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Large-scale population analyses coupled with advances in technology have demonstrated that the human genome is more

diverse than originally thought. To date, this diversity has largely been uncovered using short-read whole-genome sequenc-

ing. However, these short-read approaches fail to give a complete picture of a genome. They struggle to identify structural

events, cannot access repetitive regions, and fail to resolve the human genome into haplotypes. Here, we describe an ap-

proach that retains long range information while maintaining the advantages of short reads. Starting from ∼1 ng of high

molecular weight DNA, we produce barcoded short-read libraries. Novel informatic approaches allow for the barcoded

short reads to be associated with their original long molecules producing a novel data type known as “Linked-Reads”.

This approach allows for simultaneous detection of small and large variants from a single library. In this manuscript, we

show the advantages of Linked-Reads over standard short-read approaches for reference-based analysis. Linked-Reads allow

mapping to 38 Mb of sequence not accessible to short reads, adding sequence in 423 difficult-to-sequence genes including

disease-relevant genes STRC, SMN1, and SMN2. Both Linked-Read whole-genome and whole-exome sequencing identify com-

plex structural variations, including balanced events and single exon deletions and duplications. Further, Linked-Reads ex-

tend the region of high-confidence calls by 68.9 Mb. The data presented here show that Linked-Reads provide a scalable

approach for comprehensive genome analysis that is not possible using short reads alone.

[Supplemental material is available for this article.]

Since the completion of the human genome project, many stud-

ies have applied whole-genome sequencing to thousands of indi-

viduals from diverse populations, reshaping our understanding of

human variation (The 1000 Genomes Project Consortium 2015;

Sudmant et al. 2015; Lek et al. 2016). To date, most genome anal-

yses were performed with short reads, resulting in robust analyses

of small variants over nonrepetitive parts of the genome.

However, recent technical advances in both sequencing and

mapping have revealed that despite extensive information gar-

nered from short-read large population surveys, we are still under-

representing the amount of structural variation in the human

population (Chaisson et al. 2015, 2017; Huddleston and Eichler

2016; Collins et al. 2017).

The reconstruction of haplotypes (phasing) can be important

for many biological studies but is currently not feasible for single

samples sequenced with short reads. When analyzing data from

rare disease cohorts, knowing if potentially pathogenic variants

are in cis or trans is necessary for interpreting clinical impact. In ad-

dition, haplotype information is necessary for understanding al-

lele-specific impacts on gene expression (Ramaker et al. 2017).

Studies also show that haplotype information can be critical
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for variant identification, particularly for heterozygous SVs

(Huddleston and Eichler 2016).

The limitations of short reads suggest the need for improved

methods for genome analysis. Several long-molecule sequencing

and mapping approaches have been developed (Carneiro et al.

2012; Bionano Genomics 2017; Nakano et al. 2017), but their

high input requirements, error rates, and costs make them intrac-

table for many applications, particularly those requiring thou-

sands of samples (Chaisson et al. 2017). To address this need, we

developed a technology that retains long range information while

maintaining the benefits of short-read sequencing (Zheng et al.

2016). The core data type, Linked-Reads, is generated by perform-

ing haplotype limiting dilution of long DNAmolecules into more

than 1 million barcoded partitions, synthesizing barcoded se-

quence libraries within those partitions, and then performing

standard short-read sequencing in bulk. The limited amount of

DNA put into the system, coupled with novel algorithms, allow

short reads to be associated with their long molecule of origin, in

most cases, with high probability.

Here, we describe both biochemistry and algorithmic im-

provements over the original Linked-Reads platform, GemCode,

using the Chromium System. It is important to note that Linked-

Reads are paired-end short reads with a barcode on read 1 and

can be used by many common short-read tools. To fully realize

the potential of Linked-Reads, additional algorithms that take ad-

vantage of these barcoded sequences and molecule information

must be combined with short-read algorithms. In the following

text, when we refer to Linked-Read WGS (lrWGS) we are referring

to the combination of biochemistry and algorithm approaches

applied. We use srWGS (short-read whole genome sequencing)

and srWES (short-read whole exome sequencing) to refer to

whole-genome and whole-exome results from Illumina TruSeq

PCR-free processed with a GATK best practices pipeline, as de-

scribed subsequently.

Results

Improvements in Linked-Read data

One limitation of the original GemCode approachwas the need to

combine the Linked-Read data with a standard short-read library

due to coverage imbalances in the GemCode library. Bymodifying

the biochemistry to include isothermal amplification, we were

able to obtain more even genome coverage, approaching that of

PCR-free short-read preparations and eliminating the need for an

additional library (Fig. 1).

Additional improvements include increasing the number of

barcodes from 737,000 to 4,000,000 and the number of partitions

from 100,000 to more than 1,000,000. This allows for fewer DNA

molecules per partition and thus greatly reduces the rate at which

two allelic loci occur in the same GEM (Supplemental Fig. 1). This

lowered rate of barcode sharing increases the probability of correct-

ly associating a short read to its molecule of origin.

Improved genome and exome alignments

Several improvementsweremade in the LongRanger analysis pipe-

line to better take advantage of the Linked-Read data type. The first

of these, the Lariat aligner (https://github.com/10XGenomics/

lariat), expands on the “Read-Cloud” approach (Bishara et al.

2015; Supplemental Methods 1). This approach allows for the

recovery of 36–44 Mb of genome coverage when compared to

PCR-free short reads. Conversely, only 1–4 Mb of the genome has

coverage in the PCR-free data but not lrWGS (Fig. 2). The amount

of recovered alignments using lrWGS varies from chromosome to

Figure 1. Coverage evenness. Distribution of read coverage for the en-
tire human genome (GRCh37). Comparisons between 10x Genomics
Chromium Genome (CrG), 10x Genomics GemCode (GemCode), and
Illumina TruSeq PCR-free standard short-read NGS library preparations
(Standard Short-Read [PCR-Free]). Sequencing was performed in an effort
to match coverage (Methods). Note the shift of the CrG curve to the right,
showing the improved coverage of Chromium versus GemCode. The
x-axis represents the fold read coverage across the genome, and the y-
axis represents the total number of bases covered at any given read depth.

Figure 2. Comparison of unique genome coverage by assay. The y-axis
shows the amount of sequence with a coverage of ≥5 reads at MapQ ≥30.
Column 1 shows amount of the genome covered by 10x Chromiumwhere
PCR-free TruSeq does not meet that metric. Column 2 shows the amount
of the genome covered by PCR-free TruSeqwhere 10x Chromiumdoes not
meet the metric. Column 3 shows the net gain of genome sequence with
high-quality alignments when using 10x Chromium versus PCR-free
TruSeq. The comparison was performed on samples with matched se-
quence coverage (Methods).
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chromosome, but is consistent across samples (Supplemental Fig.

2). The ability of lrWGS+Lariat to rescue repetitive sequence de-

pends on repeat elements being far enough from each other that

they are not likely to share a barcode, and repeat type and distribu-

tion differs by chromosome. The sequence gained using lrWGS is

dominated by regions annotated as segmental duplications

(∼75%), with the alignments to the decoy sequence accounting

for another 13% and exonic sequences accounting for ∼5% (Fig.

2; Supplemental Methods 1.2; Supplemental Table 1). Input mole-

cule length also impacts the amount of sequence recovered

(Supplemental Fig. 3).

We observe a net gain in gene coverage when performing

lrWGS compared to srWGS, and even more robust improvement

when performing lrWES compared to srWES (Supplemental Fig.

4). In a known set of 570 genes with closely related paralogs that

confound short-read alignment (NGS “dead zone” genes)

(Mandelker et al. 2016), we see a net gain in read coverage in 423

genes using lrWGS and 376 using lrWES. For the 71 NGS “dead

zone” genes relevant to Mendelian disease, we see a net improve-

ment in 51 of these genes using lrWGS and 41 genes using

lrWES (Fig. 3).

Small variant calling

Next, we assessed the performance of Linked-Reads for small vari-

ant calling (<50 bp). We used control samples, NA12878 and

A B

C D

E F

Figure 3. Gene finishing metrics. Gene finishing metrics for whole-genome and whole-exome sequencing across selected gene sets. Genome is shown
on left, exome on right. Gene finishing is defined as the percentage of exonic bases with at least 10-fold coverage for genome (A) and at least 20× for exome
(B) (Mapping quality score ≥MapQ30). (A,B) Gene finishing statistics for seven disease-relevant gene panels. Shown is the average value across all genes in
each panel. AlthoughChromiumprovides a coverage advantage in all panel sets, the impact is particularly profound for “NGSDead Zone” genes. (C–F) Net
coverage differences for individual genes when comparing Chromium to PCR-free TruSeq. Each bar shows the difference between the coverage in PCR-free
TruSeq from the coverage in 10x Chromium. (C,D) The 570 NGS “dead zone” genes for genome (C) and exome (D). (E,F) The graphs are limited to the list
of NGS dead zone genes implicated in Mendelian disease. In C–F, the blue coloring highlights genes that are inaccessible to short-read approaches, but
accessible using CrG; the yellow coloring indicates genes where CrG is equivalent to short reads or provides only modest improvement. The red coloring
shows genes with a slight coverage increase in TruSeq, although these genes are typically still accessible to CrG. (∗) Genes SMN1, SMN2, and STRC. The
comparison was performed on samples with matched coverage (Methods).
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NA24385 as test cases. We produced two small variant call sets for

each sample, one generated by running paired-end 10x Linked-

Read Chromium libraries through the Long Ranger (lrWGS)

pipeline and one produced by analyzing paired-end reads from a

PCR-free TruSeq library using GATK pipeline (PCR-) following

best practices recommendations (https://software.broadinstitute

.org/gatk/best-practices/). The number of calls was comparable be-

tween data sets and were largely overlapping (Table 1).

In order to assess the accuracy of the variant calling in each

data set, we used the hap.py tool (https://github.com/Illumina/

hap.py, commit 6c907ce) to compare the lrWGS and PCR- VCFs

to the Genome in a Bottle (GIAB) high-confidence call set (v.

3.2.2) (Zook et al. 2014). We chose this call set version as it was

the last GIAB data set that did not include 10x data as an input

for call set curation. This necessitated the use of GRCh37 as a ref-

erence assembly rather than the more current GRCh38 reference

assembly, limiting analysis to the 82.67% of SNV calls that overlap

high-confidence regions. Initial results suggested that the lrWGS

calls had comparable sensitivity and specificity for SNVs (Table

1; Supplemental Table 2). We observed slightly diminished indel

sensitivity and specificity, driven largely by regions with extreme

GC content and low complexity sequences (LCRs).

The GIAB high-confidence data set is known to be conserva-

tive, so we explored whether there was evidence for variants called

outside of the GIAB set. We utilized publicly available 40-fold cov-

erage Pacific Biosciences (PacBio) data sets available from the GIAB

consortium (Zook et al. 2016) and PCR- short-read data to evaluate

Linked-Read putative false positive variant calls. Initial manual in-

spection of 25 random locations suggested that roughly half of the

hap.py identified lrWGS false positive calls were well supported by

short-read or PacBio evidence and were haplotype consistent

(Supplemental Table 3). We then did a global analysis of all 9513

SNVs and 18,030 indel putative false positive calls identified in

NA12878 and looked for evidence of the alternate alleles in aligned

PacBio reads only. This analysis provided evidence that 2377 SNVs

and 12,812 indels of the GIAB determined false positive calls were

likely valid calls (Supplemental Fig. 5; Supplemental File 1). This

prompted us to extend our analysis to include 69.72 Mb for

NA12878 and 70.66 Mb for NA24385 of the genome in addition

to the GIAB-defined confident regions (for details on GIAB++

BED, see Methods). We reanalyzed the variant calls with the

hap.py tool with the augmented confident regions. This allowed

us to identify an additional 19,688 SNVs and 5444 indels as likely

true positives. We anticipate that this is a conservative estimate

since our hap.py-defined false positive calls are inflated due to

lack of PacBio coverage in many of these regions. Of the total pu-

tative false positive calls exclusive to the GIAB++ analysis,

61.95% (45,665) of SNVs and 42.08% (4637) of indels could not

be validated because of little or no PacBio read coverage (Supple-

mental Fig. 5). These data show that the lrWGS approach identifies

more small variants than short-read only approaches, driven by an

increase in the percentage of the genome for which lrWGS can ob-

tain high-quality alignments (Table 1).

Haplotype reconstruction and phasing

An advantage of Linked-Reads is the ability to reconstruct multi-

megabase haplotypes (phase blocks) from genome sequence data

for a single sample. Haplotype reconstruction increases sensitivity

for calling heterozygous variants, particularly SVs (Huddleston

et al. 2016). It also improves variant interpretation by providing in-

formation on the physical relationship of variants, such as wheth-

er variants within the same gene are in cis or trans. In the control

samples analyzed, we see phase block N50 values for lrWGS of

10.3 Mb for NA12878, 9.58 Mb for NA24385, 16.8 Mb for

NA19240, and 302 kb for lrWES using Agilent SureSelect v6 baits

on NA12878. This allowed for complete phasing of 91.1% of genes

in the NA12878 genome, 90.9% in NA24385, and 91.0% in

NA19240, and an average of 91% in the NA12878 exome. Phase

block length is a function of input molecule length, molecule

size distribution, and of sample heterozygosity extent and distribu-

tion. At equivalent mean molecule lengths, phase blocks will be

Table 1. Summary of variant call numbers with respect to GIAB

Variable NA12878 10xLR NA12878 PCR- NA24385 10xLR NA24385 PCR-

Total variants 4,600,606 4,651,391 4,504,190 4,564,102
Total SNVs 3,808,856 3,760,296 3,731,448 3,689,866
Sensitivity (SNVs) 0.996525983 0.997887311 0.997246162 0.998425022
Specificity (SNVs) 0.996982928 0.998474689 0.997754891 0.999012527
SNVs in confident regions 3,153,057 3,152,799 3,053,304 3,053,249
SNVs in truth set 3,143,316 3,147,610 3,046,234 3,049,835
Sensitivity (SNVs) (++) 0.994498718 0.995408359 0.996619732 0.997396835
Specificity (SNVs) (++) 0.974517521 0.987927497 0.970378148 0.983854181
SNVs in confident regions (++) 3,266,048 3,224,849 3,151,491 3,111,146
SNVs in truth set (++) 3,182,558 3,185,469 3,057,434 3,059,818
Total indels 791,750 891,095 772,742 874,236
Sensitivity (indels) 0.933975195 0.973396905 0.933085491 0.977287898
Specificity (indels) 0.950130965 0.982073022 0.949342412 0.985153439
Indels in confident regions 361,547 368,216 347,786 354,897
Indels in truth set 334,577 348,699 321,517 336,748
Sensitivity (indels) (++) 0.92264 0.964579042 0.905634526 0.974315427
Specificity (indels) (++) 0.923436804 0.963676143 0.88549083 0.93319472
Indels in confident regions (++) 379,399 383,935 474,879 491,054
Indels in truth set (++) 341,279 356,792 411,130 442,309

The table shows the counts of variants (SNV and indel) from variant calls generated in four experiments: NA12878 Linked-Reads WGS data run
through Long Ranger (NA12878 lrWGS), NA12878 TruSeq PCR-free data run through GATK Best Practices pipeline (NA12878 srWGS), NA24385
Linked-Reads WGS data run through Long Ranger (NA24385 lrWGS), and NA24385 TruSeq PCR-free data run through GATK Best Practices pipeline
(NA24385 srWGS). These variants were compared to the GIAB VCF truth set and GIAB BED confident regions using hap.py, and data are shown per
variant type for count of variants in the truth set and in the confident regions (along with sensitivity and specificity). Data is also shown for the same
quantities when the variant calls were compared to the extended truth set (GIAB++ VCF) and the augmented confident region (GIAB++ BED).
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longer in more diverse samples (Fig. 4; Supplemental Fig. 6). For

samples with similar heterozygosity, longer input molecules will

increase phase block lengths (Supplemental Fig. 7).

We assessed the accuracy of our phasing calls by comparing

the Linked-Read phasing results for NA12878 with the Illumina

Platinum genomes (Eberle et al. 2017) phasing results derived

from jointly phasing the 17-member CEPH pedigree. Following

this analysis (Amini et al. 2014), we decompose phasing errors

into “short-switches,” small numbers of isolated variants incor-

rectly phased, and “long-switches,” errors in which an incorrect

phasing junction persists for many variants across a longer dis-

tance. The rate of each switch type is measured per phased hetero-

zygous variant. We also measure (1) the rate at which a SNP is

correctly phased to other variants in its phase block (heavily penal-

izing long switch errors inside large phase blocks), and (2) the rate

atwhich a SNP inside a gene is correctly phased to other variants in

the gene. Independent studies have demonstrated that Linked-

Read phasing has best-in-class accuracy compared to a variety of

other phasing methods (Chaisson et al.

2017;Choi et al. 2018). Short switcherror

rates average ∼2×10−4, long switch error

rates average ∼2× 10−5, and within-

phase-block correct rate of ∼0.98

(Supplemental Table 4).

Phase block construction using

lrWES is, in addition, constrained by

the capture bait set and reduced variation

in coding sequences. In order to analyze

additional factors impacting phase block

construction, we assessed four samples

with known compound heterozygous

variants in three Mendelian disease

genes, DYSF, POMT2, and TTN. The vari-

ant separation ranged from 33 to >188 kb

(Table 2). Initial DNA extractions yielded

long molecules ranging in mean size

from 75 to 112 kb. We analyzed these

samples using the Agilent SureSelect V6

exome bait set, with down-sampling of

sequence data to both 7.25 Gb (∼60-

fold coverage) and 12 Gb of sequence

(∼100-fold coverage). In all cases, the var-

iants were phased with respect to each

other and determined to be in trans, as

previously determined by orthogonal as-

says. By comparing phasing of NA12878

Linked-Read exome data to phasing from

pedigree analysis of the Illumina Plati-

num Genomes CEPH pedigree, we deter-

mine that the global probability a SNP is

phased correctly within a gene ranges

from 99.95–99.99%, making misphasing

of two heterozygous variants in a gene

relative to each other a very rare event.

Many samples of interest have al-

ready been extracted using standard

methods not optimized for highmolecu-

lar weight DNA andmay not be available

for a fresh reextraction. For this reason,

we wanted to understand the impact of

reduced molecule length on phasing of

genes and variants in these samples. We

took freshly extracted longmolecules and sheared them to various

sizes, aiming to assess lengths ranging from5 kb to the original full

length (Table 2; Supplemental Table 5). These results illustrate the

complex interplay between molecule length distribution and ob-

served heterozygosity within a region. For example, in sample

B12-21,withvariants inTTN that are 53kbapart, thevariants could

be phased, even with the smallest molecule size. However in sam-

ple B12-122, with variants in POMT2 only 33 kb apart, variant

phasing is lost at 20-kb lengths. This appeared to be due to a higher

rate of heterozygous variation in TTN, allowing the phasing of dis-

tant heterozygous sites to occur by phasing themanyother hetero-

zygous variants that occurred between them. A general lack of

variation in POMT2 precluded such “stitching” together of shorter

molecules by phasing of intermediate heterozygous variation. To

confirm this, we assessed the maximum distance between hetero-

zygous sites observed in each gene in each sample. As expected,

when themaximumdistancebetweenheterozygous SNPs is greater

than the molecule length (negative values), the ability to phase

B

A

Figure 4. Haplotype reconstruction and phasing. (A) Inferred length-weighted mean molecule length
plotted against N50 of called Phase blocks (both metrics reported by Long Ranger) and differentiated by
sample ID and heterozygosity. Heterozygosity was calculated by dividing the total number of heterozy-
gous positions called by Long Ranger by the total number of non-N bases in the reference genome
(GRCh37). TworeplicatesofNA19240and five replicatesofNA12878wereused. Sampleswithhigherhet-
erozygosity produce longer phase blocks than samples with less diversity when controlling for input mol-
ecule length. (B) Phase block distributions across the genome for input length matched Chromium
Genome samples NA12878 and NA19240. Phase blocks are shown as displayed in Loupe Genome
Browser. Solid colors indicate phase blocks. Note the longer phase blocks in the more diverse NA19240
sample.
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causative SNPsdecreases (Fig. 5). There are exceptions to this as lon-

ger molecules in the size distribution will sometimes allow tiling

between variants, extending phase block size beyond what would

be expected based on the mean length alone.

Linked-Reads allow for the reconstruction of long haplotypes.

Optimizing for long inputmolecules provides formaximumphase

block size, but shorter molecule lengths can provide gene-level

phasing. Further, in the context of sequencing for disease identifi-

cation, causative heterozygous variants would be expected to aid

in phasing of the disease-causing gene as they would provide the

necessary variation to distinguish the two haplotypes.

Structural variant detection

Structural variants remain one of the most difficult types of varia-

tion to accurately ascertain, in part because they tend to cluster

in duplicated and repetitive regions, but also because the various

signals for these events can be challeng-

ing to detect with short reads. Another

complicating factor is that there are

many types of structural variants, and

each requires the detection of a different

signal (Alkan et al. 2011; Collins et al.

2017). There is increasing evidence that

grouping reads by their source haplotype

improves SV sensitivity, but this is not

commonly done in practice (Huddleston

et al. 2016; Chaisson et al. 2017).

Large-scale SVs (>30 kb)

Long Ranger uses two novel algorithms to

identify large SVs—one that assesses devi-

ations from expected barcode coverage,

andonethat looks forunexpectedbarcode

overlap between distant regions. The bar-

code coverage algorithm is useful for

assessingCNVs,whereas thebarcodeover-

lapmethod can detect a variety of SVs but

fails to detect terminal events (Supple-

mental Section 3).Weused two approach-

es to assess lrWGS performance on large

SVs. First, we compared SV calls from the

NA12878 sample to validated calls de-

scribed in a publication of a structural var-

iant classifier, svclassify (Parikh et al.

2016). Next, we obtained the GeT-RM

CNVPanel, a collection of known events including large deletions,

duplications, inversions, balanced translocations, and unbalanced

translocations designed to assess performance of clinical aCGH.

The validated call set published with svclassify (Parikh et al.

2016) contains deletions and insertions, but no balanced events.

In contrast, the Long Ranger pipeline output contains deletions,

duplications, and balanced events, but Long Ranger does not cur-

rently call insertions (Supplemental Table 6).

We first considered deletion variants >30 kb. The svclassify set

contains 11 such deletion calls, Long Ranger calls 17 PASS events,

and eight events are common to both (Table 3). All of the eight var-

iants in common show Mendelian consistency and breakpoint

agreement within the CEU/CEPH trio. Of the three svclassify calls

not called by Long Ranger, one is called by Long Ranger as an

event <30 kb, one is called but filtered to the candidate list due

to overlap with a segmental duplication, and one is an error in

the svclassify set relative to GRCh37.p13 (Supplemental Section

Table 2. Gene, variant distance, and Residual Variation Intolerance Score (RVIS) for clinically relevant genes

Sample Gene Var1 Var2
Variant

distance (bp)
RVIS
score

RVIS
percentile (%)

Molecule
length (bp)

B12-38 DYSF Chr 2: 71,778,243dupT Chr 2: 71,817,342_71,817,343delinsAA 39,097 −1.31 4.65 18,461
B12-112 POMT2 Chr 14: 77,745,107A>G Chr 14: 77,778,305C>T 33,198 −0.93 9.68 54,569
B12-21 TTN Chr 2: 179,585,773C>A Chr 2: 179,531,966C>A 53,807 2.17 98.04 17,432
UC-394 TTN Chr 2: 179,584,098C>T Chr 2: 179,395,221T>A 188,877 2.17 98.04 13,118a

Impact of molecule length and constraint on the ability of Linked-Reads to phase causative variants. As molecule length increases within a sample, the
likelihood that two causative variants will be phased relative to each other also increases. However, genes that are not highly constrained (e.g., TTN)
are more likely to show phasing between distant variants at small molecule lengths because more heterozygous variants are likely to occur between
those variants than in highly constrained genes (Petrovski et al. 2013). Shown are the shortest molecule lengths at which phasing was achieved for
each sample. For results at all observed shear lengths, see Supplemental Table 5.
aFor this sample, phasing was achieved in one 13-kb length sample, but was not reproducible until ∼70 kb lengths.

Figure 5. Validated example of impact of molecule length on phasing (7.25 Gb). Blue dots represent
samples for which the variants of interest are not phased, and green dots represent samples for which
there is phasing of the variants of interest. At longer molecule lengths (>50 kb), the molecule length
was always longer than the maximum distance between heterozygous SNPs in a gene, and phasing be-
tween the causative SNPs was always observed. As molecule length shortens, it becomes more likely that
the maximum distance between SNPs exceeds the molecule length (reflected as a negative difference
value), and phasing between the causative SNPs was never observed in these cases. Whenmaximum dis-
tance is similar to the molecule length, causative SNPs may or may not be phased. This is likely impacted
by the molecule length and variant distribution within the sample.
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4.1). We checked for Mendelian consistency in the nine events

unique to the Long Ranger set. Eight of these events showed con-

sistent inheritance, although two had inconsistent breakpoints

when compared to the parents (Supplemental Table 7). The last

event is a call in the telomeric region of Chr 2 that overlaps a

known reference assembly issue. The call appeared to be made

due to a drop in phased coverage on one haplotype immediately

adjacent to a known reference gap, and is likely a false positive.

We next tested 23 samples with 29 balanced or unbalanced

SVs from the GeT-RM CNVPanel available from Coriell. These

samples havemultiple, orthogonal assays confirming the presence

of their described SVs.Wedetected 27 of the 29 SVs, correctly char-

acterizing 22 of the 23 samples tested (Supplemental Table 8). One

of the undetected events was in the “candidate” SV list as it over-

laps a segmental duplication. Themissed event is a balanced trans-

location with a breakpoint in a heterochromatic region of Chr 16.

This region is represented by Ns in the reference assembly and will

be invisible to any sequence-based reference dependent method

(Schneider et al. 2017).

We also assessed the impact of sequence depth on large SV

identification in the GeT-RM set. Large CNV signals were detect-

able with as little as 5 Gb (approximately onefold genomic read

coverage) (Supplemental Fig. 8), and balanced events required

∼50Gb of sequence for the algorithm to call these events, with sig-

nal in the data suggesting algorithmic improvements could lessen

this requirement (Supplemental Fig. 9).

Intermediate SV calls (50 bp–30 kb)

We next considered deletions between 50 bp and 30 kb in

NA12878. These deletions were detected both using Long Rang-

er–specific algorithms as well as the Genome Analysis Toolkit

(GATK) HaplotypeCaller. We obtained 1824 deletion calls from

GATK and 4118 from Long Ranger (Table 4). These two sets were

merged using SURVIVOR (Jeffares et al. 2017) resulting in 5136

merged deletion calls. This compares to 6965 deletions >50 bp

per sample in a study combining the output of 13 different algo-

rithms on short-read data and 9488 deletions >50 bp per sample

on long-read data (Chaisson et al. 2017). To establish a comparison

to existing methods, we ran the LUMPY (Layer et al. 2014) algo-

rithm using the developer recommendations but without tuning

parameters (Supplemental Table 9) and found 19,307 deletion

calls in this size range.

Using both the output of Long Ranger and LUMPY, we com-

pared our calls to the calls in svclassify. We correctly identified

88.4% of intermediate deletions present in the svclassify truth

set (2107), and also called an additional 2048 SVs (49.6% preci-

sion) (Table 4). Combining the GATK and Long Ranger calls keeps

recall roughly the same, but lowers the precision ∼10% (Supple-

mental Table 9).We also compared the LUMPY results to svclassify

and found 1263 true positives (55.4% recall). Of note, the Long

Ranger calls provide improved detection of larger SVs, with an ex-

pected bump around 300 bp, likely accounted for by better repre-

sentation of Alus (Fig. 6).

Although sensitivity of the Long Ranger approach is good,

this comes at the expense of specificity (Table 4; Supplemental

Table 9). Given the bias in specificity in phased versus unphased

regions, we expect that algorithmic improvements will produce

further gains in sensitivity and specificity for this class of variants.

In addition, the small number of events <200 bp in the svclassify

set is likely not representative of the true number of calls but rather

technical/algorithmic limitations.

Analysis of samples from individuals with inherited disease

We went on to investigate the utility of Linked-Reads on samples

with known disease-causing variants typically difficult to call

with a standard, short-read exome. We obtained samples with

known exon-level deletion and duplication events from a cohort

that had been assessed using a high-depth NGS-based panel. We

analyzed 12 samples from nine individuals using an Agilent

SureSelect V6 Linked-Read exome at both 7.25 Gb (∼60-fold raw

coverage) and 12 Gb (∼100-fold coverage) (Table 5). For three sam-

ples, patient-derived cell lines were available in addition to archi-

val DNA, allowing investigation of the impact of DNA length on

variant calling in this cohort.

We identified five of the nine known exon-level events in

these samples in at least one sample/depth combination. In two

samples, increasing depth to 12 Gb enabled calling not possible

at 7.25Gb (Samples D and F [archival]) (Table 5). For the three sam-

ples with matched cell line and archival DNA, two had variants

that could not be called in either sample type at either depth,

whereas sample F could be called at both depths for the longer

DNA extracted from the cell line, but could only be called at the

higher depth in the shorter archival sample. Because the algo-

rithms for calling these variants rely on phasing and barcode infor-

mation, there is a correlation between gene phasing and variant

calling, with no variants successfully called in samples not phased

over the causative gene.

For two of the samples where Linked-Read exome sequencing

was unable to phase or call the known variant, we performed

lrWGS. In one case, the presence of intronic heterozygous varia-

tion was able to restore phasing to the gene and the known event

Table 3. SV intersections

Size group
of PASS
deletions

Total number
of Long

Ranger calls in
each category

Total number
of svclassify
calls in each
category

Total number of
overlapping calls of
Long Ranger and
the svclassify data

sets

≥30 kb 17 11 8
<30 kb 5136 2294 2024

Different intersections of Long Ranger SV calls with a ground truth data
set (Parikh et al. 2016). Comparison class identified in the leftmost
column. Large deletions (≥30 kb) intersected against all deletions ≥30
kb in the ground truth set. Smaller deletions (<30 kb), marked as PASS
by our algorithm, intersected against the full deletion ground truth set.

Table 4. Intermediate SV calls

Intermediate SV metrics
Genome =
NA12878

Number of deletion calls from Long Ranger 4118
Number of heterozygous calls 1699
Number of homozygous calls 2630
Number of calls that match svclassify truth set (recall) 2017 (88.4%)
Number of false positive calls (precision) 2048 (49.6%)

Intermediate SV (50 bp to 30 kb) results. The number of calls generated
by the intermediate SV algorithms are reported and broken down by in-
ferred zygosity. SURVIVOR (Jeffares et al. 2017) was used to merge these
intermediate SVs with the svclassify (Parikh et al. 2016) truth set, which
had also been subsetted to the same size range, and the resulting true
positive and false positive rates are reported as well as the associated
recall and precision.
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was called. In the second case, there was insufficient heterozygous

variation in the sample to allow phasing and the event was not

called. This again demonstrates that phasing is dependent onmol-

ecule length as well as sample heterozygosity. In samples with de-

creased diversity in genes of interest, causative variant calling by

Linked-Read sequencing was less likely (Supplemental Fig. 10).

Generally, it should be possible to in-

crease the probability of gene phasing

in an exome assay by augmenting the

bait set to provide coverage for common

intronic variant SNPs. The addition of

read coverage–based algorithms, such as

those used with standard short-read

exome sequencing, would also likely in-

crease sensitivity in unphased regions,

but were not used in this study.

One sample in this set contained

both a single exon event and a large CNV

in PMS2. Despite phasing of PMS2 the var-

iantwasnotcalledbygenomeorexomese-

quencing. Manual inspection of the data

revealed increased phased barcode cover-

age in PMS2, supporting the presence of a

large duplicationmissed by the SV calling

algorithms, and providing evidence that

improvements in the SV algorithms are

possible (Supplemental Fig. 11).

Discussion

Short-read sequencing has become the workhorse of human geno-

mics. This cost effective, high-throughput, and accurate base call-

ing approach provides robust analysis of short variants in unique

Figure 6. Deletion size distributions. Long Ranger calls intersected with the svclassify truth set by size.
True positive calls are blue, false negative calls are green, and false positive calls are orange. Most false
positives are present in the <250-bp size range, reflecting the lack of small deletions in the svclassify
set. Peaks corresponding to Alu and L1/L2 elements can be seen at ∼320 bp and ∼6 kb, respectively.

Table 5. Gene, variant type, and pipeline call for clinically relevant genes

Sample Gene Variant type Source Assay

Calculated
mean

length (kb)
Region
phased?

Called by at
least one
method?

Result
(LR)

14_000779_A MSH2 Single exon duplication Archival DNA SureSelectV6, 7.25 Gb (60x) 64 No No No call
14_000779_A MSH2 Single exon duplication Archival DNA SureSelectV6, 12 Gb (100x) 53 No No No call
15_000612_A PMS2 Single exon duplication Archival DNA SureSelectV6, 7.25 Gb (60x) 65 Yes Yes No call
15_000612_A PMS2 Single exon duplication Archival DNA SureSelectV6, 12 Gb (100x) 59 Yes Yes No call
B1633 BRCA1 Single exon duplication Cell line SureSelectV6, 7.25 Gb (60x) 96 No No No call
B1633 BRCA1 Single exon duplication Cell line SureSelectV6, 12 Gb (100x) 78 No No No call
B1633 BRCA1 Single exon duplication Cell line Whole Genome, 128 Gb (30x) 88 No No No call
B1633 BRCA1 Single exon duplication Archival DNA SureSelectV6, 7.25 Gb (60x) 28 No No No call
B1633 BRCA1 Single exon duplication Archival DNA SureSelectV6, 12 Gb (100x) 27 No No No call
L129364, B17012 BRCA2 Single exon duplication Archival DNA SureSelectV6, 7.25 Gb (60x) 24 No No No call
L129364, B17012 BRCA2 Single exon duplication Archival DNA SureSelectV6, 12 Gb (100x) 19 Yes Yes No call
B1668 BRCA1 Two exon deletion Cell line SureSelectV6, 7.25 Gb (60x) 106 No No No call
B1668 BRCA1 Two exon deletion Cell line SureSelectV6, 12 Gb (100x) 98 No No No call
B1668 BRCA1 Two exon deletion Archival DNA SureSelectV6, 7.25 Gb (60x) 71 No No No call
B1668 BRCA1 Two exon deletion Archival DNA SureSelectV6, 12 Gb (100x) 80 No No No call
B1731 BRCA1 Two exon deletion Cell line SureSelectV6, 7.25 Gb (60x) 97 Yes Yes Called
B1731 BRCA1 Two exon deletion Cell line SureSelectV6, 12 Gb (100x) 107 Yes Yes Called
B1731 BRCA1 Two exon deletion Archival DNA SureSelectV6, 7.25 Gb (60x) 15 No No No call
B1731 BRCA1 Two exon deletion Archival DNA SureSelectV6, 12 Gb (100x) 12 Yes Yes Called
D152523, B22632 PMS2 Two exon deletion Archival DNA SureSelectV6, 7.25 Gb (60x) 57 Yes Yes Called
D152523, B22632 PMS2 Two exon deletion Archival DNA SureSelectV6, 12 Gb (100x) 48 Yes Yes Called
FH103364, 365168 PMS2 2-3 exon deletion Archival DNA SureSelectV6, 7.25 Gb (60x) 54 Yes Yes Called
FH103364, 365168 PMS2 2-3 exon deletion Archival DNA SureSelectV6, 12 Gb (100x) 42 Yes Yes Called
FH106388, 505476 PMS2 Large structural variant Archival DNA SureSelectV6, 7.25 Gb (60x) 43 Yes No No call
FH106388, 505476 PMS2 Large structural variant Archival DNA SureSelectV6, 12 Gb (100x) 35 Yes No No call
FH106388, 505476 PMS2 Large structural variant Archival DNA Whole genome, 128 Gb (30x) 28 Yes No No call
FH106388, 505476 MSH2 Two exon deletion Archival DNA SureSelectV6, 7.25 Gb (60x) 43 No No No call
FH106388, 505476 MSH2 Two exon deletion Archival DNA SureSelectV6, 12 Gb (100x) 35 No No No call
FH106388, 505476 MSH2 Two exon deletion Archival DNA Whole genome, 128 Gb (30x) 28 Yes Yes Called

Ability of Linked-Reads to call variation in samples with known exon-level deletions and duplications. Exome or whole-genome sequencing was used
on samples freshly extracted from cell lines or on archival DNA samples. The ability of the barcode-aware algorithms to call exon-level events is
completely dependent on phasing. Longer DNA length and increased sequencing coverage sometimes improve variant calling, but this appears to be
rescued by enabling phasing.
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regions of the genome, but struggles to reliably call SVs, cannot as-

sess variation across the entire genome, and fails to reconstruct

long range haplotypes (Sudmant et al. 2015). Recent studies

have highlighted the importance of including haplotype informa-

tion and more complete SV identification in genome studies

(Chaisson et al. 2017).We have described an improved implemen-

tation of Linked-Reads coupled with novel algorithms in Long

Ranger, that allows reconstruction of multi-megabase phase

blocks, identification of large balanced and unbalanced SVs, and

identification of small variants, even in regions of the genome typ-

ically recalcitrant to short-read approaches.

Some limitations to this approach currently exist. We ob-

served a loss of coverage in regions of the genome with extreme

GC content, and reduced performance in small indel calling, al-

though this largely occurs in homopolymer regions and LCRs.

Recent work suggests ambiguity in such regions may be tolerated

for a large number of applications (Li et al. 2018). Although

Linked-Reads can resolvemany repetitive elements and genome re-

gions, highly repetitive sequences that are larger than the length of

input DNA are not resolvable by Linked-Reads. This limitation is

common to all technologies currently available, including long-

read sequencing. Repeat copies that reside on the same molecule

will be subject to the same limitations as standard short-read ap-

proaches. It is clear that algorithmic improvements to Long

Ranger would improve variant calling, particularly as some classes

of variants, such as insertions, are not yet attempted.However, this

is not uncommon for new data types, and there has already been

some progress in this area (Elyanow et al. 2017; Spies et al. 2017;

Karaoglanoglu et al. 2018; Xia et al. 2018). An additional limitation

in this study is the reliance on a reference sample for calling vari-

ants, which creates reference bias and the inability to call variants

in regions that are not resolved in the reference, as was the case

with the SV in the pericentric region on Chromosome 16. To by-

pass any reference bias, Linked-Read data can also be used to per-

form diploid de novo assembly in combination with an assembly

program, Supernova (Weisenfeld et al. 2017).

Despite these limitations, Linked-Read sequencing provides a

clear advantage over short reads alone allowing for the construc-

tion of long range haplotypes as well as the identification of short

variants and SVs from a single library and analysis pipeline. No

other approach, to our knowledge, that scales to thousands of ge-

nomes provides this level of detail for genome analysis. Other re-

cent studies have demonstrated the power of Linked-Reads to

resolve complex variants in both germline and cancer samples

(Collins et al. 2017; Greer et al. 2017; Nordlund et al. 2018;

Viswanathan et al. 2018) and demonstrates that Linked-Reads out-

performs the switch accuracy and phasing completeness of other

haplotyping methods (Chaisson et al. 2017). The ability to repre-

sent and analyze genomes in terms of haplotypes, rather than

compressed haploid representations, represents a crucial shift in

our approach to genomics, allowing for amore complete and accu-

rate reconstruction of individual genomes.

Methods

Samples and DNA isolation

Control samples (NA12878, NA19240, NA24385) were obtained as

fresh cultured cells from the Coriell Cell Biorepository (https://

catalog.coriell.org/1/NIGMS). DNA was isolated using the

Qiagen MagAttract HMW DNA kit and quantified on a Qubit

fluorometer following recommended protocols (https://support

.10xgenomics.com/genome-exome/index/doc/user-guide-chrom

ium-genome-reagent-kit-v2-chemistry).

Samples with known large SVs were obtained as cell lines

from the NIGMS Human Genetic Cell Repository at the Coriell

Institute for Medical Research (repository ID numbers listed in

Supplemental Table 8). Frozen cell pellets were thawed rapidly at

37°C in 1mL PBS. Highmolecular weight DNAwas then extracted

following recommended protocols, as above.

Clinical samples from individuals with known heterozygous

variants in three Mendelian disease loci (DYSF, POMT2, and

TTN) were collected at the Massachusetts General Hospital,

Analytic and Translational Genetics Unit and shipped to 10x

Genomics as cell lines and prepared as described above. Use of

samples from the Broad Institute was approved by the Partners

IRB (protocol 2013P001477).

Clinical samples from individuals with known exon-level del/

dups were collected at The Institute of Cancer Research, London

and shipped to 10x Genomics as cell lines or archival DNA.

Samples were recruited through the Breast and Ovarian Cancer

Susceptibility (BOCS) study and the Royal Marsden Hospital

Cancer Series (RMHCS) study. All patients gave informed consent

for use of their DNA in genetic research. The studies have been ap-

proved by the London Multicentre Research Ethics Committee

(MREC/01/2/18) and Royal Marsden Research Ethics Committee

(CCR1552), respectively. Samples were also obtained through clin-

ical testing by the TGLclinical laboratory, an ISO 15189 accredited

genetic testing laboratory. The consent given from patients tested

through TGLclinical includes the option of consenting to the use

of samples/data in research; all patients whose data was included

in this study approved this option. DNA was extracted from cell

lines as described above, and archival DNA samples were checked

for size and quality according to the manufacturer’s recommenda-

tions (https://support.10xgenomics.com/genome-exome/sample-

prep/doc/demonstrated-protocol-hmw-dna-qc).

Chromium Linked-Read library preparation

A Chromium controller chip was loaded with 1.25 ng of high mo-

lecular weight DNA, along with 10x Chromium reagents (either

v1.0 or v2.0) and gel beads following recommended protocols

(https://assets.contentful.com/an68im79xiti/4z5JA3C67KOyCE2

ucacCM6/d05ce5fa3dc4282f3da5ae7296f2645b/CG00022_Geno

meReagentKitUserGuide_RevC.pdf). Target enrichment for the

Linked-Read whole-exome libraries was performed using Agilent

SureSelect V6 exome baits following recommended protocols

(https://assets.contentful.com/an68im79xiti/Zm2u8VlFa8qGYW

4SGKG6e/4bddcc3cd60201388f7b82d241547086/CG000059_

DemonstratedProtocolExome_RevC.pdf). Supplemental Figure 12

describes targeted sequencing with Linked-Reads.

GemCode Linked-Read library preparation

For the GemCode comparator analyses, Linked-Read libraries were

prepared for samples NA12878, NA12877, and NA12882 using a

GemCode controller and GemCode V1 reagents following pub-

lished protocols (Zheng et al. 2016).

TruSeq PCR-free library preparation

Following recommended protocols (SupplementalMethods), 350–

800 ng of genomic DNA was sheared to a size of ∼385 bp. Target

enrichment for the Linked-Read whole-exome libraries was per-

formed using Agilent SureSelect V6 exome baits following recom-

mended protocols.
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Sequencing

Libraries were sequenced on a combination of Illumina instru-

ments (HiSeq 2500, HiSeq 4000, and HiSeq X). Paired-End se-

quencing read lengths were as follows: TruSeq and Chromium

whole-genome libraries (2×150 bp); Chromium whole-exome li-

braries (2×100 bp or 114 bp, 98 bp), and GemCode libraries

(2×98 bp). lrWGS libraries are typically sequenced to 128 Gb, com-

pared to 100 Gb for standard TruSeq PCR-free libraries. The

additional sequence volume compensates for sequencing the barc-

odes as well as a small number of additional sources of wasted data

and gives an average, deduplicated coverage of approximately 30×.

To demonstrate the extra sequence volume is not the driver of the

improved alignment coverage, we performed gene finishing com-

parisons at matched volume (100 Gb lrWGS and 100 Gb TruSeq

PCR-) and continue to see coverage gains (Supplemental Fig. 12).

Analysis

Comparison of 10x and GATK best practices

Weran theGATKbestpractices pipeline to generate variant calls for

TruSeqPCR-freedatausing the latestGATK3.8available at the time.

We first subsample the reads to 30-fold whole-genome coverage.

The read set is aligned to GRCh37 (hg19-2.2.0 reference using

BWA-MEMversion 0.7.12), reads are sorted, duplicates aremarked,

and the BAM is indexed using Picard tools (version 2.9.2; https

://broadinstitute.github.io/picard/). Indel realignment and BAM

recalibration (base quality score recalibration) is performed using

known indels from Mills Gold Standard and The 1000 Genomes

Project and variants from dbSNP (version 138). Indels and SNVs

are called from the BAM using HaplotypeCaller and are genotyped

toproduce a singleVCF file. ForNA12878, thisVCF file canbe com-

pared using hap.py (https://github.com/Illumina/hap.py, commit

6c907ce) to the truth variant set curated by Genome in a Bottle on

confident regions of the genome. Sensitivity and specificity for

both SNVs and indels is calculated to compare the Long Ranger

short variant caller with the GATK Best Practices pipeline. All

Long Ranger runs were performed with a prerelease build of Long

Ranger version 2.2 utilizing GATK as a base variant caller. Long

Ranger 2.2 has since been released.

Development of extended truth set

Any putative false positive variant found in the TruSeq/GATK or

Chromium/Long Ranger VCFs was tested for support in the

PacBio data (Supplemental Methods).

We selected regions of two- to sixfold degeneracy as deter-

mined by the “CRG Alignability” track (Derrien et al. 2012) as re-

gions where improved alignment is likely to yield credible novel

variants. We took the union of the GIAB confident regions BED

file with these regions to determine the GIAB++ confident regions

BED. The amount of sequence added to the GIAB++ BED differs by

sample, as the original GIAB confident regions are sample-specific.

Structural variant comparison against deletion ground truth

After segmenting the Long Ranger deletion calls by size, we over-

lapped them to the svclassify set (Parikh et al. 2016) using the

bedr package and BEDTools v2.27.1 (Quinlan and Hall 2010).

We retained events >30 kb showing at least 50% reciprocal overlap.

We also searched for Mendelian inheritance consistency on the

parental samples NA12891 and NA12892. We annotated eight

overlapping events with almost perfect breakpoint andMendelian

inheritance agreement. All genotypes were phased. In the svclas-

sify overlapping deletions, all of the breakpoints except for the 3′

most in Chr 5: 104,432,114–104,503,672 had a read’s length dis-

tance from each other.We then curated the remaining nine events

called by Long Ranger that were not in the svclassify set. Of notice

is one event (Chr 1: 189,704,517–189,783,347) containedwithin a

larger deletion (Chr 1: 189,690,000–189,790,000). Among the

nonoverlapping deletions, were six large SVs with breakpoint

and Mendelian consistency in the parents. The other three (Chr

1: 189,690,000–189,790,000; Chr 11: 55,360,000–55,490,000;

Chr 2: 242,900,000–243,080,000) had different breakpoints,

were unphased but had consistent genotypes, or had no support

in the parental data.

We took the Long Ranger deletion calls between 50 bp and

30 kb generated by both Long Ranger algorithms and GATK and

merged them using SURVIVOR (Jeffares et al. 2017) allowing vari-

ants up to 50 bp apart to be merged. SURVIVOR was used again

with a 50-bp merge distance to merge the Long Ranger deletion

call set with deletions in the svclassify set. The resulting merged

VCFs were then parsed to determine overlap and support for

Long Ranger calls.

Data access

All referencesamplereaddatagenerated inthis studyhavebeensub-

mitted to the NCBI BioProject (BioProject; https://www.ncbi.nlm

.nih.gov/bioproject/) under accession number PRJNA428496.

Genomic short variation and structural variant study data for sam-

ples from individuals with inherited disease generated in this

study have been submitted to the European Variation Archive

(EVA; https://www.ebi.ac.uk/eva/) under accession number

PRJEB28297. Genomic short variation and structural variant data

for samples from the CNV Panel generated in this study have been

submitted to the NCBI database of Genotypes and Phenotypes

(dbGaP; https://www.ncbi.nlm.nih.gov/gap) under accession

number phs001773.v1.p1. All code used in this paper is available

online at GitHub. The lariat aligner code can be found at https://

github.com/10XGenomics/lariat; theLongRangercode isavailable

at https://github.com/10XGenomics/longranger and as Supple-

mental Code; and specific analysis codes used in this paper

can be accessed at https://github.com/10XGenomics/chromium-

genome-paper.
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