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While colorectal cancers (CRC) are paradigmatic tumors invaded by effector memory

lymphocytes, the mechanisms accounting for the relative resistance of MSI negative

CRC to immunogenic cell death mediated by oxaliplatin and immune checkpoint

inhibitors has remained an open conundrum. Here, we propose the viewpoint where

its microenvironmental contexture could be explained -at least in part- by

macroenvironmental cues constituted by the complex interplay between the epithelial

barrier, its microbial ecosystem, and the local immune system. Taken together this

dynamic ménage-à-trois offers novel coordinated actors of the humoral and cellular

immune responses actionable to restore sensitivity to immune checkpoint inhibition.

Solving this paradox involves breaking tolerance to crypt stem cells by inducing the

immunogenic apoptosis of ileal cells in the context of an ileal microbiome shifted towards

immunogenic bacteria using cytotoxicants. This manoeuver results in the elicitation of a

Abbreviations: 5-FU, 5-fluorouracil; Ab, antibody; ADCC, antibody-dependent cellular cytotoxicity; ATB, antibiotics; Casp,
caspase; cDC, conventional dendritic cell; CDDL, enzyme cytidine deaminase; CIMP, CpG island methylator phenotype; CIN,
chromosomal instability; CMS, consensus molecular subtype; CPT-11, irinotecan; CRC, colorectal cancer; CTL, cytotoxic T
lymphocyte; DAMP, danger associated molecular pattern; d/pMMR, deficient/proficient DNA mismatch repair; EMT,
epithelial-mesenchymal transition; ETBF, enterotoxigenic Bacteroides fragilis; FMT, fecal microbial transplantation; GALT,
gut-associated lymphoid tissues; GF, germ free; GI, gastrointestinal; HMGB1, high mobility group box 1 protein; I.S., immune
subtypes; IS, immunoscore; ICD, immunogenic cell death; ICI, immune checkpoint inhibitors, IEC, intestinal epithelial cells;
KEGG, Kyoto Encyclopedia of Genes and Genomes; KO, knock-out; LP, Lamina Propria; MDSC, myeloid-derived suppressor
cell; MGS, metagenomic shotgun; mLN, mesenteric lymph node; MSI/MSS, microsatellite instability/stability; NK, natural
killer; NSCLC, non-small lung cancer; NTBF, non-toxigenic Bacteroides fragilis; OS, overall survival; OXA, oxaliplatin; pCC,
proximal colon adenocarcinoma; pDC, plasmacytoid dendritic cell; PFS, progression-free survival; ROS, reactive oxygen
species; SCFA, short-chain fatty acid; SPF, specific pathogen free; Tc1, T cytotoxic type 1; TCGA, The Cancer Genome Atlas;
tdLN, tumor draining lymph node; TFC, T follicular cell; Tfh, T follicular helper cell; Th, T helper; TILs, tumor-infiltrating
lymphocytes; TLR, Toll-like receptor; TMB, tumor mutational burden; TME, tumor microenvironment; TNM, T-primary
tumor, N-regional lymph nodes, M-distant metastases; Treg, T regulatory cell; WT, wild type.
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productive Tfh and B cell dialogue in mesenteric lymph nodes culminating in tumor-

specific memory CD8+ T cell responses sparing the normal epithelium.

Keywords: colon cancer, immunity, Bacteroides fragilis, Fusobacterium nucleatum, ileum, microbiome,

immune checkpoint

THE PARADOX OF COLON CANCER

Introduction
Colorectal cancer (CRC) is the third leading malignancy
worldwide and the second most common cause of cancer
mortality, regardless of gender. CRC is expected to increase in
incidence by 60% by 2030, posing an increasing burden on health
care systems worldwide (1). The typical development of CRC
takes place in aberrant crypts, evolving over time into a
neoplastic precursor lesion called a “polyp.” The carcinogenic
evolution is thought to occur over 10–15 years, following a
traditional adenoma-carcinoma tumor progression. CRCs are
often divided into two groups delineated by location: left-sided
and right-sided (proximal) colon cancers. These anatomical sites
help to capture the heterogeneous features of CRC in relation to
key physiological landmarks (2).

CRC results from a progressive accumulation of epigenetic
and genetic alterations resulting in the transformation of normal
colonic mucosa to adenocarcinoma. 60%–65% of CRCs are
classified as sporadic, occurring in people without a family
history or genetic predisposition (3). Sporadic CRC
development is often associated with numerous risk factors
related to health determinants such as lifestyle, diet, smoking,
and alcohol consumption (4). Key determinants such as smoking
status is linked to proximal colorectal cancer (pCC) and rectal
cancer development (5). While dietary habits such as overt
consumption of animal fat, red and processed meat, low intake
of dietary fibers, unrefined grains and vegetables promote key
inflammatory pathways associated with CRC (6, 7). The current
staging or classification of CRCmalignancies, such as TNM (8, 9)
only takes into account primary tumor size, regional lymph node
involvement, and metastatic spread but fails in the ability to
further delineate how best to approach therapeutic management
of malignancies. Indeed, key aspects of classification, such as
genetic specificities, immunological contexture, and gut
dysbiosis, play a vital role in the physiopathology of CRC and
should be considered in context (Figure 1) (10).

Genetic and Immunological Traits of Colon
Cancers
CRC arises from mutational activation of oncogenes associated
with the mutational inactivation of tumor suppressor genes (11).
Three non-exclusive major types of genomic instability have
been described in CRC. The first type, occurring in 85% of CRC,
concerns gene mutations in APC or other tumor suppressor
genes resulting in activation of the Wnt pathway characterized
by a chromosomal instability (CIN) phenotype. The second type
found in 20%–30% of CRC, accounts for global genome
hypermethylation coinciding with the inactivation of tumor

suppressor genes, known as CpG island methylator phenotype
(CIMP) (12). The last type is found in ~15% of patients who
encounter the loss of DNA mismatch repair (MMR), leading to a
high level of microsatellite instability (MSI-High), a
hypermutable phenotype (13). The MSI-H phenotype results
from either a somatic inactivation of MLH1 MMR gene
(sporadic cases, 12%) or from a germline mutation in MMR
genes (MLH1, MSH2, MSH6, PMS2) leading to a deficient DNA
mismatch repair (dMMR); such as in the case of the Lynch
syndrome (3%) (14). The CIMP phenotype can lead to the MSI
phenotype when hypermethylation of the MLH1 gene promoter
occurs. This particular MSI phenotype generates neoantigens
accounting for their intrinsic immunogenicity (15).

CRC outcomes are not only dictated by genetic features but
also by the immune contexture (Figure 2). Several cell types
associated with innate and adaptive immune responses cooperate
and dictate the prognosis of patients diagnosed with CRC. gdT
cells expressing a heterodimeric T-cell receptor (TCR) are often
enriched in epithelial barriers of various mucosae to sense
cellular stress at portal of entry (16). However, preclinical
murine models of colitis and clinical CRC data have
shown that the gdT17 cell subset, producing the IL-17A or
IL-17F cytokines, promotes tumor progression through the
accumulation of myeloid-derived suppressive cells (MDSC)
(17, 18). MDSCs accumulate in the tumor microenvironment
(TME), as compared to the adjacent healthy tissue, in patients
with CRC and their circulation correlates with cancer stage and
metastasis (19, 20). Moreover, Th17 cells through the secretion
of IL-17A and the transduction of the STAT3 pathway lead to the
downregulation of CXCR3 expression on CD8+ T cells.
Consequently, these Th17 cells dampen the CXCL10-
dependent recruitment of cytotoxic CD8+ T cells (CTLs) in
advanced stages of CRC (21). In addition, the IL-17R signaling
in tumor cells blunts CXCL10 release thereby limiting CTLs
influx in tumor bed (22). Furthermore, Th17 cells secrete IL-22
which promotes colitis associated with CRC (23). Contrasting
with gdT17 and Th17 cells, IFN-g producing conventional CD4+

T cells, namely, Th1 lymphocytes, are associated with a favorable
prognosis in CRC (24).

Another subset of auxiliary T cells, the T follicular helper
(Tfh) CD4+ lymphocytes, defined by CXCR5 chemokine
receptor expression and the Bcl6 transcription factor, are
found within and around CRC tumor nests and tumor
draining lymph nodes (tdLN). Their density is negatively
correlated with CRC tumor progression (25, 26). A positive
Tfh/B cell signature associated with increased CD8+ T cell
infiltrates has been reported in CRC cases with favorable
outcomes (25, 27). The Tfh/B cell dialogue is pivotal to
orchestrate CD8+ T cell effector functions, which are believed
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to keep in check CRC at early stages of development (28, 29) and
may pave the way to the efficacy of immune checkpoint
inhibitors (30). Indeed, B cells, FcgR and Ig as well as Th2 and
IL-4 have been associated with chronic inflammatory processes,
leading to tumor development in T cell-dependent (31–33) or
-independent tumor models (34). Likewise, bladder tumors,
amenable to therapeutic immune checkpoint blockade, have a
dismal prognosis when their TILs contain CD8+ T cells
producing IL-10 and expressing inhibitory receptors (TIGIT,
Lag3, Tim3, and CTLA-4), associated with GATA3+ CD4+ Th2
cells and Treg (35, 36). Moreover, PD-1 expressing B cells are
memory B cells exerting suppressive activity that can be
alleviated by anti-PD-1 Abs (37). Another report described

PD-1+ B cells that possessed regulatory capacity toward T cell
responses, and although rare in peripheral blood, they were
found enriched in thyroid tumors (38).

However, recent accumulating evidence shows that B cells can
orchestrate favorable TCF7+ naive/memory CD8+ T cell-based
immune contexture, specifically when tertiary lymphoid organs
can be formed to prime naive CD8+ T cells in human tumors,
paving the way to clinical benefit to anti-PD-1 Abs (39–41). In
breast tumor models genetically modified to express neoantigens,
CD8+ T cell effector memory cells could be elicited with anti-PD-
1 Abs when Treg were depleted (using a mouse anti-CTLA-4 Ab
with ADCC properties), therefore triggering a cascade whereby B
cells became activated, capable of triggering Tfh activation and

FIGURE 1 | Heterogeneity of colorectal cancer (CRC) leading to new classifications. Several factors contribute to the intrinsic immunogenicity of CRC. There are

several classifications based on anatomical, genetic, and immunological parameters which allow for the dissection of the intertwined relationships between these

components and to predict clinical outcome. Therapies can contribute to gears of intrinsic immunogenicity, by providing antigens and adjuvants. While oxaliplatin

(OXA)-based chemotherapeutic regimen and anti-EGFR Abs can be considered “immunogenic” therapeutics, paving the way to a better efficacy of immune

checkpoint inhibitors (ICI), anti-VEGF Abs could rather modulate the vascularization and distinct immunosuppressive cues of the tumor microenvironment (TME) [such

as myeloid-derived suppressor cell (MDSC)]. Despite this knowledge, the combination of immunogenic cell death-mediating compounds with ICI failed to ameliorate

CRC patients’ prognosis, at least in MSS CRC. Integrating the ileal microbiome in this equation has the potential to break tolerance to self-antigens of the crypts, by

priming Tfh and B cell responses, instrumental to control tumor progression.
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IL-21 production. B cell depletion or inhibition prevented class
switching, plasma cell generation, and the release of anti-tumor
IgG indispensable for tumor rejection following therapy with
ICBs (30). In these models of combined immune checkpoint

inhibitors (ICIs), effector Tc1 CD8+ T cells cannot be generated
in the absence of Tfh, IL-2, or B cells. Hence, the optimal B cell
activity and therapeutic benefits derived from anti-PD-1/anti-
CTLA-4 therapy correlated with concurrent Treg inhibition and

FIGURE 2 | Immune contexture of primary and metastatic colorectal cancer (CRC). A non-exhaustive list of the main immune features contributing to the stability or

acceleration CRC progression is aligned on the left and right colon respectively. Pre-existing tumor immunity, termed “immune contexture”, monitored by

“immunoscoring” as well as transcriptome deconvolution represent strong and independent predictors of long-term progression free and overall survival in CRC.

Tumors enriched with cytotoxic CD8+, CD4+, in particular Th1 and Tfh, and B cells, are associated with an IFN-g response, the upregulation of immuno-inhibitory

molecules and better clinical outcome (left). Other types of inflammation, characterized by IL-17 expressing T cells, FOXP3hi Tregs and immunosuppressive myeloid

populations are associated with worse clinical outcome. The composition of the ileal microbiome contributes to shift the balance between Tfh and Th17 cells.

Fidelle et al. CRC Paradox and Microbiome

Frontiers in Immunology | www.frontiersin.org December 2020 | Volume 11 | Article 6008864

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tfh activation (30) or, as described in our study, by lamina
propria IL-12 and IL-1b producing DC after stimulation with
immunogenic ileal commensals (26).

Tumor-associated Tfh secrete CXCL13, attracting CXCR3+

CTLs (42) and via IL-21 secretion promotes their effector
functions (43). Tfh are involved in the orchestration of the
humoral responses through interactions with B cells.
Nevertheless, the Tfh/B cells/CTLs collaboration is limited by an
increased expression of PD-1 on Tfh during tumor development,
dominated by a PD-L1-associated immunosuppression (43, 44). It
has been shown that germinal center B cells and/or plasma cells
play a protective role, while the T cell suppressive function of
regulatory B cell subsets was associated with the dissemination of
metastases (45–49). The CD8+ Tfh counterpart has also been
described in the tdLN of CRC. CXCR5+ CD8+ T follicular
cytotoxic cells (Tfc) express high levels of effector molecules and
convey a better prognosis in CRC (50). In line with these
contentions, Roberti et al. have recently described the beneficial
role of antibody producing B cells in cancer immunosurveillance
in murine transplantable colon tumors (26). Hence, as described
for other tumor types, terminally differentiated memory B cells
and/or plasma cells and Tfh could predict increased patients
survival in CRC (49, 51, 52).

Pagès and Galon (Figure 2) were the first to report the major
role of cytotoxic and memory T lymphocytes within primary
tumors in predicting survival of CRC patients (28, 53, 54). These
studies included early-stage cancer patients (55) and described
distinct cellular and molecular cues modulating tumor-
infiltrating lymphocyte (TIL) densities (56). A scoring system
‘‘Immunoscore’’ based on the quantification of CD3 and CD8 in
the core (CT) and at the invasive margin (IM) of primary tumors
has a prognostic value superior to the AJCC/UICC TNM-
classification (28, 54, 57, 58). Immunoscore predicts survival of
non-metastatic patients, as does the immune infiltrate evaluation
in the metastasis for metastatic patients (59–61). These authors
have also demonstrated the superiority of Immunoscore over
microsatellite instability and PD-L1 expression in predicting
survival (62, 63). Focusing on metastasis profiling in CRC,
Galon’s group brought forward evidence that the cytotoxic T
lymphocytes-based adaptive immune response plays a key role in
preventing tumor recurrence and metastatic dissemination;
despite evidence for clonal expansion of distinct T lymphocyte
subsets culminating in immunoediting (60, 64). Disease-free
survival (DFS) and OS in stage IV patients are largely
governed by the state of the local adaptive immune response
within the metastases being the most likely site of tumor immune
escape (63). However, further studies are ongoing to better
understand how dynamics of genomic and immune patterns
shape the CRC metastatic landscape.

Recent Reclassifications of Colon Cancers
Given the potential significance of the intertwined relationships
between genetics and immunometrics, the Cancer Genome Atlas
Consortium (TCGA) proposed, in 2012, a different stratification
of CRC (65). Four consensus molecular subtypes (CMS1-4) have
been discussed to classify CRC based on transcriptomic of the
tumor microenvironment (TME) (Figure 1) (66, 67).

The CMS1 group (14% of early-stage CRC) showing
hypermutation, hypermethylation, and high antigenicity
(neoepitopes/neoantigens) is heavily immune infiltrated and
predominately constituted by MSI-H tumors (76%). BRAF
mutations are often found in the CMS1 subtype. The CMS1
group is characterized by a higher expression of immune
checkpoints conveying a dismal prognosis (67–70) yet
potentially favoring the relative efficacy of immune checkpoint
inhibitors (ICIs) (69). CMS2 “canonical” and CMS3 “metabolic”
groups (37% and 13% of early-stage tumors, respectively)
correspond to “immune-neglected” CRC, in that CMS2
represents an “immune desert” and CMS3, an “immune
excluded” tumor microenvironment. The CMS2 group shows
WNT andMYC activation. The CMS2 “immune-desert” subtype
is characterized by a poor intratumoral T cell infiltrate. After
relapse, the CMS2 group has a superior survival rate than the
CMS1 (67). Compared to CMS2, the CMS3 “immune-excluded”
subtype often harbors KRAS-activating mutations associated
with memory Th and naïve B cell-based immune components
(71). The CMS4 “mesenchymal” subtype (23% of early-stage
tumors) exhibits the prototypic fingerprint of the epithelial-
mesenchymal transition (EMT) characterized by a stroma-
related gene transcription centered by the transforming
growth factor-b (TGF-b) metagene. Stromal cells secret
immunosuppressive chemokines that interact with cancer cells
and inhibit cytotoxic immune cells, thus contributing to the
proliferation of MDSCs (66). CMS4 has the worst relapse-free
and overall survival (67). A small fraction of CRC tumors have
indeterminate features (13%), and possibly represent a
transitional state, or result of a mixed phenotype, due to
intratumoral heterogeneity (67).

Recently, based on TCGA transcriptomic analysis of more
than 10.000 solid primary tumors, Thorsson et al. have identified
six immune subtypes (I.S.) of the tumor microenvironment
(C1-C6), namely: wound healing (C1), IFN-g dominant (C2),
inflammatory (C3), lymphocyte depleted (C4), immunologically
quiet (C5), and TGF-b dominant (C6). Across all cancer types,
the C3 “inflammatory” I.S. was associated with the best overall
survival. C1 and C2 I.S. were characterized by a high
proliferation rate and exhibited less favorable prognosis even if
a higher lymphocyte signature ameliorated the clinical outcome
(72). The “wound healing” (C1) and “IFN-g dominant” (C2)
subtypes are the two main I.S. represented in CRC (72, 73). The
C1 “wound healing” I.S. showed a prominent expression of
angiogenesis-related genes and a low Th1/Th2 ratio. The C2
“IFN-g dominant” I.S. has the highest intratumoral
heterogeneity; containing higher levels of TILs and Tfh cells
(73). Nevertheless, the C1 “wound healing” I.S. harbors a better
prognosis than the C2 “IFN-g dominant” I.S. (5-year overall
survival (OS) 65% and 49%, respectively), perhaps in line with
the upregulation of PD-L1, PD-1, CTLA-4, IDO1, and LAG3
molecules related to immune exhaustion in C2.

Clinical Management of Colon Cancers
Depending on the TNM score, the main treatment for colon
cancers remains the surgical resection of the tumor; especially for
tumors with a low risk of recurrence (74). For tumors with stage
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III or high-risk stage II, a (neo) adjuvant therapy based on
chemotherapy is performed prior to surgery to reduce tumor
burden and recurrence rates (74). For stage III or high-risk stage
II CRC, adjuvant chemotherapies with FOLFOX (5-FU/
leucovorin/oxaliplatin) is the standard of care (75–77). As for
metastatic diseases, a form of immunotherapy called immune
checkpoint inhibitors (ICIs) has transformed the standard-of-
care of cancer patients (78–81).

Six months of adjuvant chemotherapy frequently benefit
immunoscore-high-patients with stage III primary CRC (82).
Moreover, patients treated with chemotherapy and anti-EGFR
(Epidermal Growth Factor Receptor) had greater infiltration of T
lymphocytes at the core of the metastatic lesion and a higher
Immunoscore than patients who received chemotherapy and
anti-VEGF (Vascular Endothelial Growth Factor) (63). Hence,
Immunoscore® is improved by chemotherapy and predicts the
beneficial effects. Oxaliplatin (OXA), a platinum salt used as a
cornerstone chemotherapy for CRC (77) is one of the best
cytotoxicants capable of inducing immunogenic cell death (ICD)
(83). ICD triggers an endoplasmic reticulum (ER) stress response
and the activation of the autophagic machinery culminating in
tumor cell surface exposure and/or secretion of the mandatory
damage-associated molecular patterns (DAMPs); stimulating
anticancer immune responses (84). Moreover, OXA increased
Tfh density in tumor nests and eventually TILs accumulation as a
function of its capacity to induce ileal crypt apoptosis (26).

In CRC, MSI status constitutes a predictive biomarker for
response to ICIs. Metastatic CRC with MSI-H phenotype show a
high disease control rate and a favorable progression-free
survival (PFS) after anti-PD-1 antibody while the 85% patients
presenting with microsatellite stable (MSS) or proficient
MMR (pMMR) CRC have failed to benefit from various
immunotherapy approaches (85, 86). POLE proofreading
domain mutations are also associated with a favorable response
to ICIs (87). Hence, anti-PD-1 therapies, such as nivolumab and
pembrolizumab, have been approved by the U.S. Food and Drug
Administration (FDA) in 2017 for patients with MSI-H/dMMR
metastatic CRC that have progressed following treatment with a
fluoropyrimidine, oxaliplatin, or irinotecan-based chemotherapy
(88, 89). Though, the response rate after anti-PD-1 antibodies
often remains less than 50% (85, 90), in relation to tumor
heterogeneity within MSI-H CRC (91), or immune evasion
based on alterations in the antigen processing and presentation
machinery (92). However, the immunoscore turned out to
exhibit a superior prognostic value for overall survival
regardless of the MSI/MMR status. MSI-H patients with a low
immunoscore do not have any survival benefit compared with
MSS patients. Additionally, in MSS CRC cases, the immunoscore
correlates with higher disease-free survival and overall survival
(54). Actually, there is no prospective study confirming the
clinical significance of the immunoscore for ICI response yet.
An ancillary study coinciding with a clinical trial in metastatic
MSS CRC (the POCHI trial: NCT04262687) just started
to analyze the predictive value of the immunoscore for
the clinical benefit to expect from chemotherapy and
immunotherapy (93).

The degree of microsatellite instability (MSI) and resultant
tumor mutational burden (TMB) have also been shown to
underlie the variable response to PD-1 blockade in dMMR,
with indel mutations strongly associated with objective
response (85, 94). In one of the largest number of patients
treated with ICI analyzed for TILs and TMB, Loupakis et al.
found that TILs correlate to TMB and the higher the number of
TILs, the better the outcome (95). Thus, pembrolizumab is FDA
approved for TMB-high tumors (96). In other cases, such as in
dMMR/MSI-H metastatic CRC, the combination of ICIs (such as
PD-1 and CTLA-4 co-blockade) are likely to be more effective
than monotherapy (97). The vast majority of CRC cases, MSS or
pMMR CRC, are naturally resistant to immunotherapy; at least
in part due to the low antigenicity (TMB) of the malignancy.
However, based on TCGA dataset analysis, a small subset of
patients among MSI-Low/MSS-CRC cases exhibiting a high
CD8+ T cell infiltrate and an upregulation of IFN-g could
benefit from immunotherapies (98).

To overcome the lack of efficacy of ICIs in MSS and pMMR
CRC, investigators have combined ICIs with chemotherapy and
targeted therapeutics (99). Despite these efforts, the combination
of oxaliplatin and pembrolizumab has failed to prove superior
over OXA-based chemotherapy alone in advanced CRC (100).

Taken together, CRC is the first neoplasia found to be under
immunological control, and the first to be treated with OXA, a
chemotherapy endowed with immunogenic cell death properties.
However, we can see that most attempts to overcome this
malignancy have failed, with the exception of a minority of
lesions characterized by MSI. This paradox may be solved by a
more complete understanding of the role played by the
macroenvironment in which this cancer develops (Figure 1).

THE GUT MICROBIOME AND THE

INTESTINAL IMMUNE SYSTEM

The gastrointestinal (GI) tract is the major mucosal surface of the
human body and the most densely colonized organ. The overall
bacterial load of the GI tract has been described to contain
between 1013-1014; nearly equaling the number of the
mammalian cells in the body (101, 102).

In mammals, and more specifically in humans, colonization
by the intestinal microbiome occurs rapidly during and after
birth (103, 104). Successful colonization is determined by
microbial selection and competition that begins in the first
hours of life (105). Throughout our lifetimes, the microbial
population in the human GI tract is affected by a multitude of
environmental factors such as age (103, 106), geography (106),
dietary habits (107, 108), use of antibiotics (109, 110), host
genetics (111, 112), and the pressure of the immune
system (113).

The intestinal microbial ecosystem has a significant role in
host physiology in multiple ways. The processing of food and
xenobiotics enables a host to obtain essential nutrients (101). The
intestinal microbiota promotes post-natal maturation of
physiological gut functions such as the integrity of the
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epithelial barrier, the expression of essential enzymes (114), the
development of the intestinal vascularization (114, 115), and of
the enteric nervous system; all essential for motility (116). Most
importantly, the gut microbiota participates in the maturation of
the local and systemic immune system to ensure tolerance vis-à-
vis of food antigens and the elimination of pathogens,
maintaining a mutual symbiosis between commensals and self-
tissues for the homeostasis of the meta-organism (117, 118).

Various bacterial communities are disseminated along the GI
tract with diversity affected by anatomical and environmental
differences from the esophagus to the rectum. There is a limited
diversity of the microbiome in the esophagus where Streptococci
remain the dominant species (119). Similarly, the stomach has
limited microbial diversity due to low pH of the gastric lumen
(120). While the small intestine and colon harbor a wider
commensalism compared to that of the upper GI tract.
Different physiologies and environments such as chemical,
oxygen and nutrient gradients, and the compartmentalized
immune system along the GI tract result in distinct
distribution of the intestinal microbiota (121). The small
intestine contains a smaller load of bacteria and with less
diversity, than the colon. This is due to a number of factors
such as harsh environment for bacterial communities, a shorter
transit time, an increased influx of digestive enzymes of
antimicrobial peptides and bile acids, and an intermittent food
substrate delivery (121, 122). Although the taxonomic
classification has been inconsistent across studies, several
reports show the predominance of two major phyla, i.e.,
Firmicutes and Proteobacteria (121, 123, 124), followed by
others (Bacteroidetes, Fusobacteria, Verrucomicrobia,
Actinobacteria) residing in the human small intestine (124). At
the genus level, several genera are commonly found in the small
intestine, such as Lactobacillus, Clostridium, Staphylococcus,
Streptococcus, and Bacteroides (124–127). Sample collection
from the distal ileum has shown that Streptococcus,

Granulicatella, Actinomyces, Solobacterium, Rothia, Gemella,
and TM7(G-1) are the most frequently detected bacterial
genera by 16S gene sequencing (127) with Streptococci,
Actinomyces, Rothia and Lactobacillus species most frequently
identified by culturomics and mass spectrometry (128). In
contrast, the colon contains roughly 70% of all the bacteria of
the human body (129). The microbial population in the colon is a
result of environmental factors such as lower concentrations of
antimicrobials, slower transit time, and fermentation of
polysaccharides (121, 129). Interestingly, the two major phyla
in the colon are Bacteroidetes and Firmicutes (121, 129). At the
genus level, Bacteroides, Prevotella, and Ruminococcus are
predominant (129) (Figure 3).

Fecal profiling of the microbial populations is investigated
most frequently because the sampling of feces is non-invasive
and convenient for patients compared to performing an invasive
biopsy or collecting luminal content of ilea or colons (130).
However, there is increasing evidence that the observed
microbial composition in feces is different from the content of
mucosal samples of the GI tract (123, 131–135). Bacteroidetes
and Firmicutes are the main phyla in the healthy human stool

samples followed by other phyla such as Actinobacteria,
Proteobacteria, Synergistetes, and Verrucomicrobia (123,
134, 136–142). At the genus level, Bacteroides is the most
abundant genus (136, 140, 141) followed by Faecalibacterium,
Bifidobacterium, Lachnospira, Roseburia, Subdoligranulum,
Collinsel la , Ruminococcus , Prevotel la , Alistipes , and
Akkermansia (123, 132, 136–142). Of note, mucosal
microbiome of the colon differs from that of fecal composition.
James et al. reported that Enterococcus was found to be more
prevalent in the proximal colon while Coprobacillus and
Escherichia/Shigella were more abundant in the distal colonic
mucosae (143).

The symbiotic relationship between the gut microbiome and
the associated local immune system is central for the
maintenance of the systemic immune tonus. The lamina
propria and gut-associated lymphoid tissues (GALT) contain
the largest pool of cells mediating innate and cognate immune
responses (Figure 3). There is marked regional variation in
immune cells along the GI tract, with Th17 decreasing in
number from the duodenum to the colon, and regulatory CD4
+ T cell (Treg) being most abundant in the colon (144).
Pioneering mouse studies demonstrated that distinct bacterial
species can fine-tune intestinal immune responses, such as Th17
(145, 146), Treg (118, 147), or Th1 (148, 149), Tfh (148), and B
cell activation (150). James et al. catalogued the mucosal
microbiome in different regions of the human colon and
reported the annotated colon immune single-cell dataset at the
Gut Cell Atlas (https://www.gutcellatlas.org/) (143). There are 25
cell types in the lamina propria (LP) and mesenteric lymph
nodes (mLNs), draining the healthy colons. Among these, are
follicular and memory B cells, IgA+, and IgG+ plasma cells,
effector and memory CD4+ T cells, Treg cells, CD8+ T cells, gd T
cells, innate lymphoid cells, natural killer cells (NK), mast cells,
and myeloid cells (cDC1, cDC2, pDC, LYVE1+, or CD16+

macrophages, monocytes). B cells, dendritic cells and gd T
cells are Ki67+ cycling populations compared to other colonic
immune cell populations. The cecum and the sigmoid were
reciprocally enriched in CCL20+ Th17 and Th1 respectively.
While mLN contained follicular B cells and memory CD4+ T
cells, colonic mucosae, and most specifically the sigmoid LP is
rich in effector CD4+ T cells and plasma cells. Region-specific
transcriptional differences linked activation and tissue migration
of Th1 and Th17 cells of the proximal and sigmoid colon as well
as the identification of clonal sharing between these colonic
regions plead for cell-extrinsic rather than cell-intrinsic factors
regulating T cell functions. However, the relative proportion of
Treg cells do not change significantly from proximal to distal
colon. There is heterogeneity in Treg cell states in the mLNs and
colon with a transient loss of the FoxP3-expressing cell
population. Data infer a continuous activation trajectory of
these Treg cell states between draining lymph nodes and
colon, with genes regulating Treg cell migration and adoption
of Th-like profiles in tissues (143). Treg transiently losing FoxP3
expression could re-express it transcription under activation to
achieve their bona fide immunosuppressive functions (151).
There is a highly activated state of plasma cells found in the
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distal colon compared with proximal colon plasma cells,
which are characterized by greater accumulation, somatic
hypermutation, clonal expansion, and stronger homing to the
colonic mucosa (143). Compared with the cecum, IgA+ plasma
cells of the sigmoid colon respond to a rich and unevenly
represented community of bacterial species; most likely
accounting for the increased activation, migratory and greater
clonality status of plasma cells (143). Indeed, by means of a novel
method for identifying and isolating lymphoid follicles along the
length of the human intestine and IgA sequencing analysis,
Agace’s group showed that IgA adaptive immune responses are
initiated in an anatomically restricted manner in the human

Peyer’s patches and submucosal isolated lymphoid follicules
contributing to the ileal and colonic plasma cell repertoires,
respectively (152).

DYSBIOSIS ASSOCIATED OR CAUSALLY

LINKED WITH COLON CARCINOGENESIS

Western style diets (high fat, high sugar) and meat consumption
may in fact be major risk factors in the development of CRC
(153). Diet displays a dominating role in shaping the structure of

FIGURE 3 | Geographical distributions of immune and microbial components highlight specificities between the ileal and colonic segments. The most dominant

microbial and immune cells accounting for the diversity and specificity of each organ are depicted. The main specialized functions (metabolic, immune, motility, etc.)

for each segment are indicated. A graphical abstract is lining below the boxes where these cells and functional specificities are listed. Immune cells are found either

clustered within organized lymphoid structures or scattered within intestinal epithelium (IE) and lamina propria (LP). AMP, anti-microbial peptides; B cell, B cell

lymphocyte; DC, dendritic cell; ILC3, innate lymphoid cell type 3; IL-22, interleukin-22; Th1, T helper 1 cell; Th17, T helper 17 cell; Treg, regulatory T cell.
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gut microbiota, occasionally leading to a detrimental alteration of
microbiota ecology and functionality. Indeed, increasing dietary
fiber can lead to the establishment of a favorable microbiota
regulating the production of the anti-inflammatory short chain
fatty acids (SCFA) (154). An unbalanced microbiota, known as
dysbiosis, has been associated with many maladaptive states,
including CRC (155–159). (Figure 4A) However, the
contribution of the microbiota in CRC initiation and
development remains a subject of debate. Pre-clinical and
human clinical studies have linked the intestinal microbiota to
CRC. Pre-clinical studies performed with sporadic CRC rodent
models showed that germ-free mice and rats display less
intestinal tumorigenesis than animals conventionally reared,
highlighting the role of the microbiota in CRC emergence
(160). Confirming this functionality, the first mouse model of
spontaneous invasive CRC has been described, in which resident
microbiota play a key role in disease outcome (161). Indeed,
intestinal epithelial cell (IEC)-specific transgenic expression of
the epithelial-mesenchymal transition regulator Zeb2 in mice
(Zeb2IEC-Tg/+ mice) lead to increased intestinal permeability and
spontaneous invasive colon carcinoma development in a
microbiota-dependent manner (161). However, this work did
not yet identify CRC associated- microbial entities. Several
independent studies comparing tumor versus paired adjacent
healthy tissues showed marked differences in the gut microbiota
composition (162–165), with either depletion or enrichment of
selected bacterial species. Meta-analysis of five publicly available
datasets and two new cohorts with validation using two
additional cohorts, considering n=969 and n=768 fecal
metagenomes revealed an enrichment of bacterial species
within CRC and feces of patients, not found in homeostatic
controls. They identified 29 species, mostly from the oral cavity,
associated with CRC development (166, 167). At the functional
level, the choline trimethylamine-lyase gene (166) as well as
protein and mucin catabolism genes were overabundant while
carbohydrate degradation genes were depleted (167) in CRC.

Of note, this particular microbial shift distinguishes benign
from malignant colon tumors (166). Alterations of microbiota
composition are distinct across major stages of colorectal
carcinogenesis (168, 169), suggesting a role of specific bacterial
communities in this process. Moreover, besides the important
shifts observed in the colonic microbiome of CRC, significant
variations have been reported in the ileal microbiome. Using
healthy ileal mucosa-associated microbiome, lining upstream
from Bauhin’s valve and collected during hemicolectomy in
patients suffering from different stages of proximal CC,
Roberti et al. (26) identified distinct species and family
members conveying immunogenicity to CRC by regulating
the accumulation of Tfh instead of Th17 cells in the
tumor microenvironment.

Furthermore microbiome diversity and richness changes
during carcinogenesis, bacteria can be found with a specific
organization in normal colon mucosa, mirroring the bacterial
composition within the tumor. Bacterial organization in biofilms
protects commensals against external agents and induces pro-
oncogenic properties by inducing major deregulation of

epithelial cell biology culminating in sustained inflammation as
detailed below (Figure 4). Biofilms are associated with increased
risk of developing sporadic CRC (170, 171). Formation of
biofilms is mostly a characteristic of right-sided colon
cancer (170).

Altogether, these studies showing significant variations of
taxonomic footprints suggest a role of the gut microbiota in
the emergence of CRC. However, whether one or more species
are necessary for CRC development remains unclear. Notable
steps forward have been made in the identification of single
bacterial species or bacterial communities associated with CRC.
Several studies have nailed down mechanistic cues that link
distinct bacteria strains and species to CRC carcinogenesis.
Bacteria can exert their pro-oncogenic effects through multiple
mechanisms. The inflammatory contexture can modulate
microbial gene functions and increase the cancer-promoting
activity of some bacteria strains, as exemplified for E.coli

NC101 (172). Bacteria can produce toxins and metabolites
from the fermentation of by-products or induce the formation
of superoxide radicals that lead to subsequent genetic mutations
in the colonic epithelium (173, 174). Several theories have also
been proposed to delineate the involvement of specific
microbiota in CRC initiation or progression (Figure 4). The
“driver-passenger” model supports the idea that a microbial
leader recruits a consortium of disease-facilitating microbes to
initiate the biological events causing CRC (175–177). This model
suggests a chronological recruitment of specific bacteria
concurring to CRC. First, “driver” bacteria create a pro-
oncogenic environment through DNA-damage and malignant
transformation of epithelial stem cells. After initiation of
tumorigenesis, there is an emergence of “passenger” bacteria,
more adapted to the tumor environment such as Fusobacterium
nucleatum and Streptococcus bovis/gallolyticus (177) (Figure 4B).
Secondly, the ”keystone hypothesis,” or “alpha-bug hypothesis,”
suggests that certain low-abundance bacteria possessing unique
virulence traits can reshuffle a benign environment into a
carcinogenic one. For instance, enrichment of Fusobacterium

species is associated with a depletion of the Bacteroidetes and
Firmicutes, in malignant colon relative to normal colon tissue
(175, 178–180). Thus far, several “alpha-bugs” that promote
intestinal carcinogenesis in animal models have been described
such as Fusobacterium nucleatum (181, 182), colibactin-
producing Escherichia coli (183–185) and enterotoxigenic
Bacteroides fragilis (ETBF) (186) (Figure 4C).

Fusobacterium nucleatum is frequently associated with
advanced proximal CC tumors, metastasis, chemoresistance,
and poor prognosis (26, 187–189). These pathogenic properties
occur through the expression of two different virulence factors,
FadA, and Fap2 on the intestinal CRC and non-CRC epithelium,
which induce the expression of a large spectrum of transcription
factors, oncogenes, and genes coding for inflammatory functions
or tumor progression (182, 190). F. nucleatum shapes the
immune environment to promote tumor growth through the
elicitation of a pro-inflammatory cytokine cascade (IL-8,
CXCL1) and the direct inhibition of T and NK cell functions
(191, 192). Furthermore, F. nucleatum has been shown to
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modulate autophagy in intestinal epithelial cells (IECs) by
activating regulatory microRNAs that consequently alter
colorectal cancer chemotherapeutic responses (189) (Figure 4).

Regulatory T cells (Treg) can be anti-tumorigenic or
pro-tumorigenic in colorectal cancer (CRC) depending
on the presence of different Treg subsets with various
immunosuppressive molecules. FoxP3 expression intensity
dictates the prognosis of CRC; FoxP3(hi) Treg being associated
with poor clinical outcome in contrast to producing-FoxP3(lo) Treg
producing inflammatory cytokines (193). Earlier work described
non-effector T cells comprising regulatory and anergic T

lymphocytes that specifically accumulate in tumor tissues and
eventually recirculate (194). Some reports suggested synergistic
associations between PD-1/CTLA-4 and PD-1/CD39 within
Helios+ or Heliosneg FoxP3+ CD4+ T cells to dampen T-cell
activation and functions in CRC (195, 196).

Escherichia coli, although commonly found in homeostatic
gut microbiota, is another bacterium frequently correlated with
tumor staging and prognosis (184). The association between E.

coli and CRC specifically implies E. coli strains that produce the
genotoxin colibactin. This toxin accelerates tumor progression
(185, 197) by damaging host DNA (172, 183, 198) and by

A

B

D

C

FIGURE 4 | Instrumental links between intestinal dysbiosis and colon carcinogenesis. Risk factors contributing to coloractal cancer (CRC) initiation and development

encompass the life style, diet, the exposure to environment (xenobiotics), host genetics and the gut microbiome (A). Several hypotheses have been formulated to

account for the toxicity of the microbiome for the epithelium. A driver bacterium could recruit a consortium of disease-facilitating microbes (B). The

“keystone hypothesis” suggests that specific bacteria lead to dysbiosis and pro-carcinogenic microenvironment (C). Mucus digestion by some bacteria could expose

the epithelium to toxins produced by virulent bacteria organized in biofilms (D).
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inducing cellular senescence (Figure 4). This process may
involve the production of several growth factors in human
CRC (197).

ETBF is an enterotoxin-producing bacterium that is thought
to play a role in the occurrence and progression of CRC (186).
The toxicity of this bacterial compound is linked to its capacity to
damage DNA strands via the generation of reactive oxygen
species (ROS) and through the induction of Th17-dependent
inflammatory responses (186). The ability of Bacteroides fragilis
to promote tumor growth presumably relies on the enterotoxin
production, as nontoxigenic B. fragilis (NTBF) does not induce
Th17 responses and fails to facilitate cancer outgrowth (186),
offering prophylactic effects against colitogenic B. fragilis (199).
While IL-17 initiates a NFkB-mediated recruitment of
protumoral CXCR2+ myeloid cells (200), other mechanistic
events mediated by toxigenic B. fragilis contribute to colon
tumor development. In particular, digestion of the mucus layer
by ETBF enabled enterotoxigenic species, namely pks+ E. coli, to
adhere to colonic IEC, thus facilitating access to the toxin (201).

Finally, mucus-invasive bacterial biofilms were identified on
the colon mucosa of 50% of CRC patients and approximately
13% of healthy individuals. Remarkably, biofilm-positive
communities from healthy colonoscopy induced colon
inflammation and tumors similarly to biofilm-positive tumor
tissues in three independent mouse models of CRC (202).
Bacterial genera shown to be amplified in CRC patients such as
Clostridium XI, Clostridium XVIII, Erysipelotrichaceae incertae

sedis, Escherichia/Shigella, Eubacterium, and Parabacteroides

were increased in biofilm-positive–associated mice. These
bacteria may interact with one another. Collaboration between
multiple types of bacteria is likely to be a contributing factor, as
suggested by the identification of ETBF and pks+ E. coli within
familial adenomatous polyposis mucosal biofilms. In contrast,
Bifidobacterium was depleted in mice inoculated with biofilm-
positive tissues, confirming the metagenomics data of stool
composition in CRC patients (162, 203). Mechanistically,
biofilm-positive colon cancers have been associated with
decreased E-cadherin expression, an increased release of IL-6,
and the polyamine metabolites N(1),N(12)-diacetylspermine,
activation of STAT3, all culminating in IEC proliferation and
cell transformation (170) (Figure 4D). This work converged
into the demonstration that biofilm formation plays a key
carcinogenic role (202).

The composition of the ileal microbiome influenced the
accumulation of T follicular helper (Tfh) cells and CD8+ T
cells in proximal colon cancers (26). Cremonesi et al. showed
that distinct bacteria species can directly stimulate colon cancer
cells producing a chemokine array closely correlating with T cell
subsets expressing the appropriate chemokine receptors, which
in turn, may modulate tumor immunosurveillance and dictate
the prognosis of colon malignancies. Hence, Fusobacteria and
Prevotella can trigger CCL20 release through tumor cells in vitro,
while Th17 infiltration in vivo was associated with “cold” (poor
in tumor infiltrating lymphocytes) CRC (204, 205).

Aside from Th1 and Th17 responses, the tumor contexture
can also reveal the presence of beneficial Th9 that could be

associated with specific local microbes. In recent reports, IL-9
producing-Th9 cells resulted from the conversion of Th2 cells
into Th9 cells endowed with pro-apoptotic tumoricidal
activity and immunizing capacities (206). Moreover, positive
and negative correlations between intratumoral IL-9 and
abundance of Prevotella or Bacteroides spp. were reported in
CRC respectively (207).

Wong et al. also demonstrated a causal relationship between
the composition of CRC patients’ stools and carcinogenesis. Wong
et al. fed fecal samples from patients diagnosed with CRC (versus
healthy volunteers) to germ-free mice and conventional mice
treated with the procarcinogenic azoxymethane. CRC-derived
feces promoted polyp formation, intestinal dysplasia, epithelial
proliferation and stemcellness, as well as inflammation (IL-17A,
IL-22, IL-23A) associated with the colonic recruitment of Th1 and
Th17 cells (208).

COLON CANCER THERAPIES AND GUT

MICROBIOTA

Most pharmacological compounds in the oncological
armamentarium have the capacity to perturb the delicate
triangle of fitness and integrity of the intestinal barrier, the
microbiota ecosystem, and the gut immune system. Such “off
target” side effects of targeted therapeutics drugs may eventually
affect their anticancer efficacy and/or the safety profile. Multiple
chemotherapies and immune checkpoint inhibitors have
been studied in preclinical models of colon carcinoma (26, 209,
210) and pancreatic cancer (211) expanding our current
understanding of mechanisms underlying response.

Oxaliplatin (OXA) is a clinically effective tumoricidal
platinum salt commonly used against colon, breast, ovarian
and lung carcinomas (212, 213). The initial mode of action
described for OXA was that it creates DNA damage, inducing
formation of intra- and interstrand DNA adducts, generated by
crosslinking between activated platinum species and specific base
sequences (214). However, in the absence of a functional
immune system, in particular a TLR4 signaling pathway and T
lymphocytes, OXA fails to mediate full blown anticancer activity
in tumor bearing mice and in patients diagnosed with CRC (215,
216). Indeed, following OXA-based chemotherapy, antitumor
adaptive immune responses are activated (217). This activation
occurs through the induction of immunogenic cell death (ICD)
of colon cancer cells due to the initiation of executioner caspases
(216, 218–220) and through the subsequent release of several
damage associated molecular patterns (DAMPs) including
surface exposed-calreticulin (220), high mobility group box
1 protein (HMGB1) (221), CXCL10 (223), and Annexin A1
(224). Moreover, the antitumor efficacy of OXA largely depends
on the presence of an intact microbiota. Disruption of murine
microbiota with broad-spectrum antibiotics was shown to reduce
the cytotoxicity and production of reactive oxygen species (ROS)
via the NADPH oxidase NOX2 by tumor-infiltrating myeloid
cells after OXA treatment (209). ROS are needed for the OXA
antitumor effect. Although the genotoxic effect of platinum
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compounds was known to require ROS and particularly H2O2

production by tumor cells in vitro, ROS is produced by tumor-
associated myeloid cells in vivo. Thus, the microbiota affects
OXA early tumor genotoxicity by systemically priming tumor-
associated myeloid cells for ROS production (209) (Figure 5A).

Finally, OXA does not just induce apoptosis of tumor cells.
Chemotherapy can promote apoptotic cell death in the intestinal
crypts of healthy tissues, known as chemotherapy-induced
mucositis (224). As many other anticancer agents, OXA
compromises the integrity of the intestinal barrier which may
create a dysbiosis and potentiate systemic inflammation and
immunity (225–228). It has been shown that OXA is associated
with cell apoptosis in ileal, but not colonic, crypts sparing the villi
and the lamina propria, in tumor bearing mice and in patients
diagnosed with proximal colon cancer (pCC) (26). Ileal crypt
apoptosis was correlated with progression-free survival and the
accumulation of TILs and Tfh in the tumor bed (26). (Figure 5A)
Ileal cell apoptosis requires caspase 3 and caspase 7 executioners
as well as ileal commensals. First, tumor bearing mice in which

caspase 3/7 expression was ablated specifically in intestinal
epithelial cells (IEC) (Casp3/7DIEC) failed to respond to OXA
while RIPK3-deficient animals disabled for necroptosis of the
IEC controlled tumor outgrowth during OXA therapy (26).
Secondly, when broad spectrum antibiotics were administered
along with OXA, the apoptosis of the crypts was blunted and the
anticancer effects were abrogated. To consolidate the impact of
patient microbiota on the efficacy of OXA, Roberti et al. utilized
an avatar model (229), in which the intestines of germ free mice
were colonized with human colonic content collected from pCC
patients. Two weeks later, these mice were inoculated with
subcutaneous MC38 and 7 days later, treated with OXA. While
66% of patient microbiota resulted in antitumor efficacy of OXA
comparable to that observed in mice reared in specific pathogen-
free conditions, 33% patients’ microbiota induced complete
resistance to this immunogenic chemotherapy. Ileal crypt
apoptosis was highly correlated with major changes in the
composition of the ileal microbiome, with a dominance of
Erysipelotrichaceae at the expense of Fusobacteriaceae.

FIGURE 5 | Pharmacological-microbiota interactions. Drugs and microbes can mutually influence each other. A synergy - exemplified by oxaliplatinum - can occur

culminating in triggering the local immune system eventually controlling the tumor microenvironment. This synergy is severely compromised by antibiotics. (A) Drugs

can shape gut microbiota and activate bacterial functions beneficial for the anticancer therapy. For instance, CTLA-4 blockade could enrich the ileal microbiome with

distinct Bacteroides spp. that in turn fosters Th1 responses beneficial against cancer. (B) On the other hand, commensals can metabolize anticancer prodrugs, thus

activating or inactivating their bioactive metabolite, sustaining or compromising the therapeutic effect. Conversely, increased recycling of bioactive compounds may

be accelerated by enzymatic machineries associated with distinct microbes (such as camptothecin-11), generating severe side effects. (C).
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Capecitabine, an oral prodrug of fluorouracil, inhibits the
enzyme activity of thymidylate synthase during DNA replication
(230). It has been proven effective in conjunction with OXA in
metastatic colon cancers and other cytotoxicants in breast cancer
and is widely used in adjuvant setting. A pioneering study
explored the role of microbes in modulating the effect of 5-FU
and other fluoropyrimidines on Caenorhabditis elegans and
found that bacteria are key determinants of fluoropyrimidine
efficacy on host metabolism (231). Microbes can boost or
suppress the effects of fluoropyrimidines through metabolic
drug interconversion involving bacterial vitamin B6, B9, and
ribonucleotide metabolism. (Figure 5C) Also, modulations in
bacterial deoxynucleotide storage amplify 5-FU-induced
autophagy and cell death in host cells. A Chinese prospective
study of the fecal composition of 31 females treated for HER2
negative breast cancer used 16S rRNA sequencing to analyze the
variations of the gut microbiota during a maintenance
chemotherapy comparing metronomic versus conventional
dose of capecitabine (232). While alpha diversity was not
different between the two treatment modalities, beta diversity
varied significantly between the two groups, with a relative
depletion of Cyanobacteria, Chloroplast, Blautia , and

Streptophyta in stools of the metronomic capecitabine -treated
females. Multivariate analyses of progression-free survival of all
31 patients regardless of capecitabine dosing revealed that Blautia
obeum was significantly associated with clinical benefit (HR 3.4)
in contrast with Slakia (HR 0.2). For the study of relative bacteria
functions, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) modules were quantified, indicating that metronomic
capecitabine tended to enrich for bacteria involved in
nitrification, and putrescine, lysine/arginine/ornithine transport
system. These metabolic traits are reminiscent of polyamine
synthesis closely linked with the activation of the autophagic
machinery mandatory for the immunogenicity of cancer cell
death (233) (Figure 5B). Although concerning for breast cancer
females, and underpowered, this pioneering study suggests that
distinct chemotherapeutic regimen influence the composition
of the gut microbiota that in turn, could impact clinical
outcome (232).

Gemcitabine and Camptothecine
Bacteria can metabolize chemotherapeutic drugs, to increase or
decrease their pharmacological effect. The presence of bacteria
inside human tumors may paradoxically result in drug
concentrations that are lower in the tumor than in other organs.
Gemcitabine is a nucleoside analog (2′,2′-difluorodeoxycytidine)
used to treat patients with pancreatic, lung, breast, or bladder
cancers. It has been occasionally combined with FOLFOX against
colon cancer (234). Bacteria can metabolize the chemotherapeutic
drug gemcitabine (2′,2′-difluorodeoxycytidine) into its inactive
form, 2′,2′-difluorodeoxyuridine (211). Metabolism is dependent
on the expression of a long isoform of the bacterial enzyme cytidine
deaminase (CDDL), seen primarily inGammaproteobacteria found
in pancreatic ductal adenocarcinoma or colon cancers (211). In a
colon cancer mouse model, the authors demonstrated
that gemcitabine resistance was induced by intratumor
Gammaproteobacteria, dependent on bacterial CDDL expression,

and abrogated by the ciprofloxacin fluoroquinolone. Antibiotic-
treated mice displayed a better antitumor response to gemcitabine
than control mice (211) (Figure 5C).

Bacteria could confer drug resistance through the induction
of autophagy in colorectal cancer cells, therefore interfering in
the tumoricidal activity of chemotherapy. F. nucleatum is
gradually increased from normal tissues to adenoma tissues
and to adenocarcinoma tissues in colorectal carcinogenesis
(178, 179). Moreover, the amount of F. nucleatum in CRC
tissues was associated with shorter survival (187). Another
independent group found that the five-year recurrence survival
was substantially shorter in patients with CRC rich in F.
nucleatum than in those poor in F. nucleatum (189).
Multivariate regression analyses demonstrated that the amount
of intratumor F. nucleatum was an independent predictor of
CRC aggressiveness and recurrence post-chemotherapy with
significant hazard ratios for predicting clinical outcome
(189). ULK1/ATG7 -dependent autophagy contributed to F.
nucleatum-mediated CRC resistance to OXA and 5-FU
regimens (189). F.nucleatum induced- genomic loss of miR-
18a* and miR-4802 depended upon the TLR4/MYD88 signaling
pathway (189) (Figure 5C).

Camptothecin, a potent antineoplastic compound, poisons
the catalytic cycle of human topoisomerase I. Camptothecin
exhibited marked toxicity and poor bioavailability. Although its
derivatives topotecan and CPT-11 (also called irinotecan) are now
in clinical use (234), they still elicit pronounced side effects that
limit efficacy. CPT-11 is one of the three commonly used
chemotherapeutic agents for CRC (236). It is a prodrug that gives
rise to the active metabolite SN-38 in vivo (237). Intravenously
administeredCPT-11 is activatedbycarboxylesterases toSN-38, the
antineoplastic topoisomerase I poison. Liver SN-38 is inactivated
via glucuronidation to SN-38G by UDP-glucuronosyltransferases
and spread to theGI tract.b-Glucuronidases in the gut commensals
remove the glucuronide as a carbon source, and active SN-38 in the
intestinal lumengenerates dose-limiting diarrhea.High throughput
screening of inhibitors selectively targeting the enzyme in living
bacteria, and sparingnon relevant bacteria andmammaliancells led
to the identification of promising compounds that could reach a
better therapeutic index of camptothecin-11 (238) (Figure 5C).

Immune Checkpoint Inhibitors (ICIs)
DNA mismatch repair-deficient or microsatellite-instable
tumors particularly benefit from the immune checkpoint
blockade (85). Accumulating evidence points to the critical role
of the gut microbiota in the efficacy of ICIs. First, antibiotics
taken within the month preceding start of anti-CTLA-4 or anti-
PD-1 antibodies, markedly attenuated the clinical benefit,
reducing both progression-free and overall survival across
many metastatic and stage III malignancies amenable to
therapies based on immune checkpoint inhibition (239, 240).
Second, fecal microbial transplantation of stools from patients
prone to respond to ICI or doomed to fail first or second line ICI-
based therapy confer sensitivity or resistance to tumor bearing
mice treated with anti-PD-1 antibodies respectively (241). Third,
shot gun metagenomics sequencing of patients’ stools at
diagnosis may help predicting primary resistance to PD-1

Fidelle et al. CRC Paradox and Microbiome

Frontiers in Immunology | www.frontiersin.org December 2020 | Volume 11 | Article 60088613

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


blockade in metastatic melanoma (242), kidney (241) and lung
cancers (243). Fourth, oral compensation of antibiotics-treated
tumor bearers or dysbiotic hosts with monoclonal anticancer
probiotics (such as Akkermansia muciniphila (243), or
Bifidobacterium pseudolongum (244) restored full blown
immunostimulatory activity of anti-PD-1 antibodies. (Figure
6). Conversely, ICIs also have an impact on the gut
composition. Vetizou et al. reported that anti-CTLA-4
antibody modulated the ileal bacteria composition, increasing
the relative abundance in Bacteroides spp. (namely B. fragilis)
and Burkolderiaceae family members, involved in the IL-12-
dependen t p r iming o f Th1 ce l l s a s we l l a s the
immunostimulatory and anti-cancer effects of CTLA-4
blockade (210). In line with these preclinical data, six months
of therapy with nivolumab ameliorated the alpha diversity of
metastatic kidney cancer bearing patients in those individuals
benefiting from the antibodies (241). Such studies are awaited in
MSIhigh CRC amenable to PD-1 blockade. Finally, memory Th1
and Tc1 immune responses directed against immunogenic
bacteria E. hirae, A. muciniphila, and B. fragilis dictated
progression free survival in cancer patients treated with anti-
PD-1 or anti-CTLA-4 Abs (210, 243).

TOWARDS A SOLUTION TO THE

PARADOX OF COLON CANCERS

As stated above, the reasons why DNA mismatch repair-
proficient or microsatellite-stable CRC, endowed with tumor
infiltrating lymphocytes at the primary or metastatic stage and

treated with a cytotoxic compound mediating ICD, fail to benefit
from immune checkpoint blockade are enigmatic (85, 100).
Indeed, FOLFOX could induce T-bet-dependent PD-1
expressing CD8+ T cell infiltration and IFN-g-mediated PD-L1
upregulation in mouse models of colon cancers, and in CRC
patients (245, 246).

The molecular and cellular cues underlying this delicate
equilibrium between tolerance (vis-à-vis of self and food
antigens) and immunity (against pathogens and tumors) in the
intestinal barrier remain an immunological challenge.

Recent work has highlighted how ileal bacteria may
contribute to break tolerance to self-antigens shared between
ileal crypts and cancer stem cells. Roberti et al. reported that the
immunogenicity of ileal epithelial cell death mediated by OXA to
treat a proximal CRC relied on two biological features: (1)
antigenicity provided by the caspase 3/7-dependent apoptosis
of crypt-derived IEC and (2) the adjuvanticity of selected ileal
bacterial families or species (Erysipelotrichaceae, B. fragilis).
These features cooperated to elicit Tfh immune responses and
antibody producing cells protective against tumor progression.
The serum IgG levels were increased by immunogenic bacteria
but not by tolerogenic bacteria and could be associated with IgG
responses directed toward bacteria or tumor cells (Figure 7A). A
vaccine composed of OXA-exposed dying ileal IEC was more
effective to immunize naive hosts against a lethal dose of colon
cancer cells (CT26 and MC38) when harvested from SPF wild
type mice than TLR2/4 or MYD88 KO mice or germ-free
animals. These data suggest that self-antigens derived
from ileal crypts could elicit an immune response in the
presence of microbial adjuvants. Using 16S rRNA gene

FIGURE 6 | Evidence pointing to a key role of the gut microbiota in immune checkpoint inhibitors (ICI)-mediated anticancer effects. Recently, pre- and clinical

studies have shown the clinical significance of the composition of the gut microbiota in ICI efficacy. 1) Retrospective and prospective studies have highlighted the

detrimental effect of antibiotics administration within the month preceding the start of immunotherapy in multiple stage III and IV cancers. 2) Metagenomic analysis

(MGS) of patients’ stool composition predicts primary resistance to ICI in 1L and 2L melanoma, kidney and lung cancers. 3) Avatar mouse models where the

intestines of tumor bearing rodents are colonized by human stools from cancer patients at diagnosis allowed to predict the response to immunotherapy in patients.

4) The identification of beneficial bacteria, such as Akkermansia muciniphila or Bifidobacterium pseudolongum for immunotherapy efficacy opens up prospects to

restore cancer-associated dysbiosis in patients.
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sequencing of patients’ ilea and culturomics, the authors
concluded that distinct bacteria residing in ilea may convey the
immunogenicity of apoptotic cell death of the crypt, shifting the
antitumor immune response from Th17 (observed in progressive
tumors) to Tfh cells accumulating in tumor draining lymph
nodes (tdLN) of mice responding to OXA. Indeed, Bacteroides
fragilis, or Erysipelatoclostridium ramosum could potentially
restore responsiveness to chemotherapy in germ free mice or
ATB-treated SPF animals or could confer immunogenicity to

sterile ileal apoptosis. In contrast, Fusobacterium nucleatum or
Prevotella clara failed to do so. In fact, OXA could mobilize
migratory conventional type 1 DCs (cDC1) (CD103+CD11b-

DC) from the ileal lamina propria to the mLN, and contribute to
IL-1b and IL-12-dependent priming of CXCR5+Bcl6+ PD-1+

CD4+ Tfh cells and systemic IgG responses. In the absence of Tfh
or B cells, the vaccine composed of OXA-exposed crypt ileal
enterocytes failed to induce long term memory autoreactive
CD4+ and CD8+ T cell responses protective against colon

A

B

C

FIGURE 7 | The role of Tfh and B cell orchestration for the efficacy of ICI in TMB high breast tumors or MSS CRC endowed with an immunogenic ileal microbiome.

The efficacy of OXA in mouse model of CRC is driven by ileal features. On one hand, OXA induces apoptosis and the release of DAMPs following caspase-3/7-

dependent ileal epithelial cell death of the crypts. The bacterial composition is critical to turn this cell death into immunogenic cell demise instead of a tolerogenic cell

death. The ICD triggers the migration of CD103+ conventional dendritic cells (BATF3+ cDC1) to the mesenteric lymph node (mLN), which prime Tfh cells in an IL-1b

and IL-12 dependent manner. Next, a crosstalk between Tfh and B cells occurs, leading to a systemic IgG2b response and an accumulation of Tfh and TILs into

MSS or MSI colon tumors. The IgG2b responses are suspected to be directed either against bacteria or tumor cells. (A) Activation mechanisms between B cells and

Tfh result in the generation of antibodies that elicit antibody-dependent cellular cytotoxicity (ADCC) towards tumor-associated antigens in mouse model of breast

cancers endowed with a high tumor mutational burden (TMB) (B). Small intestine immunogenic species (B.pseudolongum or A.muciniphila) secrete the inosine, a

metabolite activating Th1 and Tc1 cells through the A2A. Conjointly with IL-12 co-stimulatory signal produced by cDCs in presence of antigens, inosine-stimulated

Th1 and Tc1 secrete IFN-g and increase ICIs efficacy in MSS or MSI mouse models of colon cancer (C).
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carcinoma. In Batf3 gene deficient animals defective in cDC1,
Tfh were not primed during OXA administration. Moreover,
cDC1 exposed to immunogenic ileal-residing bacteria (B. fragilis
or C. ramosum) could produce IL-1b and IL-12p70 while they
could not produce IL-12p70 when stimulated with F. nucleatum

or P. clara. The authors postulated that PD-1 expressing Tfh
induced by OXA-mediated ileal apoptosis could be bolstered by
anti-PD-1 Abs and carried out to modulate the efficacy of a
combination of OXA with this immune checkpoint inhibitor
with a concomitant oral gavage with immunogenic (B. fragilis, C.
ramosum) versus tolerogenic (F. nucleatum, P. clara) bacteria in
MSS and MSI mouse colon cancers. They could bring evidence
that the ileal residence and/or colonization of bacteria fostered
(as for B. fragilis, C. ramosum) or blunted (as for F. nucleatum, P.

clara) the immunostimulatory anticancer effects of the
combinatorial regimen. These additive effects of both
therapeutic modalities were accompanied by a rise in IgG2b
serum levels.

Initially, ileal bacteria participate in ileal crypt apoptosis but
not in the release of DAMPs. Indeed, in the presence of
antibiotics, OXA-induced ileal cell demise was significantly
reduced. Interestingly, OXA alone could promote the release of
ATP and HMGB1, two hallmarks of ICD, that were not
mandatory for the immunizing capacities of dying IEC, in
contrast to live bacteria or pathogen associated molecular
patterns (26). This is in contrast with a report utilizing gram
negative bacteria ghosts injected intraperitoneally with OXA that
could turn on ICD in the peritoneal cavity and elicit potent NKT
and CD8+ T cell responses associated with regression of peritoneal
carcinogenesis (247). These observations emphasize that the
tumor macroenvironment and organ may critically influence
the requirements for efficient priming of a T cell response.

Secondly, it is intriguing that ileum may be more appropriate
than the colon mucosae to elicit Tfh immunity in the mLN. As
outlined above (248, 249), the immune cell types and microbiota
composition are highly compartmentalized (250, 251),
lymphatics draining the small and large intestines differ and
ileal crypts can undergo apoptotic cell death after chemotherapy
while colonic crypts failed to do so (26).

Third, breaking tolerance to self-tissues in colon cancer has been
previously achieved (252). The authors showed the capacity of
Stat3-deficient IEC to promote adaptive immunity in spontaneous
models of carcinogenesis (252).Mitophagy, the specificdegradation
process of damaged or aged mitochondria, triggered lysosomal
membrane permeabilizationwhich enhancedMHC-I expression in
IEC that in turn allowed cross-dressing of DC with IEC derived-
MHC-I/peptide complexes. This pathway could also come into
action upon OXA treatment, knowing that STAT3 deficiency in
epithelial cancer cells amplified an OXA-elicited type 1 IFN
response and triggered an immunogenic cell death pattern,
ameliorating antitumor T cell responses (253).

Fourth, our findings raise the theoretical possibility of a self-
reactive T cell-dependent immunity that spares healthy tissues to
specifically combat cancer (26). Uncoupling antitumor effects
from ileitis or colitis remains an open conundrum in cancer
chemotherapy and immunotherapy. We postulate that Lgr5

negative crypt-derived cells devoid of stemcellness share
common antigens with pCC that elicit therapeutically relevant
immune responses, at least in the context of chemotherapy with
OXA. As a possibility, the fragments of apoptotic ileal IEC (that
contain colon cancer-crossreactive antigens) and immunogenic
commensals (with their TLR ligands) could end up in the same
phagosomes of antigen-presenting cells in the GALT, thus
providing an opportunity for both self-and non-self-peptides
to be concomitantly loaded into MHC class II molecules (254).
Actually, interactions between cytokine-producing Th cells and
MHC class II+ Lgr5+ intestinal stem cells were shown to be
critical for the self-renewal and/or differentiation of this latter
cell type (255).

Finally, although Tfh and Tfh-like populations have been
associated with poor prognosis in lymphoma (256, 257) and
ICI-treated melanoma (258), numerous pre-clinical and clinical
studies revealed their positive impact on the outcome of many
solid tumors (259), including breast cancer (260, 261), non-small-
cell lung cancer (NSCLC) (262), ovarian cancer (263), and
colorectal cancer (25, 26). Mechanisms underlying the
protective role of Tfh cells are not fully understood, although
some evidence point to cooperation with CD8+ T cells and IL-21
(25, 43). CXCL13-producing Tfh act as “organizers” of germinal
centers in secondary and tertiary lymphoid organs, sustaining
local humoral immunity by attracting antibody-secreting B cells
(264), which control tumor progression (260, 265–268). ICIs are
used to reinvigorate cellular immunity and accumulating
evidence show a direct impact of ICIs on humoral response.
Indeed, anti-PD-1 antibodies increase germinal center formation,
CD4+ T infiltrates and terminal B cell differentiation (269). The
cooperation between Tfh and B cells appears to be associated with
a favorable clinical outcome in colorectal cancer (25) and in
breast cancer, in both human (260, 270) and murine models of
tumors harboring high tumor mutational burden (30). The
humoral response in CRC may be directed towards several
tumor-associated antigens, such as Carcinoembryonic antigen
(CEA) (271, 272), Epidermal Growth Factor Receptor (EGFR)
(273), Human Epidermal Growth Factor Receptor 2 (HER2 or
ErbB2) (274), MUC5AC (275), and ribosomal P proteins (276)
and facilitate antibody-dependent cellular cytotoxicity (30)
(Figure 7B).

Intratumoral terminally differentiated memory B cells and/or
plasma cells can predict prolonged survival (49, 51, 52). Tumor-
infiltrating B cells have been associated with positive clinical
outcome following therapy with ICIs in melanoma (40, 277),
with (41) or without metastasis (278), in sarcoma (39) and in
renal cell carcinoma (40). Of note, B cells can exert direct
tumoricidal activity against cancer cells, in an antigen-specific
and Fas ligand-dependent manner (279).

Intratumoral bacterial colonization and residency, whether
localized within myeloid cells or in tumor cells have recently
been described to modulate local metabolism, change tumor cell
biology or interfere in the drug catabolism (211, 280). IgG
responses directed against intratumoral bacteria may
contribute to preventing tumor colonization and/or tumor
killing, in both mouse models and patients (30, 281, 282).
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Collectively, these studies highlight the potential clinical
significance of B cells, antibody secreting cells, and antibodies as
well as Tfh in dictating the efficacy of the combination of
FOLFOX+ICIs.

Moreover, Mager et al. have recently shown that metabolites
of small intestine-derived immunogenic species, such
as Bifidobacterium pseudolongum, can act as co-stimulatory
molecules on the TCR signaling of Th1 and Tc1 cells. Indeed, B.
pseudolongum produces the inosine, a metabolite that acts through
the adenosine A2A receptor expressed on TILs and potentiates the
effect of PD-1 or CTLA-4 antibodies inmice bearing transplantable
MC38 colon cancer in conjunctionwith co-stimulatory signal. This
effect was lost inmice harboring A2A receptor-deficient T cells. The
anti-tumor effect of the inosine to reduce tumor growth is still
dependent on the presence of a microbiota since in germ-free mice
the administrationof inosine alonedidnot ameliorated ICIs efficacy
while it did in the presence of a complex microbiota.
Additionally, B. pseudolongum modulated the intrinsic local
immunity as it increased the T-bet expression among CD4+ T
cells in the GALT and the mLN but not in the periphery. On the
other hand, B. pseudolongum induced systemic immune
modulation when associated with ICIs leading to the activation of
effector cells and the secretion of IFN-g by CD4+ and CD8+ T cells.
The systemic effect can be explained by the fact that anti-CTLA-4
alters the gut barrier integrity increasing the systemic translocation
of metabolites from the gut. The activation of T cells requires the
presence of an IL-12 co-stimulatory signal provided by cDCs.
Thus, in the absence of cDCs (cDC-DRT mouse model), B.
pseudolongum associated with anti-CTLA-4 failed to induce
IFN-g-T cell producers and anti-tumoral effect. Furthermore,
anti-IL-12p75 neutralization dramatically dampened the effect of
anti-CTLA-4 combined with immunogenic species in a genetically
modified mouse model presenting dMMR intestinal tumors
mismatch repair (Msh2LoxP/LoxPVillin-Cre tumors) (Figure
7C) (244).

Altogether, these studies point to the central role of the ileal,
but not the colonic, epithelial cells and its natural microbial
ecosystem, in mobilizing an efficient immune response against
self-antigens expressed by colon cancers, presumably tumor
stem cells. The solution to the paradox of colon cancers-which
has the propensity to elicit and attract CD3+/CD8+ T cells
(so called “high immunoscore”) but remains resistant to
immunotherapy when devoid of mutated neoantigen-relies
on two pillars, i) ileal apoptosis through activation of the
executioner caspases, and ii) a proper ileal microbiome
composition balancing immunogenic and tolerogenic
commensals. These two conditions can be achieved by
cytotoxic regimen inducing immunogenic cell death of tumor
and/or crypt stem cells and by doing so, favor the dominance of
immunogenic bacteria. Such suitable therapeutic regimens
include FOLFOX (5-FU/leucovorin/OXA), FOLFIRI, or any
type of antibody-dependent cytotoxicity through various
payloads releasing compounds endowed with ICD properties
(283). The ensuing immune response is composed of humoral
(Ab secreting cell and B cell-based) and cellular (Tfh and
memory CD8+ T cell-based) based-immune responses

towards crypt -derived- self antigens shared between the
small intestine and tumor cells. These premises allowed the
demonstration of synergistic effects between ICD-mediating
chemotherapy and PD-1 blockade in pMMR or MSS mouse
colon tumors.

CONCLUSION

Despite tremendous advances in the classification of CRC based
on genetics, transcriptomics and immunometrics, few patients
benefit from combinatorial regimens that combine ICD-
mediating cytotoxicants and ICIs or targeted therapies.
Increasing knowledge on the macroenvironment of colon
carcinoma, mainly on the connections between the local
microbial ecosystem and the systemic immune tonus, has shed
new light on the role of intratumoral and ileal bacteria in
modulating the immune contexture as well as tumor
signaling pathways. This review gives novel insights into the
development of potential biomarkers of response (ileobiome,
ileal immune patterns) or novel therapies based on live bio-
therapeutics consisting of appropriate mixtures of immunogenic
commensals or phages (284) to complement current
combinatorial regimen. Moreover, attention should be paid to
new actors playing a role in colon cancer immunosurveillance,
including antibodies to self-antigens, B cells, and Tfh. Moreover,
technological advanced such as single cell sorting and sequencing
will also enable a comprehensive characterization of these actors’
functions and specificities.
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