.0005 - Deleterious (0) Disease causing Pos. dam. (0.476) 3
94522296 €.2243delinsTT p.(Cys748Phefs*18) 0.0005 - n.a. n.a. n.a. 5
94522192 c.2347C>T p.(GIn783%*) 0.0005 = n.a. n.a. n.a. 5
94520773 c.2481del p.(Thr829Argfs*14) 0.0005 n.a. n.a. n.a. 5
94520771 c.2483C>T p.(Pro828Leu) 0.0005 - Deleterious (0) Disease causing Benign (0.025) 3
94512619 c.2774G>A p.(Trp925%*) 0.0005 - n.a. n.a. n.a. 5
94510227 €.2992dup p.(Leu998Profs*25) 0.0005 - n.a. n.a. n.a. 5
94509011 c.3071T>A p.(Met1024Lys) 0.0005 - Deleterious (0.01) Disease causing Benign (0.175) 4
94508993 c.3089T>A p.(Leu1030GIn) 0.0005 = Deleterious (0) Disease causing Prob. dam. (1.000) 4
94508454 94508456 €.3191-2_3191del p.(?) 0.0009 - n.a. n.a. n.a. 5
94508330 c.3315del p.(Lys1106Serfs*42) 0.0009 - n.a. n.a. n.a. 5
94506959 €.3329-1G>A p.(?) 0.0005 0.000007955 n.a. n.a. n.a. 5
94506943 c.3344T>C p.(Met1115Thr) 0.0005 0.000003977 Deleterious (0.01) Disease causing Benign (0.062) 4
94502847 c.3667dup p.(Glu1223Glyfs*14) 0.0005 - n.a. n.a. n.a. 5
94502832 c.3682G>A p.(Glu1228Lys) 0.0005 - Deleterious (0) Disease causing Benign (0.356) 3
94502720 c.3794C>G p.(Ser1265Cys) 0.0005 - Deleterious (0) Disease causing Prob. dam. (0.997) 3
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In silico analysis

Genomic position DNA variant Protein variant AFinstudy gnomAD_AF SIFT Mutation PolyPhen-2 ACMG
(hg 19) (nFE) (scores) Taster (scores) class
94495000 €.4539+1G>C p.(?) 0.0005 - n.a. n.a. n.a. 5
94490511 c.4633A>G p.(Ser1545Gly) 0.0005 - Deleterious (0) Disease causing Benign (0.002) 3
94490509 c.4634+1del p.(?) 0.0019 - n.a. n.a. n.a. 5
94490508 c.4634+2T>C p.(?) 0.0005 - n.a. n.a. n.a. 5
94487488 c.4687G>A p.(Gly1563Arg) 0.0005 - Deleterious (0) Disease causing Prob.dam. (0.998) 3
94487469 c.4706del p.(Val1569Alafs*12) 0.0005 - n.a. n.a. n.a. 5
94487463 c.4712T>A p.(lle1571Asn) 0.0005 0.000007953 Deleterious (0.01) Disease causing Benign (0.004) 3
94487436_94487439 c.4736_4739del p.(Phel579%) 0.0009 - n.a. n.a. n.a. 5
94487235 c.4809del p.(Asp1604llefs*6) 0.0005 - n.a. n.a. n.a. 5
94487213 c.4831del p.(Thr1611Leufs*51) 0.0005 - n.a. n.a. n.a. 5
94487195 c.4848+1G>T p.(?) 0.0005 - n.a. n.a. n.a. 5
94486850 c.4964C>T p.(Thr1655lle) 0.0005 - Deleterious (0) Disease causing Prob.dam. (0.999) 3
94485185 ¢.5149G>T p.(Gly1717%*) 0.0005 - n.a. n.a. n.a. 5
94481372 c.5235C>G p.(llel745Met) 0.0005 0.00001195 Deleterious (0) Disease causing Prob.dam. (1.000) 3
94480248 c.5313-2del p.(?) 0.0005 - n.a. n.a. n.a. 5
94480208_94480209  ¢.5350_5351insGA p.(Leul784Argfs*47) 0.0005 - n.a. n.a. n.a. 5
94480155 ¢.5404A>G p.(lle1802Val) 0.0005 - Deleterious (0) Disease causing Benign (0.172) 3
94476893 c.5509C>T p.(Pro1837Ser) 0.0005 - Deleterious (0) Disease causing Prob.dam. (1.000) 4
94476830 c.5572T>A p.(Tyr1858Asn) 0.0005 0.000007958 Deleterious (0) Disease causing Prob.dam. (0.957) 3
94476430 c.5640T>A p.(Phel880Leu) 0.0005 0.0006082 Tolerated (0.58) Polymorphism Benign (0.008) 3
94471062 c.6082A>G p.(Thr2028Ala) 0.0009 - Deleterious (0) Disease causing Prob.dam. (1.000) 4
94467507 c.6189C>A p.(Tyr2063*) 0.0005 - n.a. n.a. n.a. 5
94467480 €.6216T>G (Ser2072Arg) 0.0005 - Deleterious (0) Disease causing Prob.dam. (1.000) 4
94467442 €.6254T>C p.(Leu2085Pro) 0.0005 - Deleterious (0) Disease causing Prob.dam. (0.998) 4
94466634_94466635 €.6309_6310del p.(GIn2104Glyfs*30) 0.0005 - n.a. n.a. n.a. 5
94466564 €.6380C>T p.(Ser2127Phe) 0.0005 - Deleterious (0) Disease causing Prob.dam. (0.998) 4
94466474 €.6397T>C p.(Cys2133Arg) 0.0005 - Deleterious (0) Disease causing Prob.dam. (1.000) 4
94466399 c.6472A>G p.(Lys2158Glu) 0.0005 - Deleterious (0) Disease causing Prob.dam. (0.998) 4
94463529 C.6617T>A p.(Leu2206His) 0.0005 - Deleterious (0) Disease causing Prob.dam. (1.000) 3
94461693 €.6788G>C p.(Arg2263Pro) 0.0005 0.000003981 Deleterious (0) Disease causing Prob.dam. (0.998) 3
94461663 €.6816+2T>A p.(?) 0.0005 - n.a. n.a. n.a. 5
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B. Novel causal non-canonical splice site variants in ABCA4

DNA variant RNA effect Protein effect Splice defect % WT Propo.sed
mRNA severity
c.1554+3A>T r.[1357_1554del,=] p.[Asp453_Glu518del,=] Exon 11 skipping 51 Moderate
.2654-8T>G* r.[2653_2654ins2654-40_2654-1,=] p.[Gly863Valfs*47,=] Exon 18 elongation 13 Severe
c.3862G>A r.[3863g>a,3814_3862del] p.[Gly1288Ser,lle1272Valfs*101] Exon 26 skipping 69 mild
c.4129-3C>T r.[=,3864_4128del,4129_4253del,3864_4253del] p.[=,1le1377Hisfs*3,Gly1288Aspfs*45] Exon 28, 27 and 27 & 28 deletion 0 Severe
¢.4540-8T>A r.4539 4540ins4540-6_4540-1 p.(GIn1513insProGln) Exon 31 elongation 0 Severe
c.4848+3A>G r.[4774_4848del,=] p.[Gly1592_Lysl616del,=] Exon 34 skipping 10 Severe
€.5461-6T>G r.5461_5714del p.(Thr1821Aspfs*6) Exon 39 & 40 skipping 0 Severe
r.[=,5898 5899ins_5899+1_ 5890- _ * Exon 42 elongation and intron 42
¢.5898+5G>A 1,5898_5899ins5899+1_5899+170] p.[=,Cys1967Valfs*24] retention 48 Moderate
C.6386+3A>G . [6386_6387ins6386+1_6387-1,6340_6386del,=]  p.[Ser2129Serfs*29, Val2114Hisfs*4,=]  -XOn 46 elongation and 47-nt 26 Mol
reduction severe
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C. Novel causal deep-intronic ABCA4 variants

DNA variant RNA effect Protein effect % WT Propt?sed
mRNA severity

€.67-2023T>G* r.[66_67ins67-2266_67-2024,=] p.[lle23llefs*30,=] 33 Moderate
¢.570+1798A>G" r.570_571ins570+1733_570+1797 p.(Phel91Leufs*6) 0 Severe
c.769-788A>T r.[768_769ins769-778 769-617,=] p.[Leu257Aspfs*3,=] 4 Severe
¢.859-640A>G r.858_859ins859-685_859-640 p.(Phe287Tyrfs*69) 0 Severe
¢.859-546G>A r.[858_859ins859-545_859-685,=] p.[Phe287Tyrfs*33,=] 36 Moderate
¢.1937+37C>G r.1937_1938ins1938+1_1938+36 p.(Phe647%*) 0 Severe
€.1938-621G>A ;;71?5’97 5&?2?1331733389'5179‘3179 f;g;zfé3 5707 1933.624]  P5Phe6A7Alafs*22 Phesa7serfs*22] 93 Mild
€.1938-514A>G ;.£155]9,312_3179_9,12i2§i[r11595973+§_9662§1_913973;5_§§)§31’2]38-623_1938- p.[Phe647Serfs*155,Phe647Serfs*22,=] 13 Severe
¢.2588-706C>T r.[2587_2588ins2588-839_2588-708,=] p.[Gly863Alafs*3,=] 5 Severe
¢.3863-1064A>G* r.(?) p.(?) n.a. Unknown
c.4634+741A>G r.[4634_4635ins4634+614 4634+740,=] p.[Ser1545Serfs*51,=] 11 Severe
T R
€.6283-78G>T r.[=,6283_6283ins6283-282_6283-80] p.[=,Asp2095Aspfr*12] 88 Mild
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Table 2. Novel large structural variants in ABCA4

No. Genomic position (hgl9) DNA variant Protein variant Consequences Number of cases
1  94569917-94562911 €.443-1219 768+1439del p.(Glyl48Alafs*23) Exons 5 and 6 deletion 1
2 94565348-94561288 ¢.571-801_768+3062del p.(Phel91 Val256del) Exon 6 deletion 1
3  94564419-94564009 €.699_768+341del p.(GIn234Phefs*5) Partial exon 6 deletion 6
4 94529906-94527518 €.1555-1033_1937+615delinsAGC p.(Cys519Phefs*119) Exon 12 to 13 deletion 1
5 94532364-94526398 c.1555—3491_1938—83de|insl734_1761— 0.(Cys519Phefs*22) Exon .12 to 13 deletion and 1

107inv small inverted segment
6 SASIII0LSSZATY i1 gre0rs0muateaaTains P ol inverted segment 1

7* 94514513-? c.(2653+1_2654-1) (*1_?)del p.(Gly885Valfs*71) Exon 18 to 50 deletion 1
8 94496279-94487503 €.4254-197_4672delinsGCTTTTT p-(?) Exon 29 to exon 33 deletion 1
9 94472532-94470240 €.6005+658 6147+757delinsTTTAACAGTGTT  p.(Ser2002Argfs*12) Exon 44 deletion 1
10  94467351-94463600 C.6282+63_6546del 0.(Asp2095_Leu2182del) S):I)entiii to part of exon 48 1

11*  94461751-? ¢.(6729+1_6730-1)_(*1_?)del p.(Val2244*) Exon 49 to 50 deletion 1



https://doi.org/10.1101/817767
http://creativecommons.org/licenses/by-nc-nd/4.0/



