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Abstract— Multi-antenna cache-aided wireless networks have
been known to suffer from a severe feedback bottleneck, where
achieving the maximal Degrees-of-Freedom (DoF) performance
required feedback from all served users. These costs matched
the caching gains and thus scaled with the number of users. In
the context of the L-antenna MISO broadcast channel with K
receivers having normalized cache size γ, we pair a fundamen-
tally novel algorithm together with a new information-theoretic
converse, and identify the optimal tradeoff between feedback
costs and DoF performance, by showing that having CSIT from
only C < L served users implies an optimal one-shot linear
DoF of C + Kγ. As a side consequence of this, we also now
understand that the well known DoF performance L+Kγ is in
fact exactly optimal. In practice, the above means that we are
now able to disentangle caching gains from feedback costs, thus
achieving unbounded caching gains at the mere feedback cost of
the multiplexing gain. This further solidifies the role of caching
in boosting multi-antenna systems; caching now can provide
unbounded DoF gains over multi-antenna downlink systems, at
no additional feedback costs. The above results are extended to
also include the corresponding multiple transmitter scenario with
caches at both ends.

I. INTRODUCTION

The seminal work of Maddah-Ali and Niesen [1] revealed

how caching modest amounts of content at the receivers has

the potential to yield unprecedented reductions in the delivery

delay of content-related traffic.

Specifically, the work in [1] considered a shared-link broad-

cast channel, where a transmitter is tasked with serving content

from a library of N files to K receiving users. Each user is

endowed with a cache that can store a fraction γ ∈ [0, 1] of

the library, thus yielding a cumulative cache size of t , Kγ,

which essentially means that each part of the library can appear

t different times across the different caches. The approach of

[1] was to design the cache placement algorithm in such a

manner that desired content that resides in different caches

could be combined together to form a single transmitted

multicast signal that carries information for multiple users.

In turn, these same users would then access their individual
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caches in order to remove all the unwanted interference from

the multicast signal, and thus decode their desired message.

In this shared-link (noiseless, wired) setting, with unitary link

capacity, this strategy allows for a worst-case (normalized)

delivery time of

T1(t) =
K − t

1 + t
, (1)

which implies an ability to serve 1 + t users at a time. This

performance is shown in [3] to be within a multiplicative gap

of 2.01 of the optimal gain, while under the assumption of

uncoded placement the above performance is exactly optimal

[4], [5].

The direct extension of this result to the equivalent high

Signal-to-Noise Ratio (high-SNR) single-antenna wireless

Broadcast Channel (BC) — where similarly the long-term

capacity of each point-to-point link is normalized to 1 file

per unit of time — implies a Degrees-of-Freedom1 (DoF)

performance of

D1(t) ,
K − t

T1(t)
= 1 + t, (2)

which can be achieved without any Channel State Information

at the Transmitter (CSIT).

This came in direct contrast with multi-antenna systems

which are known to also provide DoF gains but only with

very high feedback costs that scale with these DoF gains. As

it is known (cf. [6], [7]), such feedback costs are the reason for

which most multi-antenna solutions fail to scale (cf. [8]–[21]).

The huge impact of feedback on the network’s performance

has triggered a major research interest in understanding how

imperfect, partial, or limited feedback can help improve system

performance [22]. Among the vast literature that resulted from

this interest, different works have focused, for example, on

analyzing the impact of feedback in interference-limited multi-

antenna cellular networks [23]–[25], the feasibility of Interfer-

ence Alignment [26], the limited-feedback resource allocation

in heterogeneous wireless networks [27], the capacity for

Gaussian multiple access channels with feedback [28], and the

effect of either rate-limited feedback in the interference chan-

nel [29] or SNR-dependent feedback in the Broadcast Channel

[30]. Recently, the analysis of the significance of feedback has

been extended also to secure communications [31] as well as

to the capacity of burst noise-erasure channels [32].

1We properly define the DoF in Section VI-A, Definition 4.
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A. Multi-antenna cache-aided channels

At the same time, there is substantial interest in combining

the gains from caching with the traditional multiplexing gains

of feedback-aided multi-antenna systems. Combining the two

ingredients is only natural, given the promise of coded caching

and the fact that multi-antenna technologies are currently

the backbone of wireless systems. One can argue that coded

caching stands a much better chance in becoming a pertinent

ingredient of wireless systems, if it properly accounts for

the fact that the most powerful and omni-present resource in

current networks is multi-antenna arrays.

This direction seeks to merge two seemingly opposing

approaches, where traditional feedback-based multi-antenna

systems work by creating parallel channels that separate users’

signals, while coded caching fuses users’ signals and counts

on each user receiving maximum interference. In this context,

the work in [33] analyzed the wired multi-server (L servers)

setting, which can easily be seen to correspond to the high-

SNR cache-aided MISO BC setting with L transmit antennas.

An interesting outcome of this work is the revelation that

multiplexing and caching gains can be combined additively,

yielding an achievable DoF equal to

DL(t) = L+ t. (3)

In the same spirit, the work in [34] studied the KT -transmitter,

fully-connected network where the transmitters are equipped

with caches that can each store a fraction γT ∈ [1/KT , 1] of

the library, amounting to a cumulative (transmitter-side) cache

size of tT = KTγT . Under a cumulative receiver-side cache

size of t, the achievable DoF this time took the form

DtT (t) = tT + t. (4)

As shown in [34], under the assumption of uncoded place-

ment, the performance in (3)-(4) is at a factor of at most 2 from

the optimal one-shot linear DoF. Since then, many works such

as [35]–[42] have developed different coded caching schemes

for the multi-transmitter and the multi-antenna settings.

B. Scaling feedback costs in multi-antenna coded caching

While the single antenna case in [1] provides the near op-

timal caching gain t without requiring any CSIT, a significant

feedback problem arises in the presence of multiple antennas.

Specifically, all known multi-antenna coded caching methods

[33], [35], [36] that achieve the full DoF L+ t require each of

the L+ t benefiting receivers to communicate feedback to the

transmitter. To make matters worse, the problem extends to

the dissemination of CSI at the receivers (CSIR), where now

the transmitter is further forced to incorporate in this CSIR

additional information on the CSIT-based precoders of all the

L+ t benefiting users (global CSIR).

To demonstrate the structural origins of these CSI costs, we

focus on a simple instance of the multi-server method in [33],

which acts as a proxy to other methods with similar feedback

requirements.

Example 1. Let us consider the L = 2-antenna MISO BC, with

K = 4 receiving users and cumulative cache size t = 2. In

this setting, the algorithm of [33] can treat L+ t = 4 users at

a time. Assuming that users 1, 2, 3, 4 request files A,B,C,D,

respectively, each of the three transmissions of [33] takes the

form2

x = h⊥
4 (A23 ⊕B13 ⊕ C12) + h⊥

3 (A24 ⊕B14 ⊕D12) +

+ h⊥
2 (A34 ⊕ C14 ⊕D13) + h⊥

1 (B34 ⊕ C24 ⊕D23)
(5)

where h⊥
k denotes the precoder that is orthogonal to the

channel of user k, and where Wij denotes the part of file

W ∈ {A,B,C,D} that is cached at users i and j. We can

see that the transmitter must know all users’ channel vectors,

hk, k ∈ {1, 2, 3, 4}, in order to form the four precoders.

In addition, each receiver must know the composite channel-

precoder product for each precoder in order to be able to

decode the desired subfile (e.g. receiver 1 must know h
†
1h

⊥
1 as

well as h
†
1h

⊥
2 , h

†
1h

⊥
3 and h

†
1h

⊥
4 ). This implies a feedback cost

equal to L+ t = 4 feedback-bearing users per transmission3.

As we know (see for example [6], [43]), such scaling

feedback costs4 can consume a significant portion of the

coherence time, thus resulting in diminishing DoF gains.

C. State of art

Motivated by this feedback bottleneck, different works

on multi-antenna (and multi-transmitter) coded caching have

sought to reduce CSI costs. However, in all known cases,

any subsequent CSI reduction comes at the direct cost of

substantially reduced DoF. For example, the works in [38],

[44] consider reduced quality CSIT, but yield a maximum DoF

that is bounded close to t + 1. Further, the works in [45]–

[47] consider delayed or reduced quality CSIT at the expense

though of lower DoF performance, while the work in [48]

considers only statistical CSI, but again achieves significantly

lower DoF. Moreover, the work in [49] uses ACK/NACK type

CSIT to ameliorate the issue of unequal channel strengths

(cf. [50], [51]), yet achieving no multiplexing gains. Similar

results can be found in [37], [52]–[58], in more decentralized

scenarios that involve multiple cache-aided transmitters.

As a conclusion, both for the cache-aided MISO BC [33]

as well as for its multi-transmitter equivalent [34], the cor-

responding DoF DL(t) = L + t, has been known to require

perfect feedback from all L+ t served users.

2For sake of readability, in the examples provided throughout the docu-
ment, we will omit the commas between numbers belonging to a set, such
that, for example, the part of the file A stored at the users in the set {3, 4}
will be denoted by A34.

3In practical terms, this implies L+ t = 4 uplink training slots for CSIT
acquisition and L+t = 4 downlink training slots for global CSIR acquisition.
We note that global CSIR acquisition can be performed by communicating
each precoder to all users simultaneously, a process that is described in
Appendix II-C.

4In general we note that, in the context of Frequency Division Duplexing,
the previously mentioned feedback results in a CSIT cost of L+ t feedback
vectors. On the other hand, in a Time Division Duplexing environment, it leads
to L+ t uplink training time slots for CSIT acquisition and an additional cost
of L+ t downlink training time slots for global CSIR acquisition.



D. Summary of contributions

The focus of this work is to establish and achieve the opti-

mal relationship between feedback costs and DoF performance

in multiple-antenna cache-aided settings.

As a consequence of our work, we now know that:

1) The optimal DoF of the cache-aided MISO BC, under

the assumptions of uncoded placement and one-shot

linear schemes, takes the form

DL(t) = L+ t, (6)

which tightens the previously known bound by a multi-

plicative factor of 2.

2) The optimal — under the same assumptions — DoF

when feedback is limited to C ≥ 1 participating users,

takes the form

DL(t, C) = t+min(L,C). (7)

3) Similarly, in the multi-transmitter scenario, with

transmitter-side cumulative cache size tT and with each

transmitter having LT antennas, the above optimal DoF

performance takes the form

DtT ·LT
(t, C) = min(tT · LT , C) + t. (8)

The above are a direct outcome of a completely novel coded

caching algorithm, which manages to achieve the optimal

performance given any amount of available feedback. In

particular, in the L-antenna MISO BC, or in the equivalent

fully connected multi-antenna multi-transmitter setting with

tTLT = L:

1) The algorithm manages to achieve the optimal DoF

DL(t) = L+ t (9)

and do so with a minimal feedback cost

C = L (10)

which substantially diminishes the previously known

cost of L+ t.
2) The algorithm optimally degrades its DoF to

DL(t, C) = C + t (11)

when feedback is reduced to C ∈ {2, ..., L − 1}. This

is an improvement over the state of art which, for the

same DoF, would require a feedback cost of C + t.
The novelty of our scheme lies in the deviation from

the traditional clique-based structure that most schemes

are based on. Rather than requiring from each user to

“cache-out” t subfiles in a XOR as is commonly done,

we are able to design transmissions that can benefit from

a two-pronged approach: some users cache-out t+L−1
subfiles, and thus do not require the assistance of CSI-

aided precoding, while others only cache-out t
L

subfiles

but for that they rely on feedback. This allows our

scheme to avoid the need to eventually “steer-away”

subfiles from every active user, which had been the

reason for the high feedback costs in all known prior

designs.

Finally an important contribution of this work can be found

in the novel outer bound. This bound extends the effort in [34]

in two crucial ways.

• A main contribution of the converse result is the incor-

poration of the limited feedback constraint. We integrate

this new restriction by characterizing its impact on the

number of users that we can serve simultaneously, which

is obtained by exploiting the dimensionality of the lin-

ear system implicit in the multi-user transmission with

constrained feedback.

• Apart from the contribution of being able to account for

feedback-limited transmissions, we are able to improve

the converse result of [34] by leveraging on the following

insights: First, we exploit the symmetry of the configura-

tion, which allows us to express the objective function of

the optimization problem in terms only of the number

of transmitters and the number of receivers that are

caching each packet — eliminating any dependence on

the specific packet or node. Second, this symmetrization

allows us to eventually produce an objective function that

has monotonicity and convexity properties which in turn

allow us to manipulate the solution to yield a tight bound.

It might be worth noting that, as a result of this new

approach, our converse also establishes exact optimality

for a few subsequent works.

E. Notation

Symbols N,C denote the sets of natural and complex num-

bers, respectively. For n, k ∈ N, n ≥ k, we denote the bino-

mial coefficient with
(
n
k

)
, while [k] denotes the set {1, 2, ..., k}.

For the bitwise-XOR operator we use ⊕. Greek lowercase

letters are mainly reserved for sets. We further assume that all

sets are ordered, and we use | · | to denote the cardinality of

a set. Bold lowercase letters are reserved for vectors, while

for some vector h, comprised of Q elements, we denote its

elements as h(q), q ∈ [Q], i.e., [h(1),h(2), ...,h(Q)] , hT .

Bold uppercase letters are used for matrices, while for some

matrix H we denote its i-th row, j-th column element as

H(i, j).

II. SYSTEM MODEL

We consider the cache-aided MISO BC where an L-antenna

transmitter serves K single-antenna receiving cache-aided

users. The distributed version of this setting, with multiple

cache-aided transmitters, is discussed in Section V.

In our setting, the transmitter has access to a library of

N ≥ K files F = {W (n)}Nn=1, of equal size. Each user has

a cache that can fit a fraction γ ∈ [0, 1] of the library, and

thus, collectively the users can store t = Kγ times over the

entire library. We assume that during delivery the users request

their desired file simultaneously, and that each requested file

is different. The users’ file demand vector is denoted as d =
{d1, ..., dK}, implying that each user k will request file W (dk).

In this setting, the received signal at user k ∈ [K] takes the

form

yk = h
†
kx+ wk, (12)



where x ∈ C
L×1 denotes the transmitted signal-vector from

the L-antenna transmitter satisfying the power constraint

E
{
‖x‖2

}
≤ P . In the above, hk ∈ CL×1 denotes the random-

fading channel vector of user k, which is assumed to be drawn

from a continuous non-degenerate distribution. This fading

process is assumed to be statistically symmetric across users.

Finally, the additive noise wk ∼ CN (0, 1) experienced at user

k is assumed to be Gaussian. The work focuses on the DoF

performance, and thus the SNR is considered to be large. We

also assume that the quality of CSIT is perfect, and we define

the feedback amount required in each (packet) transmission as

follows.

Definition 1 (Feedback Cost). A communication is said to

induce feedback cost C if C users need to communicate their

CSI at the transmitter, and at the same time the transmitter

needs to communicate information on C precoders to the

users.

Structure of the paper: In Section III we present the

main results of this work and provide a preliminary example

of the achievable scheme. Further, in Section IV we fully

describe the achievable scheme for the single transmitter (L
antennas) case, and elaborate on the example of Section III. In

Section V we extend the scheme to the multi-transmitter case.

In Section VI we describe the proof of the converse result,

while in Section VII we provide general conclusions. The

subsequent appendices include proofs, as well as a discussion

on the CSIT and global CSIR feedback acquisition process

that conveys the precoder information to the users.

III. MAIN RESULTS AND AN EXAMPLE

We proceed with our main results, first by considering the

single transmitter case (with L transmit antennas), and later by

extending the result to the general KT -transmitter setting. We

remind the reader that optimality is under the assumptions of

one-shot linear schemes with uncoded cache placement, while

we note that we directly omit the trivial bound DL(t, C) ≤ K ,

and that we also do not consider the case of C = 0 as this

corresponds to the well known result in [1]. We additionally

recall that the setting asks that each of the K receiving users

is equipped with an identically-sized cache of normalized size

γ, thus corresponding to a cumulative receiver-side cache size

of t = Kγ.

Theorem 1. In the K-user cache-aided MISO BC with L
transmit antennas, cumulative cache size t, and feedback cost

C, the optimal DoF is

DL(t, C) = t+min(L,C). (13)

Proof. The achievability part is constructive and is described

in Section IV, while the converse is proved in Section VI.

Let us consider now the more general setting where the

L-antenna transmitter is substituted by KT cache-enabled

transmitters. Each transmitter is equipped with LT transmit

antennas, and is able to store a fraction γT ∈ [1/KT , 1] of the

library, inducing a cumulative cache size of tT , KTγT .

Theorem 2. In the KT -transmitter wireless network, where

each transmitter is equipped with LT transmit antennas,

with transmitter-side cumulative cache size tT , receiver-side

cumulative cache size t, and feedback cost C, the optimal DoF

takes the form

DLT tT (t, C) = t+min(LT tT , C). (14)

Proof. The achievability part of the proof is described in

Section V, while the converse is described in Section VI.

Remark 1. Comparing Theorem 1 with Theorem 2, we can

see that the cache-aided MISO BC and its multi-transmitter

equivalent (corresponding to LT tT = L) are akin not only

in terms of DoF performance, but also in terms of the CSIT

required to achieve this performance. Their behavior is the

same, irrespective of the amount C ≥ 1 of available feedback.

The following corollary establishes the exact optimal DoF

performance of the considered multi-antenna settings.

Corollary 1. The optimal DoF of the L-antenna MISO BC

with K users and cumulative cache size t, takes the form

DL(t) = L+ t. (15)

Remark 2. The DoF performance DL(t, C) = L + t can be

achieved by knowing the CSIT of only C = L users at each

transmission.

Remark 3. As Theorems 1, 2 demonstrate, in order to achieve

the maximum one-shot linear DoF DL(t, C) = L + t in the

multi-antenna case (L > 1), the condition C ≥ L is both

sufficient and necessary.

Remark 4. In several scenarios such as in [59], [60], the best

known bounds — which are built on the converse proof of [34]

— endure a multiplicative gap to the optimal performance.

Our converse proof improves the converse in [34] by tightening

the lower bound of the solution to the linear program proposed

in [34]. Consequently, our converse also closes the multiplica-

tive gap of such subsequent works. For example, it follows

directly from the results derived here that the achievable

DoF presented in [59] for a cache-aided interference network

with heterogeneous parallel channels and centralized cache

placement is in fact exactly optimal. Similarly, the achievable

DoF in [60] for cache-aided cellular networks again turns out

to be exactly optimal.

Intuition and an example of the scheme

Revisiting the previous optimal multi-antenna coded

caching algorithms (cf. [33]–[36]) — which as we noted,

require CSIT from all L + t “active” users — we remark

that the main premise of these designs is that each transmitted

subfile can be cached-out by some t users (as in the algorithm

of [1]), and at the same time it can be zero-forced at some

other L−1 users. This, in turn, allows each of the L+ t active

users to receive its desired subfile, free of interference. This

design, while achieving the maximum DoF, incurs very high

CSIT costs. Notably, these costs are associated with the need

to eventually “steer-away” subfiles from every active user.



The idea that we follow is different. In order to reduce the

amount of CSIT to be from only L feedback-aided users, while

retaining the full DoF performance, it follows that the t users

whose CSI is unknown (hereon referred to as the set π) will

need to cache-out a total of t+L−1 subfiles each. On the other

hand, the L users whose CSI is known (hereon referred to as

the set λ) will be assisted by precoding, and can thus more

easily receive their desired subfile. Hence, the main design

challenge is to transmit together subfiles that can be decoded

by each user of set π.

We proceed with a preliminary description of the proposed

algorithm.

Algorithm overview: We first note that the cache placement

draws directly from [1], both in terms of file partition, as well

as in terms of storing of subfiles in the users’ caches.

On the other hand, the XOR generation method will be

fundamentally different. The first step is to construct XORs

composed of t
L
+ 1 subfiles and to compose each transmit-

vector with L such XORs. This allows each transmission

to communicate L + t different subfiles aimed at serving,

simultaneously, a set of L+ t users. As discussed above, each

such set of L + t active users is partitioned into two sets;

the first set, λ, consists of the L users that are assisted by

precoding. The second set, π, has t users who are not assisted

by precoding and who must compensate with their caches. The

vector of XORs will be multiplied by H−1
λ which represents

the normalized inverse of the channel matrix between the

transmitter and the users in set λ.

We will see that the above design guarantees that, during

the decoding process, each of the users in λ only receives

one of the XORs (because the rest will be nulled-out by the

precoder), while the remaining t users, i.e., those in π, receive

a linear combination of all L XORs. Hence, this means that

each user in λ needs to cache out t
L

subfiles in order to decode

its desired subfile, while the users in π need to cache out

t+ L− 1 subfiles, i.e., all but one subfiles.

Algorithm demonstration through an example: Next, we

will demonstrate a single transmission of our algorithm by

considering the setting of Example 1. The goal is to achieve the

same performance as before (delivery to four users at a time)

while using CSIT from only two users at a time. The example

in its entirety can be found in Section IV-C, Example 4.

Example 2. In the same MISO BC setting of Example 1 with

L = 2 transmit antennas, K = 4 users, and cumulative cache

size t = 2, one transmitted vector of the proposed algorithm

takes the form5

x = h⊥
2 (A34 ⊕ C14) + h⊥

1 (B34 ⊕D23), (16)

where h⊥
k , k ∈ {1, 2}, denotes the precoder-vector designed to

be orthogonal to the channel of user k, files A, B, C, and D
are requested by users 1, 2, 3, and 4, respectively, and where

Wij , W ∈ {A,B,C,D}, represents the subfile of W that can

be found in the caches of users i and j.

5The reader is warned that there is a small notational discrepancy between
the subfile indices of this example and the formal notation. In this example we
have kept the notation as simple as possible in order to more easily provide
a basic intuition on the structure of the scheme.

Assuming that user k receives yk, k ∈ [4], the message at

each user takes the form




y1
y2
y3
y4


=




h
†
1(h

⊥
2 A34 ⊕ C14 + h⊥

1 B34 ⊕D23)

h
†
2(h

⊥
2 A34 ⊕ C14 + h⊥

1 B34 ⊕D23)

h
†
3(h

⊥
2 A34 ⊕ C14 + h⊥

1 B34 ⊕D23)

h
†
4(h

⊥
2 A34 ⊕ C14 + h⊥

1 B34 ⊕D23)




=




A34 ⊕ C14

B34 ⊕D23

h
†
3(h

⊥
2 A34 ⊕ C14 + h⊥

1 B34 ⊕D23)

h
†
4(h

⊥
2 A34 ⊕ C14 + h⊥

1 B34 ⊕D23)


 (17)

where we have ignored noise for simplicity.

Hence, we see that users 1 and 2 only receive the first

and second XOR, respectively, due to the precoder design.

This means that each of these two users can decode its

desired subfiles, A34 and B34, respectively, by caching-out

the unwanted subfiles C14 and D23, respectively.

On the other hand, looking at the decoding process for users

3 and 4, we see that user 3 can cache-out subfiles A34, B34,

and D23 in order to decode the desired C14. Similarly, user

4 can cache-out subfiles A34, B34, and C14 to decode the

desired subfile D23. In order to achieve this, users 3 and

4 need to employ their cached content, but they also need

some CSI knowledge: user 3 needs products h
†
3h

⊥
2 and h

†
3h

⊥
1 ,

while user 4 needs h
†
4h

⊥
2 and h

†
4h

⊥
1 . This can be handled with

the broadcasting of information for only two precoders. The

reader is referred to Appendix II-C for an exposition of how

the feedback acquisition here requires only L = 2 training

slots, which is simply because information on a precoder can

be broadcasted in a single shot, irrespective of how many users

it is broadcasted to.

IV. DESCRIPTION OF THE SCHEME

We proceed to present the scheme’s cache-placement and

content-delivery phases. We focus on the single transmitter

MISO BC setting, while the multi-transmitter scenario is

presented in Section V. Furthermore, we also assume in the

following that C = L, noting that the extension of the scheme

to the case C < L is trivial and it can be achieved by simply

“shutting down” L − C antennas. The scheme is described

for the case where t
L
∈ N, while the remaining cases can be

achieved using memory sharing and, as shown in [39], would

incur a small DoF reduction6.

Communication happens in two phases, namely the place-

ment and the delivery phases. The placement phase is re-

sponsible for populating the caches of the users with content,

while the delivery phase is responsible for communicating

to the users their desired files. Further, we assume that each

transmission occupies multiple coherence periods.

Precoder design: For some set λ ⊂ [K] of |λ| = L users,

we denote with H−1
λ the normalized inverse of the L × L

channel matrix Hλ corresponding to the channel between the

transmitter and the L users of set λ. Further, the ℓ-th column

6Efforts subsequent to our work [41], [61] have addressed this memory
sharing issue through a new design that is able to retain the same desirable
DoF and feedback cost without being constrained by the value of L.



of H−1
λ , ℓ ∈ [L], is denoted by h⊥

λ\λ(ℓ) and describes a vector

that is orthogonal to the channels of the users of set λ \ λ(ℓ).
Hence, for some arbitrary user k ∈ [K], it holds that

h
†
k · h

⊥
λ\λ(ℓ)

{
= 0, if k ∈ λ \ λ(ℓ)

6= 0, else.
(18)

A. Placement phase

The placement phase is executed without knowledge of the

number of transmit antennas, and without knowledge of CSI.

The placement follows the original scheme in [1] where each

file W (n), n ∈ [N ], is initially split into
(
K
t

)
subfiles

W (n) →
{
W (n)
τ , τ ⊂ [K], |τ | = t

}
, (19)

each indexed by a t-length set τ ⊂ [K], such that the cache

of user k ∈ [K] takes the form

Zk =
{
W (n)
τ : ∀τ ∋ k, |τ | = t, ∀n ∈ [N ]

}
. (20)

B. Delivery phase

This phase begins with the request from each user of a single

file from the library. To satisfy these demands, the transmitter

selects a subset of L + t users for each transmission slot.

Specifically, these users are divided into set λ ⊂ [K], |λ| = L,

who provide CSI, and set π ⊂ [K] \λ, |π| = t, who need not

provide CSI.

Upon notification of the requests {W (dk), k ∈ [K]},

and after the number of antennas is revealed to be L, each

requested subfile W
(dk)
τ is further split twice as follows:

W (dk)
τ →{W (dk)

σ,τ , σ ⊆ [K] \ (τ ∪ {k}), |σ| = L− 1} (21)

W (dk)
σ,τ →{W r,(dk)

σ,τ , r ∈ [L+ t]}. (22)

In the following we describe how, for every transmission,

the transmitter first creates a vector of L XORs, and then

precodes each XOR with the appropriate precoder.

a) Individual XOR design: As previously mentioned,

each transmitted XOR has t/L+1 recipients, which we refer to

as set µ. We recall that each subfile is cached at t receivers, and

we consider the set ν to be the set of t−(t/L+1) = tL−1
L

users

who have cached the set of files intended for users in set µ. In

particular, these two sets µ, ν ⊂ [K], are disjoint (µ∩ ν = ∅),

and their sizes are |µ| = t
L
+ 1 and |ν| = tL−1

L
respectively.

We also consider a set σ ⊆
(
[K] \ (µ ∪ ν)

)
, |σ| = L − 1,

which will be later chosen more carefully. With these in place,

we construct XOR7

Xν,σ
µ =

⊕

k∈µ

W
(dk)
σ,(ν∪µ)\{k} (23)

which consists of t
L
+ 1 subfiles, where

• each subfile in the XOR is requested by one user in µ,

and where

7In a small abuse of notation, we will henceforth refer to the segments
of the original subfiles again as subfiles. We also note that, for clarity of
exposition and to avoid many indices, index r of (22) will henceforth be

suppressed, thus any W
r,(dk)
σ,τ will be denoted as W

(dk)
σ,τ unless r is explicitly

needed.

• all subfiles of the XOR are known by all users in ν.

The set (ν ∪ µ) \ {k} plays the role of τ from the placement

phase, as it describes the set of users that have this subfile

(labeled by τ ) in their cache, while set σ is a selected subset

of L− 1 users from set λ.

Example 3. Let us consider the MISO BC with L = 2 transmit

antennas, K ≥ 6 users and cumulative cache size t = 4. Let

the aforementioned sets be µ = {1, 2, 3}, ν = {4, 5}, and

consider some arbitrary σ ⊆ [K] \ {1, 2, 3, 4, 5}, |σ| = 1.

Then, the XOR of (23) takes the form

X45,σ
123 =W

(d1)
σ,2345
︸ ︷︷ ︸

τ

⊕W
(d2)
σ,1345 ⊕W

(d3)
σ,1245. (24)

As we have described before, this XOR delivers subfiles desired

by all the users of set µ, while each element of the XOR is

cached at all users of set ν. It is easy to see that users 1, 2,

and 3 work in the traditional way to cache out the interfering

subfiles in order to get their own desired subfile, such that for

example user 1 caches out W
(d2)
σ,1345 ⊕W

(d3)
σ,1245 to get its own

W
(d1)
σ,2345. In turn, users 4 and 5 are fully protected against this

entire undesired XOR because they have cached all 3 subfiles

of this XOR. As a quick verification, we see that each index τ
has size |τ | = t = 4, which adheres to the available cache-size

constraint as each file can be stored at exactly t = 4 receivers.

Algorithm 1: Delivery Phase

1 for λ ⊂ [K], |λ| = L (precoded users in λ) do

2 Calculate H−1
λ

3 for π ⊆ ([K] \ λ) , |π| = t do

4 Break π into some φi i ∈ [L] : |φi| =
t
L
,⋃

i∈[L] φi = π, φi ∩ φj = ∅, ∀i, j ∈ [L]

5 for s ∈ {0, 1, ..., L− 1} do

6 vi = ((s+ i− 1) mod L) + 1, i ∈ [L]
7 Transmit

xsλ,π = H
−1
λ ·




X
π\φv1 ,λ\λ(1)

λ(1)∪φv1

X
π\φv2 ,λ\λ(2)

λ(2)∪φv2

...

X
π\φvL

,λ\λ(L)

λ(L)∪φvL




. (25)

b) Design of vector of XORs: Equipped with the design

of each individual XOR, the goal is to select L such XORs

in order to communicate them in a single transmission period.

Algorithm 1 forms a set of L+ t users and a set of L distinct

such XORs to serve them with. Specifically, the steps that are

followed are described below.

• In Step 1, a set λ of L users is chosen.

• In Step 2, a (ZF-type) precoder H−1
λ is designed to

spatially separate the L users in λ.

• In Step 3, another set π ⊆ [K] \ λ of t users is selected

from the remaining users.



To construct the L XORs and to properly place them in the

vector, the following steps take place.

• In Step 4, set π of t users is arbitrarily partitioned into L
non-overlapping sets φi, i ∈ [L], each having t

L
users.

• Steps 5 and 6 are responsible for forming the L different

sets µ (cf. (23)), where each such set µ consists of
t
L
+1 users. Specifically, in every iteration of Step 5, the

algorithm associates a user from set λ with some set φvi ,
in order to form set µ and such that after L iterations

each user from λ would be associated with every set

φvi . For example, when s = 0, the first XOR of the

vector will be intended for users in set {λ(1)}∪φ1 (while

completely known by all users in π\φ1), the second XOR

will be intended for the users in the set {λ(2)} ∪ φ2
(while completely known by all users in π \ φ2), and so

on. Further, when s = 1 the first XOR will be intended

for users in {λ(1)} ∪ φ2 (while completely known by

all users in π \ φ2), the second XOR will be for users

in {λ(2)} ∪ φ3 (while completely known by all users in

π\φ3), and so on. In particular, Step 5 (and the operation

in Step 6, as shown in Algorithm 1) allows us to iterate

over all sets φi, associating every time a distinct set φi
to a distinct user from group λ, until all users from set

λ have been associated with all sets φi. The verification

that this association does not leave behind any subfiles is

performed later on in this section.

• Then, in the last step (Step 7), the vector of the L XORs

is transmitted after being precoded by matrix H−1
λ .

c) Decoding at the users: By the very nature of the XOR

design, as seen in (23)), the vector of XORs we constructed

in (25) guarantees that the users in λ can decode the single

XOR that they receive (recall that for such users, all other

XORs are steered away due to ZF precoding) and can thus

subsequently proceed to decode their own file through the

use of their cached content. Further, the design guarantees

that each user in π has cached all subfiles that are found in

the entire vector, apart from its desired subfile. Benefitting

from their receiver-side CSI (see Appendix II-C), the users

of set π are provided with all the necessary CSI estimates,

which allows for the decoding of the linear combination of

the transmitted vector.

To see the above more clearly, let us look at the signal

received, and the subsequent decoding process at some of the

users.

For some user ℓ ∈ λ, the decoding process is simple. The

received message takes the form

yℓ = h
†
ℓH

−1
λ




X
π\φv1 ,λ\λ(1)

λ(1)∪φv1

X
π\φv2 ,λ\λ(2)

λ(2)∪φv2

...

X
π\φvL

,λ\λ(L)

λ(L)∪φvL




=X
π\φvk

,λ\{ℓ}

{ℓ}∪φvk
,

where φvk , k ∈ [L], represents the subset of π, of size

|φvk | =
t
L

, associated with ℓ (Step 5 of Algorithm 1). The

selected precoders allow user ℓ to receive only one of the

XORs (cf. (26)). Due to the design of this remaining XOR

(see (23)), all but one subfiles have been cached by user ℓ,
and thus the user can decode its desired subfile.

On the other hand, the decoding process at some user in set

π requires, also, access to CSI. The received message at user

p ∈ π takes the form

yp = h†
pH

−1
λ




X
π\φv1 ,λ\λ(1)

λ(1)∪φv1

X
π\φv2 ,λ\λ(2)

λ(2)∪φv2

...

X
π\φvL

,λ\λ(L)

λ(L)∪φvL




(26)

=

L∑

j=1

h†
ph

⊥
λ\λ(j)X

π\φvj
,λ\λ(j)

λ(j)∪φvj
. (27)

First, we observe that, due to the process described in Ap-

pendix II-C, user p has estimated all products h†
ph

⊥
λ\{ℓ}, ∀ℓ ∈

λ, that appear in (27). Then, by taking account of the fact that

φvi ∩ φvj = ∅ if i 6= j, we can see that user p belongs to one

of the sets φvj ⊂ π. This means that user p has stored the

content of all but one XORs (see (23)) and can thus remove

them from (27). By removing the L − 1 known XORs, the

remaining message at user p is

h†
ph

⊥
λ\λ(j)X

π\φvj
,λ\λ(j)

λ(j)∪φvj
(28)

where φj ∋ p. Due to its structure (cf. (23)), the XOR can be

successfully used by user p to decode its own desired message.

C. Evaluating the scheme’s performance

In order to calculate the achievable DoF of the proposed

scheme, we begin by showing that each desired subfile of set

{W
r,(dk)
σ,τ }L+tr=1 is transmitted exactly once. Since each such

collection of subfiles has the same sub-indices, it follows that

there is no need to distinguish between them, as long as each

appears exactly once.

a) Each desired subfile is transmitted exactly once: For

any arbitrary subfile W
(dk)
σ,τ , the labeling (σ, τ, k) defines the

set of active users λ ∪ π = σ ∪ τ ∪ {k}. Let us recall that

λ ∩ π = ∅, σ ∩ τ = ∅, that σ ⊂ λ, and that |σ| = L − 1,

|λ| = L, |π| = |τ | = t. For our fixed σ, τ, k, let us consider

the two complementary cases; case i) k ∈ λ, and case ii)

k /∈ λ.

In case i), λ = σ ∪ {k}, since τ ∩ λ = ∅. Moreover,

π = (σ ∪ τ ∪ {k}) \ λ = τ

means that a fixed (σ, τ, k) corresponds to a single (λ, π). For

any fixed (λ, π) in Algorithm 1, Step 5 iterates L times, thus

identifying L specific component subfiles which are defined

by the same (σ, τ, k), and thus can be differentiated by L

different r ∈ [t + L]; these L component subfiles of W
(dk)
σ,τ

will appear in transmissions xsλ,π , s = 0, 1, . . . , L− 1.



In case ii), the fact that k /∈ λ implies that for a given

(σ, τ, k) (which also defines the set of active users) there can

be t different sets λ which take the form

λ = σ ∪ {τ(i)}, i ∈ [t].

This means that any fixed triplet (σ, τ, k) corresponds to t
different possible sets λ. Since for a fixed (σ, τ, k), the union

of λ ∪ π is fixed, we can conclude that each fixed (σ, τ, k) is

associated to t different pairs (λ, π).

Now, having chosen a specific pair (λ, π), where we remind

that k ∈ π, we can see from Step 5 of Algorithm 1 that user

k should belong to exactly one set φvi , i ∈ [L]. Let that set

be φvj . This means that from all L transmissions of Step 5,

a component subfile of the form W
(dk)
σ,τ will be transmitted

in exactly one transmission, and in particular, in the single

transmission which includes XOR

X
π\φvj

,σ

τ(i)∪φvj

.

In total, for all the different (λ, π) sets, subfile W
(dk)
σ,τ will

be transmitted L + t times. Finally, since we showed that an

arbitrary subfile, W
(dk)
σ,τ , will be transmitted exactly L+t times,

this implies that all subfiles of interest will be transmitted once

we go over all possible λ, π sets.

b) DoF calculation: The resulting DoF can now easily

be seen to be L+t, simply because each transmission includes

L + t different subfiles, and because each file was indeed

transmitted exactly once. A quick verification, accounting for

the subpacketization

SL =

(
K

t

)(
K − t− 1

L− 1

)
(L+ t),

and accounting for the number of iterations in each step, tells

us that the worst-case delivery time takes the form

TL(t) =

Step 1︷ ︸︸ ︷(
K

L

)
Step 3︷ ︸︸ ︷(
K − L

t

)
·

Step 5︷︸︸︷
L

(
K
t

)(
K−t−1
L−1

)
(L + t)

=
K − t

L+ t
, (29)

which in turn directly implies a DoF of

DL(t) =
K(1− γ)

TL(t)
= L+ t

which is achieved with CSI from only C = L users per

transmission.

To illustrate the above algorithm, we proceed to present the

delivery phase for the setting of Example 2.

Example 4 (Example of scheme). Consider a transmitter with

L = 2 antennas, serving K = 4 users with cumulative cache

size t = 2. Each file is split into

SL =

r︷ ︸︸ ︷
(t+ L)

σ︷ ︸︸ ︷(
K − t− 1

L− 1

)
τ︷ ︸︸ ︷(
K

t

)
= 24

subfiles. The
(
K
L

)(
K−L
t

)
L = 12 transmissions that satisfy all

the users’ requests are

x1
12,34=H−1

12

[
A

(1)
2,34⊕C

(1)
2,14

B
(1)
1,34⊕D

(1)
1,23

]
,x2

12,34=H−1
12

[
A

(2)
2,34⊕D

(1)
2,13

B
(2)
1,34⊕C

(1)
1,24

]

x1
34,12=H−1

34

[
B

(1)
4,13⊕C

(1)
4,12

A
(1)
3,24⊕D

(1)
3,12

]
,x2

34,12=H−1
34

[
A

(1)
4,23⊕C

(2)
4,12

B
(1)
3,14⊕D

(2)
3,12

]

x1
24,13=H−1

24

[
A

(2)
4,23⊕B

(2)
4,13

C
(2)
2,14⊕D

(2)
2,13

]
,x2

24,13=H−1
24

[
B

(3)
4,13⊕C

(3)
4,12

A
(3)
2,34⊕D

(3)
2,13

]

x1
13,24=H−1

13

[
A

(2)
3,24⊕B

(2)
3,14

C
(2)
1,24⊕D

(2)
1,23

]
,x2

13,24=H−1
13

[
A

(3)
3,24⊕D

(2)
3,12

B
(3)
1,34⊕C

(3)
1,24

]

x1
14,23=H−1

14

[
A

(3)
4,23⊕B

(4)
4,13

D
(3)
1,23⊕C

(4)
1,24

]
,x2

14,23=H−1
14

[
A

(4)
4,23⊕C

(4)
4,12

B
(4)
1,34⊕D

(4)
1,23

]

x1
23,14=H−1

23

[
A

(4)
3,24⊕B

(3)
3,14

C
(3)
2,14⊕D

(4)
2,13

]
,x2

23,14=H−1
23

[
B

(4)
3,14⊕D

(4)
3,12

C
(4)
2,14⊕A

(4)
2,34

]
.

As we see, the delay is T2 = 12
24 = 1

2 and the DoF is

D2 = K(1−γ)
T2

= 4. This performance is optimal.

V. EXTENSION TO THE MULTI-TRANSMITTER

ENVIRONMENT

We now consider the multiple-transmitter case, where each

of the KT transmitters is equipped with LT ≥ 1 antennas, and

each has a cache capacity equal to a fraction γT ∈ [1/KT , 1]
of the library, such that the transmitter-side cumulative cache

size is tT = KTγT . As we have seen, setting L = LT tT
shows how the two settings (the cache-aided MISO BC, and

the corresponding multi-transmitter equivalent) share the same

DoF performance DL(t, C) = t + C, irrespective of the

feedback capabilities C.

The scheme for the multi-transmitter setting closely resem-

bles the scheme in Algorithm 1, with the difference being

that precoding vectors h⊥
λ\{λ(ℓ)} are formed in a distributed

manner. In particular, for each transmitted subfile, the tT
transmitters who have access to that subfile must cooperate to

form (each using its own LT antennas) a distributed precoder

vector of length L, which possesses the attributes described in

(18). The only modification to Algorithm 1 is in the precoder

design (Step 2) where the transmission vector (cf. (25)) now

takes the form

xsλ,π =

L∑

ℓ=1

∑

k∈{λ(ℓ)}∪φuℓ

h⊥
λ\{λ(ℓ)}W

(dk)
{λ(ℓ)}∪π\{k}. (30)

It is important to notice that for a specific ℓ ∈ [L], the respec-

tive precoder vector h⊥
λ\{λ(ℓ)} is designed at the tT = L

LT

transmitters which have stored subfile W
(dk)
{λ(ℓ)}∪π\{k}. This

further means that the precoding vectors h⊥
λ\{λ(ℓ)} are subfile-

dependent and thus potentially different.

Placement at the transmitters: To guarantee that each

subfile is stored at exactly tT transmitters, we use the ap-

proach of [39] which does not require an increase of the

subpacketization, and which we include here for completeness.

The placement algorithm starts from the first transmitter and



caches the first MT = γTN files in their entirety, while the

second transmitter caches the next set of MT files, and so on.

Specifically, transmitter kT ∈ [KT ] caches

ZTx
kT

=
{
W (n), n ∈ {1 + (kT − 1)MT , ..., kTMT }

}
, (31)

where we notice that the index of each file is calculated using

the modulo operation, i.e., each file index n ∈ [N ] appearing

in (31) takes the form n = (n − 1) mod (N) + 1. All the

other steps remain the same.

VI. CONVERSE

In this section, we prove the converse part of Theorem 2,

corresponding to the multi-transmitter environment, and, by

extension, the converse part of Theorem 1, which can be

deduced by setting the problem parameters as KT = 1,

LT = L, and tT = 1.

The bound draws partly from [34], mainly for the initial

steps, but we introduce new ideas which allow us to capture

the CSI-availability effect as well as introduce a new bounding

solution for the optimization problem that directly tightens the

converse. Similarly to [34], we are constrained to i) placement

done under the assumption of uncoded prefetching, and ii)

linear delivery schemes that have the one-shot property, where

no data is transmitted more than once.

Specifically, the steps that we implement to prove the

converse part of Theorem 2 are as follows:

1) We bound the number of messages that can be simulta-

neously transmitted under feedback constraints.

2) We rewrite the problem as an integer optimization prob-

lem that seeks to minimize the delivery time for a given

prefetching policy and file demand vector.

3) We obtain a novel solution of the optimization problem

by leveraging the cache-size constraints and the convex-

ity of the problem.

The second step, i.e., the formulation of the optimization

problem, follows from [34, Sections V.B, V.C], and we include

it here for completeness. On the other hand, the novelty lies on

the first and the third steps, which are instrumental in obtaining

the converse.

We begin by introducing some additional definitions and

notation. In the following, we consider a slightly different

channel model with respect to the one described in Section II

for the achievable scheme. Let us remark that these modifica-

tions do not impact our results, and indeed they are irrelevant

for the description of the achievable scheme. On this basis,

we have omitted these considerations before for the sake of

clarity, and they are incorporated only in this section.

A. Preliminary definitions

We denote the superset of all the sets of caches at the users

as ζRx, such that ζRx , {Z1, . . . ,ZK}. Similarly, the superset

of cached content stored at the transmitters is denoted by

ζTx , {ZTx
1 , . . . ,ZTx

KT
}. We consider that every file W (n) in

the library F is divided into F packets, {W (n),f}Ff=1, each of

size B bits. The caching is done at the level of packets and we

do not allow breaking the packets into smaller sub-packets8.

As is standard, we consider that the transmitters encode each

packet W (dk),f into a coded packet9 W̃
(dk)
s , g(W

(dk)
s ) of

B̃ complex symbols using a random Gaussian coding scheme

g : FB2 → CB̃ of rate logP + o(logP ). We introduce in the

following some definitions that are instrumental to the proof.

Definition 2 (Communication Block). A Communication

Block is defined as the time required to transmit a packet —

which has size equal to the atomic unit — to a single user, in

the absence of caching and of interference. A block consists

of B̃
logP time instants.

Hence, for a certain demand vector d, we consider that the

transmission lasts for a set β of communication blocks, where

each block b ∈ β has duration B̃ time slots. During a given

communication block b, the transmitters send a set of packets,

denoted as ρb, to a subset of users κb ⊆ [K] such that every

user in κb desires only one packet from ρb. The file requested

by user k is denoted as W (dk), and the specific packet of

W (dk) that is transmitted in this communication block b is

denoted as W (dk),fk . Note that, for sake of readability, we omit

the reference to the specific communication block in which

the packet is scheduled. Thus, the set of transmitted packets is

explicitly given by ρb =
{
W (dk),fk

}
k∈κb

, fk ∈ [F ], dk ∈ [N ].

Furthermore, the transmitters must transmit every packet of

the file W (dk) that is not cached by user k throughout the |β|
communication blocks. The transmission will last until all the

required packets are correctly received.

The goal of the converse is to bound the minimum number

of communication blocks required to transmit the demanded

files {W (d1), . . . ,W (dK)} assuming the worst-case demand

vectors. To this end, we first consider the optimal delivery time

for a given placement. Specifically, for a given prefetching

policy (ζTx, ζRx), the minimum one-shot linear delivery time

achievable for the worst-case demand is defined as

T (ζTx, ζRx) , sup
{d1,...,dK}

inf
β

{ρb}b∈β

1

F
|β|. (32)

Note that the delivery time is normalized with respect to

the file-size, such that a single unit of the delivery time

corresponds to F communication blocks. By the same token,

we can define the worst-case optimal delivery time as follows.

Definition 3 (Worst-case Delivery Time). In a K-user fully-

connected wireless network with KT transmitters, with LT
antennas per transmitter, with cumulative cache size tT at the

transmitters side and t at the receivers side, and upon defining

L = LT tT , the worst-case optimal delivery time is defined as

8Packets are considered to be the atomic unit of size in place of bits,
such that they are big enough for the laws of Shannon to apply and the
probability of decoding error to vanish as B increases [34], [47]. Regarding
the description of the achievable scheme in Section IV, it can be assumed
w.l.o.g. that F is an integer multiple of the number of subfiles.

9Here, “coded packet” refers to the channel coding strategy. This notation
should not be confused with coded prefetching, which is not considered in
this paper.



the minimum achievable one-shot linear delivery time over all

caching realizations:

T ⋆
L (t) , inf

ζTx,ζRx
T (ζTx, ζRx). (33)

Further, we define the optimal (one-shot linear) DoF using

the previous definition.

Definition 4 (Optimal Degrees-of-Freedom). In the cache-

aided network of Definition 3, the optimal one-shot linear DoF

takes the form

D⋆
L(t) ,

K(1− γ)

T ⋆
L (t)

. (34)

We recall that we seek to minimize the delivery time

(or, equivalently, maximize the DoF performance) under con-

strained feedback resources, where in each communication

block, the transmitters acquire feedback only for a subset of

C users in total. Let us consider a particular communication

block b. We denote the set of users for which there exists CSIT

at communication block b as ηb, ηb ⊆ κb, |ηb| = C, and its

complementary set as ηcb , κb\ηb. Furthermore, we denote the

sets of transmitters and receivers who have cached the packet

W (dk),fk intended to receiver k, as ǫk and δk, respectively.

For some set α, the indicator function is denoted by 1α(k),
to mean that 1α(k) = 1 if k ∈ α and 0 otherwise. Accordingly,

we introduce

C′
k , C + 1ηc

b
(k), ∀k ∈ κb, (35)

such that C′
k = C if k ∈ ηb and C′

k = C + 1 if k /∈ ηb. We

will also use

Lk , min(C′
k, LT |ǫk|), (36)

such that Lk represents the minimum between the number

of transmit antennas that have cached the packet intended

to receiver k (W (dk),fk ) and the number of users for which

there is CSIT available excluding user k. In other words,

C′
k indicates the number of users for which the transmitters

can use the CSIT so as to benefit from spatial multiplexing

for packet W (dk),fk . Further, we introduce the following

definition.

Definition 5 (Packet Order). A packet is said to be of “order

(u, v)” if it is stored in the cache of u different transmitters

and v different users.

B. Bounding the number of simultaneous packets

Now, we aim to bound the number of users that can be

simultaneously served during a given communication block.

This bound is presented in the following lemma.

Lemma 1. Let us consider a single communication block b ∈
β, where each packet of set ρb is scheduled to be transmitted

simultaneously to one of the users of set κb, such that |ρb| =
|κb| = Kb. Assume that each transmitter has only access to

the CSIT of all users of set ηb ⊆ κb, |ηb| = C, and that for

every user k, k ∈ κb, the set of users that have cached the

packet intended to user k is given by δk. For each intended

packet to be successfully decoded at the appropriate receiver,

the number of simultaneously transmitted packets must satisfy

Kb ≤ min
k∈κb

(Lk + |δk|) . (37)

Proof. The proof is relegated to Appendix I.

Corollary 2. Consider some communication block b. In order

for a packet of order (u, v) to be decoded successfully, it can

be transmitted simultaneously with at most min(C,LTu) +
v − 1 other packets of the same order.

Proof. The proof follows directly after substituting |δk| for

v and |ǫk| for u in (37) of Lemma 1 for every k ∈ κb.
Therefore, we obtain that Kb ≤ mink∈κb

min(C′
k, LTu)+v =

min(C, LTu) + v.

Next, we present the definition of feasible set of packets,

which is based on Lemma 1.

Definition 6 (Feasible Sets). Let a communication block b be

characterized by the set ρb of packets to be transmitted, by

the set κb of users for whom the packets are intended, and by

the set ηb of users for whom there is CSIT. A set of packets

ρb selected to be transmitted at communication block b is said

to be feasible if it satisfies (37) in Lemma 1, i.e., if for every

k ∈ κb it holds that

Kb ≤ Lk + |δk|. (38)

Consider a subset of users δ ⊆ [K] and a subset of

transmitters ǫ ⊆ [KT ]. We define

ω
(n)
ǫ,δ ,

⋂

f∈[F ]
e∈ǫ,c∈δ

{W (n),f ∩ ZTx
e ∩ Zc} (39)

to be the set of packets of file W (n), n ∈ [N ], that are

exclusively stored in the caches of the transmitters in ǫ and

the users in δ. Further, the number of packets in the set ω
(n)
ǫ,δ

is denoted by a
(n)
ǫ,δ .

C. Lower-bound on the number of communication blocks

In this section, we lower-bound the number of communica-

tion blocks that are required for a successful transmission. This

lower bound is based on a linear program that was first stated

in [34]. The formulation of the linear program matches that of

[34], and it is presented in Appendix II-A for completeness.

Let us consider first a given demand vector d and cache-

placement strategies ζTx, ζRx. The minimum number of com-

munication blocks |β| required to successfully transmit all

the requested files in d for the specific strategies ζTx, ζRx,

is denoted as T ⋆β (ζ
Tx, ζRx,d) and is rigorously defined in

Appendix II-A.

We are interested in lower-bounding the value of

T ⋆β (ζ
Tx, ζRx,d) for any worst-case demand d. As shown in

[34] (see also [5], [47]), the solution to the optimization

problem can be lower-bounded by averaging over all the

possible permutations of the demand vector d. Hence, for a

given cache-placement strategy ζTx, ζRx let us define

T̄ ⋆β (ζ
Tx, ζRx) ,

1

|ψ(N,K)|

∑

d∈ψ(N,K)

T ⋆β (ζ
Tx, ζRx,d) (40)



to be the average number of required communication blocks

over the set of all possible worst-case demand-vectors d. In the

above, ψ(N,K) denotes the set of all K-permutations of the

library files (N indices), and recall that |ψ(N,K)| = N !
(N−K)! .

We focus now on lower-bounding T̄ ⋆β (ζ
Tx, ζRx). Recalling

Corollary 2, a packet of order (u, v) can be scheduled with

at most min(LTu,C) + v − 1 packets of the same order.

Consequently, for any ǫ ⊆ [KT ], δ ⊆ [K], such that |ǫ| = u
and |δ| = v, the maximum possible multiplexing gain for any

packet in set ω
(n)
ǫ,δ , n ∈ [N ], is min

(
min(LTu,C) + v,K

)
.

From this bound over the maximum multiplexing gain, we

can bound the minimum number of communication blocks

needed for a specific demand and cache-placement strategy.

Specifically, let us first note that, in order to transmit all the

packets in a set ω
(dj)
ǫ,δ satisfying that |ǫ| = u and |δ| = v, we

need at least a
(dj)
ǫ,δ /min(min(C,LTu) + v,K) communication

blocks. Upon defining

gu,v , min(C,LTu) + v (41)

for sake of compactness, we obtain the lower bound

T ⋆β (ζ
Tx, ζRx,d) ≥

K∑

v=0

KT∑

u=1

K∑

j=1

∑

ǫ⊆[KT ]
|ǫ|=u

∑

δ⊆[K]
|δ|=v
δ 6∋j

a
(dj)
ǫ,δ

gu,v
. (42)

Incorporating (42) in (40) yields

T̄ ⋆β (ζ
Tx, ζRx) ≥

∑

d∈ψ(N,K)

1

|ψ(N,K)|

×

( K∑

v=0

KT∑

u=1

K∑

j=1

∑

ǫ⊆[KT ]
|ǫ|=u

∑

δ⊆[K]
|δ|=v
δ 6∋j

a
(dj)
ǫ,δ

gu,v

)
(43)

≥
K∑

v=0

KT∑

u=1

K∑

j=1

∑

ǫ⊆[KT ]
|ǫ|=u

∑

δ⊆[K]
|δ|=v
δ 6∋j

1

N

N∑

n=1

a
(n)
ǫ,δ

gu,v
(44)

=
1

N

K∑

v=0

KT∑

u=1

1

gu,v

K∑

j=1

∑

ǫ⊆[KT ]
|ǫ|=u

∑

δ⊆[K]
|δ|=v
δ 6∋j

N∑

n=1

a
(n)
ǫ,δ , (45)

where (44) follows since, over the set of demand-vector

permutations ψ(N,K), every file W (n) is requested by every

user j the same number of times. The last equality is obtained

from a simple re-ordering of terms.

D. Tightening the lower-bound

The lower-bound in (45) is obtained by combining the

approach in [34] with the novel outcome of Lemma 1 that

accounts for the limited feedback constraint. Henceforth, we

deviate from the approach in [34] so as to tighten the lower-

bound. Let us consider the total number aǫ,δ of packets stored

exclusively at the transmitters in ǫ ⊆ [KT ] and the receivers

in set δ ⊆ [K]. This number satisfies

aǫ,δ ,

N∑

n=1

a
(n)
ǫ,δ . (46)

Similarly, let bǫ,v denote the size of the set of packets stored

exclusively by all transmitters in ǫ and at a total of v receivers.

Then,

bǫ,v ,
∑

δ⊆[K]
|δ|=v

aǫ,δ. (47)

For a given set of transmitters ǫ and a given user-set size

|δ| = v, it follows that

K∑

j=1

∑

δ⊆[K]
|δ|=v
δ 6∋j

aǫ,δ = (K − v)bǫ,v. (48)

In order to prove (48), let us consider a specific subset

δ′ ⊆ [K], |δ′| = v. The number of packets cached at the

transmitters of set ǫ and the users of set δ′ is given by aǫ,δ′ . For

a given j ∈ [K], the term aǫ,δ′ is included in the summation∑
δ⊆[K], |δ|=v, δ 6∋j aǫ,δ if and only if j /∈ δ′. Since (48) sums

over all j ∈ [K] and |δ′| = v, the term aǫ,δ′ appears K − v
times in (48), one for each j satisfying that j /∈ δ′. From the

fact that this holds for any δ′ ⊆ [K] with |δ′| = v, and from

the definition of bǫ,v in (47), we obtain (48). Applying (48)

into (45) yields

T̄ ⋆β (ζ
Tx, ζRx) ≥

1

N

K∑

v=0

KT∑

u=1

K − v

gu,v

∑

ǫ⊆[KT ]
|ǫ|=u

bǫ,v (49)

=
1

N

K∑

v=0

KT∑

u=1

K − v

min(C,LTu) + v
bu,v, (50)

where in (50) we have applied (41) and defined bu,v to be the

number of packets cached at u transmitters and v receivers. It

is direct that

bu,v ,
∑

ǫ⊆[KT ]
|ǫ|=u

bǫ,v. (51)

Note that T̄ ⋆β (ζ
Tx, ζRx) represents the necessary number of

communication blocks to complete the transmission. From the

definition of delivery time in (32), it follows that

T (ζTx, ζRx) =
1

F
T̄ ⋆β (ζ

Tx, ζRx), (52)

where (52) simply translates the unit of measure to consider

normalization by the file size instead of the packet size.

From (50) and (52) we have that

T (ζTx, ζRx) ≥
1

FN

K∑

v=0

KT∑

u=1

K − v

min(C,LTu) + v
bu,v. (53)

Consequently, we have obtained a lower bound that depends

only on the portion of the library that is cached at a specific

number of transmitters and of receivers, irrespectively of who

has stored which packet.

For some function c(·, ·), we denote the lower convex

envelope of the points

{
(
t1, t2, c(t1, t2)

)
|t1, t2 ∈ {0, 1, . . . , K}},



by conv(c(t1, t2)). Let us introduce the notation c(u, v) ,
K−v

min(C,LTu)+v
. Since c(u, v) is a decreasing sequence in v

and non-increasing in u, conv(c(u, v)) is a non-increasing and

convex function [5]. Furthermore, we define the number of

packets cached at u transmitters (resp. v receivers) as btu (resp.

brv), i.e.,

btu ,

K∑

v=0

bu,v, (54)

brv ,

KT∑

u=1

bu,v. (55)

Therefore, the cache-size constraints of the considered setting

can be written as

KT∑

u=1

K∑

v=0

bu,v =

KT∑

u=1

btu =

K∑

v=0

brv = NF, (56)

K∑

v=0

vbrv ≤ FKγN, (57)

KT∑

u=1

ubtu ≤ FKTγTN. (58)

The constraint in (56) ensures that every packet of the library

is cached at some node (transmitter or receiver) in the network,

while (57) corresponds to the cache size constraint at the

users, and (58) corresponds to the cache size constraint at

the transmitters. From the above, (53) can be lower-bounded

as

T (ζTx, ζRx) ≥
1

FN

K∑

v=0

KT∑

u=1

K − v

min(C,LTu) + v
bu,v (59)

≥ conv
(
c(KTγT , t)

)
(60)

= conv

(
K(1− γ)

t+min(C,KTγTLT )

)
, (61)

where (60) comes from exploiting the convexity of the prob-

lem and from applying Jensen’s Inequality. The detailed proof

of how to reach (60) from (59) is relegated to Appendix II-B.

Since T ⋆
L (t, C) , infζTx,ζRx T (ζTx, ζRx), the converse proof of

Theorem 2 is concluded.

VII. CONCLUSION

We have characterized the optimal one-shot linear DoF of

the multi-antenna cache-aided broadcast channel and its multi-

transmitter equivalent, under limited feedback resources and

uncoded placement, and we have provided a novel multi-

antenna coded caching algorithm which we proved to be

optimal. Our converse applies to a variety of other works,

allowing the identification of their exact DoF performance.

Our results showed that achieving the maximum DoF per-

formance may only require feedback from a limited number

of users equal to the number of antennas. This further allows

non-scaling feedback costs with respect to the number of users,

as compared to previously known methods.

Various benefits of reducing feedback

This feedback reduction has multiple beneficial effects.

Firstly, reducing the feedback requirements will allow for

an increase of the effective DoF, simply because a bigger

fraction of the coherence period is dedicated to communicating

data rather than to feedback training. Secondly, the proposed

algorithm allows for the increase of the overall number of

users without a subsequent increase in feedback costs.

At the end of the day, our result makes a strong argument

that caching can substantially ameliorate the well known

feedback bottleneck of multi-antenna high-rate environments.

APPENDIX I

PROOF OF LEMMA 1

We split the proof in two disjoint cases. We begin with

the assumption that each transmitter has access to CSIT from

every user scheduled to be served in the considered communi-

cation block10. We will then, immediately after, introduce the

CSIT constraint that says that the transmitter can only receive

feedback from some C users.

Let us consider a single communication block. Without

loss of generality, we assume that the Kb served users are

the first Kb users, from 1 to Kb, and that the packets to be

transmitted are {W (n),1}Kb

n=1. Under the one-shot and linear

precoding assumptions, it follows that each transmitter sends

a linear combination of the scheduled packets. In particular,

the transmitted signal from a given transmitter j only carries

information of the packets that it has cached, i.e., it only

includes the users i ∈ [Kb] for which j ∈ ǫi. We define the

global beam-forming vector applied to the packet intended for

user i as pi ∈ C
LT |ǫi|×1, since only |ǫi| transmitters have

cached W (i),1.

A. Transmission of packets with CSIT from all scheduled users

We proceed in a similar way to [34, Lemma 3] by converting

the MISO BC setting into a new MISO interference channel

with Kb virtual transmitters, {T̂Xi}
Kb

i=1. T̂Xi has LT |ǫi|
antennas and aims to transmit W (i),1 to user i ∈ [Kb]. Note

that the channel of different virtual transmitters is correlated

because in the real physical channel the same antenna of a

certain transmitter belongs to several virtual transmitters [34].

Let us denote the channel coefficients from virtual transmitter

T̂Xi to user k by gk,i ∈ C
LT |ǫi|×1. Then, in an analogous way

to the approach in [34], [62], it follows that the decodability

conditions that must be satisfied11 are

g
†
k,ipi = 0 ∀i, k ∈ [Kb] : k /∈ δi (62)

g
†
k,kpk 6= 0 ∀k ∈ [Kb], (63)

where we recall that δi is the subset of users that have cached

the packet intended to user i.

10While this setting is already studied in [34], we will recall it here since
it is a preliminary step towards the general feedback-constrained bound that
we present.

11Since we are restricted to linear transmission schemes, the transmission
block is not successful if these conditions are not satisfied, simply because
the signal-to-interference ratio would not be enough to decode the intended
message (cf. [34], [59]).



Under the assumption that the transmitters have access to the

CSI of all the Kb served users, we can rewrite the conditions

in (62) as follows: First, we know from (63) that vectors pi
must have at least a non-zero coefficient, denoted by qi. We

can rotate the vector such that pi = qiPi
[

1
v̂i

]
, where P is

a permutation matrix and v̂i has size (L|ǫi| − 1 × 1). Upon

defining similarly ĝk,i , P−1
i gk,i =

[
ĝ
(1)
k,i

ĝ
(2:)
k,i

]
, it follows that

g
†
k,ipi = (Piĝk,i)

†qiPi

[
1
v̂i

]
(64)

= qi

(
ĝ
(1)†
k,i + ĝ

(2:)†
k,i v̂i

)
= 0, (65)

where the last equality follows from (62).

Consider now the set δci , [Kb] \
(
δi ∪{i}

)
of served users

that neither cache nor desire W (i),1. Let mi , |δci | and let

δci (n) denote the n-th user of δci . Since (65) has to hold for

any k ∈ δci , we obtain the following linear system:



ĝ
(2:)†
δci(1),i

ĝ
(2:)†
δci(2),i

...

ĝ
(2:)†
δci(mi),i




︸ ︷︷ ︸
Aδc

i

v̂i =




ĝ
(1)†
δci(1),i

ĝ
(1)†
δci(2),i

...

ĝ
(1)†
δci(mi),i




︸ ︷︷ ︸
bδc

i

(66)

where Aδci
∈ Cmi×(LT |ǫi|−1) and bδci

∈ Cmi×1. Because (62)

needs to be satisfied, the linear system in (66) must be solvable

almost surely in order to guarantee the successful reception of

all the messages. Since rank(Aδci
) = min(mi, LT |ǫi| − 1), it

follows that mi ≤ LT |ǫi| − 1, implying that

Kb − |δi| − 1 ≤ LT |ǫi| − 1 ⇒ Kb ≤ LT |ǫi|+ |δi|. (67)

Let us consider now an arbitrary communication block b
during which a set of users κb, |κb| = Kb, is served. Given

that (67) must hold for any i ∈ κb, we obtain that

Kb ≤ min
i∈κb

LT |ǫi|+ |δi|, (68)

from which we obtain Lemma 1 for the case without feedback

constraints.

B. Transmission of packets with CSIT from only C users

Let us now consider the case in which the transmitters have

CSIT only from a subset η of |η| = C users, and recall that

ηc = κb\η.

Since the transmitters do not know the channel towards

the users belonging to the set ηc, the condition in (62) can

not be satisfied with a high probability. In consequence, the

transmitters can only use the CSIT from the users belonging

to η, such that the solvable linear system becomes

Aδci∩η
v̂i = bδci∩η

, (69)

where Aδci∩η
and bδci∩η

are defined just like Aδci
and bδci

in (66) except that now we only consider the users in {δci ∩η}
rather than in δci . Note that the set δci ∩ η is comprised of

the users that have not cached the message for user i and for

whom the transmitter has acquired CSIT.

We focus now on the required conditions that allow the

successful reception of packets by each user in κb. From (69),

it follows that the set δci must be a subset of the users for which

there is CSIT available (δci ⊆ η) for any user i ∈ κb. This is

due to the fact that, for any user i such that i /∈ η, the lack of

CSIT implies the impossibility of satisfying (62) and thus the

impossibility of correctly decoding at user i [59]. Following

the same reasoning as in (67), having δci ⊆ η implies that

mi ≤ C. However, note that it holds that i /∈ δci for any

user i. Thus, |δci ∩ η| ≤ C − 1 ∀i ∈ η. Let mη
i , |δci ∩ η|

be the size of the intersection between the set of users not

caching the packet intended for user i and the set of users for

whom there is CSIT available. We then have

mη
i ≤ C − 1 ⇒ Kb ≤ C + |δi| if i ∈ η, (70)

mη
i ≤ C ⇒ Kb ≤ C + |δi|+ 1 if i /∈ η. (71)

We recall the notation introduced in (35), where for any i ∈ κb
we define C′

i , C + 1ηc(i). Furthermore, the bound in (67)

also holds, as it suffices to consider a genie that provides the

CSIT of every user to the transmitters. Since (67) must hold

for any i ∈ κb, we obtain that

Kb ≤ min
i∈κb

(
min(C′

i, LT |ǫi|) + |δi|
)
, (72)

which concludes the proof of Lemma 1.

APPENDIX II

ADDITIONAL PROOFS AND MATERIAL

A. Integer Program Formulation

Let us consider a given demand vector d and cache-

placement strategies ζTx, ζRx at the transmitters and the re-

ceivers, respectively. Equipped with the definition of a feasible

set of packets (cf. Definition 6), we write an integer program

that seeks to minimize the number of required communication

blocks for a specific ζTx, ζRx, d, as follows.

min
ρb
b∈β

|β| (P1-a)

s.t.
⋃

b∈β

ρb =
⋃

k∈[K]

(
W (dk)\Zk

)
(P1-b)

ρb is feasible ∀b ∈ β, (P1-c)

where (P1-b) imposes the necessary condition that all the

demanded packets that are not in the cache of the intended

user must be transmitted. The solution to (P1) is denoted

by T ⋆β (ζ
Tx, ζRx,d).

B. Transition from (59) to (60)

We have that

1

FN

K∑

v=0

KT∑

u=1

bu,vconv

(
K − v

min(C,LTu) + v

)

=
1

NF

K∑

v=0

KT∑

u=1

bu,vconv (c(u, v)) (73)

(a)
=

∑K
v=0

∑KT

u=1 bu,vconv (c(u, v))
∑K

v=0

∑KT

u=1 bu,v
(74)



(b)

≥ conv

(
c

(∑KT

u=1 ub
t
u∑KT

u=1 b
t
u

,

∑K
v=0 vb

r
v∑K

v=0 b
r
v

))
(75)

(c)
= conv

(
c

(∑KT

u=1 ub
t
u

NF
,

∑K
v=0 vb

r
v

NF

))
, (76)

where (a) comes from (56), (b) from Jensen’s Inequality, and

(c) from (56) again. The monotonically decreasing nature of

c(u, v), combined with (57)-(58), yield

conv

(
c

(∑KT

u=1 ub
t
u

NF
,

∑K
v=0 vb

r
v

NF

))

≥ conv

(
c

(
FKTγTN

NF
,
FKγN

NF

))
(77)

= conv
(
c(tT , t)

)
. (78)

By recovering (59), we can write that

T (ζTx, ζRx) ≥
1

FN

K∑

v=0

KT∑

u=1

bu,vconv

(
K − v

min(C,LTu) + v

)

≥ conv

(
K(1− γ)

min(C,LT tT ) + t

)
, (79)

which concludes the proof.

C. Discussion on the CSI acquisition

The CSIT acquisition phase can be done in a standard way

such that the L users (set λ) communicate pilots, which will

allow the transmitter to estimate the channels of these users.

As such, here we focus on the process of CSIR acquisition

where the goal is to communicate at each user of set π ∪ λ
the channel-precoder products. The process requires 1 training

slot for each precoder, which amounts to L training slots per

transmission.

Communication of precoder h⊥
µ , µ ⊂ [L], |µ| = L−1, takes

the form

xµ =



h⊥
µ (1)s(1)

...

h⊥
µ (L)s(L)


 (80)

where s denotes a single training vector.

The received message, ignoring the noise for simplicity, at

some user k ∈ [K], takes the form

yk = h
†
kxµ =

L∑

ℓ=1

h
†
k(ℓ)h

⊥
µ (ℓ)s(ℓ) (81)

from which the composite channel-precoder product h
†
kh

⊥
µ can

be calculated.

To summarize, CSIT requires L slots because only the L
users need to transmit their channel state, and global CSIR

requires L slots because, for each fixed precoder, one train-

ing symbol suffices to communicate the composite channel-

precoder product to any number of users.

D. Extensive example for the scheme

We conclude with a more involved example that aims to

help the reader gain a deeper understanding of the mechanics

of our algorithm.

Example 5. Let us consider the L = 2 MISO BC with K = 6
users and cumulative cache size t = 4. Then, the required 30
transmissions to satisfy all users’ demands are

x1
12,3456 = H−1

12

[
A

(1)
2,3456 ⊕ C

(1)
2,1456 ⊕D

(1)
2,1356

B
(1)
1,3456 ⊕ E

(1)
1,2346 ⊕ F

(1)
1,2345

]
,

x2
12,3456 = H−1

12

[
A

(2)
2,3456 ⊕ E

(1)
2,1346 ⊕ F

(1)
2,1345

B
(2)
1,3456 ⊕ C

(1)
1,2456 ⊕D

(1)
1,2356

]
,

x1
13,2456 = H−1

13

[
A

(1)
3,2456 ⊕B

(1)
3,1456 ⊕D

(1)
3,1256

C
(2)
1,2456 ⊕ E

(2)
1,2346 ⊕ F

(2)
1,2345

]
,

x2
13,2456 = H−1

13

[
A

(2)
3,2456 ⊕ E

(1)
3,1246 ⊕ F

(1)
3,1245

C
(3)
1,2456 ⊕B

(3)
1,3456 ⊕D

(2)
1,2356

]
,

x1
14,2356 = H−1

14

[
A

(1)
4,2356 ⊕B

(1)
4,1356 ⊕ C

(1)
4,1256

D
(3)
1,2356 ⊕ E

(3)
1,2346 ⊕ F

(3)
1,2345

]
,

x2
14,2356 = H−1

14

[
A

(2)
4,2356 ⊕ E

(1)
4,1236 ⊕ F

(1)
4,1235

D
(4)
1,2356 ⊕B

(4)
1,3456 ⊕ C

(4)
1,2456

]
,

x1
15,2346 = H−1

15

[
A

(1)
5,2346 ⊕B

(1)
5,1346 ⊕ C

(1)
5,1246

E
(4)
1,2346 ⊕D

(5)
1,2356 ⊕ F

(4)
1,2345

]
,

x2
15,2346 = H−1

15

[
A

(2)
5,2346 ⊕D

(1)
5,1236 ⊕ F

(1)
5,1234

E
(5)
1,2346 ⊕B

(5)
1,3456 ⊕ C

(5)
1,2456

]
,

x1
16,2345 = H−1

16

[
A

(1)
6,2345 ⊕B

(1)
6,1345 ⊕ C

(1)
6,1245

F
(5)
1,2345 ⊕D

(6)
1,2356 ⊕ E

(6)
1,2346

]
,

x2
16,2345 = H−1

16

[
A

(2)
6,2345 ⊕D

(1)
6,1235 ⊕ E

(1)
6,1234

F
(6)
1,2345 ⊕B

(6)
1,3456 ⊕ C

(6)
1,2456

]
,

x1
23,1456 = H−1

23

[
B

(2)
3,1456 ⊕A

(3)
3,2456 ⊕D

(2)
3,1256

C
(2)
2,1456 ⊕ E

(2)
2,1346 ⊕ F

(2)
2,1345

]
,

x2
23,1456 = H−1

23

[
B

(3)
3,1456 ⊕ E

(2)
3,1246 ⊕ F

(2)
3,1245

C
(3)
2,1456 ⊕A

(3)
2,3456 ⊕D

(2)
2,1356

]
,

x1
24,1356 = H−1

24

[
B

(2)
4,1356 ⊕A

(3)
4,2356 ⊕ C

(2)
4,1256

D
(3)
2,1356 ⊕ E

(3)
2,1346 ⊕ F

(3)
2,1345

]
,

x2
24,1356 = H−1

24

[
B

(3)
4,1356 ⊕ E

(2)
4,1236 ⊕ F

(2)
4,1235

D
(4)
2,1356 ⊕A

(4)
2,3456 ⊕ C

(4)
2,1456

]
,

x1
25,1346 = H−1

25

[
B

(2)
5,1346 ⊕A

(3)
5,2346 ⊕ C

(2)
5,1246

E
(4)
2,1346 ⊕D

(5)
2,1356 ⊕ F

(4)
2,1345

]
,

x2
25,1346 = H−1

25

[
B

(3)
5,1346 ⊕D

(2)
5,1236 ⊕ F

(2)
5,1234

E
(5)
2,1346 ⊕A

(5)
2,3456 ⊕ C

(5)
2,1456

]
,

x1
26,1345 = H−1

26

[
B

(2)
6,1345 ⊕A

(3)
6,2345 ⊕ C

(2)
6,1245

F
(5)
2,1345 ⊕D

(6)
2,1356 ⊕ E

(6)
2,1346

]
,

x2
26,1345 = H−1

26

[
B

(3)
6,1345 ⊕D

(2)
6,1235 ⊕ E

(2)
6,1234

F
(6)
2,1345 ⊕A

(6)
2,3456 ⊕ C

(6)
2,1456

]
,



x1
34,1256 = H−1

34

[
C

(3)
4,1256 ⊕A

(4)
4,2356 ⊕B

(4)
4,1356

D
(3)
3,1256 ⊕ E

(3)
3,1246 ⊕ F

(3)
3,1245

]
,

x2
34,1256 = H−1

34

[
C

(4)
4,1256 ⊕ E

(3)
4,1236 ⊕ F

(3)
4,1235

D
(4)
3,1256 ⊕A

(4)
3,2456 ⊕B

(4)
3,1456

]
,

x1
35,1246 = H−1

35

[
C

(3)
5,1246 ⊕A

(4)
5,2346 ⊕B

(4)
5,1346

E
(4)
3,1246 ⊕D

(5)
3,1256 ⊕ F

(4)
3,1245

]
,

x2
35,1246 = H−1

35

[
C

(4)
5,1246 ⊕D

(3)
5,1236 ⊕ F

(3)
5,1234

E
(5)
3,1246 ⊕A

(5)
3,2456 ⊕B

(5)
3,1456

]
,

x1
36,1245 = H−1

36

[
C

(3)
6,1245 ⊕A

(4)
6,2345 ⊕B

(4)
6,1345

F
(5)
3,1245 ⊕D

(6)
3,1256 ⊕ E

(6)
3,1246

]
,

x2
36,1245 = H−1

36

[
C

(4)
6,1245 ⊕D

(3)
6,1235 ⊕ E

(3)
6,1234

F
(6)
3,1245 ⊕A

(6)
3,2456 ⊕B

(6)
3,1456

]
,

x1
45,1236 = H−1

45

[
D

(4)
5,1236 ⊕A

(5)
5,2346 ⊕B

(5)
5,1346

E
(4)
4,1236 ⊕ C

(5)
4,1256 ⊕ F

(4)
4,1235

]
,

x2
45,1236 = H−1

45

[
D

(5)
5,1236 ⊕ C

(5)
5,1246 ⊕ F

(4)
5,1234

E
(5)
4,1236 ⊕A

(5)
4,2356 ⊕B

(5)
4,1356

]
,

x1
46,1235 = H−1

46

[
D

(4)
6,1235 ⊕A

(5)
6,2345 ⊕B

(5)
6,1345

F
(5)
4,1235 ⊕ C

(6)
4,1256 ⊕ E

(6)
4,1236

]
,

x2
46,1235 = H−1

46

[
D

(5)
6,1235 ⊕ C

(5)
6,1245 ⊕ E

(4)
6,1234

F
(6)
4,1235 ⊕A

(6)
4,2356 ⊕B

(6)
4,1356

]
,

x1
56,1234 = H−1

56

[
E

(5)
6,1234 ⊕A

(6)
6,2345 ⊕B

(6)
6,1345

F
(5)
5,1234 ⊕ C

(6)
5,1246 ⊕D

(6)
5,1236

]
,

x2
56,1234 = H−1

56

[
E

(6)
6,1234 ⊕ C

(6)
6,1245 ⊕D

(6)
6,1235

F
(6)
5,1234 ⊕A

(6)
5,2346 ⊕B

(6)
5,1346

]
.

By examining any of the above transmitted vectors, we can

deduce that each transmission serves a total of 6 users, with

a feedback cost of C = 2.
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