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Protection versus uncontrolled inflammation: 
first responders and resolution
New evidence indicates that uncontrolled inflammation is a 

prominent component of many common diseases, including well-

known inflammatory diseases such as arthritis and periodontal 

disease as well as inflammatory bowel disease, cardiovascular 

disease, the neurodegenerative diseases Alzheimer’s and Parkin-

son’s, asthma, cancer, metabolic syndromes (e.g., obesity), dia-

betes, and autoimmune diseases (https://www.cdc.gov). In each, 

peripheral blood markers of inflammation are present and elevated  

(1). Aging and proinflammatory nutrition (2, 3) also contribute to 

increases in inflammatory markers. Thus, the impact of uncon-

trolled inflammation on the United States alone is estimated in 

hundreds of millions of dollars for each disease, with substantial 

increases by 2030 — certainly, epidemic proportions.

The acute inflammatory response is protective. Among the 

first responders, neutrophils (polymorphonuclear leukocytes 

[PMNs]) leave postcapillary venules to phagocytize microbes 

and cellular debris (4). PMNs neutralize and clear invaders; 

however, when excess PMNs congregate or swarm in tissues 

(5), they can inadvertently release their antimicrobial arma-

mentarium via frustrated phagocytosis or cell death (4, 6), lead-

ing to tissue damage that amplifies inflammation and continues 

to chronicity. PMN-driven inflammation is a unifying mecha-

nism for many diseases and reperfusion second-organ injury 

(4). Hence, it is critical to appreciate mechanisms and special-

ized mediators (7) involved in resolution and whether we can 

use these to control inflammation.

In health, acute inflammatory response(s) are self-limited, as 

in surgery-induced tissue injury, in that they resolve on their own 

and classically divide into initiation and resolution phases (4). To 

date, we view acute inflammation as a temporal crescendo to res-

olution and decrescendo of initiating chemical mediator gradients 

(7). In resolution (Figure 1), the host response is active (7) and 

not simply a passive dilution of proinflammatory mediators (8), 

enabling tissues to restore function (4). Lipoxins biosynthesized 

from arachidonic acid are potent, active stop signals for PMN infil-

tration (9, 10) and are produced during resolution of self-limited 

inflammatory responses (11, 12).

While current treatments for inflammation can be effective, 

many eventually become immunosuppressive opportunities for 

infection. Chemical mediators such as prostaglandins phys-

iologically mediate the cardinal signs of inflammation (color, 

rubor, tumor, dolor) and are effectively controlled by tradi-

tional NSAIDs (13); however, NSAIDs are not without unwanted  

side effects. Given the significant public health impact of 

inflammation-associated diseases, it is paramount to seek new 

treatments and mechanisms controlling inflammation and col-

lateral tissue damage from excessive PMN swarming (5). In 
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compared human pleural and PMN-rich 

exudates to time course studies from mouse 

air-pouch exudates and their resolution. We 

found a temporal lipid mediator class switch 

(11) where cyclooxygenase-derived prosta-

glandin E
2
 (PGE

2
) antecedes biosynthesis 

of lipoxins. Human PMNs exposed to PGE
2
 

or PGD
2
 induced 15-lipoxygenase (15-LOX) 

switching phenotype from LTB
4
 production 

to lipoxin production, which is a PMN stop 

signal that limits further recruitment (11). 

This PMN phenotype switch marks the reso-

lution phase, because lipoxin A
4
 (LXA

4
) also 

stimulates macrophage efferocytosis (phago-

cytosis of apoptotic PMNs and debris) (6, 7, 

18, 19). Using lipid mediator metabololipid-

omics, proteomics (liquid chromatography–

tandem mass spectrometry [LC-MS/MS]), 

and cell trafficking in self-limited exudates, 

we identified three new families of media-

tors (9, 22–24), coined “resolvins” (short for 

resolution phase interaction products), “pro-

tectins,” and “maresins” (short for macro-

phage mediators in resolving inflammation) 

(25). Each is structurally distinct (Figure 2), 

biosynthesized from eicosapentaenoic acid 

(EPA), docosapentaenoic acid (n-3DPA), or 

docosahexaenoic acid (DHA) (7, 23, 26, 27). 

EPA-derived 18-HEPE and 15-HEPE are pro-

duced by hypoxic vascular endothelial cells 

and reduce PMN transendothelial migration, 

but are less potent than resolvin E1 (RvE1) or 

15-epi-LXA
5
 (9). Diapedesis or transendo-

thelial migration is the committed step for 

PMN recruitment to inflamed sites (4). Both 

18-HEPE and RvE1 are antiinflammatory, 

stopping PMN migration and stimulating  

resolution (9). Aspirin triggers their biosyn-

thesis (Figure 2), and acetaminophen and 

indomethacin also permit 18-HEPE produc-

tion, whereas selective cyclooxygenase-2  

(COX-2) inhibitors block 18-HEPE produc-

tion. These findings provided new mech-

anism(s) for aspirin’s well-appreciated benefits (19, 28). It was 

deemed critical to establish defining criteria for pro-resolving 

actions to qualify and validate these new molecules to direct eluci-

dation of biosynthesis and structure (Table 1).

In addition to biosynthesis of lipoxins and their aspirin- 

triggered 15-epimeric forms (reviewed in ref. 19), newer n-3 

PUFA-derived bioactive metabolomes for resolvins, protectins, 

and maresins (7) are depicted in Figure 2. Because each family 

member possesses potent pro-resolving and antiinflammatory 

actions (recently reviewed in refs. 7, 29) with special functions 

in the resolution phase (Table 1), this superfamily is coined “spe-

cialized pro-resolving mediators” (SPMs). Each carries defining 

biological functions with cell type– and organ-specific properties, 

reflecting stereospecific activation of cellular receptors (30). The 

this mini-series Review, we briefly address active endogenous 

resolution programs and novel resolution mediators as promis-

ing terrain for new therapeutic approaches (7) that would serve 

as immunoresolvents rather than immunosuppressants (14) 

— namely, pro-resolving agonists that stimulate resolution as 

pharmacologic agents (7, 15–18). We provide here a brief over-

view and update with key points from recent advances to com-

plement other in-depth reviews (7, 15–17, 19, 20).

Specialized novel mediators in resolution
Chemical mediators govern cellular traffic, and those derived 

from essential polyunsaturated fatty acids (PUFAs) are most 

potent. Leukotriene B
4
 (LTB

4
) is a chemoattractant (21) and main 

mediator of PMN swarming (5). Using a systems approach, we 

Figure 1. Acute inflammatory response and its ideal outcome: complete resolution. (A) Temporal 

lipid mediator class-switching initiates active resolution and SPM biosynthesis. Defined steps in 

the acute inflammation time course: edema, PMN infiltration, and then non-phlogistic monocyte- 

macrophage recruitment to inflammatory exudates. The reduction in PMN number coincides with 

the exudate appearance of SPMs and with the biosynthesis of lipoxins, resolvins (E- and D-series), 

protectins, and maresins in resolving exudates. (B) Each family of SPMs is structurally distinct and 

possesses potent pro-resolving actions.
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like aspirin, changes the enzyme’s catalysis to produce predomi-

nantly R-epimer–containing intermediates, exemplified by novel 

13-series resolvins (RvTs) from vascular n-3DPA (26). The complete 

stereochemistry and biosynthesis of each SPM are established (32–

43), as are epoxy-intermediates of maresins and protectins (36).

Resolvins are produced from DHA, n-3DPA, and EPA (Figure 

2), marine oils that enter humans via nutrition or supplementation 

(3). The term “resolvin” refers to the unique structures, temporal 

code in biosynthesis during resolution, and potent pico-nanogram 

main biosynthesis routes were each confirmed via trapping of 

intermediates and label-tracking of precursors and intermediates. 

In addition to lipoxygenase-initiated pathways that produce medi-

ators with alcohols, e.g., PD1/NPD1 or D-series resolvins (RvDs) 

in predominantly 17S configuration, aspirin acetylation of COX-2 

produces inter mediates in the R configuration at the 17-carbon posi-

tion, giving 17R epimers or 17R-PD1 and RvDs, coined as aspirin- 

triggered protectin and resolvin mediators (23, 31). SPM R-epimers 

are longer-acting. Statins also lead to COX-2 S-nitrosylation that, 

Figure 2. SPM network biosynthetic metabolomes. Network illustration of the enzymes, intermediates, and precursors of the SPM superfamily’s biosyn-

thesis from omega-3 PUFA. Deficiencies in the fatty acid desaturase (Fads) gene cluster reduce SPM production (194). Stereochemistry of each major SPM 

is established; for detailed mechanisms in biosynthesis and complete SPM nomenclature of each endogenous molecule, see refs. 36, 39, 41–43, and 58 

and those within.
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ducing an 18-hydroxy-5(6)-epoxide via LTA
4
  

hydrolase that is converted to RvE1, and 

5-LOX converts 18-HEPE to RvE2; RvE1 

and RvE2 each potently stimulate IL-10 and 

phagocytosis (38, 51).

RvD1–RvD6 are biosynthesized in exudates 

and by human PMNs and macrophages (23, 

52) via two separate allylic epoxide-containing 

intermediates (Figure 2). RvD1 and RvD2 are 

biosynthesized from a 17-hydroperoxy product 

of 15-LOX with substrate DHA. This interme-

diate is converted to either 7(8)-epoxytetraene- 

intermediate or RvD5 via 5-LOX (35). RvD2 

also carries potent organ-protective actions 

and enhances bacterial killing/clearance (53). 

RvD1 protects from PMN-mediated reperfu-

sion organ injury (54). In exudates, RvD1 and 

RvD2 appear in the onset of resolution fol-

lowed by RvD3 and RvD4 from a 4(5)epoxide- 

intermediate (14, 55, 56). Each stereochemistry 

is confirmed (14, 39, 55–57).

Protectin biosynthesis and maresin bio-

synthesis (Figure 2) each proceed via epoxide 

intermediates critical to attain the stereochem-

istry of their potent mediators (58). Protectin 

D1 (PD1) is enzymatically produced by human 

leukocytes from 16(17)epoxide-intermediate 

(34). In addition to PMNs, macrophages (34, 52) and eosinophils 

(59, 60) produce PD1, and its production is reduced in patients with 

severe asthma (61, 62). The double lipoxygenase product 10,17- 

diHDHA is obtained by two sequential steps with reduction of 

hydroperoxide-intermediate(s) giving 10S,17S-diHETE (34) coined 

PDX, an isomer of PD1, which has several actions (63–66) but whose 

receptor remains unknown. PD1 when produced in neural systems 

is termed neuroprotectin D1 (NPD1/PD1) and demonstrates potent 

protective actions in retina, brain, and pain (67, 68).

Maresin biosynthesis is initiated at carbon-14 via human 

12-LOX (25, 69), producing a 13(14)epoxide-intermediate (eMaR) 

that stimulates M1 conversion to M2 macrophages and blocks 

LTA
4
 hydrolase (70). The stereochemistry of the products maresin 

1 (MaR1) and MaR2 is established, with actions in pain and tissue 

regeneration (33, 70).

Substrate flow. Resolving secretory phospholipases, sPLA2-

IID and sPLA2-III, release DHA and n-3DPA from phospholipids 

with selectivity for SPM production (71). Microparticles are also 

a source of SPM precursors, e.g., 17-HDHA released via sPLA2 

(52, 72). These substrates are taken up via nutrition and ester-

ified into phospholipids. The ratio of n-3 to n-6 is currently used 

to mark human levels of omega-3 fatty acids obtained from algae 

and marine organisms as potential membrane sources of SPMs 

(3, 73, 74). Omega-3 fatty acids were thought to block coagulation;  

however, doses up to 10 g/d EPA and DHA or consumption of 1.5 

g/d for 52 weeks by cancer or ICU patients were found to be safe 

and without adverse bleeding (75). During resolution of inflamma-

tion, non-esterified substrates also flow into exudates via edema 

carried by proteins (54), which appears to be the major substrate 

form supplied to the brain (76).

ability to counterregulate proinflammatories and actively promote 

resolution via monocyte/macrophage uptake of debris, apoptotic 

PMNs, and killing/clearing microbes (23, 37, 38). RvEs from EPA 

(18-HEPE, RvE1, RvE2, and RvE3) have four main bioactive medi-

ators, biosynthesized as either 18R or 18S epimers (38) with activity 

in pico-nanogram ranges that is not shared by their precursor EPA. 

RvE1 downregulates leukocyte adhesive molecules (i.e., CD11/

CD18) and ADP-dependent platelet activation (44, 45). RvE1 pro-

motes PMN apoptosis to accelerate resolution (46). Human PMN 

RvE2 biosynthesis is enhanced in hypoxia (47), 18-HEPE is cardio-

protective (48), and RvE3 stops PMNs (49). RvE1 reduces dendritic 

cells’ IL-12 production (32) and, in skin, attenuates contact hyper-

sensitivity (50). RvE1 and RvE2 biosynthesis involves 5-LOX, pro-

Table 1. Pro-resolving mediators: defining physiologic actions in 

the signs of resolution

Temporal stereospecific biosynthesis via leukocyte exudate traffic

Cessation of PMN infiltration; stop signals to limit further PMN recruitment and PMN-
mediated tissue damage

Enhancement of macrophage phagocytosis of apoptotic PMNs and cellular debris and 
augmentation of bacteria killing by phagocytes

Actions at both transcriptional and translational level, microRNA

Actions via specific receptors in the pico-nanomolar range in a stereoselective fashion

Shortening of time to resolution (resolution interval R
i
) by activation of endogenous 

resolution programs

Resolution and reduction of pain

 

Figure 3. Quantitative definition of exudate resolution and non-resolving inflammation. Hypo-

thetical example of contained self-limited resolving inflammation versus non-resolving inflamma-

tion (red line) to illustrate the quantitative indices and components: ψ
max

 for peak PMN infiltration, 

50% of peak PMN (R
50

), time point of R
50

 (T
50

), and resolution interval (Ri) to quantitate PMN 

influx and removal as well as non-phlogistic recruitment of monocytes-macrophages in exudates, 

which is required for repair and renewed function. See text and refs. 22 and 85 for original results 

and definitions.
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monoxide (89), cyclin-dependent kinase inhibitors (90), annexin 

peptides (91), and others (17). Since these indices were unavail-

able at the time of development, some widely used drugs are now 

recognized as “resolution toxic,” i.e., disrupting active resolution 

programs (20) including NSAIDs and COX-2 inhibitors. These 

antiinflammatories lower PMN amplitude (Ψ
max

) but lengthen  

resolution interval (R
i
) by impairing efferocytosis and/or uncou-

pling PGE
2
- and PGD

2
-dependent lipoxygenase expression (11, 

92, 93). Lipoxygenase inhibitors also increase R
i
, by decreasing 

SPMs (85), and lidocaine increases R
i
 by blocking efferocytosis 

(94). In contrast, some widely used drugs stimulate resolution and 

shorten R
i
. Distinct from NSAIDs, aspirin decreases R

i
 by acetyl-

ating COX-2, contributing to production of the R-epimer lipox-

ins, resolvins, and protectins (7, 31). Other common resolution- 

promoting drugs include statins, which increase epimeric SPMs 

(26), and glucocorticoids, which increase annexin A1 (95) and 

apoptosis as well as efferocytosis (20) yet can turn immunosup-

pressive. Hence, resolution indices defined the resolution ago-

nist (Figure 3) properties of resolvins and other SPMs (Figure 

2), which are critical for developing new therapeutics that are  

resolution-friendly. Antiinflammatories clearly have a different 

mechanism of action than immunoresolvents (Table 1).

SPMs promote resolution in sterile versus 
infectious inflammation
Specific SPMs are temporally and differentially regulated during 

infections and sterile tissue responses to injury. With bacterial 

infection, SPMs display anti-phlogistic properties and enhance 

pathogen containment. In contrast to immunosuppression, SPM 

augmentation of host defense lowers antibiotic requirements for 

bacterial clearance. Interestingly, RvD1 and RvD5 reduce bacte-

rial titers in blood and exudates, in part by increasing neutrophil 

and macrophage phagocytosis of bacteria and mediating coun-

terregulation of proinflammatory genes, including those encod-

ing NF-κB and TNF-α (37). Both RvD1 and ciprofloxacin accel-

erate resolution of E. coli infection, shortening R
i
; moreover, 

RvD1’s host-directed actions enhance ciprofloxacin’s therapeu-

tic effects (37, 96). RvD2 is another potent immunoresolvent that 

is biosynthesized during active tissue resolution programs (53). In 

both E. coli and Staphylococcus aureus infections, RvD2 limits neu-

trophil infiltration and enhances phagocyte clearance of bacteria 

(97). In addition to regulating neutrophil responses to infection, 

RvD2 mediates protection from neutrophil-initiated second- 

organ injury. After sterile injury from ischemia/reperfusion, RvD2 

gives marked organ protection with decreased neutrophil infiltra-

tion to lungs. In this model, RvD2 administration increases tissue 

levels of other SPMs in a receptor-mediated manner to propel a 

positive-feedback loop for resolution (97).

In addition to leukocyte-mediated injury “from within,” 

sterile direct tissue injury by extrinsic means evokes a resolution 

response in health. In mouse lung injury from gastric acid aspi-

ration, SPM production is temporally regulated with early MaR1 

and later RvD1 and RvD3 (98–100). Intravenous administration of 

MaR1, RvD1, or RvD3 after intrabronchial acid dampens the max-

imal extent of acute lung inflammation and promotes a more rapid 

return to homeostasis. RvD1 also protects tissue after hyperoxic 

lung injury, decreasing oxidative stress and NF-κB. SPMs, includ-

While appreciated as an intermediate in n-3 PUFA biosynthe-

sis in humans, n-3DPA conversion to DHA appears to be greater in 

women than men supplemented with α-linolenic acid (77). n-3DPA 

is also a precursor to SPMs, carrying 22 carbons with 5 double 

bonds (denoted C22:5; Figure 2) as opposed to 6 in DHA (C22:6) 

(27). These n-3 immunoresolvents are biosynthesized (Figure 2) in 

three families: resolvin
n-3DPA

, protectin
n-3DPA

, and maresin
n-3DPA

, each 

demonstrating potent pro-resolving actions (27) in human sub-

jects (78). Rapid advances in the organic synthesis of SPMs from 

n-3DPA and their matching to endogenous mediators (36, 79) facil-

itated demonstration of potent protection by protectin D1
n-3DPA

 and 

resolvin D5
n-3DPA

 in colitis (80). Human and mouse tissues treated 

with the statin atorvastatin convert n-3DPA to RvTs (26). RvTs are 

organ-protective, enhance phagocytosis and bacterial killing, and 

regulate inflammasome components. This mechanism involves 

COX-2 S-nitrosylation and transcellular RvT biosynthesis via 

PMN–endothelial cell interactions that accelerate resolution; RvTs 

are produced in healthy subjects (26). RvTs activate protective host 

responses to resolve infection-initiated inflammation (26) and, like 

resolvins and protectins (58, 81), uncover a potential approach to 

develop host-directed therapies (82).

In addition to transcellular mechanisms, SPM biosynthesis 

proceeds via HDL interactions with macrophages (83), producing 

LXB
4
 and RvE2 from healthy subjects. Macrophages also produce 

SPMs when interacting with apoptotic PMNs (52) and pro-resolving 

microparticles (72).

Resolution indices: quantitative definitions for 
physiology and pharmacology
Once it was established that lipoxins, aspirin-triggered lipoxins, 

and their synthetic analogs are antiinflammatory (7, 81), a quan-

titative definition of resolution was needed to account for cellu-

lar and molecular mechanisms of novel pro-resolving mediators, 

because resolution was described only by histology (4, 84). This 

was critical because in self-limited inflammation, the ideal out-

come is resolution, a highly coordinated and active process con-

trolled by pro-resolving mediators (84). In addition to pinpointing 

SPM biosynthesis and actions (Figure 3), resolution indices can 

also dissect the impact of drugs and infection. Charles Serhan’s 

laboratory introduced quantitative resolution indices focusing on  

exudate PMNs and macrophages. Quantitation of PMN infiltra-

tion, subsequent clearance by apoptosis and efferocytosis, and 

non-phlogistic monocyte/macrophage recruitment, including 

their magnitude, duration, and loss from exudates (22, 85), gave 

birth to the resolution interval (R
i
, time interval from maximum 

PMN influx point Ψ
max

 to 50% reduction R
50

, i.e., T
50

 – T
max

; Figure 

3). Resolution indices defined inflammatory catabasis using tem-

poral lipidomics, proteomics, and flow cytometry to establish rela-

tionships between eicosanoids, SPMs, and chemokines/cytokines, 

as well as potential resolver or protein resolution activators (22, 

37, 85). Among the identified resolver proteins are annexin A1 and 

annexin I–derived peptides that stimulate resolution (17).

SPMs shorten R
i
 both by lowering the amplitude of PMN 

influx (Ψ
max

) and by stimulating clearance by efferocytosis and 

phagocytosis, microbe killing, and containment (14, 37, 86). 

These indices permitted assignment of roles of additional reso-

lution agonists such as erythropoietin (87), plasmin (88), carbon 

https://www.jci.org
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ing RvD1 and MaR1, can also shorten R
i
 for lung injury by increas-

ing macrophage heme oxygenase-1 (89, 101). In these models, 

SPMs mediate protection via several cellular and organ-level 

mechanisms, including decreasing neutrophil trafficking and acti-

vation, increasing macrophage phagocytosis and efferocytosis, 

accelerating restitution of epithelial barrier integrity, and enhanc-

ing edema clearance (102).

SPMs in transitions between innate and 
adaptive immunity
Beyond innate phagocyte responses to resolve acute inflamma-

tion, SPMs appear to play critical roles in regulating adaptive 

immunity. While homeostatic adaptive immune responses are 

targeted, pathologic adaptive inflammation can become overly 

exuberant or chronic and nonresolving. SPMs selectively regulate 

cytokines via SPM receptors expressed on innate lymphoid, NK, T, 

and B cells. In type 2 innate lymphoid cells, SPMs decrease proin-

flammatory type 2 cytokine production but increase amphiregulin 

expression for mucosal protection (103, 104). Cytotoxic properties 

of NK cells can promote granulocyte apoptosis for their clearance, 

a resolution mechanism augmented by SPMs (103). RvD1 and 

RvD2 control CD4+ T cell differentiation into Th1 and Th17 effec-

tors with decreased production of the lineage-specific cytokines 

IFN-γ (Th1) and IL-17 (Th17) and their transcription factors T-bet 

and RORc (105). SPMs also decrease production of IL-2, IFN-γ, 

and TNF-α by CD8+ T cells.

To regulate adaptive responses, SPMs such as MaR1 promote 

de novo generation of FoxP3-expressing regulatory T cells from 

naive CD4+ T cells as well as TGF-β and amphiregulin expression 

(104). SPMs have an adjuvant effect on B cells, enhancing humoral  

immunity. SPMs increase IgM and IgG production from acti-

vated human B cells with differentiation toward a CD27+CD38+  

antibody-secreting cell phenotype (106). Also, SPMs target B 

cell epsilon germline transcript to selectively inhibit IgE without 

decreasing IgM and IgG or IgA production (107).

SPM receptors and intracellular signaling
To mediate cell type–specific actions, SPMs principally serve as 

ligands for select surface receptors. To date, four human SPM 

receptors are identified: ALX/FPR2, ERV1, DRV1, and DRV2. 

While named for the ligand used for identification (LXA
4
, RvE1, 

RvD1, and RvD2, respectively), each receptor is capable of inter-

acting with additional SPMs (30). RvD1, for example, inter-

acts with ALX/FPR2 and DRV1 in a context-specific manner. In 

response to an inflammatory stimulus, neutrophils rapidly mobi-

lize ALX/FPR2, but not DRV1, from secretory granules to cell 

membranes, so RvD1 interacts with DRV1 for homeostatic func-

tions and with ALX/FPR2 for antineutrophil actions in resolving 

inflammation (108, 109). Notably, in some instances, SPMs dis-

play receptor-level antagonism at pro-phlogistic receptors. This 

antagonism is exemplified by inhibition of interactions of LTB
4
 

with its receptor BLT1 by RvE1 and MaR1 (110, 111).

ALX/FPR2 receptors are broadly expressed and engaged by 

SPMs and peptides at distinct domains to influence intracellular 

signaling and cell functional responses. Interestingly, the acute-

phase protein serum amyloid A (SAA) can engage ALX/FPR2 

receptors (112). When the counter-ligand is present in excess, 

SAA and the SPM ligands allosterically inhibit each other to bias 

ALX/FPR2 signaling to promote either inflammation (SAA) or res-

olution (SPM) (113), suggesting a pivotal role for these receptors 

in the temporal course of an inflammatory response. ALX/FPR2 

receptors can dimerize to alter ligand-dependent intracellular 

signaling (114). SAA interactions with ALX/FPR2 decrease for-

mation of homodimers. In contrast, SPM engagement increases  

both ALX/FPR2 homodimerization and heterodimerization 

with FPR1 receptor. ALX/FPR2-FPR1 heterodimers have distinct 

downstream signaling events, with phosphorylation of the JNK/

caspase-3 pathway and proapoptotic signaling pathways.

LXA
4
 can also serve as an endogenous allosteric regulator of 

the endocannabinoid receptor CB1 (115). ERV1 receptors are also 

able to interact with both peptide and lipid ligands, chemerin and 

RvE1, respectively (32). As with ALX/FPR2, peptide and SPM sig-

naling events by this receptor have distinct patterns of activation 

for intracellular pathways, including ERK and NF-κB phosphory-

lation (46). SPM interactions with ALX/FPR2 and ERV1 decrease 

NF-κB activity and cytokine production (46, 116). Translocation of 

NF-κB to the nucleus and its activity are also regulated by SPM sig-

naling at DRV1 and DRV2 (97, 100, 117). In another feed-forward 

mechanism for resolution, SPM receptor signaling by one mediator 

can promote expression of additional SPMs for other SPM recep-

tors, exemplified by RvE1-ERV1 signaling promoting increased 

biosynthesis of LXA
4
 for ALX/FPR2-mediated resolution of aller-

gic lung inflammation (118), and RvD2-DRV2 induction of RvD5 

and PD1 for resolution of ischemia/reperfusion injury (37).

SPM receptor activation of intracellular signaling is cell type– 

and organ-specific; however, a few common themes emerge from 

existing results. Distinct ligand binding can influence receptor 

dimerization with alternate patterns of intracellular signal cou-

pling to evoke specific phosphorylation cascades (114), polyiso-

prenyl phosphate remodeling (119), and microRNA expression 

patterns that together dictate cellular functional responses. Also, 

resolvin receptor activation signals specific microRNAs that carry 

sustained tissue responses (120–122).

Neural systems and arthritic pain
Human brain tissues produce RvD1, PD1, and MaR1 (123, 124). 

LXA
4
, MaR1, RvD1, NPD1, and PDX show neuroprotective activi-

ties. MaR1 and RvD1 downregulate β-amyloid–initiated inflamma-

tion with human microglia, suggesting a role for SPMs in neural 

tissues (123). MaR1 stimulates phagocytosis of the amyloid pep-

tide Aβ42 (123), as does RvD1 (125) with lower SPM levels in Alz-

heimer’s disease (126). MaR1 is neuroprotective in murine spinal 

cord injury, enabling functional recovery (127). DHA and NPD1 

are neuroprotective in the retina (128), CNS, and brain (68), and 

PD1/NPD1 and resolvins may protect in early-stage Alzheimer’s 

as well as in ischemic stroke (124, 129). Microglial cell production 

of proinflammatory cytokines is selectively reduced by SPMs (23, 

24), with increased production of antiinflammatory IL-10 (130). 

In stress models, RvD1 and RvD2 prevent depression-like behav-

iors, and nanogram doses give sustained antidepressant effects 

(131, 132). Since it was first demonstrated that RvE1 and RvD1 are 

potent in resolving inflammatory and postoperative pain (133, 134) 

and that their receptors can regulate transient receptor potential 

(TRP) ion channels and spinal cord synaptic transmission, addi-
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tional resolvins (RvD2), protectins, and MaR1 (Figure 2) were 

shown to display potent ability to reduce inflammatory pain with-

out altering motor functions or baseline pain (33, 135). RvE1 selec-

tively blocks TRPV1 (IC
50

 = 1 nM), RvD1 acts via TRPA1 (IC
50

 = 9 

nM), and RvD2 acts via TRPV1 (IC
50

 = 0.1 nM) and TRPA1 (IC
50

 = 

2 nM) (136). RvE1 inhibits substance P actions on peripheral noci-

ceptive neurons (137). AT-RvD1 also mitigates motor and cogni-

tive deficits in diffuse brain injury, and RvE1 increases posttrau-

matic sleep (138).

AT-RvD1 reduces osteoarthritic pain (139), as does precursor 

17-HDHA (140), prompting validation of their receptors (ALX/

FPR2 and ERV/CMKLR1) in rat models of osteoarthritis pain (141). 

Plasma RvD2 levels correlate with reduction in astrogliosis in spinal 

cord (141). Fish consumption by humans, which increases plasma 

SPMs and precursors, reduces rheumatoid arthritis (RA) disease 

activity (142), and omega-3 fatty acid supplementation increases 

18-HEPE and 17-HDHA, as well as RvEs, PD1, PDX, MaR1, and 

RvDs in plasma and synovial fluid (143). In synovial fluids, RvE2 

increases are associated with reduced pain in arthritic patients 

(143). RvD1 and RvD3 are present in human arthritic synovial flu-

ids (144, 145) and are protective in mouse arthritis, suggesting that 

increasing local joint SPMs may reduce RA pain. In human osteo-

arthritis pain, circulating 17-HDHA is associated with lower pain 

scores; however, circulating resolvins were below limits of detec-

tion (146). Vagal stimulation reduces arthritic joint inflammation 

in humans (147), and vagotomy in mice reduces pro-resolving 

mediators (i.e., SPMs, lipoxins, and netrin-1, an axonal guidance 

protein) that stimulate human monocytes to produce resolvins 

and lipoxins. The vagus nerve controls inflammation amplitude 

(147) by regulating SPMs and resolution (148). Acetylcholine from 

the vagus nerve induces 15-LOX-1 in type 3 innate lymphoid cells 

to produce protectins (i.e., PCTR1) that reduce infections (149). 

PCTRs and other new SPM sulfido-conjugates in tissue regenera-

tion and their relation to leukotrienes were recently reviewed (15). 

Hence, plasticity of neural networks and their innate immune sys-

tem interactions are regulated by specific SPMs.

Fish to human resolvin, protectin, and maresin 
production
SPMs can be produced in many human target organs (7). Avail-

ability of SPM synthetic standards, deuterium-labeled SPMs, and 

targeted LC-MS/MS (150) now permits identification of resolvins, 

protectins, and maresins in human tissues. In addition to sub-

strates, trout brain (151) and salmon tissues contain resolvins 

(152), indicating that SPMs are conserved structures in evolution. 

In humans, SPMs are identified in several types of human speci-

mens and biomatrices. PD1 is in exhaled breath condensates (61), 

RvE1 is in plasma (32), and RvD1 and RvD2 are in serum (153, 154). 

Lymph nodes, spleen, and serum possess most species of SPMs 

(150). Human spleen has RvD5, PD1, and MaR1, as well as RvE1, 

RvE2, RvE3, and LXA
4
; human axillary lymph nodes carry RvD1, 

RvD5, RvD6, RvE3, and lipoxins (150).

Mounting evidence indicates that SPM production is altered 

and often diminished in affected tissues and in circulation across 

a spectrum of chronic inflammatory diseases. In this context, in 

human synovial fluid from RA patients, RvD1, 17-epi-RvD1, RvD2, 

RvD3, RvE1, RvE2, RvE3, PD1, MaR1, 17-HDHA, and 18-HEPE are 

present (143–145), and RvD3 is reduced in serum from RA patients 

(144). RvD1 is sharply reduced in vulnerable regions of human ath-

erosclerotic plaques (155), and, in omental adipose tissue from obese 

patients, RvDs, RvEs, PD1, MaR1, and lipoxins are reduced relative 

to LTB
4
 and prostaglandins (101). In brain and cerebrospinal fluid 

from Alzheimer’s disease patients, RvD1 and LXA
4
 are decreased 

(123, 126). Specific SPMs are present in human urine, namely RvD1, 

17-epi-RvD1, and RvE2, which are decreased in smokers (156).

Recently, RvDs, PD1, and lipoxins were identified in human 

emotional tears with sex-specific levels that are reduced in females 

(40). RvDs are present in human skin blisters and increased in 

females (157). Healthy subjects’ recovery phase from strenuous 

exercise is characterized by increases in serum RvD1, RvE1, LXA
4
, 

and LXB
4
, which are blocked when subjects are pretreated with 

ibuprofen (93). In patients with chronic daily headaches, dietary 

omega-3 intervention increases plasma resolvins, 17-HDHA, and 

18-HEPE with concomitant reduction in headache pain (158). In 

sepsis, plasma RvE1, RvD5, and 17-epi-PD1 increase in nonsurvi-

vors relative to survivors and are potential biomarkers for critical 

illness (159). At birth, SPMs are present in human umbilical cord 

blood (RvE1, RvE2, RvE3, RvD1, 17-epi-RvD1, RvD2, 17-HDHA, 

and 18-HEPE) (160, 161), and placenta carries RvD1, 17-epi-RvD1, 

RvD2, PD1, 17-HDHA, and 18-HEPE (162). Prenatal n-3 supple-

mentation increases 18-HEPE and 17-HDHA concentrations in 

human maternal and cord blood (160, 163), as well as in placenta 

(163), possibly supporting early immune functions (164). Along 

these lines, human breast milk contains bioactive SPM clusters 

consisting of RvD1, RvD2, RvD3, 17-epi-RvD3, RvD4, PD1, MaR1, 

RvE1, RvE2, RvE3, LXA
4
, LXB

4
, 17-HDHA, and 18-HEPE (165, 

166), is a potential source of maternal-infant omega-3 and SPM 

transfer, and links to beneficial maternal n-3 supplementation 

during pregnancy with decreased incidence in children of asthma 

and respiratory infections (167), food allergy, and eczema (164).

Hence, specific SPMs and SPM clusters are present at bio-

logically active amounts in human inflammatory exudates, phys-

iologic tissues, and fluids as demonstrated by targeted LC-MS/

MS–based approaches. In human peripheral blood, several labo-

ratories collectively identified plasma SPMs (38, 168), as well as a 

plasma SPM cluster consisting of RvE1, RvE2, RvD1, 17-epi-RvD1, 

RvD2, RvD5, RvD6, PD1, 17-HDHA, and 18-HEPE (150, 153), and 

a serum cluster of RvD1, 17-epi-RvD1, RvD2, RvD3, PD1, MaR1, 

RvE1, and RvE2. SPM concentrations attained in human periph-

eral blood target PMNs and monocytes (at the single-cell level 

determined by CyTOF mass cytometry) to increase phagocytosis 

and killing of E. coli (116). PUFAs are associated with reduced inci-

dence of fatal coronary heart disease (169, 170), and it has recent-

ly been established that omega-3 supplementation at doses up to 

10 g/d (EPA and DHA) does not increase risk of bleeding or affect 

other coagulation parameters (75).

In human saliva, the leukotriene/RvD1 ratio predicts vascular 

disease (171), and saliva SPMs in aggressive periodontal disease 

may be useful for monitoring disease status (172). Randomized 

trials showed that alcohol consumption increases specific plasma  

SPMs: 18-HEPE, RvD1, and 17R-RvD1 (173). In obese women, 

1.8 g daily EPA and DHA supplementation increased resolvins in  

plasma (174) and in lungs during acute respiratory distress syn-

drome (175). Thus, it appears that in certain organs, dietary n-3 
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(179). An RvE1 analog was successful in human clinical trial for 

dry eye inflammation (180, 181), and another pro-resolving sta-

ble SPM analog is currently in trial for periodontal inflammation 

(182). Several of these molecules are in clinical development pro-

grams. Given the number of SPMs and their potencies in multi-

ple organs, investigation of mimetics and/or metabolically stable 

analogs of SPMs (Figure 2) could reveal their potential in promot-

ing resolution of pathologic inflammation, addressing resolution 

defects that are present in many human diseases.

Therapeutic opportunities for SPM mechanisms
SPMs have proven potent pro-resolving actions in a range of  

disease models (Table 2); given their potency, many drug devel-

opment opportunities are possible. Human PMN swarming acti-

vates a temporal biosynthetic code that produces stop signals, 

e.g., LXA
4
 and resolvins, at critical PMN densities (183). Temporal 

biosynthesis with lipid mediator class switching is documented  

in hu man blisters (157) and with specific drugs (184) (e.g., dex-

medetomidine) that can prevent cognitive decline by activating  

SPMs (185). In randomized trials, immunonutrition (dietary inter-

ventions that modulate the immune system) increases RvE1 in 

patients undergoing hepatobiliary surgery, giving lower rates of 

infection complications and severity (186). Treating coronary artery 

disease patients with Lovaza resurrects SPM production (187). 

Enhancing SPMs via substrate supplementation may also improve 

outcomes in military personnel and in traumatic brain injury (188). 

Building on the ability of SPMs to clear debris, resolving cancer 

inflammation with RvE1, RvD1, or RvD2 reduces chemotherapy- 

initiated tumor debris and lowers dose requirements for cancer 

drugs (189) by stimulating resolution macrophages (190). West-

ern diet triggers inflammasome-mediated trained immunity with 

heightened inflammation (191). RvT and lipoxin reduce inflam-

masome activation (26, 192), suggesting that SPMs can help 

control obesity (193) and other diseases in which inflammation 

is excessive (Table 2). The recent identification of a third phase 

of acute inflammation that arcs into adaptive immunity (16) sup-

plies new targets and opportunities. In addition to innate immuni-

ty, RvD1, RvD2, and RvE1 target T and B lymphocytes (105, 107), 

widening the scope and potential for SPM-based therapeutics  

and resolution physiology/pharmacology.
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increases tissue SPMs, and that not all SPMs (Figure 2) are pro-

duced in each organ, save resolving exudates. Also, some human 

tissues and fluids, e.g., breast milk, placenta, lymph nodes, lung, 

and tears, may constitutively biosynthesize SPMs, while others, 

such as blood (116) and spleen (176), produce SPMs upon cell acti-

vation. Now that these procedures are available, additional human 

studies are needed to investigate the role of organ-specific SPM 

production and actions in human tissues.

Novel therapeutics: SPM inactivation and 
metabolically stable mimetics
While some resolvins and other SPMs reach circulation (150, 159), 

most are metabolically inactivated at local sites of inflammation 

(168). For example, RvE1 is converted via an eicosanoid oxidore-

ductase (EOR, specifically prostaglandin dehydrogenase) (177) to 

inactive 18-oxo-RvE1. Stable analogs of RvE1 that prevent dehy-

drogenation at carbon-18 are longer-acting, demonstrating potent 

mimetic actions of RvE1 in pain and inflammation (134, 168). 

RvD1 is also subject to dehydrogenation via EOR at carbon-17 

alcohol to inactive 17-oxo-RvD1 (35). Stable RvD1 analogs that 

prevent rapid dehydrogenation at carbon-17 are potent mimetics 

(54). RvD4, RvD5, and MaR1 are also subject to local metabolism 

to oxo-products (37, 56, 111). Nanomedicines were designed that 

deliver SPMs and their analogs (72) and with unidirectional sus-

tained delivery (178). A benzo-RvD1 analog was designed to retain 

RvD1’s pro-resolving actions, requiring fewer steps in organic syn-

thesis by eliminating the tetraene conjugation, which is less potent 

Table 2. SPM immunoresolvents in disease

SPM Disease model Reference

RvE1 Periodontal disease, dysbiosis 195

Lung injury 46

RvE1 Colitis 196

Acid-induced lung injury 102

RvD5, PD1 E. coli infection 37

RvD2 Cecal ligation and puncture sepsis 53, 117

RvD2 Burn wound sepsis 197

RvD3 Aging mice, peritonitis 86

RvD4 Skin inflammation, peritonitis, organ 
protection

56, 57

RvD1, RvD3 Arthritis 144, 145

RvE1, RvD1, and RvD2 Cancer 189, 190, 198, 199

RvE1 Obesity 193

Lipoxins and resolvins Neuroinflammation 120

Postoperative cognitive decline 185

Atherosclerosis 200

Asthma 118
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