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Abstract

Currently there are no effective antifibrotic therapies for liver cirrhosis, a major killer worldwide. 

To obtain a cellular resolution of directly-relevant pathogenesis and to inform therapeutic design, 

we profile the transcriptomes of over 100,000 human single cells, yielding molecular definitions 

for non-parenchymal cell types present in healthy and cirrhotic human liver. We uncover a novel 

scar-associated TREM2+CD9+ macrophage subpopulation, which expands in liver fibrosis, 

differentiates from circulating monocytes and is pro-fibrogenic. We also define novel ACKR1+ 

and PLVAP+ endothelial cells which expand in cirrhosis, are topographically scar-restricted and 

enhance leucocyte transmigration. Multi-lineage ligand-receptor modelling of interactions 

between the novel scar-associated macrophages, endothelial cells and PDGFRα+ collagen-

producing mesenchymal cells reveals intra-scar activity of several pro-fibrogenic pathways 

including TNFRSF12A, PDGFR and NOTCH signalling. Our work dissects unanticipated aspects 

of the cellular and molecular basis of human organ fibrosis at a single-cell level, and provides the 

conceptual framework required to discover rational therapeutic targets in liver cirrhosis.

Recent estimates suggest that 844 million people worldwide have chronic liver disease, with 

two million deaths per year and a rising incidence1. Iterative liver injury secondary to any 

cause leads to progressive fibrosis ultimately resulting in liver cirrhosis. Importantly, the 

degree of liver fibrosis predicts adverse patient outcomes2. Hence, effective antifibrotic 

therapies for patients with chronic liver disease are urgently required3,4.

Liver fibrosis involves a complex interplay between multiple non-parenchymal cell (NPC) 

lineages including immune, endothelial and mesenchymal cells spatially located within areas 

of scarring, termed the fibrotic niche. Despite progress in our understanding of liver 

fibrogenesis accrued using rodent models, there remains a significant 'translational gap' 
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between putative targets and effective patient therapies3,4. This is in part due to limited 

definition of the functional heterogeneity and interactome of cell lineages that contribute to 

the fibrotic niche of human liver cirrhosis, which is imperfectly recapitulated by rodent 

models3.

Single-cell RNA sequencing (scRNA-seq) is delivering a step change in our understanding 

of disease pathogenesis, allowing the interrogation of individual cell populations at 

unprecedented resolution5. Here, we studied the mechanisms regulating human liver fibrosis 

using scRNA-seq.

Results

Single-cell atlas of human liver NPC

Hepatic NPC were isolated from healthy and cirrhotic human livers spanning a range of 

aetiologies of cirrhosis (Fig. 1a, Extended Data Fig. 1a). Leucocytes (CD45+) or other NPC 

(CD45-) fractions (Extended Data Fig. 1b) were FACS-sorted prior to scRNA-seq. To 

discriminate between liver-resident and circulating leucocytes, we also performed scRNA-

seq on CD45+CD66b- peripheral blood mononuclear cells (PBMC) (Extended Data Fig. 1c, 

g-i). The combined tissue and PBMC dataset was partitioned into clusters (Extended Data 

Fig. 1d) and annotated using signatures of known lineage markers (Extended Data Fig. 1d-e; 

Supplementary Table 2). To generate an atlas of liver-resident cells, contaminating 

circulating cells were removed from the liver tissue datasets, by excluding cells from the 

tissue samples which mapped transcriptionally to blood-derived clusters 1 and 13 (Extended 

Data Fig. 1d). Liver-resident cells expressed higher levels of tissue-residency markers such 

as CXCR4 compared to PBMC (Extended Data Fig. 1f).

Re-clustering the 66,135 liver-resident cells from 10 livers (n=5 healthy and n=5 cirrhotic) 

revealed 21 populations (Fig. 1b), each containing cells from both healthy and cirrhotic 

livers (Fig. 1c; Extended Data Fig. 2), across 10 cell lineages (Fig. 1d, Extended Data Fig. 

2a, b). Subpopulation markers were identified across all clusters and lineages (Fig. 1e; 

Supplementary Tables 3, 4). QC metrics were highly reproducible between individual 

samples and condition (Extended Data Fig. 2c-f, Supplementary Table 1). Expression of 

collagens type I and III, the main fibrillar collagens within the fibrotic niche, was restricted 

to cells of the mesenchymal lineage (Fig. 1e).

We proceeded to annotate all human liver NPC lineages (below, Supplementary Notes 1-3, 

Extended Data Fig. 3), and provide an open-access gene browser (http://

www.livercellatlas.mvm.ed.ac.uk) allowing assessment of NPC gene expression between 

healthy and cirrhotic livers.

Distinct macrophage subpopulations inhabit the fibrotic niche

Previous studies in rodents have highlighted macrophage subpopulations orchestrating both 

liver fibrosis progression and regression6–8. Clustering of mononuclear phagocytes (MP) 

identified ten clusters; annotated as scar-associated macrophages (SAMΦ), Kupffer cells 

(KC), tissue monocytes (TMo), conventional dendritic cells (cDC) and cycling 

(proliferating) cells (Fig. 2a, Extended Data Fig. 4a, Supplementary Note 2). Clusters MP(4) 
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and MP(5), named SAMΦ(1) and SAMΦ(2) respectively, were expanded in cirrhotic livers 

(Fig. 2b), as confirmed by quantification of the MP cell composition of each liver 

individually (Fig. 2c).

Clusters MP(6) and MP(7) were enriched in CD163, MARCO and TIMD4 (Extended Data 

Fig. 4b); tissue staining confirmed these as Kupffer cells (KC; resident liver macrophages), 

facilitating annotation of these clusters as KC(1) and KC(2) respectively (Extended Data 

Fig. 4c). A lack of TIMD4 expression distinguished KC(2) from KC(1) (Extended Data Fig. 

4b); cell counting demonstrated TIMD4+ cell numbers to be equivalent between healthy and 

cirrhotic livers, but showed a loss of MARCO+ cells, consistent with selective reduction in 

MARCO+TIMD4- KC(2) in liver fibrosis (Fig. 2c, Extended Data Fig. 4d, e).

Scar-associated clusters SAMΦ(1) and SAMΦ(2) expressed the unique markers TREM2 and 

CD9 (Fig. 2d, e). These macrophages displayed a hybrid phenotype, with features of both 

tissue monocytes and KC (Fig. 2d, e), analogous to monocyte-derived macrophages in 

murine liver injury models7. Flow cytometry confirmed expansion of TREM2+CD9+ 

macrophages in human fibrotic livers (Fig. 2f, Extended Data Fig. 4f). Conditioned media 

from FACS-sorted SAMΦ promoted fibrillar collagen expression by primary human hepatic 

stellate cells (HSC) (Fig. 2g), indicating that SAMΦ have a pro-fibrogenic phenotype. 

Tissue staining demonstrated the presence of TREM2+CD9+MNDA+ SAMΦ 
topographically localised in collagen-positive scar regions (Fig. 2h, Extended Data Fig. 4g-

i), and significantly expanded in cirrhotic livers (Extended Data Fig. 4j, k). Cell counting of 

stained cirrhotic livers morphologically segmented into regions of fibrotic septae and 

parenchymal nodules, confirmed SAMΦ accumulation within the fibrotic niche (Extended 

Data Fig. 4l).

Local proliferation plays a significant role in macrophage expansion at sites of fibrosis in 

rodent models7,9. Cycling MP cells (Fig. 2a) subclustered into cDC1, cDC2, KC and SAMΦ 
subpopulations (Extended Data Fig. 4m, Supplementary Table 8). Cycling SAMΦ expanded 

in cirrhosis (Extended Data Fig. 4m), highlighting the potential role of macrophage 

proliferation in promoting SAMΦ accumulation in the fibrotic niche.

Pro-fibrogenic phenotype of scar-associated macrophages

To delineate the functional profile of SAMΦ we visualised co-ordinately expressed gene 

groups across the MP subpopulations using self-organising maps (Extended Data Fig. 5a). 

We identified six optimally-differentiating metagene signatures, denoted as A-F (Extended 

Data Fig. 5a, Supplementary Table 9). Signatures A and B defined SAMΦ and were 

enriched for ontology terms relevant to tissue fibrosis (Extended Data Fig. 5b). These 

SAMΦ-defining signatures included genes such as TREM2, IL1B, SPP1, LGALS3, CCR2, 

and TNFSF12, some of which are known to regulate the function of scar-producing 

myofibroblasts in fibrotic liver diseases10–13. The remaining MP subpopulations were 

defined by signature C (KC), signatures D, E (TMo) and signature F (cDC1); ontology terms 

matched known functions for the associated cell type (Extended Data Fig. 5b, 

Supplementary Table 9).
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In mice, under homeostatic conditions, embryologically-derived self-renewing tissue-

resident KC predominate14–16. However, following injury, macrophages derived from 

circulating monocytes accumulate in the liver and regulate fibrosis7,8. The ontogeny of 

human hepatic macrophage subpopulations is unknown. TREM2+CD9+ SAMΦ 
demonstrated a monocyte-like morphology (Fig. 2h, Extended Data Fig. 4g-i) and a distinct 

topographical distribution from KC (Extended Data Fig. 4l). To assess SAMΦ origin, we 

performed in silico trajectory analysis on a combined dataset of peripheral blood monocytes 

and liver-resident MPs. We visualised the transcriptional profile of these cells (Fig. 3a, 

Extended Data Fig. 5c), mapped them along a pseudotemporal trajectory and interrogated 

their directionality via spliced and unspliced mRNA ratios (RNA velocity17). These analyses 

suggested a differentiation trajectory from peripheral blood monocytes into either SAMΦ or 

cDC, with no differentiation from KC to SAMΦ, and no progression from SAMΦ to KC 

(Fig. 3a; Extended Data Fig. 5c). Additional RNA velocity analyses17 showed 

downregulation (negative velocity) of the monocyte gene MNDA in SAMΦ, upregulation 

(positive velocity) of the SAMΦ marker gene CD9 in tissue monocytes, and a lack of KC 

gene TIMD4 velocity in SAMΦ (Extended Data Fig. 5d). Furthermore, assessment of the 

probabilities of cells in this dataset transitioning into SAMΦ, indicated a higher likelihood 

of tissue monocytes than KC differentiating into SAMΦ (Fig. 3b). Overall, these data 

suggest that SAMΦ are monocyte-derived, and represent a terminally-differentiated cell 

state within the fibrotic niche.

To further characterise SAMΦ phenotype, we identified differentially expressed genes along 

monocyte differentiation trajectories. We defined three gene co-expression modules, with 

module 1 representing upregulated genes during blood monocyte-to-SAMΦ differentiation 

(Fig. 3c). Module 1 contained multiple pro-fibrogenic genes including SPP1, LGALS3, 

CCL2, CXCL8, PDGFB and VEGFA10–13, and displayed ontology terms consistent with 

promoting tissue fibrosis and angiogenesis (Fig. 3c, d; Supplementary Table 10). Module 2 

contained genes that were downregulated during monocyte-to-SAMΦ differentiation (Fig. 

3c; Extended Data Fig. 5e), whilst Module 3 encompassed a group of upregulated genes 

during monocyte-to-cDC differentiation (Fig. 3c; Extended Data Fig. 5f; Supplementary 

Table 10). SAMΦ isolated from cirrhotic human livers (Fig. 2f, Extended Data Fig. 4f) 

demonstrated enhanced protein secretion of several of the mediators identified by 

transcriptional analysis (Extended Data Fig. 5g) and promoted fibrillar collagen expression 

by primary human HSC (Fig. 2g), confirming that SAMΦ have a pro-fibrogenic phenotype.

To enable cross-species comparison, we performed scRNA-seq on liver MP cells isolated 

from control mice or mice treated with chronic carbon tetrachloride (CCl4), a mouse model 

of liver fibrosis7. MP cells from fibrotic livers were isolated 24 hours after the final CCl4 

injection, a time of active fibrogenesis7. Five MP cell clusters were defined (Extended Data 

Fig. 6a-d, Supplementary Table 11), and injury-specific cluster mMP(2) was differentiated 

by high expression of Cd9, Trem2, Spp1 and Lgals3 (Extended Data Fig. 6a-d). We 

confirmed expansion of this CD9+ SAMΦ (mSAMΦ) population in liver fibrosis (Extended 

Data Fig. 6e, f) and co-culture of mSAMΦ with quiescent primary murine HSC promoted 

fibrillar collagen expression in HSC (Extended Data Fig. 6g). Canonical correlation analysis 

between human and mouse MP datasets18 demonstrated that human SAMΦ (hSAMΦ) and 

mSAMΦ clustered together (h&mMP(2); Extended Data Fig. 6h, i) and that this cluster was 
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enriched for SAMΦ markers CD9, TREM2 and SPP1 (Extended Data Fig. 6j), confirming 

that mSAMΦ represent a corollary population to human SAMΦ (hSAMΦ).

To identify potential transcriptional regulators of human SAMΦ we defined sets of genes co-

expressed with known transcription factors (regulons) along the tissue monocyte-

macrophage pseudotemporal trajectory and in KC (Extended Data Fig. 5g, h, Supplementary 

Table 12). This identified regulons and corresponding transcription factors associated with 

distinct macrophage phenotypes, highlighting HES1 and EGR2 activity in SAMΦ.

To determine whether SAMΦ expand in earlier stage human liver disease, we analysed 

cohorts of patients with non-alcoholic fatty liver disease (NAFLD). Application of 

differential gene expression signatures of human SAMΦ, KC and TMo to a deconvolution 

algorithm19 enabled assessment of hepatic monocyte-macrophage composition in whole 

liver microarray data across the spectrum of early-stage NAFLD20 (Extended Data Fig. 7a). 

This demonstrated SAMΦ expansion in patients with non-alcoholic steatohepatitis (NASH) 

(Extended Data Fig. 7a, b), an increased frequency of SAMΦ with worsening histological 

NASH activity (NAS) and fibrosis scores (Extended Data Fig. 7c), but no association with 

other patient demographics (Extended Data Fig. 7d). In a separate NASH biopsy cohort, 

SAMΦ expansion increased with NASH activity (Extended Data Fig. 7e) and positively 

correlated with the degree of fibrosis across the full severity spectrum of NAFLD-induced 

liver fibrosis (Extended Data Fig. 7f).

In summary, these data demonstrate that TREM2+CD9+ SAMΦ derive from the recruitment 

and differentiation of circulating monocytes, are conserved across species, display a pro-

fibrogenic phenotype and expand early in the course of liver disease progression.

Distinct endothelial subpopulations inhabit the fibrotic niche

In rodent models, hepatic endothelial cells are known to regulate fibrogenesis. Clustering of 

human liver endothelial cells identified seven subpopulations (Fig. 4a). Classical endothelial 

cell markers did not discriminate between the seven clusters, although Endo(1) was distinct 

in lacking CD34 expression (Extended Data Fig. 8a). To fully annotate endothelial 

subpopulations (Supplementary Note 3, Extended Data Fig. 8k), we identified differentially 

expressed markers (Fig. 4c, Supplementary Table 13), determined functional expression 

profiles (Extended Data Fig. 8g, Supplementary Table 14), performed transcription factor 

regulon analysis (Extended Data Fig. 8h, Supplementary Table 15) and assessed spatial 

distribution via tissue staining (Fig. 4d, Extended Data Fig. 8j).

Disease-specific endothelial cells Endo(6) and Endo(7), CD34+PLVAP+VWA1+ and 

CD34+PLVAP+ACKR1+ respectively (Fig. 4a-c, Extended Data Fig. 8b), expanded in 

cirrhotic liver tissue (Fig. 4e) and were restricted to the fibrotic niche (Fig. 4d, e, Extended 

Data Fig. 8c), allowing annotation as scar-associated endothelia SAEndo(1) and SAEndo(2) 

respectively. In contrast, CD34-CLEC4M+ Endo(1) (annotated as liver sinusoidal endothelial 

cells), were reduced in fibrotic livers (Fig. 4b, e). Metagene signature analysis demonstrated 

that Endo(6) (SAEndo(1)) cells expressed pro-fibrogenic genes including PDGFD, PDGFB, 

LOX, LOXL2; associated ontology terms included extracellular matrix organization 

(signature A; Extended Data Fig. 8g). Endo(7) (SAEndo(2)) cells displayed an 
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immunomodulatory phenotype (signature B; Extended Data Fig. 8g). The most 

discriminatory marker for this cluster, ACKR1, has a role in regulating leucocyte 

recruitment21. We confirmed increased expression of PLVAP, CD34 and ACKR1 on 

endothelial cells isolated from cirrhotic livers (Extended Data Fig. 8d). Flow-based adhesion 

assays22 demonstrated that cirrhotic endothelial cells display enhanced leucocyte 

transmigration (Extended Data Fig. 8e), which was attenuated by ACKR1 knockdown 

(Extended Data Fig. 8f).

PDGFRA expression defines scar-associated mesenchymal cells

Clustering of human liver mesenchymal cells identified four populations (Fig. 5a, b, 

Extended Data Fig. 9a, Supplementary Table 16). Cluster Mes(1), distinguished by MYH11 

expression (Fig. 5b, Extended Data Fig. 9a), was identified as vascular smooth muscle cells 

(VSMC) (Fig. 5c). Mes(4) demonstrated expression of mesothelial markers (Fig. 5b, 

Extended Data Fig. 9a). Cluster Mes(2) expressed high levels of RGS5 (Fig. 5b, Extended 

Data Fig. 9a), and RGS5 staining identified this population as hepatic stellate cells (HSC) 

(Fig. 5c). RGS5+ cells were absent from the fibrotic niche (Fig. 5c). Cluster Mes(3) 

(distinguished by PDGFRA expression) expressed high levels of fibrillar collagens and pro-

fibrogenic genes (Fig. 5b, d, Extended Data Fig. 9a). PDGFRα+ cells expanded in cirrhotic 

livers (Fig. 5a, e, f) and were mapped to the fibrotic niche (Fig. 5f), enabling annotation as 

scar-associated mesenchymal cells (SAMes).

To study SAMes heterogeneity, further clustering (Extended Data Fig. 9b) identified two 

populations of SAMes (Extended Data Fig. 9c, d, Supplementary Table 17). OSR1 

expression distinguished cluster SAMesB (Extended Data Fig. 9c), and labelled a 

subpopulation of periportal cells in healthy liver and scar-associated cells in the fibrotic 

niche (Extended Data Fig. 9e, f). Cluster SAMesB also expressed other known portal 

fibroblast markers23 (Extended Data Fig. 9g).

In rodent liver fibrosis models, HSC differentiate into scar-producing myofibroblasts 24–26. 

Pseudotemporal ordering and RNA velocity analyses demonstrated a trajectory from human 

HSC to SAMes (Extended Data Fig. 9h). Assessment of gene co-expression modules along 

the HSC-to-SAMes differentiation continuum indicated upregulation of fibrogenic genes 

including COL1A1, COL1A2, COL3A1, TIMP1 and downregulation of genes including 

RGS5, IGFBP5, ADAMTS1 and GEM, which are known to be downregulated in murine 

HSC in response to liver injury25 (Extended Data Fig. 9i).

Resolving the multi-lineage interactome in the fibrotic niche

Having defined the scar-associated macrophage, endothelial and mesenchymal populations, 

we confirmed the close topographical association of these cells within the fibrotic niche 

(Extended Data Fig. 10a, b), and used CellPhoneDB27 to perform an unbiased ligand-

receptor interaction analysis between these populations.

Numerous statistically significant paracrine and autocrine interactions were detected 

between ligands and cognate receptors expressed by SAMΦ, SAEndo and SAMes 

(Supplementary Table 18, Extended Data Fig. 10f-m). To interrogate how scar-associated 

NPC regulate fibrosis and to identify tractable therapeutic targets, we focused functional 
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analyses on interactions with SAMes (Fig. 6a, e, Extended Data Fig. 10d). In keeping with 

our data demonstrating that SAMΦ promote fibrillar collagen expression in HSC (Fig. 2g), 

SAMΦ expressed epidermal growth factor receptor (EGFR) ligands which are known to 

regulate mesenchymal cell activation28 (Fig. 6a). Additionally, SAMΦ expressed 

mesenchymal cell mitogens TNFSF12 and PDGFB, signaling to cognate receptors 

TNFRSF12A and PDGFRA on SAMes (Fig. 6a). We confirmed localization of these ligand-

receptor pairs within the fibrotic niche (Fig. 6b). Both TNFSF12 and PDGF-BB induced 

primary human HSC proliferation, which was inhibited by blockade of TNFSF12A and 

PDGFRA respectively (Fig. 6c, d). Conditioned media from primary human SAMΦ 
promoted primary human HSC proliferation ex vivo (Extended Data Fig. 10c), 

demonstrating a functional role for SAMΦ in regulating SAMes expansion.

SAEndo expressed high levels of non-canonical Notch ligands JAG1, JAG2 and DLL4 

interacting with Notch receptor NOTCH3 on SAMes (Fig. 6e). NOTCH3 was identified on 

PDGFRα+ SAMes within the fibrotic niche (Fig. 6f), whilst primary endothelial cells from 

cirrhotic human liver demonstrated increased expression of JAG1 (Fig. 6g). Co-culture of 

primary human HSC and endothelial cells from cirrhotic livers promoted fibrillar collagen 

production by HSC, which was inhibited by addition of the Notch-signalling inhibitor 

Dibenzazepine (DBZ) (Fig. 6h). Furthermore, knockdown of NOTCH3 expression in 

primary human HSC resulted in reduced fibrillar collagen expression (Fig. 6i).

In summary, our unbiased dissection of the key ligand-receptor interactions between scar-

associated NPC highlights TNFRSF12A, PDGFRA and Notch signaling as important 

regulators of mesenchymal cell function within the human liver fibrotic niche.

Discussion

Here, using scRNA-seq and spatial mapping, we resolve the fibrotic niche of human liver 

cirrhosis, identifying pathogenic subpopulations of TREM2+CD9+ macrophages, ACKR1+ 

and PLVAP+ endothelial cells and PDGFRα+ collagen-producing myofibroblasts. We dissect 

a complex, pro-fibrotic interactome between multiple scar-associated cell lineages and 

identify highly relevant intra-scar pathways that are potentially druggable. In this era of 

precision medicine, this unbiased multi-lineage approach should inform the design of 

highly-targeted combination therapies which will very likely be necessary to achieve 

effective antifibrotic potency3,4.

Application of our novel scar-associated cell markers could also potentially inform 

molecular pathology-based patient stratification, which is fundamental to the prosecution of 

successful antifibrotic clinical trials. Our work illustrates the power of single-cell 

transcriptomics to decode the cellular and molecular basis of human organ fibrosis, 

providing a conceptual framework for the discovery of relevant therapeutic targets to treat 

patients with a broad range of fibrotic diseases.
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Methods

Study subjects

Local approval for procuring human liver tissue and blood samples for scRNA-seq, flow 

cytometry and histological analysis was obtained from the NRS BioResource and Tissue 

Governance Unit (Study Number SR574), following review at the East of Scotland Research 

Ethics Service (Reference 15/ES/0094). All subjects provided written informed consent. 

Healthy background non-lesional liver tissue was obtained intraoperatively from patients 

undergoing surgical liver resection for solitary colorectal metastasis at the Hepatobiliary and 

Pancreatic Unit, Department of Clinical Surgery, Royal Infirmary of Edinburgh. Patients 

with a known history of chronic liver disease, abnormal liver function tests or those who had 

received systemic chemotherapy within the last four months were excluded from this cohort. 

Cirrhotic liver tissue was obtained intraoperatively from patients undergoing orthotopic liver 

transplantation at the Scottish Liver Transplant Unit, Royal Infirmary of Edinburgh. Blood 

from patients with a confirmed diagnosis of liver cirrhosis were obtained from patients 

attending the Scottish Liver Transplant Unit, Royal Infirmary of Edinburgh. Patients with 

liver cirrhosis due to viral hepatitis were excluded from the study. Patient demographics are 

summarised in Extended Data Fig. 1a. Isolation of primary hepatic macrophage 

subpopulations and endothelial cells from healthy and cirrhotic livers for cell culture and 

analysis of secreted mediators was performed at the University of Birmingham, UK. Local 

ethical approval was obtained (Reference 06/Q2708/11, 06/Q2702/61) and all patients 

provided written, informed consent. Liver tissue was acquired from explanted diseased livers 

from patients undergoing orthotopic liver transplantation, resected liver specimens or donor 

livers rejected for transplant at the Queen Elizabeth Hospital, Birmingham. For histological 

assessment of NAFLD biopsies, anonymised unstained formalin-fixed paraffin-embedded 

liver biopsy sections encompassing the complete NAFLD spectrum were provided by the 

Lothian NRS Human Annotated Bioresource under authority from the East of Scotland 

Research Ethics Service REC 1, reference 15/ES/0094.

Human tissue processing

Importantly, to minimise artefacts29, we developed a rapid tissue processing pipeline, 

obtaining fresh non-ischaemic liver tissue taken by wedge biopsy prior to the interruption of 

the hepatic vascular inflow during liver surgery or transplantation, and immediately 

processing this for FACS. This enabled a workflow time of under three hours from patient to 

single-cell droplet encapsulation.

For human liver scRNA-seq and flow cytometry analysis, a wedge biopsy of non-ischaemic 

fresh liver tissue (2-3 grams) was obtained by the operating surgeon, prior to interruption of 

the hepatic vascular inflow. This was immediately placed in HBSS (Gibco) on ice. The 

tissue was then transported directly to the laboratory and dissociation routinely commenced 

within 20 minutes of the liver biopsy. To enable paired histological assessment, a segment of 

each liver specimen was also fixed in 4% neutral-buffered formalin for 24 hours followed by 

paraffin-embedding. Additional liver samples, obtained via the same method, were fixed in 

an identical manner and used for further histological analysis. For human macrophage cell 

sorting and endothelial cell isolation, liver tissue (40 grams) was used from cirrhotic patients 
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undergoing orthotopic liver transplantation or control samples from donor liver or liver 

resection specimens.

Animals

Adult male C57BL/6JCrl mice aged 8-10 weeks were purchased from Charles River. Mice 

were housed under specific pathogen-free conditions at the University of Edinburgh. All 

experimental protocols were approved by the University of Edinburgh Animal Welfare and 

Ethics Board in accordance with UK Home Office regulations. Liver fibrosis was induced 

with 4 weeks (9 injections) of twice-weekly intraperitoneal carbon tetrachloride (CCl4) at a 

dose of 0.4 µl/g body weight, diluted 1:3 in olive oil as previously described7. Mice were 

randomly assigned to receive CCl4 or to serve as healthy controls. No sample size 

calculation or blinding was performed. Liver tissue was harvested 24 hours following the 

final CCl4 injection, a time of active fibrogenesis7. Comparison was made to age-matched 

uninjured mice.

Preparation of single-cell suspensions

For human liver scRNA-seq, liver tissue was minced with scissors and digested in 5mg/ml 

pronase (Sigma-Aldrich, P5147-5G), 2.93mg/ml collagenase B (Roche, 11088815001) and 

1.9mg/ml DNase (Roche, 10104159001) at 37°C for 30 minutes with agitation (200–250 

r.p.m.), then strained through a 120µm nybolt mesh along with PEB buffer (PBS, 0.1% BSA, 

and 2mM EDTA) including DNase (0.02mg/ml). Thereafter all processing was done at 4°C. 

The cell suspension was centrifuged at 400g for 7 minutes, supernatant removed, cell pellet 

resuspended in PEB buffer and DNase added (0.02mg/ml), followed by additional 

centrifugation (400g, 7 minutes). Red blood cell lysis was performed (BioLegend, 420301), 

followed by centrifugation (400g, 7 minutes), resuspension in PEB buffer and straining 

through a 35µm filter. Following another centrifugation at 400g for 7 minutes, cells were 

blocked in 10% human serum (Sigma-Aldrich, H4522) for 10 minutes at 4°C prior to 

antibody staining.

For both human liver macrophage flow cytometry analysis and cell sorting and mouse liver 

macrophage flow cytometry, cell sorting and scRNA-seq, single-cell suspensions were 

prepared as previously described, with minor modifications30. In brief, liver tissue was 

minced and digested in an enzyme cocktail 0.625 mg/ml collagenase D (Roche, 

11088882001), 0.85 mg/ml collagenase V (Sigma-Aldrich, C9263-1G), 1 mg/ml dispase 

(Gibco, Invitrogen, 17105-041), and 30 U/ml DNase (Roche, 10104159001) in RPMI-1640 

at 37°C for 20 minutes (mouse) or 45 minutes (human) with agitation (200–250 r.p.m.), 

before being passed through a 100µm filter. Following red blood cell lysis (BioLegend, 

420301), cells were washed in PEB buffer and passed through a 35µm filter. Before the 

addition of antibodies, cells from human samples were blocked in 10% human serum 

(Sigma-Aldrich, H4522) and mouse samples were blocked in anti-mouse CD16/32 antibody 

(1:100; Biolegend, 101302) and 10% normal mouse serum (Sigma, M5905) for 10 minutes 

at 4 °C.

For human PBMC scRNA-seq, 4.9ml peripheral venous blood samples were collected in 

EDTA-coated tubes (Sarstedt, S-Monovette® 4.9ml K3E) and placed on ice. Blood samples 
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were transferred into a 50ml Falcon tube. Following red cell lysis (Biolegend, 420301), 

blood samples were then centrifuged at 500g for 5 minutes and supernatant was removed. 

Pelleted samples were then resuspended in staining buffer (PBS plus 2% BSA; Sigma-

Aldrich) and centrifugation was repeated. Samples were then blocked in 10% human serum 

(Sigma-Aldrich, H4522) in staining buffer on ice for 30 minutes. Cells were then 

resuspended in staining buffer and passed through a 35µm filter prior to antibody staining.

Flow cytometry and cell sorting

Incubation with primary antibodies was performed for 20 minutes at 4°C. All antibodies, 

conjugates, lot numbers and dilutions used in this study are presented in Supplementary 

Table 19. Following antibody staining, cells were washed with PEB buffer. For both human 

macrophage flow cytometry analysis and cell sorting, cells were then incubated with 

streptavidin-BV711 for 20 minutes at 4°C (Biolegend 405241; Dilution 1:200). For human 

and mouse cell sorting (FACS) and mouse flow cytometry analysis, cell viability staining 

(DAPI; 1:1000 dilution) was then performed, immediately prior to acquiring the samples.

Human cell sorting for scRNA-seq was performed on a BD Influx (Becton Dickinson, Basel, 

Switzerland). Viable single CD45+ (leucocytes) or CD45- (other non-parenchymal cells) 

cells were sorted from human liver tissue (Extended Data Fig. 1b) and viable CD45+ 

CD66b- (PBMC) cells were sorted from peripheral blood (Extended Data Fig. 1c) and 

processed for droplet-based scRNA-seq.

To generate conditioned media from cirrhotic liver macrophage subpopulations, cells were 

sorted on a BD FACSAria™ Fusion (Becton Dickinson, Basel, Switzerland). Sorted SAMΦ 
(viable CD45+Lin-HLA-DR+CD14+CD16+CD163-TREM2+CD9+), TMo (viable 

CD45+Lin- HLA-DR+CD14+CD16+CD163-TREM2-CD9-) and KC (viable CD45+Lin-

HLA-DR+CD14+CD16+CD163+CD9-) were plated in 12-well plates (Corning, 3513) in 

DMEM (Gibco, 41965039) containing 2% FBS (Gibco, 10500056) at 1x106 cells/ml for 24 

hours at 37°C 5%CO2. Control wells contained media alone. Conditioned media was 

collected, centrifuged at 400g for 10 minutes and supernatant stored at -80°C.

For human macrophage flow cytometry analysis, following surface antibody staining, cells 

were stained with Zombie NIR fixable viability dye (Biolegend, 423105) according to 

manufacturers’ instructions. Cells were washed in PEB then fixed in IC fixation buffer 

(Thermo-Fisher, 00-8222-49) for 20 minutes at 4°C. Fixed samples were stored in PEB at 

4°C until acquisition. Flow cytometry acquisition was performed on 6-laser Fortessa flow 

cytometer (Becton Dickinson, Basel, Switzerland). The gating strategy is shown (Extended 

Data Fig. 4f, Fig. 2f).

Mouse macrophage cell sorting for scRNA-seq and co-culture experiments was performed 

on a BD FACSAriaII (Becton Dickinson, Basel, Switzerland). For scRNA-seq, viable 

CD45+ Lin(CD3, NK1.1, Ly6G, CD19)- cells were sorted from healthy (n=3) and CCl4-

treated (n=3) mice and processed for droplet-based scRNA-seq. For transwell co-culture, 

viable CD45+ Lin- CD11b+ F4/80+ TIMD4- CD9+ (mSAMΦ) or CD9- (mTMo) cells were 

sorted from CCl4-treated mice (Extended Data Fig. 6e). Flow cytometry analysis on 

macrophages from healthy and CCl4-treated mice was also performed on a BD FACSAriaII 

Ramachandran et al. Page 11

Nature. Author manuscript; available in PMC 2020 April 09.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



(Becton Dickinson, Basel, Switzerland), using the same gating strategy (Extended Data Fig. 

6e). All flow cytometry data was analysed using Flowjo software (Treestar, Ashland, TN).

Luminex Assay

Detection of CCL2, Galectin-3, IL-1β, CXCL8 and Osteopontin (SPP1) and CD163 proteins 

in conditioned media from human liver macrophage subpopulations was performed using a 

custom human luminex assay (R&D systems), according to the manufacturers protocol. Data 

was acquired using a Bio-Plex® 200 (Bio-Rad, UK) and is presented a median fluorescence 

intensity (MFI) for each analyte.

Cell Culture

Human hepatic stellate cell activation—Primary human hepatic stellate cells (HSC) 

were purchased (ScienCell, 5300) and cultured in stellate cell medium (SteCM, ScienCell, 

5301) on Poly-L-Lysine (Sigma, P4832) coated T75 tissue culture flasks, according to the 

suppliers protocol. All experiments were performed using cells between passage 3 and 5. 

For assessment of fibrillar collagen gene expression, HSC were plated at 75,000 cells per 

well in 24 well-plates (Costar, 3524) in HSC media consisting of DMEM (Gibco, 

21969-035) supplemented with 20 µM HEPES (Sigma, H3375,), 2 mM L-Glutamine 

(Gibco, 25030-024), 1% Penicillin Streptomycin (Gibco, 15140-122, Gibco) and 2% Foetal 

Bovine Serum (FBS, Gibco, 10270). HSC were serum starved overnight (in HSC media 

without FBS), washed with PBS, then 250µl of conditioned media from primary human 

macrophage subpopulations added for 24 hours. HSC were harvested for RNA.

Human hepatic stellate cell proliferation—For proliferation assays, following serum 

starvation HSC were harvested using TrypLE Express (Gibco, Cat. no. 12604013), re-

suspended in HSC media at 2.5x104/ml with Incucyte NucLight Rapid Red (Essen 

Biosciences, 4717) at a dilution of 1 in 500 and seeded into 384-well plates (Greiner Bio-

One, 781090) at 25µl per well. HSC were then treated with control media or (i) PDGF-BB 

(10ng/ml; Peprotech, 100-14B) or TNFSF12 (100ng/ml; Peprotech, 310-06-5) with or 

without the PDGFRα inhibitor Crenolanib31 (1µM; Cayman chemicals, CAY1873), anti-

TNRSF12A (2µg/ml; Life Technologies, 16-9018-82, clone ITEM-4), mouse IgG2b kappa 

isotype control antibody (2µg/ml; Life Technologies, 16-4732-82, clone eBMG2b) or 

vehicle control as indicated or (ii) conditioned media from human hepatic macrophage 

subpopulations as indicated. The final volume was 50µl for all conditions. Cells were then 

incubated in an Incucyte ZOOM live cell analysis system (Essen Biosciences) humidified at 

37°C with 5% CO2 with imaging every 3 hours using the 10x optic for either 87 hours 

(recombinant cytokines/inhibitors) or 39 hours (macrophage conditioned media). Analysis 

was performed with the Incucyte proprietary analysis software (version 2018A) by using 

machine learning to distinguish the individual nuclei (stained red by the NucLight Rapid 

Red dye) and perform nuclear counts of the images at each 3 hour time point over the period 

of culture. Data are expressed as area under curve (AUC) for % change in nuclear number 

from baseline versus time (hours), calculated in GraphPad Prism (GraphPad Software, 

USA).
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Gene knockdown in human hepatic stellate cells—Knockdown of NOTCH3 in 

human HSC was performed using siRNA. HSC were plated at 75,000 cells per well in a 12 

well plate (Costar, 3513) followed by serum starvation overnight (in HSC medium without 

FBS). siRNA duplexes with Lipofectamine RNAiMAX Transfection Reagent 

(ThermoFisher, 13778075) were prepared in OptiMEM (ThermoFisher, 31985070) 

according to the manufacturer’s recommendations, and used at a concentration of 50nM. 

Cells were exposed to the duplex for 48 hours, in HSC media containing 2% FBS. Cells 

were harvested for RNA and RT-qPCR. Knockdown efficiency was assessed by NOTCH3 

RT-qPCR. The best siRNA for knockdown was determined empirically using the FlexiTube 

GeneSolution kit (Qiagen, GS4854). HSC treated with control siRNA (Qiagen, 1027280) 

and siRNA for NOTCH3 (Qiagen, Hs_NOTCH3_3, SI00009513; knockdown 83%) were 

then assessed for fibrillar collagen gene expression.

Mouse hepatic stellate cell activation—Primary murine HSC culture were isolated 

from healthy mice as described26. Briefly, after cannulation of the inferior vena cava, the 

portal vein was cut to allow retrograde step-wise perfusion with pronase (Sigma, P5147) and 

collagenase D (Roche, 11088882001) containing solutions, before ex vivo digestion in a 

solution containing pronase, collagenase D and Dnase1 (Roche, 10104159001). HSC were 

isolated from the digest solution by Histodenz (Sigma, D2158-100G) gradient 

centrifugation. HSC were plated at a density of 400,000 cells per well in a 24 well plate 

(Costar, 3524) in HSC media containing 10% FBS. Following overnight culture, cells were 

washed with PBS and cultured in HSC media containing 2% FBS. For macrophage co-

culture, transwell inserts (0.4µm polyester membrane; Costar, 3470) were then placed above 

adherent HSC. FACS-sorted CD9+ mSAMΦ or CD9- mTMo from CCl4-treated mice were 

resuspended in HSC media containing 2% FBS at 400,000 cells/ml and 200,000 cells added 

to the top of the transwell insert. Co-culture proceeded for 48 hours and HSC were harvested 

for RNA. Quiescent HSC (harvested at start of co-culture) were used as a control population.

Human liver endothelial cell isolation—Human liver endothelial cells (LEC) were 

isolated from cirrhotic explant livers and non-fibrotic control donor liver as previously 

described32. Endothelial cells were cultured on plasticware coated with rat-tail collagen 

(Sigma, C3867) in complete LEC medium consisting of endothelial basal media 

(ThermoFisher, 11111044) containing 10% heat inactivated human serum (tcsBiosciences, 

CS100-500), 100U penicillin, 100 µg/mL streptomycin, 2mM glutamine (Sigma, G6784), 

VEGF (10 ng/mL; Peprotech, 100-20) and 10 ng/mL HGF (10 ng/mL; Peprotech, 100-39). 

LEC expression of PLVAP, CD34, ACKR1 and JAG1 was assessed using flow cytometry.

Flow-based adhesion assays—Flow-based adhesion assays were performed as 

described22,32. Briefly, LEC from healthy and cirrhotic liver were seeded into a rat-tail 

collagen coated Ibidi slide VI0.4 (Ibidi, 80606) at a density to give a monolayer and 

incubated overnight. Peripheral blood was collected from healthy donors in EDTA-coated 

tubes. Peripheral blood monocuclear cells (PBMC) were isolated using a lympholyte density 

gradient (Cedarlane laboratories) then washed in PBS containing 1mM Ca2+, 0.5 mM Mg2+ 

and 0.15% bovine serum albumin (PBS/BSA). Monocytes were enriched from PBMC using 

pan-monocyte isolation kit (Miltenyi biotech, 130-096-537) according to the manufacturer’s 
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protocol. For flow-based adhesion assay, cells were resuspended at 106 cells per millilitre in 

endothelial basal media (ThermoFisher, 11111044) containing 0.15% BSA, then perfused 

over the LEC monolayer for 5min at 0.28ml/min. Non-adherent cells were washed off 

during 5min perfusion of 0.15% BSA human basal endothelial medium and 10 random non-

overlapping images were randomly recorded from each channel. Total adherent (bright-

phase; expressed as cell number/mm2/1 million cells perfused) and transmigrating cells 

(dark-phase; expressed as percentage total adherent cells) on an LEC monolayer from each 

patient were counted and quantified as previously described22.

Gene knockdown in endothelial cells—Knockdown of ACKR1 and PLVAP gene 

expression in human cirrhotic LEC was performed using siRNA as previously described32. 

In brief, siRNA duplexes for PLVAP, ACKR1, or negative control (Qiagen, 1027280) with 

Lipofectamine RNAiMAX Transfection Reagent (ThermoFisher, 13778075) were prepared 

in OptiMEM (ThermoFisher, 31985070) according to the manufacturer’s recommendations, 

and used at a concentration of 25nM. Cells were exposed to the duplex for 4 hours at 37°C 

after which time the media was replaced with endothelial basal media containing 10% heat-

inactivated human serum for 24 hours. The media was then replaced with complete LEC 

media and incubated at 37°C with 5% CO2 for a further 24 hours. Knockdown efficacy was 

assessed by flow cytometry and mean fluorescence intensity (Extended Data Fig. 8f). The 

best siRNA for knockdown was determined empirically using the FlexiTube GeneSolution 

kit (Qiagen, GS83483 (PLVAP) and GS2532 (ACKR1)). For flow-based adhesion assays, 

siRNAs for PLVAP (Qiagen, Hs_PLVAP_1, SI00687547; knockdown 50.6%), ACKR1 

(Qiagen, Hs_Fy_5, SI02627667; knockdown 37.7%) or control siRNA were selected. 90,000 

LEC from cirrhotic patients (n=6) were seeded into channels of a rat-tail collagen coated 

Ibidi slide VI0.4, gene knockdown performed, followed by flow-based adhesion assay as 

described above.

Endothelial and hepatic stellate cell co-culture—HSC (15,000 cells) were seeded 

into an Ibidi slide VI0.4 with and without primary human LEC (15,000 cells) from individual 

cirrhotic patients (n=3) in LEC complete medium. After 2h, all growth factor supplements 

were removed and cells were cultured for a further 72 hours in endothelial basal media 

containing 10% heat-inactivated human serum ± Notch-signalling inhibitor Dibenzazepine 

(10µM, Bio-Techne, 4489/10) or vehicle (DMSO) control. Cells were fixed in 4% PFA for 

30 minutes, permeabilised with 0.3% Triton PBS for 5 minutes, blocked with 10% goat 

serum in PBS for 30 minutes followed by primary antibody incubation (mouse anti-

PECAM1 and rabbit anti-collagen 1; see Supplementary Table 19) for 1 hour. Cells were 

washed in 0.1% Triton PBS followed by addition of fluorescently-conjugated secondary 

antibodies (1:500 dilution) for 1 hour. Cells were mounted with Pro-long Gold anti-fade 

DAPI, images were taken on the Confocal Microscope Zeiss LSM780, and collagen 1 area 

staining quantified using IMARIS.

RNA extraction and RT-qPCR

RNA was isolated from HSC using the RNeasy Plus Micro Kit (Qiagen, 74034) and cDNA 

synthesis performed using QuantiTect Reverse Transcription Kit (Qiagen, 205313) 

according to the manufacturers’ protocol. Reactions were performed in triplicate in 384-well 
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plate format and were assembled using the QIAgility automated pipetting system (Qiagen). 

RT-qPCR for human HSC was performed using PowerUp SYBR Green Master Mix 

(ThermoFisher, A25777) with the following primers (all Qiagen): GAPDH (QT00079247), 

COL1A1 (QT00037793), COL3A1 (QT00058233), NOTCH3 (QT00003374). RT-qPCR for 

mouse HSC was performed using TaqMan Fast Advanced Master Mix (ThermoFisher, 

4444557) with the following primers: Gapdh (ThermoFisher, Mm99999915_g1) and Col3a1 

(ThermoFisher, Mm00802300_m1). Samples were amplified on an ABI 7900HT FAST PCR 

system (Applied Biosystems, ThermoFisher Scientific). Data was analysed using 

ThermoFisher Connect cloud qPCR analysis software (ThermoFisher Scientific). The 2−ΔΔCt 

quantification method, using GAPDH for normalization, was used to estimate the amount of 

target mRNA in samples, and expression calculated relative to average mRNA expression 

levels from control samples.

Immunohistochemistry, immunofluorescence, smFISH

Formalin-fixed paraffin-embedded human liver tissue was cut into 4 µm sections, dewaxed, 

rehydrated, then incubated in 4% neutral-buffered formalin for 20 minutes. Following heat-

mediated antigen retrieval in pH6 sodium citrate (microwave; 15 minutes), slides were 

washed in PBS and incubated in 4% hydrogen peroxide for 10 minutes. Slides were then 

washed in PBS, blocked using protein block (GeneTex, GTX30963) for 1 hour at room 

temperature before incubation with primary antibodies for 1 hour at room temperature. A 

full list of primary antibodies and conditions are shown in Supplementary Table 19. Slides 

were washed in PBST (PBS plus 0.1% Tween20; Sigma-Aldrich, P1379) then incubated 

with ImmPress HRP Polymer Detection Reagents (depending on species of primary; rabbit, 

MP-7401; mouse, MP-6402-15; goat, MP-7405; all Vector Laboratories) for 30 minutes at 

room temperature. Slides were washed in PBS followed by detection. For DAB staining, 

sections were incubated with DAB (DAKO, K3468) for 5 minutes and washed in PBS 

before a haematoxylin (Vector Laboratories, H3404) counterstain. For multiplex 

immunofluorescence staining, following the incubation with ImmPress and PBS wash, 

initial staining was detected using either Cy3, Cy5, or Fluorescein tyramide (Perkin-Elmer, 

NEL741B001KT) at a 1:1000 dilution. Slides were then washed in PBST followed by 

further heat treatment with pH6 sodium citrate (15 minutes), washes in PBS, protein block, 

incubation with the second primary antibody (incubated overnight at 4°C), ImmPress 

Polymer and tyramide as before. This sequence was repeated for the third primary antibody 

(incubated at room temperature for 1 hour) and a DAPI-containing mountant was then 

applied (ThermoFisher Scientific, P36931).

For AMEC Staining (only CLEC4M immunohistochemistry), all washes were carried out 

with TBST (dH2O, 2oomM Tris, 1.5M NaCl, 1% Tween20 (all Sigma-Aldrich) pH7.5) and 

peroxidase blocking was carried out for 30mins in 0.6% hydrogen peroxide in Methanol. 

Sections were incubated with AMEC (Vector Laboratories, SK-4285) for 20 minutes and 

washed in TBST (dH2O, 200mM Tris, 1.5M NaCl, 1% Tween20 (all Sigma-Aldrich)) before 

a haematoxylin (Vector Laboratories, SK-4285) counterstain.

For combined single-molecule fluorescent in situ hybridization (smFISH) and 

immunofluorescence, detection of TREM2 was performed using the RNAscope® 2.5 LS 
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Reagent Kit - BrownAssay (Advanced Cell Diagnostics (ACD)) in accordance with the 

manufacturer’s instructions. Briefly, 5 µm tissue sections were dewaxed, incubated with 

endogenous enzyme block, boiled in pretreatment buffer and treated with protease, followed 

by target probe hybridization using the RNAscope® LS 2.5 Hs-TREM2 (420498, ACD) 

probe. Target RNA was then detected with Cy3 tyramide (Perkin-Elmer, NEL744B001KT) 

at 1:1000 dilution. The sections were then processed through a pH6 sodium citrate heat-

mediated antigen retrieval, hydrogen peroxidase treatment and protein block (all as for 

multiplex immunofluorescence staining as above). MNDA antibody was applied overnight at 

4°C, completed using a secondary ImmPress HRP Anti-Rabbit Peroxidase IgG (Vector 

Laboratories, MP7401), visualised using a Flourescein tyramide (Perkin-Elmer, 

NEL741B001KT) at a 1:1000 dilution and stained with DAPI.

Brightfield and fluorescently-stained sections were imaged using the slide scanner 

AxioScan.Z1 (Zeiss) at 20X magnification (40X magnification for smFISH). Images were 

processed and scale bars added using Zen Blue (Zeiss) and Fiji software33.

Cell counting and image analysis

Automated cell counting was performed using QuPath software34. Briefly, DAB-stained 

whole tissue section slide-scanned images (CZI files) were imported into QuPath. Cell 

counts were carried out using the positive cell detection tool, detecting haematoxylin-stained 

nuclei and then thresholding for positively-stained DAB cells, generating DAB-positive cell 

counts/mm2 tissue. Identical settings and thresholds were applied to all slides for a given 

stain and experiment. For cell counts of fibrotic septae vs parenchymal nodules, the QuPath 

segmentation tool was used to segment the DAB-stained whole tissue section into fibrotic 

septae or non-fibrotic parenchymal nodule regions using tissue morphological characteristics 

(Fig. 2j). Positive cell detection was then applied to the fibrotic and non-fibrotic regions in 

turn, providing cell DAB-positive cell counts/mm2 in fibrotic septae and non-fibrotic 

parenchymal nodules for each tissue section.

Digital morphometric pixel analysis was performed using the Trainable Weka Segmentation 

(TWS) plugin35 in Fiji software33. Briefly, each stained whole tissue section slide-scanned 

image was converted into multiple TIFF files in Zen Blue software (Zeiss). TIFF files were 

imported into Fiji and TWS plugin trained to produce a classifier which segments images 

into areas of positive staining, tissue background and white space35. The same trained 

classifier was then applied to all TIFF images from every tissue section for a particular stain, 

providing a percentage area of positive staining for each tissue section. For digital 

morphometric quantification of positive staining of fibrotic septae versus parenchymal 

nodules, TIFF images were segmented into fibrotic septae or non-fibrotic parenchymal 

nodule regions using tissue morphological characteristics, followed by analysis using the 

TWS plugin in Fiji software.

Histological assessment of NASH sections

Haematoxylin and eosin and picro-sirius red stained sections from each case were whole-

slide imaged using a NanoZoomer imager (Hamamatsu Photonics, Japan). Images of stained 

sections were independently scored by a consultant liver transplant histopathologist (T.J.K.) 
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at the national liver transplant centre with experience in trial scoring by applying the ordinal 

NAFLD activity score36. For observer-independent quantification of picro-sirius red positive 

staining, images were split using ndpisplit37 into tiles of x5 magnification before the 

application of a classifier that had been trained by the liver histopathologist using the 

machine learning WEKA plugin in FIJI33,35, as previously described38. All analysis was 

undertaken blind to all other data.

Droplet-based scRNA-seq

Single cells were processed through the Chromium™ Single Cell Platform using the 

Chromium™ Single Cell 3’ Library and Gel Bead Kit v2 (10X Genomics, PN-120237) and 

the Chromium™ Single Cell A Chip Kit (10X Genomics, PN-120236) as per the 

manufacturer’s protocol. In brief, single cells were sorted into PBS + 0.1% BSA, washed 

twice and counted using a Bio-Rad TC20. 10,769 cells were added to each lane of the 10X 

chip. The cells were then partitioned into Gel Beads in Emulsion in the Chromium™ 

instrument, where cell lysis and barcoded reverse transcription of RNA occurred, followed 

by amplification, fragmentation and 5′ adaptor and sample index attachment. Libraries were 

sequenced on an Illumina HiSeq 4000.

Computational Analysis

In total, we analysed 67,494 human cells from healthy (n=5) and cirrhotic (n=5) livers, 

30,741 PBMCs from cirrhotic patients (n=4) and compared our data with a publicly-

available reference dataset of 8,381 PBMCs from a healthy donor.

Pre-processing scRNA-seq data—We aligned to the GRCh38 and mm10 (Ensembl 84) 

reference genomes as appropriate for the input dataset, and estimated cell-containing 

partitions and associated UMIs, using the Cell Ranger v2.1.0 Single-Cell Software Suite 

from 10X Genomics. Genes expressed in fewer than three cells in a sample were excluded, 

as were cells that expressed fewer than 300 genes or mitochondrial gene content >30% of 

the total UMI count. We normalised by dividing the UMI count per gene by the total UMI 

count in the corresponding cell and log-transforming. Variation in UMI counts between cells 

was regressed according to a negative binomial model, prior to scaling and centering the 

resulting value by subtracting the mean expression of each gene and dividing by its standard 

deviation (En), then calculating ln(104*En+1).

Dimensionality reduction, clustering, and DE analysis—We performed 

unsupervised clustering and differential gene expression analyses in the Seurat R package 

v2.3.039. In particular we used SNN graph-based clustering, where the SNN graph was 

constructed using from 2 to 11 principal components as determined by dataset variability 

shown in principal components analysis (PCA); the resolution parameter to determine the 

resulting number of clusters was also tuned accordingly. To assess cluster similarity we used 

the BuildClusterTree function from Seurat.

In total, we present scRNA-seq data from ten human liver samples (named Healthy 1-5 and 

Cirrhotic 1-5), five human blood samples (n=4 cirrhotic named Blood 1-4 and n=1 healthy 

named PBMC8K; pbmc8k dataset sourced from single-cell gene expression datasets hosted 
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by 10X Genomics), and two mouse liver samples (n=3 uninjured and n=3 fibrotic). For 

seven human liver samples (Healthy 1-4 and Cirrhotic 1-3) we performed scRNA-seq on 

both leucocytes (CD45+) and other non-parenchymal cells (CD45-); for the remaining three 

human livers (Healthy 5, Cirrhotic 4-5) we performed scRNA-seq on leucocytes only 

(Extended Data Fig. 2e, f).

Initially, we combined all human scRNA-seq datasets (liver and blood) and performed 

clustering analysis with the aim of isolating a population of liver-resident cells, by 

identifying contaminating circulatory cells within datasets generated from liver digests and 

removing them from downstream analysis. Specifically, we removed from our liver datasets 

cells that fell into clusters 1 and 13 of the initial dataset in Extended Data Fig. 1d.

Using further clustering followed by signature analysis, we interrogated this post-processed 

liver-resident cell dataset for robust cell lineages. These lineages were isolated into 

individual datasets, and the process was iterated to identify robust lineage subpopulations. 

At each stage of this process we removed clusters expressing more than one unique lineage 

signature in more than 25% of their cells from the dataset as probable doublets. This resulted 

in removal of 1,351 cells. Where the cell proliferation signature identified distinct cycling 

subpopulations, we re-clustered these again to ascertain the identity of their constituent cells.

The murine scRNA-seq datasets were combined, clustered, and interrogated for cell lineages 

in a similar manner as their human counterparts.

All heatmaps, t-SNE and UMAP visualisations, violin plots, and dot plots were produced 

using Seurat functions in conjunction with the ggplot2, pheatmap, and grid R packages. t-

SNE and UMAP visualisations were constructed using the same number of principal 

components as the associated clustering, with perplexity ranging from 30 to 300 according 

to the number of cells in the dataset or lineage. We conducted differential gene expression 

analysis in Seurat using the standard AUC classifier to assess significance. We retained only 

those genes with a log-fold change of at least 0.25 and expression in at least 25% of cells in 

the cluster under comparison.

Defining cell lineage signatures—For each cell we obtained a signature score across a 

curated list of known marker genes per cell lineage in the liver (Supplementary Table 2). 

This signature score was defined as the geometric mean of the expression of the associated 

signature genes in that cell. Lineage signature scores were scaled from 0 to 1 across the 

dataset, and the score for each cell with signature less than a given threshold (the mean of 

said signature score across the entire dataset) was set as 0.

Batch effect and quality control—To investigate agreement between samples we 

extracted the average expression profile for a given cell lineage in each sample, and 

calculated the Pearson correlation coefficients between all possible pairwise comparisons of 

samples per lineage40.

Imputing dropout in T cell and ILC clusters—To impute dropout of low-abundance 

transcripts in our T cell and ILC clusters so that we might associate them with known 
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subpopulations, we down-sampled to 7,380 cells from 36,900 and applied the scImpute R 

package v0.0.841, using as input both our previous annotation labels and k-means spectral 

clustering (k=5), but otherwise default parameters.

Analysing functional phenotypes of scar-associated cells—For further analysis of 

function we adopted the self-organising maps (SOM) approach as implemented in the 

SCRAT R package v1.0.042. For each lineage of interest we constructed a SOM in SCRAT 

using default input parameters and according to its clusters. We defined the signatures 

expressed in a cell by applying a threshold criterion (ethresh = 0.95 × emax) selecting the 

highest-expressed metagenes in each cell, and identified for further analysis those metagene 

signatures defining at least 30% of cells in at least one cluster within the lineage. We 

smoothed these SOMs using the disaggregate function from the raster R package for 

visualisation purposes, and scaled radar plots to maximum proportional expression of the 

signature. Gene ontology enrichment analysis on the genes in these spots was performed 

using PANTHER 13.1 (pantherdb.org).

Inferring injury dynamics and transcriptional regulation—To generate cellular 

trajectories (pseudotemporal dynamics) we used the monocle R package v2.6.143. We 

ordered cells in a semi-supervised manner based on their Seurat clustering, scaled the 

resulting pseudotime values from 0 to 1, and mapped them onto either the t-SNE or UMAP 

visualisations generated by Seurat or diffusion maps as implemented in the scater R package 

v1.4.044 using the top 500 variable genes as input. We removed mitochondrial and ribosomal 

genes from the geneset for the purposes of trajectory analysis. Differentially-expressed 

genes along this trajectory were identified using generalised linear models via the 

differentialGeneTest function in monocle.

When determining significance for differential gene expression along the trajectory, we set a 

q-value threshold of 1e-20. We clustered these genes using hierarchical clustering in 

pheatmap, cutting the tree at k=3 to obtain gene modules with correlated gene expression 

across pseudotime. Cubic smoothing spline curves were fitted to scaled gene expression 

along this trajectory using the smooth.spline command from the stats R package, and gene 

ontology enrichment analysis again performed using PANTHER 13.1.

We verified the trajectory and its directionality using the velocyto R package v0.6.017, 

estimating cell velocities from their spliced and unspliced mRNA content. We generated 

annotated spliced and unspliced reads from the 10X BAM files via the dropEst pipeline, 

before calculating gene-relative velocity using kNN pooling with k=25, determining slope 

gamma with the entire range of cellular expression, and fitting gene offsets using spanning 

reads. Aggregate velocity fields (using Gaussian smoothing on a regular grid) and transition 

probabilities per lineage subpopulations were visualised on t-SNE, UMAP, or diffusion map 

visualisations as generated previously. Gene-specific phase portraits were plotted by 

calculating spliced and unspliced mRNA levels against steady-state inferred by a linear 

model; levels of unspliced mRNA above and below this steady-state indicate increasing and 

decreasing expression of said gene, respectively. Similarly we plotted unspliced count signal 

residual per gene, based on the estimated gamma fit, with positive and negative residuals 

indicating expected upregulation and downregulation respectively.
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For transcription factor analysis, we obtained a list of all genes identified as acting as 

transcription factors in humans from AnimalTFDB45. To further analyse transcription factor 

regulons, we adopted the SCENIC v0.1.7 workflow in R46, using default parameters and the 

normalised data matrices from Seurat as input. For visualisation, we mapped the regulon 

activity (AUC) scores thus generated to the pseudotemporal trajectories from monocle and 

the clustering subpopulations from Seurat.

Analysing inter-lineage interactions within the fibrotic niche—For comprehensive 

systematic analysis of inter-lineage interactions within the fibrotic niche we used 

CellPhoneDB27. CellPhoneDB is a manually curated repository of ligands, receptors, and 

their interactions, integrated with a statistical framework for inferring cell-cell 

communication networks from single-cell transcriptomic data. In brief, we derived potential 

ligand-receptor interactions based on expression of a receptor by one lineage subpopulation 

and a ligand by another; as input to this algorithm we used cells from the fibrotic niche as 

well as liver sinusoidal endothelial cells and Kupffer cells as control, and we considered 

only ligands and receptors expressed in greater than 5% of the cells in any given 

subpopulation. Subpopulation-specific interactions were identified as follows: 1) randomly 

permuting the cluster labels of all cells 1000 times and determining the mean of the average 

receptor expression of a subpopulation and the average ligand expression of the interacting 

subpopulation, thus generating a null distribution for each ligand-receptor pair in each 

pairwise comparison between subpopulations, 2) calculating the proportion of these means 

that were "as or more extreme" than the actual mean, thus obtaining a p-value for the 

likelihood of subpopulation specificity for a given ligand-receptor pair, 3) prioritising 

interactions that displayed specificity to subpopulations interacting within the fibrotic niche.

Canonical correlation analysis—To compare human and murine populations of 

monocytic phagocytes, we used canonical correlation analysis as implemented in Seurat18. 

We map the genes in the human dataset to their murine orthologues using biomaRt, 

discarding any genes for which no orthologues can be found. We then calculate the shared 

low-dimensional subspace on the union of genes that are variably expressed in both datasets 

(n=159), and align using six canonical components as determined by evaluating the biweight 

midcorrelation. Results are visualised on t-SNEs as previously described.

Deconvolution of whole liver microarray data—To assess macrophage composition 

early-stage NAFLD, we performed deconvolution analysis on publicly available microarray 

data from annotated liver biopsy specimens taken across the NAFLD disease spectrum 

(GEO accession GSE48452)20. Tissue MP cells from our human scRNA-seq data were 

manually clustered into the main annotated MP populations. Signature gene expression 

profiles of SAMΦ, TMo, KC were used to deconvolve the monocyte-macrophage 

composition of liver biopsy samples from GSE48452 using Cibersort47, as previously 

described19. The monocyte-macrophage composition of each biopsy sample was then 

compared to the associated histological and demographic features, available from the GEO 

database.
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Statistics and Reproducibility

To assess whether our identified subpopulations were significantly overexpressed in injury, 

we posited the proportion of injured cells in each cluster as a random count variable using a 

Poisson process, as previously described40. We modelled the rate of detection using the total 

number of cells in the lineage profiled in a given sample as an offset, with the condition of 

each sample (healthy vs cirrhotic) provided as a covariate factor. The model was fitted using 

the R command glm from the stats package. The P value for the significance of the 

proportion of injured cells was assessed using a Wald test on the regression coefficient.

Remaining statistical analyses were performed using GraphPad Prism (GraphPad Software, 

USA). Comparison of changes between two groups was performed using a Mann-Whitney 

test (unpaired; two-tailed) or using a Wilcoxon matched-pairs signed rank test (paired; two-

tailed). Comparison of changes between multiple groups was performed using a Kruskal-

Wallis and Dunn, one-way ANOVA and Tukey or repeated measures one-way ANOVA and 

Tukey tests. Correlations were preformed using Pearson correlation and best fit line plotted 

using linear regression. P values<0.05 were considered statistically significant. All 

immunofluorescence stains were repeated in a minimum of 3 patients and representative 

images are displayed.

Extended Data
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Extended Data Figure 1. Strategy for isolation of human liver non-parenchymal cells.
a, Patient demographics and clinical information, Mean±SEM. b, Flow cytometry gating 

strategy for isolating leucocytes (CD45+) and other non-parenchymal cells (CD45-) from 

human liver, representative plots from 10 livers. c, Flow cytometry plots: gating strategy for 

isolating peripheral blood mononuclear cells (PBMC), representative plots from 4 patients. 

d, Clustering 103,568 cells from 5 healthy human livers, 5 cirrhotic human livers, 1 healthy 

PBMC and 4 cirrhotic PBMC (left), annotating source (PBMC versus liver; middle) and cell 

lineage inferred from known marker gene signatures (right). Endo, endothelial cell; ILC, 
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innate lymphoid cell; Mast, mast cell; Mes, mesenchymal cell; MP, mononuclear phagocyte; 

pDC, plasmacytoid dendritic cell. e, Dotplot: annotating PBMC and liver clusters by lineage 

signatures. Circle size indicates cell fraction expressing signature greater than mean; colour 

indicates mean signature expression (red, high; blue, low). f, CXCR4 gene expression in 

single cells derived from blood or liver tissue, divided by cell lineage. Representative 

immunofluorescence micrograph, human liver: CXCR4 (green), DAPI (blue), arrows 

CXCR4- cells in the lumen of a blood vessel. Scale bar 50µm. g, Violin plots: number of 

unique genes (nGene), number of total Unique Molecular Identifiers (nUMI) and 

mitochondrial gene fraction expressed in 5 PBMC samples; Black line, median. g, Pie 

charts: proportion of cell lineage per PBMC sample. h, Box and whisker plot: agreement in 

expression profiles across 5 PBMC samples. Pearson correlation coefficients between 

average expression profiles for cell in each lineage, across all pairs of samples. Black bar, 

median value; box edges, 25th and 75th percentiles; whiskers, full range.
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Extended Data Figure 2. Quality control and annotation of human liver-resident cells.
a, Lineage signature expression across 66,135 liver-resident cells from 5 healthy and 5 

cirrhotic human livers (red, high; blue, low). b, Dotplot: annotating liver-resident cell 

clusters by lineage signature. Circle size indicates cell fraction expressing signature greater 

than mean; colour indicates mean signature expression (red, high; blue, low). c, Violin plot: 

number of unique genes (nGene; left), number of total Unique Molecular Identifiers (nUMI; 

middle) and mitochondrial gene fraction (right) across 66,135 liver-resident cells from 5 

healthy versus 5 cirrhotic livers; Black line, median. d, Pie charts: proportion of cell lineage 
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per liver sample. e, Box and whisker plot: agreement in expression profiles across 5 healthy 

and 5 cirrhotic liver samples. Pearson correlation coefficients between average expression 

profiles for cell in each lineage, across all pairs of samples. Black bar, median value; box 

edges, 25th and 75th percentiles; whiskers, range. f, t-SNE visualisation: liver-resident cells 

per liver sample; Cirrhotic samples annotated by aetiology of underlying liver disease; 

NAFLD, Non-alcoholic fatty liver disease; ALD, Alcohol-related liver disease; PBC, 

Primary biliary cholangitis.
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Extended Data Figure 3. Annotating human liver lymphoid cells.
a, Clustering and annotating 36,900 T cells and innate lymphoid cells (ILC) (left) from 5 

healthy and 5 cirrhotic human livers, annotating injury condition (right). cNK, cytotoxic NK 

cell. b, Fractions of T cell and ILC subpopulations in healthy (n=5) versus cirrhotic (n=5) 

livers, Mean±SEM, Wald. c, Selected gene expression in 36,900 T cells and ILC. d, 

Heatmap: T cell and ILC cluster marker genes (colour coded top by cluster and condition), 

exemplar genes labelled right. Cells columns, genes rows. e, t-SNE visualisations: 

downsampled T cell and ILC dataset (7,380 cells from 5 healthy and 5 cirrhotic human 
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livers) pre- and post-imputation; annotating data used for visualisation and clustering, 

inferred lineage, injury condition. No additional heterogeneity was observed following 

imputation. f, Clustering 2,746 B cells and plasma cells (left) from 5 healthy and 5 cirrhotic 

human livers, annotating injury condition (right). g, Heatmap: B cell and plasma cell cluster 

marker genes (colour coded top by cluster and condition), exemplar genes labelled right. 

Cells columns, genes rows. h, Fractions of B cell and plasma cell subpopulations in healthy 

(n=5) versus cirrhotic (n=5) livers, Mean±SEM.
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Extended Data Figure 4. Annotating human liver mononuclear phagocytes.
a, Clustering and selected genes expressed in 10,737 mononuclear phagocytes (MP) from 5 

healthy and 5 cirrhotic human livers. b, Scaled gene expression of Kupffer cell (KC) cluster 

markers across MP cells from healthy (n=5) and cirrhotic (n=5) livers. c, Representative 

immunofluorescence images, healthy versus cirrhotic liver: TIMD4 (red), CD163 (white), 

MARCO (green), DAPI (blue), arrows CD163+MARCO+TIMD4- cells, scale bars 50µm. d, 

TIMD4 immunohistochemistry, cell counts healthy (n=12) versus cirrhotic (n=9) liver, Mean

±SEM, scale bars 50µm. e, MARCO immunohistochemistry, cell counts healthy (n=8) 
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versus cirrhotic (n=8) liver, Mean±SEM, Mann-Whitney two-tailed, scale bars 50µm. f, 
Flow cytometry: gating strategy for identifying KC, TMo and SAMΦ in healthy (n=2) and 

cirrhotic (n=3) liver. SAMΦ are detected as TREM2+CD9+ cells within the TMo and 

SAMΦ gate (see Fig. 2f). g, Representative immunofluorescence image, cirrhotic liver: 

TREM2 (red), MNDA (white), collagen 1 (green), DAPI (blue), scale bars 50µm. h, 

Representative image, cirrhotic liver: TREM2 (smFISH; red), MNDA (immunofluorescence; 

green), DAPI (blue), scale bars 50µm. i, Representative immunofluorescence image, 

cirrhotic liver: CD9 (red), MNDA (white), collagen 1 (green), DAPI (blue), scale bars 50µm. 

j,TREM2 immunohistochemistry, cell counts healthy (n=10) versus cirrhotic (n=9) liver, 

Mann-Whitney two-tailed, scale bars 50µm. k,CD9 immunohistochemistry, cell counts 

healthy (n=12) versus cirrhotic (n=10) liver, Mann-Whitney two-tailed, scale bars 50µm. l, 
Exemplar tissue segmentation of cirrhotic liver section into fibrotic septae (orange) and 

parenchymal nodules (purple) (top); TREM2 (n=9), CD9(n=11), TIMD4 (n=9) and 

MARCO (n=7) immunohistochemistry and cell counts in parenchymal nodules versus 

fibrotic septae, Wilcoxon two-tailed. m, Clustering and annotation of 208 cycling MP cells 

from healthy (n=5) and cirrhotic (n=5) livers, scaled gene expression of MP subpopulation 

markers across 4 clusters of cycling MP cells (top), fractions of cycling MP subpopulations 

in 5 healthy versus 5 cirrhotic livers (bottom), Mean±SEM, Wald.

Ramachandran et al. Page 29

Nature. Author manuscript; available in PMC 2020 April 09.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



Extended Data Figure 5. Phenotypic characterisation of mononuclear phagocytes in healthy and 
cirrhotic human livers.
a, Self-Organising Map (SOM; 60x60 grid): smoothed scaled metagene expression of 

10,737 mononuclear phagocyte (MP) cells from healthy (n=5) and cirrhotic (n=5) livers. 

20,952 genes, 3,600 metagenes, 44 signatures. A-F label metagene signatures overexpressed 

in one or more MP subpopulations (top). Smoothed mean metagene expression profile for 

each MP subpopulation (bottom). b, Radar plots (left): metagene signatures A-F showing 

distribution of signature expression across MP subpopulations from 10,737 MP cells, 
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exemplar genes (middle) and selected Gene Ontology (GO) enrichment (right), Fisher’s 

exact test. c, Diffusion map visualisation, blood monocytes and liver-resident MP lineages 

(23,075 cells from healthy (n=5) and cirrhotic (n=5) liver samples and PBMCs (n=4), 

annotating monocle pseudotemporal dynamics (purple to yellow). RNA velocity field (red 

arrows) visualised using Gaussian smoothing on regular grid (top). Annotation of MP 

subpopulation, injury condition (bottom). d, Unspliced-spliced phase portraits (top row), 

23,075 cells coloured and visualised as in Fig 3a, monocyte (MNDA), SAMΦ (CD9) and 

KC marker genes (TIMD4). Cells plotted above or below the steady-state (black dashed 

line) indicate increasing or decreasing expression of gene, respectively. Spliced expression 

profile for stated genes (middle row; red high, blue low). Unspliced residuals for stated 

genes (bottom row), positive (red) indicating expected upregulation, negative (blue) 

indicating expected downregulation. MNDA displays negative velocity in SAMΦ, CD9 

displays positive velocity in monocytes and SAMΦ, TIMD4 velocity is restricted to KC. e, 

Cubic smoothing spline curve fitted to averaged expression of all genes in module 2 from 

blood monocyte-SAMΦ pseudotemporal trajectory (see Fig. 3c), selected GO enrichment 

(right), Fisher’s exact test. f, Cubic smoothing spline curve fitted to averaged expression of 

all genes in module 3 from blood monocyte-cDC pseudotemporal trajectory (see Fig. 3c), 

selected GO enrichment (right), Fisher’s exact test. g, Luminex assay: quantification of 

levels of stated proteins in culture medium from FACS-isolated scar-associated macrophages 

(SAMΦ, n=3), tissue monocytes (TMo, n=2), Kupffer cells (KC, n=2), and control (media 

alone, n=2), Mean±SEM, MFI median fluorescence intensity. h, Heatmap: transcription 

factor regulons across MP pseudotemporal trajectory and in KC (colour coded top by MP 

cluster, condition and pseudotime), selected regulons labelled right. Cells columns, regulons 

rows. i, Scaled regulon expression of selected regulons across MP clusters from healthy 

(n=5) and cirrhotic (n=5) livers.
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Extended Data Figure 6. Characterisation of macrophages in mouse liver fibrosis.
a, Clustering and annotating 3,250 mouse mononuclear phagocytes (mMP) from healthy 

(n=3) and fibrotic (4 weeks carbon tetrachloride treatment, n=3) livers. mTMo, tissue 

monocyte; mSAMΦ, scar-associated macrophage; mKC, Kupffer cell; mcDC, conventional 

dendritic cell. b, Annotating mMP cells by injury condition. c, Heatmap: mMP cluster 

marker genes (top, colour coded by cluster and condition), exemplar genes labelled (right). 

Cells columns, genes rows. d, Selected genes expressed in 3,250 mMP e, Flow cytometry: 

gating strategy for identifying KC, TMo and SAMΦ in healthy (n=2) and cirrhotic (n=3) 

liver. Flow cytometry plots: gating strategy for identifying mKC, CD9- mTMo and CD9+ 
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mSAMΦ in fibrotic mice (n=8 from 2 independent experiments). f, Quantifying mouse 

macrophage subpopulations by flow cytometry: healthy (n=6) and fibrotic (n=8) mouse 

livers from 2 independent experiments, macrophage subpopulation (x-axis) as a percentage 

of total viable CD45+ cells (y-axis), Mean±SEM, Mann-Whitney two-tailed. g, Hepatic 

stellate cell activation assay: co-culture of hepatic stellate cells (HSC) from uninjured mouse 

liver and FACS-isolated macrophage subpopulations (MΦ) from fibrotic mouse liver (left). 

Co-culture with CD9- mTMo or CD9+ mSAMΦ isolated from 8 fibrotic mice (2 

independent experiments), qPCR of Col3a1 in HSC, expression relative to mean expression 

of quiescent HSC (right), Wilcoxon two-tailed. h, Clustering 3,250 mouse mononuclear 

phagocytes (mMP) and 10,737 human mononuclear phagocytes (hMP) into 5 clusters using 

canonical correlation analysis (CCA). Annotation of cross-species clusters (identity). i, 
Annotation of human and mouse macrophage subpopulations from 3,250 mMP and 10,737 

hMP. j, Selected genes expressed in 3,250 mMP and 10,737 hMP.
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Extended Data Figure 7. Scar-associated macrophage expansion in human NASH
a to d,Deconvolution: publicly available whole liver microarray data (n=73) assessed for 

frequency of scar-associated macrophages (SAMΦ), Kupffer cells (KC) and tissue 

monocytes (TMo) using Cibersort algorithm. a, Macrophage composition: x-axis, GEO 

accession number; y-axis, fraction of monocyte-macrophages; Top, annotated by liver 

phenotype; NASH, Non-alcoholic steatohepatitis. b, Frequency of SAMΦ in control (n=14), 

heathy obese (n=27), steatosis (n=14) and NASH (n=18) livers, Mean±SEM, Kruskal-Wallis 

and Dunn. c, Frequency of SAMΦ in patients with histological NAFLD activity score (NAS) 
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of 0 (n=37), 1-3 (n=19) and 4-7 (n=17) (left). Frequency of SAMΦ in patients with 

histological fibrosis score of 0 (n=46), 1 (n=20) and 2-4 (n=5) (right), Mean±SEM, Kruskal-

Wallis and Dunn. d, Frequency of SAMΦ in female (n=58) and male (n=15) patients (left). 

Frequency of SAMΦ in patients aged 23-39 (n=22), 40-49 (n=29) and 50-80 (n=22) 

(middle). Frequency of SAMΦ in patients with a body mass index (BMI) of 17-30 (n=18), 

31-45 (n=28) and 46-70 (n=27) (right). e, CD9 and TREM2 staining in NASH liver biopsy 

sections (left), Scale bars, 50µm. Cell counting (right): CD9 staining, NAS 1-3 (n=13) 

versus NAS 4-8 (n=21), Mean±SEM, Mann-Whitney two-tailed. TREM2 staining, NAS 1-3 

(n=12) versus NAS 4-8 (n=16), Mean±SEM. f, Correlation of cell counts with picrosirius 

red (PSR) digital morphometric pixel quantification in NAFLD liver biopsy tissue; CD9 

staining (top; n=39); TREM2 staining (bottom; n=32); Pearson correlation and linear 

regression.
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Extended Data Figure 8. Phenotypic characterisation of endothelial cells in healthy and cirrhotic 
human livers.
a, Clustering and selected genes expressed in 8,020 endothelial cells from 4 healthy and 3 

cirrhotic human livers. b, Scaled gene expression of endothelial cluster markers across 

endothelial cells from healthy (n=4) and cirrhotic (n=3) livers. c, Digital pixel quantification: 

PLVAP immunostaining of cirrhotic liver sections (n=10) in parenchymal nodules versus 

fibrotic septae (top), Wilcoxon two-tailed. ACKR1 immunostaining of cirrhotic liver 

sections (n=10) in parenchymal nodules versus fibrotic septae (bottom), Wilcoxon two-
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tailed. d, Flow cytometry: endothelial cells from healthy (n=3, grey) or cirrhotic (n=7, red) 

livers, representative histogram for stated marker (top), mean fluorescence intensity (MFI, 

bottom), Mean±SEM, Mann-Whitney two-tailed. e, Flow-based adhesion assay: peripheral 

blood monocytes assessed for adhesion (top) and % of adherent cells which transmigrate 

(bottom); endothelial cells from healthy (n=5) or cirrhotic (n=4) livers, Mean±SEM, Mann-

Whitney two-tailed. f, Endothelial cell gene knockdown: cirrhotic endothelial cells treated 

with siRNA to PLVAP (n=6), ACKR1 (n=5) or control siRNA (n=6). Representative flow 

cytometry histograms for stated marker (top); comparison to isotype control antibody. Flow-

based adhesion assay (bottom), peripheral blood mononuclear cells assessed for adhesion 

(bottom left) and % of adherent cells which transmigrate (bottom right) following siRNA 

treatment of endothelial cells, Mean±SEM, Kruskal-Wallis and Dunn. g, Self-Organising 

Map (SOM; 60 x 60 grid; top left): smoothed scaled metagene expression of endothelia 

lineage. 21,237 genes, 3,600 metagenes, 45 signatures. A-E label metagene signatures 

overexpressed in one or more endothelial subpopulations. SOM: smoothed mean metagene 

expression profile for each endothelial subpopulation (bottom left). Radar plots (middle): 

metagene signatures A-E showing distribution of signature expression across endothelial 

subpopulations, exemplar genes (middle) and Gene Ontology (GO) enrichment (right), 

Fisher’s exact test. h, Heatmap: endothelial subpopulation transcription factor regulon 

expression (colour coded top by cluster and condition) across 8,020 endothelial cells from 4 

healthy and 3 cirrhotic human livers. Exemplar regulons labelled right. Cells in columns, 

regulons in rows. i, t-SNE visualisation, endothelial lineage (8,020 cells from healthy (n=4) 

and cirrhotic (n=3)), annotating monocle pseudotemporal dynamics (purple to yellow; grey 

indicates lack of inferred trajectory). RNA velocities (red arrows) visualised using Gaussian 

smoothing on regular grid. (purple to yellow). j, Representative immunofluorescence images 

healthy versus cirrhotic liver: RSPO3, PDPN, AIF1L, VWA1 or ACKR1 (red), CD34 

(white), PLVAP (green), DAPI (blue), scale bars, 50µm. k, Annotation of 8,020 endothelial 

cells by subpopulation and injury condition. LSEC, Liver sinusoidal endothelial cells.
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Extended Data Figure 9. Characterisation of mesenchymal cells in healthy and cirrhotic human 
livers.
a, Selected genes expressed in 2,318 mesenchymal cells from 4 healthy and 3 cirrhotic 

human livers. b, Clustering 319 scar-associated mesenchymal cells (SAMes) into 2 further 

subclusters. c, Heatmap: SAMes subcluster marker genes (top, colour coded by cluster and 

condition), exemplar genes labelled (right). Cells columns, genes rows. d, Fractions of 

SAMes subpopulations in healthy (n=4) versus cirrhotic (n=3) livers, Mean±SEM, Wald. e, 

Representative immunofluorescence image, portal region of healthy liver: OSR1 (red), 

Collagen 1 (green), DAPI (blue), Scale bar 50µm. f, Representative immunofluorescence 

image, fibrotic niche of cirrhotic liver: OSR1 (red), Collagen 1 (green), DAPI (blue), Scale 

bar 50µm. g, Scaled gene expression of selected genes across 2,318 mesenchymal cells from 

healthy (n=4) and cirrhotic (n=3) livers. h, t-SNE visualisation, 1,178 Hepatic Stellate Cells 

(HSC) and SAMes from healthy (n=4) and cirrhotic (n=3) livers annotated by monocle 

pseudotemporal dynamics (purple to yellow). RNA velocity field (red arrows) visualised 
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using Gaussian smoothing on regular grid. i, Heatmap: cubic smoothing spline curves fitted 

to genes differentially expressed across HSC-to-SAMes pseudotemporal trajectories, 

grouped by hierarchical clustering (k=2). Colour coded by pseudotime and condition (top). 

Gene co-expression modules (colour) and exemplar genes labelled right.
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Extended Data Figure 10. Characterisation of the cellular interactome in the fibrotic niche.
a to b, Representative immunofluorescence images, fibrotic niche cirrhotic liver. a, TREM2 

(red), PLVAP (white), PDGFRα (green), DAPI (blue), Scale bars 50µm. b, TREM2 (red), 

ACKR1 (white), PDGFRα (green), DAPI (blue), Scale bars 50µm. c, Proliferation assay: 

Human hepatic stellate cells (HSC) treated with conditioned media from primary hepatic 

macrophage subpopulations SAMΦ (n=2), tissue monocytes (TMo, n=2), Kupffer cells 

(KC, n=2) or control media (n=2). y-axis, area under curve (AUC) of % change in HSC 

number over time (hours), Mean±SEM. d, Circle plot: potential interaction magnitude from 
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ligands expressed by scar-associated macrophages (SAMΦ) and endothelial cells (SAEndo) 

to receptors expressed on scar-associated mesenchyme (SAMes). e, Circle plot: potential 

interaction magnitude from ligands expressed by SAMes to receptors expressed on SAMΦ 
and SAEndo. f, Dotplot: ligand-receptor interactions between SAMes (n=7 human livers), 

SAMΦ (n=10 human livers) and SAEndo (n=7 human livers). X-axis, ligand (red) and 

cognate receptor (blue); y-axis, ligand (red) and receptor (blue) expressing cell populations; 

circle size, P value (permutation test); colour (red, high; yellow, low), means of average 

ligand and receptor expression levels in interacting subpopulations. g, Representative 

immunofluorescence images, fibrotic niche in cirrhotic liver. Top; CCL2 (red), CCR2 

(white), PDGFRα (green), DAPI (blue), arrows CCL2+PDGFRα+ cells. Bottom; ANGPT1 

(red), TEK(white), PDGFRα (green), DAPI (blue), arrows ANGPT1+PDGFRα+ cells. Scale 

bars 50µm. h, Circle plot: potential interaction magnitude from ligands expressed by to 

receptors expressed on SAEndo. i, Dotplot: ligand-receptor interactions between SAMΦ 
(n=10 human livers) and SAEndo (n=7 human livers). X-axis, ligand (red) and cognate 

receptor (blue); y-axis, ligand (red) and receptor (blue) expressing cell populations; circle 

size, P value (permutation test); colour (red, high; yellow, low), means of average ligand and 

receptor expression levels in interacting subpopulations. j, Representative 

immunofluorescence image, fibrotic niche in cirrhotic liver. TREM2 (red), FLT1 (white), 

VEGFA (green), DAPI (blue), arrows TREM2+VEGFA+ cells, Scale bar 50µm. k, Circle 

plot: potential interaction magnitude from ligands expressed by SAEndo to receptors 

expressed on SAMΦ. l, Dotplot: ligand-receptor interactions between SAEndo (n=7 human 

livers) and SAMΦ (n=10 human livers). X-axis, ligand (red) and cognate receptor (blue); y-

axis, ligand (red) and receptor (blue) expressing cell populations; circle size, P value 

(permutation test); colour (red, high; yellow, low), means of average ligand and receptor 

expression levels in interacting subpopulations. m, Representative immunofluorescence 

images, fibrotic niche in cirrhotic liver. Top; TREM2 (red), CD200 (white), CD200R 

(green), DAPI (blue), arrows TREM2+CD200R+ cells. Bottom; TREM2 (red), DLL4 

(white), NOTCH2 (green), DAPI (blue), arrows TREM2+NOTCH2+ cells. Scale bars, 50µm.
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Figure 1. Single cell atlas of human liver NPC.
a, Overview: isolation, FACS-sorting and sc-RNASeq of leucocytes (CD45+) and other NPC 

fractions (CD45-). b, Clustering 66,135 cells from 5 healthy and 5 cirrhotic human livers. c, 

Annotation by injury condition. d, Cell lineage inferred from expression of marker gene 

signatures. Endo, endothelial cell; ILC, innate lymphoid cell; Mast, mast cell; Mes, 

mesenchymal cell; MP, mononuclear phagocyte; pDC, plasmacytoid dendritic cell. e, 

Heatmap: cluster marker genes (top, colour coded by cluster and colour coded by condition) 

and exemplar genes and lineage annotation labelled (right). Cells columns, genes rows.
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Figure 2. Identifying scar-associated macrophage subpopulations.
a, Clustering 10,737 mononuclear phagocytes (MP) from 5 healthy and 5 cirrhotic human 

livers. TMo, tissue monocyte; SAMΦ, scar-associated macrophage; KC, Kupffer cell; cDC, 

conventional dendritic cell. b, Annotation by injury condition. c, Fractions of MP 

subpopulations in 5 healthy versus 5 cirrhotic livers, Mean±SEM, Wald test. d, Heatmap: 

MP cluster marker genes (top, colour coded by cluster and condition), exemplar genes 

labelled (right). Cells columns, genes rows. e, Scaled gene expression of SAMΦ and TMo 

cluster markers across MP cells from healthy (n=5) and cirrhotic (n=5) livers. f, Flow 

cytometry: TREM2+CD9+ MP fraction in healthy (n=2) versus cirrhotic (n=3) liver, Mean

±SEM. g, Primary human hepatic stellate cells (HSC) treated with conditioned media from 

SAMΦ (n=3) or TMo (n=3); qPCR of stated genes, expression relative to mean expression 

of control HSC (n=6), Mean±SEM, Kruskal-Wallis and Dunn. h, Representative 
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immunofluorescence image, cirrhotic liver: TREM2 (red), CD9 (white), collagen 1 (green), 

DAPI (blue), scale bar 50µm.
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Figure 3. Fibrogenic phenotype of scar-associated macrophages.
a, UMAP visualisation, 23,075 cells from liver-resident MP (5 healthy and 5 cirrhotic) and 

blood monocytes (5 PBMC), annotating monocle pseudotemporal dynamics (purple to 

yellow). RNA velocity field (red arrows) visualised using Gaussian smoothing on regular 

grid. Right: Annotation of MP subpopulation, injury condition. b, Transition probabilities 

per SAMΦ subpopulation, indicating for each cell the likelihood of transition into either 

SAMΦ(1) or SAMΦ(2), calculated using RNA velocity (yellow high; purple low; grey 

below threshold of 2x10-4). c, Heatmap: spline curves fitted to genes differentially expressed 

across blood monocyte-to-SAMΦ (right arrow) and blood monocyte-to-cDC (left arrow) 

pseudotemporal trajectories, grouped by hierarchical clustering (k=3). Gene co-expression 

modules (colour) labelled right with exemplar genes from each module. d, Spline curve 

fitted to averaged expression of all genes in module 1, along monocyte-to-SAMΦ 
pseudotemporal trajectory, selected GO enrichment (right), Fisher’s exact test.
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Figure 4. Identifying scar-associated endothelial subpopulations.
a, Clustering 8,020 endothelial cells from 4 healthy and 3 cirrhotic human livers, annotating 

injury condition (right). b, Fractions of endothelial subpopulations in healthy (n=4) versus 

cirrhotic (n=3) livers, Mean±SEM, Wald. c, Heatmap: endothelial cluster marker genes 

(colour coded top by cluster and condition), exemplar genes labelled right. Cells columns, 

genes rows. d, Representative immunofluorescence images: CD34 (red), CLEC4M (white), 

PLVAP (green), DAPI (blue), scale bar 50µm. e, Digital pixel quantification: CLEC4M 

staining healthy (n=5) versus cirrhotic liver (n=8), PLVAP staining healthy (n=11) versus 

cirrhotic liver (n=11), ACKR1 staining healthy (n=10) versus cirrhotic liver (n=10), scale 

bars 50µm, Mean±SEM, Mann-Whitney two-tailed.
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Figure 5. Identifying scar-associated mesenchymal cell populations.
a, Clustering 2,318 mesenchymal cells (Mes) from 4 healthy and 3 cirrhotic human livers, 

annotating injury condition (right). VSMC, vascular smooth muscle cell; HSC, hepatic 

stellate cell; SAMes, scar-associated mesenchymal cell. b, Heatmap: Mesenchymal cluster 

marker genes (top, colour coded by cluster and condition), exemplar genes labelled (right). 

Cells columns, genes rows. c, Representative immunofluorescence images: RGS5 (red), 

MYH11 (white), PDGFRα (green), DAPI (blue), scale bars 50µm d, Scaled gene expression 

of fibrillar collagens across mesenchymal cells from healthy (n=4) and cirrhotic (n=3) livers. 
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Meso, mesothelial cell. e, Fraction of mesenchymal subpopulations in healthy (n=4) versus 

cirrhotic (n=3) livers, Mean±SEM, Wald test. f, PDGFRα immunohistochemistry, digital 

pixel quantification of healthy (n=11) versus cirrhotic (n=11) liver (top right), Mean±SEM, 

Mann-Whitney two-tailed. PDGFRα pixel quantification in fibrotic septae and parenchymal 

nodules in 10 cirrhotic livers (bottom right), Wilcoxon two-tailed, scale bars 50µm.
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Figure 6. Multi-lineage interactions in the fibrotic niche.
a, Dotplot: ligand-receptor interactions between SAMΦ (n=10 human livers) and SAMes 

(n=7 human livers). X-axis, ligand (red) and cognate receptor (blue); y-axis, cell populations 

expressing ligand (red) and receptor (blue); circle size, P value (permutation test); colour 

(red, high; yellow, low), means of average ligand and receptor expression levels in 

interacting subpopulations. b, Representative immunofluorescence images, fibrotic niche. 

Left, TREM2 (red), PDGFB (white), PDGFRα (green), DAPI (blue), arrows 

TREM2+PDGFB+ cells. Right, TNFRSF12A (red), TNFSF12 (white), PDGFRα (green), 
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DAPI (blue), arrows TNFRSF12A+PDGFRα+ cells, scale bars 50µm. c to d, HSC 

proliferation assay: y-axis, area under curve (AUC) of % change in HSC number over time 

(hours), Mean±SEM, one-way ANOVA and Tukey. c, Control, TNFSF12, anti-

TNFRSF12A, isotype control, all n=3. d, Vehicle, PDGF-BB, Crenolanib, all n=3. e, 

Dotplot: ligand-receptor interactions between SAEndo (n=7 human livers) and SAMes (n=7 

human livers). X-axis, ligand (red) and cognate receptor (blue); y-axis, cell populations 

expressing ligand (red) and receptor (blue); circle size, P value (permutation test); colour 

(red, high; yellow, low), means of average ligand and receptor expression levels in 

interacting subpopulations. f, Representative immunofluorescence image, fibrotic niche. 

NOTCH3 (red), DLL4 (white), PDGFRα (green), DAPI (blue), arrows NOTCH3+PDGFRα
+ cells, scale bar 50µm. g, Endothelial cell JAG1 flow cytometry: healthy (n=3) or cirrhotic 

(n=9) liver, representative histogram (left), mean fluorescence intensity (MFI, right), Mean

±SEM, Mann-Whitney two-tailed. h, Cirrhotic endothelial cell and HSC co-culture, Notch 

inhibitor Dibenzazepine (DBZ). Representative immunofluorescence images (left), Collagen 

1 (magenta), PECAM1 (green), DAPI (blue). Digital pixel analysis (right); collagen 1 area, 

n=3, Mean±SEM, RM one-way ANOVA and Tukey. n, HSC gene knockdown: control (n=7) 

or NOTCH3 (n=7) siRNA, qPCR of stated gene, expression relative to mean expression of 

control siRNA, Mean±SEM, Mann-Whitney two-tailed.
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