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SCOPE OF THIS STUDY 

Nowadays the types of circular accelerators vary from small 

cyclotrons to very large synchrotrons and s·torage rings. When 

designing such an accelerator profound knowledge of the beam dynamics 

is required. The partiele motion is liable to three oscillat.ion modes: 

two transverse (the betatron oscillations) and one longitudinal mode 

(the synchrotron oscillations) and coupling effects between the 

various modes have been observed experimentally in many accelerators. 

The present investigation was undertaken to develop a general 

theory for the description of coupling and resonance effects. 

Therefore, a simultaneous treatment of all three oscillation modes has 

been set up with the use of the Hamilton formalism. The theory - which 

takes into account the HF accelerating electric field and the time 

dependenee of the magnetic field - provides insight into various 

sourees that can excite synchro-betatron resonances. In the examinatien 

of pure betatron resonances, the influence of the acceleration of the 

particles is disregarded. 

The study was started as part of the design stMdy for an electron 

storage ring in the Netherlands, used for synchrotron radiation, 

called PAMPUS (FOM76) and has been financed by the foundation 

"Fundamental Research on Matter" FOM. The PAMPUS project has been 

dismissed meanwhile by the Dutch government. 

Afterwards, we got involved in the design study of a proton accumulator 

ring - called IKOR - which is part of the "Spallations-Neutronenquelle" 

(SNQ) project in West Germany (SNQ81I). 

The theory developed in this thesis will he applied mainly on these 

two machines. Although PAMPUS will not be built, its design features 

are characteristic of common electron storage rings which are in 

progress now. 

In chapter I we expand the general Hamilton function for the 

description of the relativistic partiele motion in a time-dependent 

magnetic field and a HF accelerating electric field (in order to study 

transverse-longitudinal cotipling effects) as well as for the motion 

in a time-independent magnetic field without acceleration (to study 

transverse coupling effects). 



The results of this chapter initiate the further study. Moreover, the 

different lattices belonging to the machines considered are presented. 

The linear transverse motion is discussed in chapter 2. Analytica! 

formulae for the so-called Twiss parameters are derived from the linear 

Hamilton theory. We discuss some transformations that are useful in 

linear betatron theory and first and secend order resonances are 

briefly considered using phase plane representations. 

The simultaneous treatment of the betatron and synchrotron motion 

is developed in chapter 3. We start the theory for a cylindrical

symmetric magnetic field and the knowledge obtaine.d is used to extend 

the theory for machines with an alternating gradient magnetic field 

structure. Various sourees which lead to transverse-longitudinal 

coupling or synchro-betatron resonances become apparent and some of 

these are briefly discussed. 

A theory for the description of the one-dimensional non-linear 

betatron motion is elaborated in chapter 4. Non-linear magnetic fields 

are often installed to correct the dynamica! behaviour of the particles 

and special attention is paid to the use of sextupole magnets in IKOR. 

Resonances are generally studied by only retaining the slowly varying 

terms in the Hamilton function, whereas the fast oscillating terms 

are ignored. In this chapter, transformations are performed to remove 

these latter terms and result in a representation of "first" as well 

as "second order" non-linear effects. These secend order effects may 

become important in "futuristic" accelerators. 

Application of the theory leads to the required distance to a resonance 

or stipulates tolerances of the magnetic fields. 

The two-dimensional non-linear betatron resonances are treated 

in chapter 5. The description of these resonances can be reduced 

rather simply to a one-dimensional problem and are treated by 

examinatien of trajectories in a phase plane. The study again leads 

to required distauces to the resonance lines or to allowed magnetic 

field tolerances. 
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CHAPTER I GENERAL INTRODUCTION 

1.1 Ristorical developments in accelerators and orbit theories 

During the years after 1930 various types of circular accelerators 

have been developed. After the classical cyclotron (Law30) for proton 

energies up to about 20 MeV, the synchro-cyclotron was designed to 

avoid the energy limitation of the classica! cyclotron by varying the 

frequency of the accelerating voltage (Ric46, Liv52). In this latter 

machine proton energies up to about 800 MeV are attained. Besides the 

proton, also heavier charged particles can be accelerated in (synchro-) 

cyclotrons. 

Still higher energies have been attained later (since 1945) in 

synchrotrons in which a relatively modest amount of iron is used in a 

ring-shaped magnet. The frequency of the accelerating voltage rises 

to keep in step with that of the rotating particles and in the 

meantime the increasing magnetic field maintains the orbits at constant 

radius. There are two types of synchrotrons in which electrons, protons 

and heavier charged particles can be accelerated. On the one hand we 

have the constant gradient {C.G.) or weak-focusing synchrotron (McM45, 

Vek45, Boh46) in which proton energies up to I - JO GeV are attained 

and on the other hand the alternating gradient (A.G.) or strong

focusing synchrotron (Chr50, Cou52) for proton energies up to 100 GeV 

and even higher. The terms "constant" and "alternating" imply that 

the radial gradient of the magnetic field either maintains a steady 

value or alternates in magnitude and sign when the azimuth changes. 

In A.G. machines the radial and vertical focusing can be greatly 

increased compared to G.G. machines and thus the magnet apertures can 

be reduced. 

A special device for the acceleration of electroos - for energies 

to about 300 MeV - is the betatron in which the acceleration is 

achieved by the electric field induced by the change in magnetic flux 

going through the circular electron orbit (Ker41) • 

More recently (since about 1960) the general interest in the use 

of interacting beams has led to colliding beam facilities with 

intersecting storage rings. Furthermore electron storage rings, up to 

5 GeV, for the production of synchrotron radiation have been in 

3 



progress since 1970 (see e.g. proceedings of the "International 

Conference on High Energy Accelerators" 1971, 1974, 1977, 1980 and of 

the "Particle Accelerator Conference", ever since 1960, publisbed in 

IEEE Transactions on Nuclear Science). 

Nowadays the larger accelerators are frequently designed with 

so-called separated function guide fields, in which the focusing 

functions and bending functions are assigned to different magnetic 

elements. Such a guide field exists of a sequence of bending magnets 

(no radial gradient of the magnetic induction), quadrupales (no 

magnetic induction on their axis) and field free sections in between. 

All these accelerators have a plane of symmetry, called the median 

plane, in the vicinity of which the partiele trajectories lie. 

The main task of the work presented in this thesis will be to 

study partiele stability in circular accelerators. In case of 

stability the particles oscillate around an equilibrium orbit with 

limited amplitudes. The oscillations are in three dimensions: two 

transverse (betatron oscillations) and one longitudinal dimension 

(synchrotron oscillations). Coupling effects between the various 

oscillation modes can give rise to unstable motion. The frequencies 

of the associated oscillations can satisfy a resonance relation 

which might result in amplitude growth and beam loss. 

This thesis deals with the study of coupling and resonance effects 

due to e.g. the accelerating electric field, perturbations in the 

magnetic field and non-linear magnetic fields which are often applied 

in the accelerator in order to cancel unwanted effects. 

Important works on the subject of non-linear oscillations are 

those of Moser (Mos56) and Sturrock (Stu58). Up to now the synchrotron 

oscillations have usually been studied separately from the betatron 

oscillations. The Hamilton formalism has proved to be especially 

well-suited to study coupled betatron os.cillations and non-linear 

phenomena (Scho57, Hag57, Hag62, Kol66, Lys73, Gui76, Ohn81). 

In studying the properties of the magnetic field, the synchrotron 

oscillations can usually be ignored, i.e. the acceleration is 

neglected. The resulting pure betatron resonances are treated 

extensively and examinations of trajectories in a phase plane are 

applied to the uncoupled as well as the coupled betatron motion. 
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The aspects in which this work differs from the reports mentioned 

above will be discussed in more detail in this chapter. 

Further, a general theory will be presented including the 

acceleration process, i.e. the longitudinal and transverse motions 

are treated simultaneously. For the description we use the Hamilton 

formalism and we start with the initial Hamilton function for the 

motion of a charged partiele - with relativistic energy - in a time 

dependent magnetic and electric field. We will use curvi-linear 

coordinates and the time is the independent variable. This treatment 

enables us to study coupling effects between the longitudinal and 

transverse motions in (synchro-)cyclotrons, e.G. and A.G. synchrotrons 

and storage rings. 

Recently Schulte and Ragedoorn were the first to develop a theory for 

the non-relativistic description of accelerated particles in cyclotrons, 

i.e. a simultanecue treatment of the"radial and longitudinal motions 

(Schu78, Schu80). They used cartesian coordinates which turned out to 

be convenient for the description of the acceleration process and of 

the motion in the central region of the cyclotron, although the 

representation of the magnatie field is rather complex in this system. 

More differences between both treatments will be pointed out later in 

this thesis. 

In the rest of this chapter we will bring the Hamilton function in a 

proper form to develop the theory in the subsequent chapters. 

Further some introductory notes on the application of the Hamilton 

theory are treated and at the end we discuss the contents of this 

thesis in more detail. 

1.2 The seneral Hamilton function 

The Hamilton formalism is appropriate to investigate partiele 

orbits in circular accelerators. It gives a general point of view and 

the possibility of detailed descriptions. A Hamiltonian for the motion 

of a charged partiele with relativistic energy in a time-dependent 

magnatie and electric field can be represented by 

(1.1) 
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+ + where p and q are the veetors of the canonical momenta and coordinates, 

A is the magnetic vector potential, c is the velocity of light, E 
r 

and e are respectively the rest energy and the charge of the particle. 

The time t is the independent variable and the value of H equals the 

total energy of the particle. 

It is convenient to describe the motion of the partiele in 

terms of coordinates related to the so-called reference orbit, This 

orbit is defined on a fixed time t=t and the reference partiele 
0 

which has the nominal energy moves on this orbit. The reference orbit 

has the same symmetry as the unperturbed guide field and lies in the 

median plane. 

In a cylindrical-symmetric magnetic field the reference orbit is a 

circle. More generally, in machines with a separated function guide 

field one can consider the orbit as being composed of arcs of a circle 

with radius p connected by straight lines. In_case of a synchrotron 

or starage ring the reference orbit is the "design orbit", 

To define the deviation of the motion from the reference orbit, 

we define a curvi-linear orthogonal coordinate system x,z,s with 

x and z as the horizontal and vertical deviations from the reference 

orbit and s as the coordinate along the reference orbit. In this 

coordinate system a positively charged partiele rotates in the 

s-direction in a magnetic field pointing in the positive z-direction 

and the length of the infinitesimal vector d~ is given by 

(I. 2) 

in which p(s) is the local radius of curvature of the reference orbit. 

The Hamiltonian (l.l) can be written as 

A logical next step would be a series expansion of A in the 

coordinates using div grad A = 0, However, in accelerator physics it 
• + 
1s common use to express A in the components of the magnetic field 

via B = curl A, where B is fixed by the relations div B = 0 and 

curl B Q, The time variatien of the magnetic field - which is very 

slow - can be represented by a simple multiplying factor and 

6 



therefore it is sufficient to give the constant representation, 

Expressed as function of the coordinates the magnetic field is : 

(I .4) 

B 
z Bo + blx + ~2(x2 - z2) - t(tl + B:)z2 + ~3(x3 

+ ...!...((~) 
1

+ ~- ~ + ~ 1 - bÏ]<x3 + 3xz2) 
12 p p p p2 

B
I 

B = B'z + (bl' - ~)xz + s 0 p 

with • = d/ds and " = d2/ds2, 

The coefficients are periodic functions of s and for pure multipales 

it holds: 

B 
0 

B (x=z=O) z (I • 5) 

b2 = (a2Bz) , 
ax2 Jo 

where the subscript "o" means that all quantities are evaluated on 

the reference orbit (x=z=O). 

The degree of the polynomial in (1.4) is determined by the number of 

terms of the multipole expansion. The reader can see that the third 

degree takes into account octupoles and a further expansion of lower 

order poles. 

Non-linear fields can arise from errors in the guide field, from 

fringing fields and from extra elements intentionally put in the 

accelerator. 

Since A is defined in terms of B by B = curl A, the vector potential 

is arbitrary to the extent that the gradient of some scalar function 

can be added as long as the magnetic field does not change in time. 

However, in case of a time-dependent magnetic field the simple 

multiplying factor for B is extended to the vector potential. When we 

combine this with the betatron accelerating fields along the reference 

orbit by Ê = - aA/at, we see that A is fixed by the relation 

~ A ds = ~ is the enclosed magnetic flux. 
s 
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In case of a synchrotron or storage ring a·related vector potential 

is t 

I I B' - ~'z 2 - -(b{ - ~}xz 2 

2 0 2 p 

A = 0 
z 

For the (synchro-)cyclotron with a cylindrical-symmetric magnetic 

field (which is constant in time) the derivatives to s disappear. 

(I .6) 

Substituting the vector potential into (1.3), the Hamiltonian 

can be expressed in a power series of the canonical variables. The 

coordinates x and z are considered to be small quantities: they are 

assumed to be much smaller than the local radius of curvature of the 

trajectory. The equations of motion are given by the Hamilton 

equations. In general we will not solve these equations directly, but 

canonical transformations obtained from a generating function 

Gl(p,q,t) are applied to simplify the Hamiltonian: 

H = H + ~l 
at 

(1. 7) 

Three other forms of the generating function, viz G2(p,q,t), G3(q,q,t) 

and G4 (p,p,t) can be used and give expressions which are similar to 

(1.7) but with a minus sign if por q are calculated, 

In the following paragraphs we will develop the Hamilton theory so 

that it becomes more suited to study coupled orbit motion, First we 

t Taking a cylindrical-symmetric magnetic field, we find for the 
betatron: 

8 
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will discuss the case of a time-dependent ma~netic and electric field 

(section 1,3) and afterwards the motion without acceleration in a 

time-independent magnetic field will be considered (section 1.4). 

1.3 Time-dependent ma&netic and electric field 

The acceleration of charged particles to higher energies is done 

by external electric fields (except in the case of the betatron}. 

In cyclotrons and synchro-cyclotrons the accelerating structures 

involve one or more Dees, whereas synchrotrons and storage rings have 

at least one cavity around the ring. In electron storage rings used 

as synchrotron radiation sources, the energy must be added in order 

to compensate for radiation losses, 

In general the electric field will depend upon the coordinate s 

and upon the time t, It has a "fast" oscillating time dependenee and 

its period is comparable with the period of revolution and the periods 

of the betatron oscillations. 

As a rule the change of the magnetic field occurs extremely slowly 

with respect to the motion along the reference orbit. The characteristic 

times are e.g. 106 larger than the revolution period. 

In general we can write 

E = - grad V - al at (1.8) 

In machines with a Dee structure a HF potential function V(;,t) is 

possible inside the acceleration region and the effect of the 

accelerating voltage is represented by adding this V(;,t) to the 

Hamiltonian (l.3)(Schu78). This potential function has a non-zero 

value in the Dee and equals zero in the dummy Dee. 

However this procedure is less evident when dealing with, for instance, 

one cavity in a ring-shaped accelerator. In case of cavities, a fast 

oscillating vector potential A(t) can be introduced, corresponding 

to the HF magnetic flux of the cavities. Note that in case of an odd 

number of cavities there is a net flux through the surface enclosed 

by the reference orbit i.e. ~ Eds ~ 0 (at a fixed time), 

To deduce a Hamiltonian in which the time-dependent electric and 

magnetic fields are visible separately, we split the chosen vector 

potential in a fast and a slowly varying part. 
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For convenience we omit the fringing fields of the electric field and 

consequently there are no transverse components of the electric field. 

For the longitudinal component of the vector potential we write 

A (t) • A f(t) + A (t) s s, s,s 
(I. 9) 

where A f(t) is the fast oscillating part due to the HF electric field s, 
field E s 

E (t) • -LA (t) 
s at s,f 

and A (t) is the slowly varying component originating from the s,s 
magnetic field which is discussed in the previous section. 

(I ,10) 

As the Hamiltonian should be expanded in a power series of the 

canonical variables, these should all be small quantities. We define 

a longitudinal reference momenturn p (t) by the relation t so 

p (t) = P(x=z=O;t) + eA.. (x=z=Q;t) so s,s ( 1.11) 

in which the kinetic momenturn in the time-dependent magnetic field 

is P(x=z=O;t) = eB(x=z=O;t)p. 

In case of an A.G. synchrotron or storage ring the cavity is 

placed in a straight section and studying the Hamiltonian (1.3) it is 

convenient to apply a transformation generated by the function 

s 
G = pxx + p z + p

8
s + p (t)s + efA f(s',t)ds' z so s, 

with 
z = z s = s 

P = PS - P (t) - eA f(s,t) • s so s, 

All variables remain unchanged except the longitudinal canonical 

momenturn and the Hamiltonian (1.3) becomes (with Ax=Az=O) 

H = ~2 + p2c2 + p2c2 + (Ps + ~so _ eA )
2

c2 + 

(I, 12) 

r x z 1 + ~ s,s 
p (1.13) 

t We reeall the note on page 8 concerning the choice of the vector 
potential and the relation between 'A ds and the enclosed magnetic 
flux. s 
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The influence of the time-dependent magnetic field is incorporated via 

A (t) and p (t) and the acceleration by the HF electric field via 
s,s so ~ 

the "potential-like" function- eJE (s',t)ds'. s 
In general the variatien of the HF electric field with time has the 

form of a eosine function and the "potential-like" function can be 

written as 

s 
- efEs(s')ds'• cos fwHF(t)dt (1.14) 

in which wHF(t) is the angular frequency of the HF accelerating system. 

We introduce a 'term in H, 

eV(s)•cos fwHF(t)dt with 
s 

V(s) = - JE (s')ds' 
s 

(1.15) 

where V(s) is a unique function of s but, in contrast with V(;) in 

case of a cyclotron, not necessarily of the position (note: s bas 

increased with the circumference after one turn, whereas the position 

has not changed). In case of a cyclotron V(s) =V is the voltage in the 

Dee and V(s) = 0 in the dummy Dee. 

High energy electron accelerators differ from other machines by 

the radiation losses. The stochastic quantum emission results in a 

damping (or anti-damping) of the three oscillation modes by the 

accelerating system. The effects of this damping play a role on a 

time scale which is very large compared with the period of the 

betatron and synchrotron oscillations (San71). The effect of the 

radiation losses will not be discussed in this thesis. 

Expanding the Hamiltonian (1.13) into a power series of the 

variables, it can be used to treat the synchrotron and betatron 

motions simultaneously. It is convenient to eliminate the constants 

in (1.13) by a scale transformation. 

In order to eliminate the constants e,c, E in the aamiltonian 
r 

(1.13) wedefine new relative variables and a new dimensionless time 

unit. The variables are normalized on quantities belonging to the 

reference orbit and the reference particle. 



We emphasize that the reference orbit is a solution of the Hamiltonian 
• -+-+ +4-

H w1th A(q,t) replaced by A(q,t=t ). 
0 

The new variables are defined by: 

~ z s x = z =- s = 'R R R 

px = Pz Ps 
Px =-p pz =-p Ps =-p 

0 0 0 

(I.16a) 

The quantity R is the length of the reference orbit divided by 2~. 

It is common to speak of R as the mean radius. The momentum P
0 

is the 

kinetic momentum of the reference particle. 

The new time unit is based on the revolution period of the reference 

particle: 

T = W t with w = E. r;-=-I2 
0 0 R Yo (I. 16b) 

and p2c2 = (1 - ..!. )w2 w2 - E2 
0 y2 0 0 r 

0 

and where the subscript "o" refers to the reference particle, w is 
0 

its angular revolution frequency and W is its total energy. 
0 

In order to maintain Hamilton's equations, the Hamiltonian must 

be adjusted accordingly 

H 
w P R 

0 0 

(I.16c) 

In chapter 3 this Hamiltonian will serve as the starting-point to 

describe the betatron and synchrotron motion simultaneously and to 

study coupling effects between them. 

We notice that an equivalent angular variable 8 along the 

reference orbit is defined by 8 =s/R, which is exactly the variable s 

of (l,l6a). For that reason s and its canonical conjugate p are 
s 

written as a and p8 in future, i.e. chapter 3. 

Finally a remark on the method used to study coupling effects: 

since we consider x/p as a small quantity - in order to be able to 

expand the term (I+ x/p)-l in the Hamiltonian (1.13)- this theory 

is not generally suitable for studies at very small radii i.e. for 

central region studies in (synchro-)cyclotrons. 
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Schulte developed a theory for the non-relativistic description of 

accelerated particles in central regions of cyclotrons by using 

cartesian coordinates and splitting the horizontal motion into a 

circle motion and a centre motion (Schu78, Schu80), 

1.4 Time-independent magnetic field, no acceleration 

Considering the motion in a time-independent magnetic field and 

having no acceleration, A , A and A do not depend on the time. 
x z s 

Then dH/dt = aH/at = 0 expressing the fact that the energy is constant 

for a partiele moving in a magnetic field. 

We change to the longitudinal coordinate s being the new 

independent variable. The equations of motion are still of Hamiltonian 

form and- ps acts as the new Hamiltonian (see e.g. Kol66): 

H - (I + ~) / P2 - (p - eA )2 - (p - eA )2 
p x x z z 

e(l + ~)A 
p s 

(1.17) 

The number of degrees of freedom is now reduced from three (in (1.3)) 

to two (in (1.17)). The new Hamiltonian H is a periodic function of 

the independent variable s. 

Normalizing the variables on the mean radius R and the kinetic 

momenturn P (analogue to (1.16a)) and introducing the azimuthal angle 

6 as the independent variable (ds = Rd6) the Hamiltonian becomes 

= H H=p (1.18) 

Since ~.~,px and pz are all small quantities, the Hamiltonian can be 

expanded in powers of these variables. 

Studying the partiele motion in an accelerator with a separated 

function guide field and considering a partiele with nominal energy, 

i.e. the energy of the reference particle, the final Hamiltonian up 

to the fourth degree in the variables - which is consistent with 

the neglect of multipoles higher than the octupole (see (1.4))-

is (substitute (1.6) into (1.17)/(1.18)): 
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= I =2 I 2 H = - p + -(E 2 x 2 

I = = -2 I -3 =-2 I •- -2 
- t::X(p2 + p ) - - S(x - 3xz ) + - Ep Z + 2 x z 6 2 x 

2~(z<~>2- z<~::2) - ü)~4 

·(1.19) 

in which a is the independent variabie and • = d/da, '' = d /da 2 and 

for the pure multipoles holds: 

E = R 
p 

is the "normalized" dipole component 

is the "norm,alized" quadrupele component 

is the "normalized" sextupole component 

is the "normalized" octupole component. 

This Hamiltonian (1.19) is suited to study linearand non-linear 

transverse coupled orbit motion. The linearized equations of motions 

are obtained by considering the terms of second degree only. 

Field errors and magnet alignment errors affect the vector 

potential and can therefore be incorporated in the Hamiltonian. 

The effect of a momentum deviation ~ from the momentum P
0 

can be 

stuclied by substituting P = P (I + AP/P) with P =eB pin (1.18) 
0 0 0 0 

(see chapter 4). 

Errors can give rise to first degree terms in i and/or ~ in the 

Hamiltonian that indicate the presence of a new equilibrium orbit 

(having the symmetry of the unperturbed linear guide field) or a 

disturbed closed orbit (not having this symmetry). A general trajectory 

will execute betatron oscillations around this new equilibrium orbit 

or disturbed closed orbit, which will be indicated by (~ ,p ) 
= = e xe 

and/or (z,p ). These betatron motions are studied by applying the ze 
transformation 

14 



= ~ ~ = ~ = == G(x,p ,6) = p X - p x (6) + Xp (6) x x x e xe 
(1.20) 

~ = x - ~ (6) 
e 

and 

and the same for the vertical motion. 

The new Hamiltonian ~ = H + 3G/36 does not contain first degree terms 

in the variables. 

Before starting the study of the linear and especially the 

non-linear orbit motion (i.e. the ·study of resonances) in following 

chapters, we will first discuss some general aspects how to deal with 

these problems. 

1.5 Mathematica! treatment of resonances 

Essential quantities of the orbits are the betatron numbers Q 
x 

and Q (often called "tunes"). These numbers reprasent the number of z 
betatron oscillations in one revolution and are representative of 

the focusing effect; the lower these numbers are., the weaker the 

focus ing. 

Furthermore we have the synchrotron oscillation number Q , reprasenting s 
the number of synchrotron oscillations in one turn. 

Generally resonance effects occur when the condition 

m1Qx + m2Qz + m3Qs = Pr ml,m2,m3•Pr integers (1.21) 

is fulfilled; lm1 l+lm2l+lm3l is called the order of the resonance. 

In this section we will mainly restriet ourselves to the problem how 

to deal with betatron resonances, although the synchro-betatron 

resonances (m3 ~ 0) can be treated in a similar way. 

The betatron resonances are divided in the uncoupled or one-dimensional 

and the coupled or two-dimensional resonances. 

The one-dimensional betatron resonances are of the type 

( 1.22) 

Resonances of order I and 2 belong to the linear theory and resonances 
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with m ~ 3 are the non-linear resonances, In fact - as we will see 

later- a resonance like (1.22) will he excited by the p -th azimuthal 
r 

Fourier component of the magnetic field that drives the resonance. 

For the moment we consider an unperturbed quadratic Hamiltonian 

H
0 

with constant coefficients and an extra term H
1 

is added to R
0

: 

H = R
0 

+ H
1 

= l p2 + l Q2x2 + f(S)xm 
2 x 2 

with f(a) = ~ f eipe 
p p 

(I. 23) 

One may study the resonances by the use of action and angle variables 

J, $. These variables lead to simplified equations in canonical farm. 

The transition to J, $ is defined by a canonical transformation (Cor60) 

x = 12J/Q cos $ p = hQJ sin <P 
x 

and the Hamiltonian becomes 

The solutions of K are known : $ = - Q6 and J = constant. 
0 

Subsequently this salution for <P is substituted in K
1 

which then 

consists of fast and slowly oscillating terms, The nature of the 

resonance can be understood quite well by keeping only the low 

frequency or resonant terms which may occur for iQ = p with 
r 

( 1.24) 

( l. 25) 

i "' ± m, ± (m-2),.,. In general a specific term of m:-th degree in the 

Hamiltonian will have its main influence on a resonance of the order m 

and the effect of resonances with t = ± (m-2), ± (m-4), •• are of less 

importance in this respect. 

A simple transformation to a coordinate system rotating with the 

resonance frequency, generated by 

G 

with J J and 
P a 

+...!.... 
m 

converts the Hamiltonian into 

16 
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m 

K oQJ + 2l~priJ 2 
cos m~ (1.27) 

'V 
with öQ = Q - p /m and fp is the Fourier component fp multiplied 

r r r 
with some constant which is irrelevant for the moment. 

This Hamiltonian does not depend on the independent variabie e so that 

the phase plane trajectories follow from K = constant. A survey of 

these trajectories in the phase plane in which 12J and $ are the polar 

coordinates, gives information about the amplitude behaviour near 

resonance. The function K(I2J,~) can be visualized. 

The case m = I, i.e. an imperfection in the dipole field, leads to a 

shifted closed orbit with respect to the reference orbit. This shift 

may ten:d towards infinity when the tune Q is an integer. 

For m = 2, i.e. an imperfection in the field gradient, the flowlinea 

"' are ellipses or hyperbalas depending on the exci tation term fPr and oQ. 
Both cases, m = I and m = 2, are briefly discussed in chapter 2. 

More generally, for non-linear resonances the phase plane is divided 

into a stable (limited amplitudes) and an unstable region (unlimited 

amplitudes) separated by the separatrix. Interesting points on this 

separatrix are the so-called unstable fixed points (saddle points of K), 

which satisfy the relations (as also do stable fixed points, which are 

extrema of K): 

J .. 0 and $ = 0 with • = d/d6 • (1.28) 

The distance from the origin to the unstable fixed point is related 

to the maximum oscillation amplitude and depends on the distance 
. "' 

from the resonance öQ and the strength of the excitation term fPr' 

To excite a resonance the Q value does not have to lie exactly on a 

resonance but within a band about the resonance. This is the origin of 

the term stopband width. 
"' Given an amplitude and working point Q, the allowed strength fPr can 

be determined in order to maintain stable motion (computations of 

tolerances). On the other hand, given the excitation term, the required 

distance to the resonance can be fixed (choice of working point Q). 

The analysis given here, taking constant coefficients in H (see 
0 

(1.23)), is valid in case of cylindrical-symmetric magnetic fieldsin 

which most perturbations are usually negligible except those with m = I. 
The situation is different in case of A.G. field structures in which 



the excitation field for non-linear resonances (m 2:: 3) might be "large". 

Then the periodic terms in H
0 

have to be eliminated first - this 

procedure is sketched in chapter 2 - and afterwards the effect of the 

non-linearities can be examined. 

In new, large machines in which the non-linear correction elements 

might reach a new order of magnitude (Don77), their effects have to 

be examined by transforming the rapidly oscillating terms in K
1 

to 

higher degree. This procedure - carried out in chapter 4 - shows that 

a given non-linearity of m-th degree in the Hamiltonian can also 

contribute to resonances of higher order than m. 

The scheme outlined in the preceding sub-sectien is now 

generalized for the case of coupled resonances: 

(I. 29) 

To illustrate the effects of these resonances we examine the HamiltOnian 

for the linear betatron oscillations, to which a coupling term 

f(S)xjzl with j = lm1 1 and 1 = lm2l is added. When we transferm to 

action and angle variables and take into account the resonant terms 

only, the Hamiltonian is 

1~ 1 1 1~1 'V 

K = Q J + Q J + J 2 J 2 (fp 
XX ZZ X Z r 

in which e.c. means the complex conjugate. (I. 30) 

In this two-dimensional case, the phase space is four-dimensional 

and therefore Guignard developed a treatment with the so-called 

"resonance curves" (Gui76). However, a simplification of the problem 

is obtained by finding the invariants of the motion and reducing the 

number of degrees of freedom. Using (1.30}, the equations of motion 

give 

(I. 31) 

Applying the transformation, generated by the function G (Hag64): 

G (I. 32) 
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with J = J) + .!:!!1 J2 q, = ~x + Qxe x mz I 

q, + .!!1 q, 
P e 

J = J q, = + _r_ 
z 2 2 z m2 x mz 

the Hamiltonian is simplified to 
I !!!l I I !1!21 

K öQJ2 + 2lfprl (J 1 + ;! J 2) 
2 

J 2 
2 

cos m 2 ~ 2 (I. 33) 

with oQ = Q + .!:!!1 Q - EI • 
z m2 x m2 

~I does not appear in this Hamiltonian and hence J 1 is an invariant 

of the motion in accordance with (1.31). Furthermore K itself is the 

second invariant. The two-dimensional resonance is thus reduced to a 

problem with only one degree of freedom. Examinations of trajectories 

in a phase plane may lead to allowed toleraaces or a required distance 

to the resonance, similar to the one-dimensional resonance. This will 

be illustrated in chapter 5. 

Two types of resonances can be distinguished. If m1 and m2 have 

different signs (difference resonance) there is an exchange of energy 

between the two oscillation modes and the amplitudes remain limited 

(see (1. 31)). U m1 and mz have the same sign (sum resonance) both 

amplitudes may have an unlimited growth leading to instability. 

In case of a difference resonance an arbitrary parameter is obviously 

required to define a stopband width. Such a parameter might be the 

maximum allowed energy transfer from one direction to the other. 

Considering transverse coupling, the existence of resonances 

appears as forbidden bands in the Qx• Qz diagram around the lines 

m1Qx + mzQz = Pr• The diagram will be divided into regions within 

which the oparating point (Q ,Q ) must be chosen. x z 
When the non-linear fields have a well-marked periodicity, harmonies 

of this periodicity are most relevant. But on the other hand these 

so-called systematic resonance lines are much rarer in the Qx• Qz 

diagram than the lines corresponding to perturbations. An example 

of a working diagram is plotted in figure 1.4. 

Synchro-betatron resonances are resonances of the type (1.21) 

with m3 ~ 0. Up to now these resonances have not been considered with 
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a general Hamiltonian in which the betatron and synchrotron motion 

are treated simultaneously. In chapter 3 we will develop such a theory, 

using the results of sectien 1.3. The Hamiltonian (J.I6c) is expanded 

in powers of the canonical variables and action and angle variables 

can be used again for all three oscillation modes. The six-dimensional 

phase space can be reduced to a two-dimensional one by two successive 

transformations of the type (1.32). Strictly speaking the treatment is 

similar to the one of the preeedins sub-sectien dealing with pure 

betatron oscillations. The theory will be illustrated briefly with 

some examples. 

I .6 Parameters of "FODO", PAMPUS and !KOR 

The theory which will be developed in the subsequent chapters is 

applied on several lattice configurations. They are all made up of 

sequences of N identical cells, each cell containing a prescribed set 

of bending magnets, quadrupoles and extra non-linear magnetic field 

elements such as sextupoles and octupoles. The guide field is 

isomagnetic, i.e. all bending magnets have the same radius of 

curvature. The magnetic fields are periodic functions in a and can be 

expanded in Fourier series. For convenience we shall assume these 

functions to be stepped functions (hard-edge approximation), but this 

is nota restrietion of the theory, see e.g. the Hamiltonian (1.19). 

Separated function lattices with a so-called FODO structure are 

common in accelerator and storage ring designs. An example is given 

in figure !.la, The corresponding linear guiding and focusing functions 

e2 (a) and n(6) (see 1.19)- are plotted in figure l.lb and l.lc. 

Magnets of the sector type are used quite often, i.e. orbits enter and 

leave perpendicularly to the magnet boundary. Sametimes it is 

appropriate to design bending magnets whose pole faces are rectangular. 

With such a magnet the reference orbit must enter and leave the magnet 

at a non-rectangular angle. There will be radial gradients at the 

edges, leading to edge-focusing effects. In principle a guide field 

constructed of rectangular magnets together with quadrupales does not 

strictly satisfy the definition of "separated function", although it 

is often referred to as such. 
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The rectangular magnets were applied in a proposal for a Dutch 

electron storage ring, called PAMPUS (Bac79a). A unitcellof this 

latticeis shown in figure 1.2. While writing this thesis, authorities 

decided not to build the proposed Dutch synchrotron radiation facility 

PAMPUS. However, the lattice and its properties are characteristic of 

recent electron storage rings used for synchrotron radiation. 

Finally we will discuss the lattice of !KOR. This is a proposed 

proton accumulator ring in the "~allations-_!eutronen.s_uelle" (SNQ) 

project, a cooperation between the institutes KFA JÜlich and KfK 

Karlsruhe in West Germany (SNQ81 I,II,III; JÜ181). 

A unit cell of !KOR- "Isochrone KOmpressor Ring" - is given in 

figure 1.3. From 1979 to 1982 we contributed to the workof the !KOR 

Study Group (JÜ181), We were especially concerned with the consequences 

of the choice of the working point on resonance widths and tolerances. 

These problems are strongly related to the specification of correction 

elements inasmuch as the presence of correction elements affects the 

properties of the resonances. 

A list of parameters of the machines is given in table 1.1. 

(a) 

t 1 6<m--r.OOm ----<o.s i'"' 
B rr:J--4 8 

~~ 

t218lt. 

(b) 0~---- -a 

(a) nl0~r [l 
LJ -e 

Figure 1.1 Unit aeZZ of a simpZe FODO Zattiae (a) (Baa79a) and 

its guiding (b) and foc:using funatione (a). 

Figure 1.2 Unit aeZZ of the- meanwhiZe dismieeed-PAMPUS 

eZeatron starage ring (FODOBOOFODOBOO type; Baa79a), 

SF and SD are sextupoZe magnets. 
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TabZe 1.1 List of parametere of PAMPUS t and IKOR, 

PAMPUS t IKOR 

particles electrens protons 

lattice type isomagnetic/separated function 

period structure 

number of cells 

kinetic energy (GeV) 

yo 
mean radius R (m) 

betatron number Q 
x 

Qz 

emittance ~e (mm.mrad) 
x 

1Tf::z (mm.mrad) 

bending magnets 

field B (Tesla) 
0 

radius of curvature p (m) 

magnetic length (m) 

quadrupale lenses 

gradient (T/m) 

magnetic length (m) 

momentum compaction factor a 

y = ().-! 
tr 

FODOBOOFODOBOO 

8 

1.5 

2936 

13.74 

2.10- 6~25 

Qx "Qz 

100~ - 5~ 

e < 0.1 e z- x 

rectangular 

1.2 

4.17 

1.64 

up to 10 

0.5 

0.2 - 0.014 

2.24 - 8.45 

peak voltage V of HF system (kV) up to 800 

radiation loss U per turn (keV) 107.5 
0 

frequency HF system (MHz) 500 

harmonie number h 144 

synchrotron oscillation number Q 0.03 - 0.005 s 

for more data see e.g. Bac79a and JÜ181. 

FODOOOOOBO 

11 

1.1 

2.173 

32. 18 

3.25 

4.40 

150~ 

50'!1 

sector type 

1.3 

4.64 

2.65 

up to 3.5 

0.4 

0.202 

2.226 

t Authorities decided in the meantime not to build the proposed 
Dutch synchrotron radiation facility PAMPUS. 
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Fig~e 1.3 Unit aeZZ of the proposed proton aaaumuZator ring IKOR 

(JüZ81) (FODOODOOBJ type)~ S ie a sextupoZe magnet. 

N 
0 

1.7 The purpose and contents of this thesis 

Figu:re 1.4 

Resonanee Zines for IKOR~ 

due to systematic machine 

harmonies (N=ll) and 

imperfection harmonies. 

The working point is 

Qx " 3. 25 ., " 4. 4 

The influence of resonances on the orbit motion is of particular 

interest in designing new accelerators and starage rings. The purpose 

of this study is to develop a univeraal theory for the investigation 

of three-dimensional resonances, i.e. not only coupling effects 

between the transverse motions, but.investigation of coupling between 

the transverse and longitudinal motion as well. To achieve this, we use 

the Hamilton formalism. 

Resonance problems are related to the linear guide field, to the 

specificatien of non-linear correction elements and to the 

accelerating system in the accelerator. 

In this chapter we have already considered some introductory and 

general features how to study resonance effects. 
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Expressions given in this chapter are part of the beginning of the 

elaborate study. 

In chapter 2 we will consider problems related to the linear 

betatron theory. Generally the coefficients of the quadratic terms in 

the Hamiltonian depend upon the azimuthal angle e (see (1.19)). 

In order to study a resonance in the way as mentioned before, the 

Hamiltonianmustbe transformed into a farm with constant coefficients. 

This is carried out and subsequently analytica! expressions for 

quantities which describe the linear betatron motion (i.e. the Twiss 

parameters) have been derived. These expressions contain Fourier 

components of the unperturbed linear guide field. Perturbations in this 

guide field can excite linear resonances. A brief analysis of. these 

resonances is presented, using phase plane representations instead of 

solving the equations of motion. 

The simultaneous treatment of the betatron and synchrotron 

motions - i.e. a theory which includes the acceleration process - is 

developed in chapter 3 starting from the advance knowledge of sectien 

1.3. We start with the description of the partiele motion in a 

cylindrical-symmetric magnetic field and afterwards the theory is 

extended to magnetic fields with an alternating gradient (A.G.) 

structure. The theory enables us to consider coupling effects in 

circular accelerators. As an illustration we will briefly discuss 

radial-longitudinal coupling in cyclotrons. Further, different sourees 

whicb can excite synchro-betatron resonances in A.G. synchrotrons and 

storage rings become obvious and some of themwill be treated in 

more detail. 

It is a general procedure in studying resonances to neglect the 

rapidly oscillating terms (zero average) which are present in the 

Hamiltonian, besides the resonant terms. However, in principle these 

terms must be transformed away and they reappear in higher degrees, 

resulting in "higher order" effects. This is illustrated in chapter 4 

for the one-dimensional non-linear betatron motion. A separate 

presentation of the one-dimensional case is justified by its simplicity, 

which facilitates the demonstrat~on of characteristic phenomena and 

their numerical evaluation. We will restriet ourselves chiefly to a 
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detailed examinatien of non-linear effects due to sextupole and 

octupole fields. Special attention will be paid to the use of 

sextupoles in IKOR. 

The two-dimensional betatron resonances are discussed in chapter 5. 

A comprehensive treatment - studying trajectories in a phase plane -

gives a good insight into the resonance behaviour and enables us to 

calculate tolerances and stopband widths. Results will be compared 

with results of Guignard's theory (Gui76, Gui78). 

Finally we have to note that the interaction between the particles 

in the beam or between the particles and their surroundings (i.e. 

vacuum chamber, beam pipe etc.) will not be discussed in this thesis. 
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CHAPTER 2 LINEAR BETATRON THEORY 

2.1 Introduction: the betatron oscillations 

As pointed out in chapter I, the quadratic Hamiltonian generally 

has periodic coefficients (see (1.19)). To explore the Hamilton theory 

in order to study resonances in the way as outlined before, these 

periodic coeffiecients have to be eliminated by canonical 

transformations. In order to find these transformations we first 

consider the solution of the equation of motion in the non-accelerated, 

periodic case: i.e. the betatron oscillations. 

The betatron oscillations are described by the quadratic part of 

(1.19). This Hamiltonian yields a set of uncoupled equations of motion 

with periodic coefficients, known as Rill's equations: 

d2i + K (e)y = o 
de y y = x • z 

K (9 + 2~) = K (6) 
y y 

(2.1) 

K = x - n • K = n 
z 

in which y is the reduced transverse coordinate and K is the 
y 

normalized guide field. The alternating gradient (A.G.) synchrotron 

ideally consists of N identical sections or "unit cells", so that 

K also satisfies K (e + 2~/N) = K (9). y y . y 

The salution of (2.1) can be written in the well-known Floquet 

form. Returning to the coordinate y = Ry expressed in a length-unit, 

we can write 

(
y(e) ) 1 r.. i (Q a + x ) ) z(e) = = z C~(e)e Y Y + e.c. (2.2) 
y' (e) 

where C and xy are constaats of the motion and ~ - the betatron 

number - follows from the characteristic equation for the transfer 

matrix~ over one period 2~ of K (9): 
y 

(2 .3) 
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The complex Floquet factórs (:!~~~) = ~(e) are periadie in e with the 

same period as K (6) and are related to the eigenvector w(O) by 
y -

w(e) = e-iQye M(e/O)w(O) (2.4) 
- = -

Eq.(2.2) is for any X the representation of an ellipse in the y,y' 
y 

plane. lts shape depends on the observation point and the ellipse 

- aften called eigenellipse - is periadie with 2TI. 

An important quantity of the oscillation is its amplitude. To 

obtain a real amplitude - the amplitude in (2.2) is complex - we 

define a new vector ~(e) by 

(
ul ( e )} . ( ) 

u(e) • = w(a)e-1 arg w1 e 
- u2(6) -

(2.5) 

so that u1 (a) is realand the salution x<e) of (2.2) can be written as 

(using the real representation) 

v(6) = Cu(6) cos (Q 6 + arg wl(e) +X) 
4 - y y 

This result is similar to the notation introduced by Courant and 

Snyder (Cou58), writing the amplitude as 

6 
R de 

y(e) = IË /B(ë) cos ( I a (e) + x ) 
y y 0 y y 

E is constant and 6 (6) is the so-called amplitude or betatron 
y y 

function. Furthermore the quantity 

6 
R de 

J.ly(e) = I B (El) 
0 y 

is the betatron phase which is strongly related to Q : 
y 

I Q =-].! (2TI) 
y 211" y 

(2 .6) 

(2.7) 

(2.8) 

(2 .9) 

The relation between Floquet's theorem and the notation of Courant 

and Snyder can be written as 
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ul (6) = la (e) 
y 

arg w1(a) = J.l (6) - Q e 
y y 

(2. 10) 



The betatron function S (6) is uniquely determined by the function 
y 

K (6) and therefore it can serve as an alternate "representation" of 
y ' 

the focusing characteristics of the magnetic field. 

An important feature of the betatron motion is clear from (2.7): 

at each azimuth the displacement y of the partiele is at most Ie Is (6). 
y y 

The complete trajectory of a partiele falls within an envelope 

defined by ± Ie Is {6). Of course the "aperture" A of the machine y y y 
must satisfy the condition A2 > e e • y y y,max 

The eigenellipse in the phase plane (y,y') has a constant area 

~e • A partiele with oscillation amplitude y will lie on such an 
y 

ellipse at the successive turns. The area of the ellipse which belongs 

to the maximum amplitude - this ellipse surrounds all particles in a 

beam - is often called the emittance of the beam. t 

Analogously to the concept "emittance" - which is a property of the 

beam - the concept "acceptance" has been introduced being a property 

of the machine. Only particles whose trajectories (y,y') lie inside 

that acceptance will be accelerated. 

From the form of (2.7) it can be shown that the eigenellipse is 

described by (Cou58) 

y y2 + 2a yy' + S (y')Z = € 
y y y y 

area 
~ 

. h I I d 
Wl.t R dë (2.11) 

in which the quantities y (S). a {S) and S (S) - called the Twiss 
y y y 

parameters - are periadie functions of e related by 

e y - I = a 2 
y y y 

S' y 
- 2a y 

(2. 12) 

The description of the eigenellipse with the Twis.s parameters is 

illustrated in figure 2,1. 

t Sametimes the quantity E - i.e. the area of the ellipse divided 
by ~ - is called the emi1tance. 
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FiguT'e 2.1 

The phase spaae ellipse. 

V 

The Twiss parameters are very useful in matrix calculations t 

for the passage of the vector ~(8) through the accelerator (see e.g. 

Cou58, BrÜ66, Ste71) and will be frequently used in this thesis. 

Generally the Twiss parameters are calculated by a matrix code. 

When the parameters are known, they can directly be incorporated in 

canonical transformations in order to remave the periodic coefficients 

in the quadratic Hamiltonian. Before illustrating this procedure in 

section 2.3, we will derive analytica! formulae for the Twiss 

parameters expressed in Fourier components of the linear guide field. 

In principle such formulae can be obtained from (2.12) by substituting 

a Fourier series for K (8). But to fit the derivation into the general 
y 

Hamilton formalism we will calculate these formulae in a different 

way, starting from the initia! quadratic HamiltoÓian and using the 

theory of canonical transformations. 

t The propagation of beams of light through a media is also described 
by Rill's equation and matrix calculations are often used. 
In e.g. laser physics it is common use to define a complex beam 
parameter p by (see Ver79; or q • 1/p see Kog65): 

p - uz/ul 

where ul and uz are defined in (2.5). 
This p(S) is strongly related with the Twiss parameters from 
accelerator physics. Calculations show that (see Ver79) 

p(S) • B-1 (S){i - a(S)} 

30 
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2.2 Analytical expressions for the Twiss parameters 

In this section we will link the Hamilton theory and its 

canonical transformations with the well-known Twiss parameters (see 

also Cor81c). We note that the entire discussion of this section 

applies equally to the vertical as well as the horizontal motion. 

The Hamiltonian leading to eq.(2.1) is (omit the bars above the 

variables) 

H = ! p2 + ! K x2 
2 x 2 x 

The linear guide field is expanded in a Fourier series 

K (e) = E2 (e) - n(e) 
x 

I A cos pN6 + B sin pN6 
p~O p P 

(2. 13) 

(2. 14) 

with N the number of unit cells, i.e. the periodicity of the linear 

guide field. 

In dealing with a problem represented by (2.13) we transform to 

action and angle variables J,~ (see (1.24)) and the Hamiltonian 

K(J,~) then consists of a constant and an oscillating part. 

Subsequently, the elimination of the oscillating part is achieved by 

a canonical transformation of the form (Hag62) 

G(J,~,e) = - J~ - 3u 2 (~,e) 

J J(1 + ~) (2. IS) 

~ ~- Uz(~,e) 

The function Uz(~,e) is determined by the requirement that all 

oscillating parts in the Hamiltonian vanish, resulting in a Hamiltonian 

of the form K = Q J. 
x 

Thus eq.(2.15) transforma the phase plane ellipse x,x' into a circle 

with radius /2J and the relation between J and the emittance of the 

beam is (we reeall the use of reduced variables in (2.13)): 

J = E /2R • x 
(2. 16) 

The function u2 is periodic in e and ~ and can be written as (see 

also Bac79b) 
00 

u 2 (~,e) L a2k(e)cos 2k~ + b2k(e)sin 2k~ 
k=1 

(2. 17) 
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The coefficients a2k(6) and b2k(6) have the same periodicity as the 

linear field K (6) and contain its Fourier components A , B , 
x p p 

The relation between u2 (and thus A • B ) and the Twiss parameters is p p 
obvious when we reeall that the initial variables x, p lie on an 

x 
eigenellipse so that we can write (see also fig. 2.1) 

x(p = 0) = .!_ /EïY = /û (I + 1.!!.2) 
x R x x ~ a~ ~-o 

(2.18) 

px(x= 0) = h:./Sx = /zQxJ(l + ~) ljl=7!/2 

Substitution of (2.16) and (2.17) results in the analytica! expressions 

for the Twiss parameters Sx and yx: 

f3 (6) 
R 1 

=-
x Qx k 

+k~l(-1) 2kb2k(6) 
(2. 19) 

y (6) .Rx 
R "" x 

+ l: 2kb2k (6) 
k=l 

In case of cylindrical-symmetric magnetic fields these equations are 

reduced to 

R 
and (2.20) 

Up to the first degree in the Fourier components A , B of the 
p p 

linear guide field, we get for k (see Cor80c) 

Apcos pN6 + B sin pN6 
p 

- 4Q2 x 

(2.21) 

The derivation of more coefficients b
2
k is a time-consuming procedure 

and the analytica! expressions become increasingly complicated (Cor80c). 

As an illustration we campare the analytically calculated f3 x 
with the one obtained with a matrix code, The results for the different 

lattice configurations are given in figure 2.2. The first order result 

for Sx- obtained by only taking into account bil) of (2.21) - turns 

out to give a good approximatien on condition that the modulation of 

f3 is not too large. For higher field modulations it is essential to 
x 

involve higher order terms in (2.19). Taking into account the two 

next relevant terms in b2k, eq,(2.19) leads to rather good results 

as shown in figure 2.2. 
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"FODO"" Q = 1.50 ::c 
B = 1. 2 T 

0 

({!'adient F: 1.10 T/m 

gradient D :-2.00 T/m 

PAMPUS " Q::c 2.10 

B = 1.2 T 
0 

g~dient F 3.56 T/m 

gradient D -3. 06 T/m 

IKf)R 10 Q::c = 3. 25 

8
0 

= 1.3 T 

gradient F : 1. 34 T/m 

~dient Dl: -0.20 T/m 

gradient D2: -3.09 T/m 

Figure 2. 2 

The horizontal betatron funation 13 for the varioua lattiaes: 

x analytieally aalaulated i3::c (2.19J taking into aaaount only bf
1
), 

• analytiaally aalaulated e::c taking into aaaount b~ 1 )" b~ 2 )" b
4

2
) 

- ioesult from a matrix aode. 
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Substitution of the complete function u2 in the Hamiltonian will 

generally lead to tedious calculations and comprehensive formulae. 

It turns out to be more advantageous to apply transformations which 

directly contain the Twiss parameters - being known now - instead of 

the series of (2,17) and (2.19). These kind of transformations will 

be discussed in the next section. 

2.3 Canonical transformations useful in-linear Hamilton theory 

In the transformations - containing the Twiss parameters - some 

advance knowledge obtained from the treatment of Courant and Snyder 

(Cou58, see section 2.1) is included. 

The first transformation is generated by the function 

G(x,p ,z,p ,e) x z 

so that 

x= 

P = ff(P +.!.a' i) 
x ax x 2 x 

and similar for z and Pz• 

l d 
= "Rdë 

(2.22) 

This is a transformation to new axes Re ~(e) and lm~(a) with ~(a) 

defined in eq,(2.5). 

Substitution of these new variables x,px,z and Pz into (2.13) or into 

the quadratic part of (1.19) results in a new Hamiltonian of the form 

- __ R_ (-2 -2) _R_ (-2 -2) 
H - 28 (a) Px + x + 28 (e) Pz + z 

x z 

where the amplitude function 8x satisfies 

.!.. 8 8" - .!.. (8') 2 + R-2K 82 = 1 
2 x x 4 x x x 

(2.23) 

the relation 

(2.24) 

which is in agreement with (2.12)(and of course a similar relation 

holds for the vertical betatron function), 

This Hamiltonian (2.23) corresponds with the salution (2.7). 

We shall treat now the uncoupled and coupled motion separately. 
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To investigate only one degree of freedom we consider e.g. the 

horizontal motion. 

The e-dependence of the coefficient in (2.23) is easily removed by 

the transition to a new independent variable w, defined by (compare 

with (2.8)) 

dw = Rde 
SXQX 

(2. 25) 

We notice that dw ~ de when the modulation of S is small. 
x 

Subsequently the Hamiltonian has the well-known form of a harmonie 

oscillator 

= - - 6xQx - I - 2 -z 
H(x,p iW) = -R- H = -2. Q (p + x ) x x x 

and substitution of action and angle variables leads to a simple 

Hamil tonian: 

(2.26) 

(2. 2 7) 

The phase space ellipse is again transformed to a circle and the 

relation between J and the emittance is again J E /2R (see (2.16)). 
x 

Thus the transformations (2.22) and (2.25) simplify the initial 

quadratic Hamiltonian with its periodic coefficients and are the 

starting-point for the investigation of linear (section 2.4) and 

non-linear one-dimensional betatron resonances (chapter 4). 

Since the variable w of (2.25) contains S (or S in case of the 
x z 

vertical motion), it seems unfavourable to use. this variable in the 

two-dimensional case. In that case coefficients depending on 

the independent variable still remain. 

Therefore we maintain the azimuth e as the independent variable. 

The e-dependence of the coefficients in the Hamiltonian (2.23) is now 

removed by a canonical transformation generated by the function 

- - I -z I -z 
G(x,~x'z'~z) = 2 x tan(~x + ~x(e)) + 2 z tan(~z + ~z(e)) 

e Rde 
with ~ (e) = Q e - f = Q e - ~ (e) x,z x,z ~) x,z x,z 

0 x,z 

(2. 28) 
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so that 

x,z = IIT cos(<P + '!' (e)) x,z x,z x,z 

IIT sin(<P + '!' (e)) x,z x,z x,z 

This is a transformation with Re :!:!_(9) and Im :!:!_(6) as new a.xes (see 

(2,2)). The new Hamiltonian becomes 

K = H + 3G/39 = Q J + Q J x x z z (2. 29) 

The solutions J = constant and ~ = - Q e ~ = - Qze correspond x,z x x • z 
to the solution (2.2). 

Of course also the one-dimensional motion can be treated with this 

procedure. 

Summarizing we conclude that the Hamiltonian - repreaenting 

linear betatron motion - has been transformed to a constant one (2.29) 

and the complete transformation of the coordinates and momenta is 

((2.22) plus (2.28)) 

x = 12J B /R cos(~ + 'l'x(e)) 
x x x (2. 30) 

p = I2J R/6 {sin(~ + '!' {6)) + !B' cos(<P + '!' (e))} 
X XX X X X X X 

and the same vertically for z and Pz• 

A similar transformation has already been mentioned in e.g. Sno69. 

The transformation (2.30) will be used in following chapters, 

particularly in chapter 5 to study non-linear coupled betatron 

resonances. 

To conclude this chapter we give a short review of some resonances 

due to linear machine imperfections. 

2.4 Linear machine imperfections 

The effect of imperfections in the linear guide field in A.G. 

synchrotrons or storage rings is usually studied by solving the 

equations of motion (San71, Kei77). In this section the effect is 

examined by considerations of the phase plane, as an introduetion to 

the trestment of resonances later in this thesis. 

A few results for IKOR will be given. The lattice functions in this 

accumulator ring are plotted in figure 2.3. 
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Lattiae funations in 

IKOR. 

An imperfection ~B in the dipole field B appears in the 
0 

Hamiltonian (1.19) as a first degree-term in x with coefficient 

g~B(6)/B = gb(6), 
0 

The final Hamiltonian to study the resonance effect for Q ~ p in 
x r 

the way outlined in the previous sections (see e.g. section 1.5.1 

and 2.3), is 

i{.(:J."$;$) oQJ + J/ij
2
1 2J {A cos ~ + B sin ~} 

Pr Pr 
(2. 31) 

with öQ = Qx - pr and where APr and BPr are the components of the 

pr-th harmonie of the Foutier expansion of the imperfection: 

E(ljl)b(lji)63/Z(lji)R-3/2Q = I A cos pljl + B sin pljl • (2.32) 
x x p~O p p 

"'"' "' r:: -When returning to cartesian coordinates x,y (x = 12J cos ~ and 

y = l2:f sin $) it becomes obvious that the flowlines K(~,y) = constant 

are circles: 

(2. 33) 
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When there is no field imperfection the circles are concentric around 

the stable fixed point (~,y) = (0,0). Due to the pr-th harmonie of the 

dipole imperfection, the stable fixed point shifts across a relativa 

distance ~r/R with 

Ar = __!... / A2 + ;i 
2oQ Pr Pr 

(2. 34) 

This expression clearly shows its resonance properties at Qx = Pr• 

The resonance displaces an area in phase plane as schematically 

illustrated in figure 2.4 - see also the effect of a first harmonie 

perturbation in cyclotrons (Nie72) - and it is obvious that the shifted 

beam area must lie within the machine acceptance. 

The shift Ar is proportional to the strength of the imperfection and 

depends on the value of Sx at the position of the perturbation, thus 

S is a measure of the "sensitivity" to perturbations. x 

I 

/ 
I 

/ 

machine
- ;<acceptance 

""' 

-....t>eam / , Shifted~ / - -

Figure 2.4 

Displacement of an area in (~,y) 

phase plane, due toa pr-th 

harmonia of a dipole imperfeation. 

The shaded area is lost in praatiae. 

As an illustration we consider the effect of a dipole imperfection in 

IKOR. As the machine has been proposed to operate at Qx = 3.25, the 

relevant harmonie is pr = 3. The amplitude of this third harmonie is 

6.5 lo-2!AB/B I where 6B/B is the relative imperfection in one dipole. 
0 0 

Due toa AB/B = 5.10-~, i.e. ~B = 6.5 Gauss, the shift Ar= 2.1 mm. 
0 

In practice all dipoles may have disturbances. In the design stage a 

detailed behaviour AB(6) is not known and the field deviations are 

true errors with a statistical distribution. A statistical analysis 

must be made to obtain a statistical estimate of the maximum amplitude 

of the disturbed closed orbit (Bov70). We will not go into that 

subject bere, but roughly speaking Ar must then be multiplied with the 

square root of the number of dipoles that cause these errors. 

In !KOR, with 11 dipoles, ~r = 7 mm for AB= 6.5 Gauss. 
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For horizontal correction of the closed orbit (i.e. correction of àr) 

auxiliary windinga on the bending magnets are provided (JÜ181), 

The influence of a gradient imperfection ón(6) on e.g. the 

vertical motion, is represented by a second degree term in z with 

coefficient ~An(6) in the Hamiltonian (1.19) (the horizontal motion 

can be treated similarly). After application of the various 

transformations (see section 1.5.1 and 2.3), the resulting Hamiltonian 

shows a resonant term for Qz = pr/2: 

K(J,~;~) ~ {Qz - ~r)J + C
0
J + t J{CPrcos 2$ + DPrsin 2~} 

(2. 35) 

r 
P2:0 

C cos p~ + D sin p~ p p 

The flowlines ~(~,~) = constant ~ where ~ and y are again cartesian 

coordinates - are ellipses (bounded amplitudes, stable motion) or 

hyperbolae (unlimited amplitudes, unstable motion). The unstable 

motion occurs when the following condition is fulfilled: 

!:r _ AQ _ .!. /c2 + D2 < Q < !:r _ AQ + .!. /c2 + D2 
2 z 2 Pr Pr z 2 z 2 Pr Pr 

(2. 36) 

where AQz is the tune shift caused by the zeroeth harmonie of the 

gradient imperfection (see (2,35)) 

2 1o 
1 '11 I 1 

óQz = C
0 

• 2 '11 f ~nS~R- 2 Qzd~ • 4'11 f ànSzR-2ds (2.37) 
0 0 

In other words, the stopband width only exists when there is a 

p -th harmonie of the gradient imperfection. The width is given by 
r 

the amplitude of this p -th harmonie. 
r 

As an illustration, we consider the influence of a gradient 

disturbance in !KOR which has been proposed to operate not too far 

from a half integer value for the vertical tune (Q ~ 4.4, see also 
z 

table 1.1). Since the Fourier components and consequently the 

stopband width depend on Sz at the position of the imperfection, we 

consider the effect where B has its maximum value, i.e. position D2 z 
(see fig. 2.3: B ~ 40 m/rad). The amplitude of the 9th harmonie is 

z 
7.10-3 fora relative imperfection An/n•S.I0-3 in one quadrupele. 
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The tune shift AQ = 3.3 10-3 and the forbidden region for Q becomes z z 

4.493 < Qz < 4.500 (IKOR) , 

This narrow stopband may grow in case of extra imperfections in.other 

quadrupoles. 

Additionally we notice that a half integer resonance can also be 

excited when a disturbed closed orbit is combined with sextupole 

fields since effective gradients appear, 
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CHAPTER 3 SIMULT.ANEOUS TREATMENT OF BETATRON AND SYNCHROTRON MOTION 

3.1 Introduetion 

In general the transverse and the longitudinal motions are coupled 

in a circular accelerator. 

The present development was undertaken to describe the betatron and 

synchrotron oscillations simultaneously, resulting in a theory for 

the description of coupling effects. 

The synchrotron oscillations are the result of the existing 

longitudinal electric fields. These fields, used for acceleration or 

compensation of radiation losses, are generated by a Dee -dummy Dee 

structure (in cyclotrons) or by so-called cavities (in synchrotrons). 

All accelerating structures have HF longitudinal electric fields, i.e. 

the characteristic time is comparable with or even smaller than the 

revolution period of the particles. 

For simplicity we will assume an accelerating gap with an 

infinitesimal small width, equivalent to stepwise acceleration. 

The representation of the electric fields in the general Hamiltonian 

has already partly been discussed in chapter 1, section 1.3. 

First we will explore the theory for the description of coupling 

effects in accelerators with a cylindrical-symmetric magnetic field, 

which might be time-dependent. t 

We start with the expansion of the Hamiltonian (1.16c) in its 

variables neglecting the electric fields, to obtain a deliberate 

preamble. A coupling term between the radial and longitudinal motion 

appears in second degree in this Hamiltonian. A canonical transformation 

is applied to separate the two modes of oscillation in the linearized 

t In principle the e.G. synchrotron does not have an exact cylindrical-
symmetric magnetic field. But the total path length in.the straight 
sections is usually much smaller than the path length in all magnets 
and as far as the derivation of the theory is concerned, we might 
repreaent the magnetic field - as being cylindrical-symmetric - by 
its average value on the reference orbit and its average gradient. 
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case, and the meaning of the new canonical variables will be explained 

(section 3.2), 

Afterwards, the acceleration by the electric fields is taken into 

account. Elaboration of the total Hamiltonian will result in a theory 

which is principally suited to study coupling effects between the 

transverse and longitudinal motions (section 3.3). 

In section 3.4 we will briefly discuss radial-longitudinal 

coupling in a cylindrical-symmetric magnetic field. 

The extension of the theory to accelerators with an alternating 

gradient (A.G.) magnetic field structure is carried out in section 3.5. 

This treatment is simplified by the advance knowledge of the preceding 

sections. 

Finally we will discuss some features of two specific synchro

betatron resonances in A.G. synchrotrons or storage rings 

(section 3.6), 

3.2 Time-dependent cylindrical-symmetric magnetic field, no HF 

accelerating structures 

The reference orbit in a cylindrical-symmetric magnetic field is 

a circle with radius R equal to the radius of curvature p. 

In general the magnetic field B varies slowly in time and we 

write 

B(t) B (1 + b(t)) 
0 

(3. I) 

with B the initial magnetic field on the reference orbit. 
0 ' 

We reeall-as stated insection 1.2- that the time dependenee of the 

magnetic field is merely represented by a multiplying factor. 

For times characteristic of the transverse and· longitudinal motions, 

the quantity b(t) is very small. In case of the (synchro-)cyclotron 

b(t) = o. 

Before evaluating the Hamiltonian (1.13) or (1.16c) we notice 

that the quantity p (t), defined in (1.11)- and of particular so 
interest in case of time-dependent magnetic fields - depends on the 

constant term in the vector potential. This term is determined by the 

enclosed magnetic flux and we get for the different machines 
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t (see eq.(l.6) and (1,6 )): 

synchrotron 

betatron 

ps
0

(t) = eB
0

(1 + b(t))p 

pso(t) 0 
(3.2) 

whereas for the (synchro-)cyclotron the shape of the vector potential 

is of less importance because of the constant magnetic field (see 

(1.13)). 

By this particular choice of p there are no first degree terms so 
containing x in the square root of (1.13), which significantly 

simplifies the work of the expansion of this Hamiltonian. 

We start with the case of a (synchro-)cyclotron and a synchrotron. 

The betatron will be briefly discussed insection 3.2.1. 

We expand the Hamiltonian (1.13/1.16c) up to third degree in the 

variables. An expansion to higher degrees is more cumhersome but still 

possible. 

The Hamiltonian - with the scaled time T as the independent variable -

is 

(3.3) 

with ' = dT • 
d 

The canonical variables are defined in (I. 16a) with P 
0 

= eB 
0

p and as 

stated in sectien 1.3.1 the variables ~ and ps are respectively 

written as e and Pa· 
The time-dependent magnetic field is written as B(T) = B0 (1 + bT) and 

the time· derivative is taken into account in the lowest degree of the 

Hamiltonian only. A more detailed description gives some correction 

terms, all being small (see Cor82), 
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We notice that a coupling term between the radial and longitudinal 

motion appears in second degree of (3.3), i.e. the Pe~ term. 

It is convenient to perferm a transformation to new variables in order 

to separate the two modes of oscillation in the linearized case; 

The generating function is . 
'V= 'V= 'V= I "'"' b 

G = pxx + pzz + p6e - ï--::-n PePx - ï--::-n x 

so that 
'\, 

'\, Pe = '\, 
(3.4) x .. x +--- p .. p -

I - n x x 

= '\, = '\, 

z z pz = pz 
'\, 

ê ~ 
px '\, 

+--- Pe = Pe I - n 

The Hamiltonian, expressed in the new variables, is 

+ .!. J;2 (.!.2 - -~-) + Pe (I + È.2) + 'b'# 2 e y
0 

I - n Y
0 

(3 ,5) 

- .!.(3 - n )ié 3 - ..!_ p p2 (I - .!. ) + .!. p2ié ( I 
6 2 e x y~ 2 e (I 

- 3n) 
- n)2 

+ "'3 ( 1 (1 I + 1 ) + I 3 - Sn ) 
Pe -2y2 -y2 i=ïi 6(1-n)3 

0 0 

The variables ié, p and ~. p describe the horizontal and 
x z 

vertical betatron oscillations and their corresponding oscillation 

"frequencies" are Q = l1=1l and Q = rn . x z 
For the sake of completeness we mention that for (synchro-)cyclotrons 

the field index n varies from 0 in the centre to about 0.2 or 0.3 at 

extraction radius and in C.G. synchrotrons n will be about 0.5 or 

0.6 (Liv61) • 

. 
'\, 

From 6 
'\, '\, '\, 

3H/ap
6 

~ I we find that in first order approximation e 

is equal to the scaled time •· 
'\, 

The new longitudinal coordinate e contains the radial motion via the 

momentum px according to (3.4). As illustrated in figure 3.1 the 
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quantity p is strongly related to the position of the centre of the 
x 'V 

orbit. The variable 6 is based on the same idea as the so-called 

Central Position (CP) phase, first introduced by Schulte and Ragedoorn 

in their treatment of the motion of accelerated particles in cyclotrons 

using cartesian coordinates (Schu78, Schu80). 

relerenee 
orbit 

Figure 3.1 

Sahematia iZZustration of the 
'V 

reZation between p and the aentre 
:x; 

eentre of 
relerenee orbit 

of the orbit in a homogeneaus 

magnetia field. 

Thus, when dealing with coupling between transverse and longitudinal 

motion it is necessary to perfarm a slight change of the longitudinal 

coordinate. 

We accentuate the fact that for a perfect machine no coupling 

term p 6 ~ arises because of median plane symmetry. However, 

imperfections in the magnetic field may give rise to a term p6z in the 

Hamiltonian (3.3) and the longitudinal coordinate ~ then also 

includes the vertical oscillations via p . 
z 

Finally we note that in case of an A.G. accelerator the relation 
'V 

between the coordinate 6 and the centre position is much less evident 

because the reference orbit is no langer a real circle. But, as will 

be shown in sectien 3.5, it remains possible to define an equivalent 

CP phase based on the same idea, namely decoupling of bath linear 

radial and longitudinal motions. 

'V 
The longitudinal momentum p6 is related to the deviation of the 

kinetic momentum P(t) of an arbitrary partiele - moving in the 

time-dependent magnetic field on a radius p + x - with respect to the 

kinetic momentum of a partiele moving on radius p. 

To illustrate this we reeall the relation between P(t) and the 

original longitudinal momentum p (in case p =p =0): s x z 
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ps 
P(t) = I + x/p - eAs(t) , (3,6) 

Substitution of successively ps (defined in 1.12) and the vector 

potential (1.6) results in 

"' Ps 
Pa = p ::: 

0 

P(T) - eB(T)P 
p 

0 

fiP(T) fiW(T) 6W(T) = -p- = _..;:::.;.:.1.;,=-= ... l== = Rj';jp 
o P c I - - 2 o o 

o 'Yo 

In case of the cylindrical symmetry R p. 

(3. 7) 

The quantity p6/l-n, subtracted from the ~ coordinate in (3.4), 

is the relative change in the orbit radius due to a relative momentum 

deviation and 1/1-n is equal to the so-called momentum compaction 

factor a, 

"' "' . "' From p6 oH/è6 b and (3.7) we find in case of the C.G. 

or weak-focusing synchrotron 

(3.8) 

in first order corresponding with the fact that the energy or momentum 

remains constant when no HF accelerating structures are present: the 

betatron action is (almost) zero in synchrotrons. 

3.2.1 Betatron acceleration 

A certain amount of betatron acceleration is represented in the 

Hamiltonian by taking a vector potential of the form 

As = -B(t)p{f
0 

+ f(x,z)} (3. 9) 

where f
0 

is a constant (O=:;f
0
.:;,t) that "measures" the enclosed magnetic 

flux. In case of the betatron f =I (see also eq,(l.6t), chapter 1), 
0 

After having carried out all transformations performed to obtain 

a Hamiltonian like (3.5), we find 

"' I "-'2 I • "-'2 H = 2 px + 2(1 - n)x + 
(3.10) 

I "-'2 (I I } "' (I b ) '"' 2 P6 -:y2 - l=ÏÏ + Pa + -:y2 - (f
0 

- 1 )be + .... 
0 0 
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·~ ~ For the betatron (f
0
=1) the term b6 is missing. Consequently Pe 

is constant and 
. ~ 

for the reference part~cle p6 = 0. 

As (~.~ )=(0,0) x 
is a salution of the Hamiltonian (3.10) we find 

(see (3.7)) 

P(-r) • eB(-r)p (3 .!I) 

The momenturn (or energy) of the partiele increases proportionally 

with the rate of change 

Of course eq,(3.11) can 

given in (3.9) and p = 

of the magnetic 

also be derived 
~ 

field (betatron action). 

directly from (3.6) with A (t) 
s 

s PoPe· 

3.3 The influence of longitudinal HF accelerating electric fields on 

the orbit motion 

In general the longitudinal electric fields oscillate in time 

with a time-dependent frequency wHF(t). 

For our description of the acceleration only the number of gaps or 

cavities and their positions are sufficient. 

After application of the scale transformation (1.16a,b,c) the 

- potential-like function (1.15) which represents the acceleration in 

the Hamiltonian becomes 

with (3. 12) 

(1 -.!.. )w 
y~ 0 

= where we remind the reader that the variables of (1.16a) is written 

as e (see section 1.3). 

In this thesis we restriet ourselves - for simplicity - to 

homogeneaus electric fields. In practice this may not be quite true 

(Lap65, Car65) and a substantial extension of the theory might be 

the description of e.g. radial electric fields or a variàtion of the 
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accelerating voltage along the gapt, resulting in a representation 

of effects such as e.g. phase compression (Rus63, MÜ170) or electric 

focusing (Dut75, Gor81a, Bot81). 

Generally the frequency of the accelerating voltage is a multiple 

of the revolution frequency, indicated by the harmonie number h. lts 

time dependenee is incorporated by writing 

(3. I3) 

in which ê(t) is of the sameorder of magnitude or even smaller than 

b(t) (eq.(3.1)). 

The Hamiltonian - including the acceleration term - expressed in 

the variables of (3.4) becomes 

~ = t p! + ••• see (3.5) ••• + 

"' (3. 14) 
"' Px J ( eV1 (8 + J--::-n) cos h I + 

To study resonance effects we are especially interested in slowly 

varying terros (see also chapter I). Therefore we first subtract the 
"' 'U fast time-dependenee from 8- note that 8 = T + •• see (3.5)- SO that 

• • 1\1 • • • 
the new long~tudinal coord~nate e var~es slowly. The transformat~on ~s 

generated by the function 

<u% <u% "'~ % 
G = xpx + zpz + ep8 - Pe·f(i + ê(t))d; 

so that (3.I5) 

% "' e = e - f(I + ê(t))dt 

whereas all other variable"s remain unchanged. 
-:u 

The new coordinate ~ is a deviation from a reference pointer rotating 
% 

with ~F(t)/h and we should call e a "phase". 

The new Hamiltonian becomes 

% "' "' % H = H + àG/àt = H- (I + ê(t))p
8 

-:u 
and the potential-like function in 1'1 is 

(3 .16) 

t This theory may have its applications for the cyclotrons of GANIL 
(Grand Accélérateur National d'Ions Lourds) Caen, France; 
see Cha79 and Lap81. 
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% 
1\:: p 

eV
1 

(6 + __ x_ + 
I - n 

* * 1' ) COS hT (3 .17) 

where we .abbreviated f(i + 6(•))d-r by * T • 

To evaluate this function v
1 

we subtract the purely time-dependent 

f . ( *> < * ~ lli I ) . . . unctl..on v1 T from v
1 

T + + px 1-n .r, a ~lml.lar procedure as g1.ven 

in Schu78, The result is a function V•f(~ + ~ /1-n;•*> as sketched in 
x 

figure 3o2 and 3o3 for the case of only one cavity in a synchrotron 

and for a one-Dee system, respectivelyo The width of the pulses of 

this function f depends on ~ and ~ and as the Hamiltonian must be 
x 

expanded into its variables, it seems more appropriate to use this 

function finsteadof v1 of (3,17)o This is allowed without further 

action because we subtracted a function depending on the independent 

variabie T only. Thus we write 

% 
H"' 

1 %2 Z px + ••• see 

lli 
- (1 + 6(-r))p

6 
')., % 

+ eV•f(~ + ~ 
1 - n 

(3o5) 00 0 + 

* * ; T ) COS hT 

where eV is the maximum fractional energy gain at the cavity or 

gapcrossing (see also (1.16c)) 
A 

eV .. _.......;e::.;V;__ 
( 1 - .!. )w 

y2 0 
0 

with V the peak voltage in the Dee or in the cavity. 

The influence of the acceleration on the radial and longitudinal 

motion is now given by 
0 

lli 
x COS hT* 

and . 
% - af • 
Pe == - eV i& cos h-r 

d 
.. d-r 

(3 0 18) 

(3 0 19) 

(3o20) 

:\: ')., 

where 3f/3p and af/a~ both consist of delta pulses as i~lustrated 
x 

in figure 3.2 and 3.3o 

The next step in the discussion of the influence of the 

acceleration on the orbit motion is the examinatien of ·the function f. 
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(a) 

(b) 

{c) 

(dJ 

( e) 

Fi(JUPe 3.2 

- -~1 ----------------, 

I 
I 
I 
I 

I 
I 

I : I 

~ 
I I 

lli-------'-1 -- I 

I 

1 
I 

at 
äPx 

at 
~ 

__ L_~~----~------L-~--.t* 
~k ~~k~l 

The potentia"l-like funation v
1 

of (3.17) as a function of time T* fo:ro 

a:robi t:roary va"lue of the va:l'iab "les (a) and fo:ro T * as an a:rogument (b) in 

oase of one aavi ty. The di ffe:roenae ( c) beween these wo funations is 

V•f. The denvatives of f to the va:roiab"les are shown in (d) and (e). 

(a) J 1 ~v I I V lê+i+t*) 1 1-n 
I I 

l___i1L_I v1 lt*l 
(b) I 

I 

I 
1 

I I : 
"' I I I - .", Px 

(c) I I I V.fl0+;+nl 

(dJ 

(e) 

Fi(JUPe 3. 3 

Sirrri"l«r' to figUPe 3.2 but now fol' a one-Dee system o:ro wo equaUy 

spaeed cavities with 0° phase diffel'enae beween the e"lectnc fie"lds. 
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')., 'V 

The argument of this function f(~ + p /1-n) consists of a slowly 

variabie ~ and of the fast oscillatin: variabie ~ • This means that 
x * the width of the pulses of f may vary rapidly over one "period" of t , 

The variabie ~ is small compared to the usually assumed values of ~ x 
and in order to expand this function f into the canonical variables 
~ % 
El and p we write f as a Taylor series: x 

~ ~ ~2 
+ Jx af (€!) + .!.. ~ 

I-n -;;r- 2 (1-n) 2 

~ * Subsequently, the function f(~) which is periodic in t can be 

represented by a Fourier series: 

* sin p< 

(3.21) 

(3.22) 

After the calculation of these Fourier components and substitution 

into (3.21) the acceleration term-and thus the total Hamiltonian

is expanded into the canonical variables. 

In principle this treatment enables us to examina the influence 

of any Dee or cavity configuration. As an illustration we give the 

Fourier components of (3.22) for the two cases sketched in figure 

3.2 and 3.3 : 

- only one cavity in the ring 

A 
~ 

0 - 211 
"' 

A 
_ .!.. sin p'8 (3. 23) p Tl p 

p~) 
p !: 

B 
I (I - cos =-p 'lf p 

- the one-Dee system or two equally spaeed cavities with a 0° phase 

difference between the electric fields 

A = 0 
0 

A -i{ I _ (-l)p} sin p~ (3.24) p Tl p 

p~) 
p :2:: 

I (-1 )P] (I - cos 
B = -{1 p Tl p 

Substitution of the Taylor series (3.21) and the Fourier series 

(3.22) into (3.18) generally yields slowly and fast oscillating terms. 
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In fact, the fast oscillating terms must be transformed to higher 

degree, We will not carry out this procedure now, assuming they do 

not give any significant contributions (a procedure to eliminste fast 

oscillating terms is demonstrated extensively in chapter 4 for tbe 

one-dimensional betatron motion; see also Hag62), 

Keeping the relevant terms, the Hamiltonian becomes (see (3.5} and 

(3.18)): 

H = .!. p2 + .!.(! -n)x2 + .!. p2 (.!. - -•-) + b6 - ( ö - È.2)p + 
2 x 2 2 a y~ 1-n y

0 
6 

I -
2 eVJ\(8) + 

(3. 25) 

For aonvenience we omitted the vertiaaL motion~ the thiPd degpee terms 

of (3,5) and the marks ~ above the vaPiabLes. 

The term px•èJ\/38 has the effect of producing a displacement of 

the equilibrium orbit. This displaced orbit is somatimes called the 

"accelerated equilibrium orbit" abbreviated by AEO (Schu78). 

The motion with respect to this AEO is described by the introduetion 

of new variables, via the transformation 

- - eV x 2!b 
G = xpx + 8Pe - 2(1 - n) 36 

with ~ = x 
- eV ~ px = px + 2(1 - n) ae (3. 26) 

- eV 
~ 6 a Pa = Pe + 2 (1 - n) x ae 

and no first degree terms in x, px appear in the Hamiltonian: 

- I - 2 I - 2 I -2 (I I ) •- ( b ) -H =- p + -(1-n)x +- p - 2 - --- + be - o --2 Pe + 2 x 2 2 e y
0 

1-n Y
0 

(3.27) 

+ •••••• 
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in which we neglected terms as (eV) 2 , oeV, beV and beV because of 

their assumed smallness. 

In fact, the coefficient eV defined in (3.19) is not small in the 

central region of cyclotrons since these machines accelerate ions, 

starting (in most cases) from nearly zero energy. 

The increase of momenturn (or energy) due to the gapcrossing is 

represented by the term in the secend line of (3.27). The increase 

is (i= 0, p = 0): 
x 

he one cavity r 2: cos 
I eV ~ (3. 28) Pa 2 aë eV{ I h 

2'7T 
- (-1) }cos he one-Dee system • 

These relations can also be directly obtained from (3.20) by 

* - 1: substitution of the Fourier series of a delta pulse at T = 2'7Tk tl, 

see figure 3.2 (and at •*= (2k+I)'IT- ~ in case of the one-Dee system, 

see figure 3.3). Eq.(3.28) therefore fits into the physical idea we 

have of acceleration. 

No effective acceleration occurs ~n the case of the one-Dee 

system (or in the case of two equally spaeed cavities with 0° phase 

difference between the electric fields) if the harmonie number h is 

even because the partiele is then alternatingly accelerated and 

decelerated, In case of two equally spaeed cavities with a 180° phase 

difference between the electric fields, h must be even. 

The radial oscillations are performed about an equilibrium orbit 

which shifts outwards in position at each gap crossing (see third 

line in (3.25) and transformation (3.26)). For an arbitrary partiele 

the outward shift has an additional component depending on p , 
x 

This component is represented by the last term in (3.27) and results 

in a change of the radial oscillation frequency. We will discuss this 

effect more closely in sectien 3.4. 

To conclude this sectien we will consider the uncoupled longitudinal 

motion which is described by the Hamiltonian (3.27) with·i = p = 0. 
x 

A few manupulations lead to the classica! Hamiltonian for the 

description of the synchrotron oscillations, 

The. first degree term in p8 is removed by a transformation of the form: 
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G e 

_(3.29) 

e e and 
I - r::-n 

where Pa represents the relative deviation in kinetic momentum from 

a central partiele known as the synchronous particle. 

For the time being we restriet ourselves to the case of a one-Dee 

system and the new Ramiltonian becomes: • 
• b 

_ eV sin hê + 0 - ï=D. 
1T h 1 1 

e (3.30) 
yz -h 

0 

It is customary to define the phase in such a way that the rate of 

change of this phase is negative for particles rotating faster than 
A 

the synchronous particle; therefore we change sign of e. 
Returning to real time units t = t/w and to the generalized momentum 

A Q 

fiW/w RP Pe and P =eB p (see (3.7)), the Ramiltonian must be 
0 0 0 A 0 

changed to R = - w P RH, resulting in 
. 0 0 

with 

R = .!_ w~Ko (aw)2 
2 w ûl J 

0 0 

Cl - l/y2 
K = ____ o;... 

0 
I - J/y2 

0 

A A w 
_ eV sin he __ o_ ê{l dw _ ~ dB} 

n h w K w dt B dt 
0 0 0 0 

and a .. 

where u is the so-called momentum compaction factor, 

(3.31) 

This Ramiltonian is similar to the one derived in the classica! 
... 

way (see e.g. Kol66} with the difference that the phase e or a is not 

the normally used HF phase of the partiele with respect to the phase 

of the accelerating voltage : The definition of a differs somewhat 

from that of the "Central Position" phase as introduced by Schulte 
t and Ragedoorn (Schu79) • but the basic ideas are essentially the same. 

t We reeall that Schulte and Ragedoorn studied the motion of accelerated 
particles in cyclotrons by using cartesian coordinates and splitting 
the partiele motion into a circle and a centre motion and taking 
Qx ~I (i.e. n ~ 0); see also Schu78 and Schu80. 
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We define 

<Pep = - he 

and the relation between the CP phase and the HF phase is t 

(compare with (3,4)) 

hp hb = px 
<Pep = <PHF 

+ __ x_+ 
(I - n)2 with px =-I - n p 

0 

Thus, when dealing with coupling between the radial and 

(3.32) 

(3.33) 

longitudinal motion, it is useful to extend the definition of the 

phase. Since the extra terms in (3.33) are proportional to h, the 

correction will be most pronounced for high harmonie number and only 

in the central regions of cyclotrons p /P may have a significant x 0 

value. 

In principle this definition of <PCP is only correct for circular 

equilibrium orbits. A more general expression will be derived in 

section 3.5 which deals with the motion in an A.G. magnetic field 

structure. 

A description of the synchrotron oscillations around the phase 

e
0 

of the synchronous partiele is obtained by applying a transformation 

of the form 

with cos ~ 1T ~· - abl 
hO =---j 0 - 1 

(3.34) 
eV - et y2 

0 

and the new Hamiltonian is obtained by straightforward expansion of 

sin h(O - ê) in (3.30): 
0 

Q2 
+ ! __ s_ e2 + 

2 I 
- - Cl y2 (3. 35) 

0 

+ •••• 

with Qs the synchrotron oscillation number, in case of the one-Dee 

system defined by 

t The existence of this formula (3.33) - except for the factor b -
has been reported recently by Gordon who derived it in a different 
way, not using the Hamilton formalism (Gor82). 
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Q2 = - (..!..2 - a)heV sin hê 
s y

0 
~ o (3.36) 

The second line in (3.35) originates from the non-linear character of 

the synchrotron oscillations. Next, action and angle variables can be 

introduced and as pointed out in chapter I, it is convenient to use 

these variables for the examination of resonances, This will be 

illustrated later in this chapter. 

3.4 Transverse - lonsitudinal couplins in a cylindrical-symmetric 

masnetic field 

The coupling between the transverse and the longitudinal motion 

is mathematically described by the Hamiltonian (3.27) plus the non

linear termsof (3.5). We distinguish two kinds of coupling terms: 

on the one hand coupling due to the magnetic field (see third degree 

terms in (3.5)) and on the other hand coupling due to the acceleration 

process (last term in (3.27)), 

Possible third order synchro-betatron resonances excited by the 

magnetic field are (see (3.5)): 

2Qx ! Q = 0, Q ! 2Q = 0 and 2Q ± Q = 0 • s x s z s 

A closer examination shows that these resonances will hardly affect 

the partiele motion. 

A third order resonance of the type Q - Q ! Q 
x z s 

of interest in synchrotrons with nearly equal ~ 

excited in an ideal cylindrical-symmetric field. 

= 0 - which might be 

and Q - is not 
z 

The radial-longitudinal coupling due to the acceleration process 

is represented by the Hamiltonian (see {3.27)) 

- I - ( I eV a2A ) I -H =- p2 I +---2 • ~ + -(1 - n).x2 
2 x 2 (1-n) ae2 2 (3.37) 

and the result of the coupling is a change of the betatron number, 

given by 

(3.38) 
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Corresponding the assumptions made before to evaluate the Hamiltonian 

we assumed àQx to be small. In fact, the result (3.38) is the limit 

where the coupling becomes weak, 

Eq.(3.38) shows the tune changefora general Dee or cavity 

configuration. As an illustration we consider a one-Dee system, as this 

concerns a large number of cyclotrons in operation. Substitution of 

the Fourier component ~ of (3.24) yields 

hev sin .Pep 

21rQ3 (I - .!_2) W 
(3.38a) 

x y
0 

o 

or in the non-relativistic case, using eV/2Ek-. ~ l/4n with n the 
~n o o 

turn number: 

h sin .Pep 
àQx ~ - 8Trn Q3 (3.38b) 

0 x 

This phase-dependent effect of the acceleration process on the 

radial oscillations - due to the outward shift of the partiele 

orbit at each gap crossing - was first noticed by Bolduc and Hackenzie 

in conneetion with design calculations on the TRIUHF cyclotron (Bol71) 

and analytically described by Schulte and Hagedoorn (Schu78, Schu80), 

They showed that the coupling may lead to radial instability in the 

centre of cyclotrons. 

The effect is sametimes called "radial electric focusing" (Gor82), 

although the nature of the focusing force is basically different from 

that of the well-known vertical electric focusing. 

For e.G. synchrotrons typical values of eV lie between 10-3 

(just after injection} and e.g. to-S (at final energy) and the coupling 

effect will be of no importance. 

In the subsequent sections we will extend the theory for the 

motion in A.G. accelerators, in which Q is not necessarily extremely 
s 

smalland ~ (and also Qz) may be much larger than 1. 

3.5 Alternating gradient mainetic field structure 

In this sectien we extend the preceding theory for the motion in 

an A.G. synchrotron or storage ring with a separated function lattice 

(see section 1,6). 
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The treatment is fundamentally the same as befare and therefore only 

the most important stages are quoted. Finally we will obtain a 

Hamiltonian - similar to (3.25) - which will turn out to be an 

appropriate start to study coupling effects. 

We will omit the time-dependenee of the magnetic field and of the 

frequency of the accelera~ing voltage - i.e. b(;) = 0 and ö(<) = 0 -

as this has no essential consequences for the theory. 

Substitution of the vector potential (1.6) into (1.13) and 

application of the scale transformation (1.16) results in a 

Hamiltonian being the analogue of (3.3). 

As the coupling term p6i is most important we.evaluate the Hamiltonian 

up to this quadratic term. To simplify the notatien we omit the 

vertical motion and fringing fields and find: 

- I -2 I ( = - ) -2 1 =2 = s - = H = 2 px + 2 e2(e) - n(ä) i + 2Y2 Pe + Pe - e(e)p6x 
0 

(3. 39) 

The scaled time T is again the independent variable and e and n 

repreaent the "normalized" dipole and quadrupale field component both 

defined in (1.19). These components depend on the azimuthal position 

in the machine, i.e. on the coordinate e = s/R which is, after the 

various transformations, written as 6 (see sectien 1.3). 

The eliminatien of the term e(S)p
6
x t will again lead to a new 

longitudinal coordinate which includes the horizontal betatron motion, 

similar to (3.4), The eliminatien is achieved by a transformation 

generated by the function 

(3.40) 

with 1 = d/dS 

and the relation between the old (=) and the new (~) variables now 

becomes 

t 
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A term similar to p6x in (3,39) has already been noticed by Mills 
(Mi163). For a general calculation of damping times he used a 
Hamiltonian with the azimuth e as the independent variabie and with 
the time t and energy H as a canonical pair of variables. For the 
eliminatien of the term he suggested a new time variabie by adding 
several terms due to the radial betatron oscillations and the field 
structure. 



"' "' x = x + npa 
'V 

+ r/p Px = px a (3.40) 
"' 'V 

n'~ iï = a + npx -
= 'V 

- n'p P n"p je + t(nn" - (TJ' >2)p~ Pa Pa + a x a 

and the Hamiltonian up to the second degree in the variables bacomes 

H = l P2 + 1(8 2- n)~2 + l p2(l _en) + p 
2 x 2 2 a y2 e 

(3 ,4 I) 
0 

with n the so-called off-momentum or dispersion function, which is 

the reduced displacement of the closed orbit per unity momentum 

deviation.t 

The n-function is defined as that solution of the differential 

equation 

n" + (e2 - n)n = e (3.42) 

which has the same periodicity as the linear magnetic guide field 

(see figure 2,3 for the non-reduced off-momentum function in IKOR), 

We reeall that in case of the cylindrical-symmetric guide field e 

and n =constant so that n = 1/(1-n) and (3.40) reduces to (3,4). 

Subsequently the acceleration must be included, This is achieved 

by following the procedure as outlined in section 3.3, resulting in 

a Hamiltonian which is in first order approximation given by 

(3.43) 

The v~ables are defîned by (3.15) but for aonvenienae we omitted 

the marks % above the v~ables. 

This Hamiltonian is the analogue of (3.25). The brackets<> indicate 

that we are only interested in the resonant or slowly varying terms 

t Due totheuse of reduced coordinates (see (1,16a)) the n-function 
is also a reduced dispersion function, i.e. the usual dispersion 
function divided by R. 
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and n and n' are the values of respectively the off-momentum function 
c c 

and its derivative at the position of the cavities. 

We notice that the introduetion of an "AEO" by a transformation 

similar to (3.26) has no direct consequences for our further discussion 

and therefore we will omit the transformation (compare (3,25) with 

(3.27)). 

As the horizontal tune Q is usually not too close to an integer 
x 

in an A.G. synchrotron, the coupling term in the second line of (3.43) 

may give resonant terms, only in case the oscillations in e are not 

too slow, i.e. the synchrotron number Q not too small. 
s 

From the third line in (3.43) we will only briefly discuss the 

term with p = h, leading to a change in the radial (= horizontal) 

tune, similar as sketched in section 3,4, 

In the next section we will return to the radial-longitudinal coupling 

effect due to a non-zero value of the dispersion function and its 

derivative in the cavity. 

There is another resonance we are interestad in, namely Q -Q ±Q =0. x z s 
Electron storage rings often operate at nearly equal tunes ~ and Qz 

and consequently this resonance may be relevant. As noticed in 

section 3.4, this third order resonance is not excited in an "ideal" 

machine. But as we will see in the next section, the resonance can be 

excited by a so-called skew or rotated quadrupele field. 

Before discussing coupling effects we reeall that an equivalent 

CP phase can be defined for the motion in an A.G. accelerator with 

a separated function lattice. 

Analogously to (3.32) and (3,33) we get: 

where ~ and p are the reduced variables of (1.16a): x= x/Rand 
x 

(3.44) 

p = p /P • This very CP phase is a proper canonical variable to x x 0 

describe transverse-longitudinal coupling effects in an A.G. machine 

with a separated function lattice. The harmonie number h may be very 

large (e.g. h = 100) but ~ and p are usually very small. 
x 
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3.6 Coupling effects between the transverse and longitudinal motions 

in A.G. synchrotrons and stora~e rings 

A Hamiltonian like (3.43) will prove to be quite an appropriate 

start to study transverse-longitudinal coupling effects. 

In illustration we will consider two specific cases namely the 

influence of a skew quadrupele field and of a non-zero off~omentum 

function and its derivative at the cavity, Both cases can result in 

synchro-betatron resonances. 

It is not our intention to give an exhaustive analysis, but we 

will only discuss some features and properties of the resonances. 

We note that the coefficients of the terms in (3.43) which 

describe the unperturbed betatron and synchrotron oscillations still 

depend on the independent variable, How to handle these problems bas 

been outlined in chapter 2 and leads e.g. to the introduetion of the 

betatron functions 8 , 8 • As the treatment will not change x z 
fundamentally we omit the modulation of the e , e and n function x z 
and replace (e 2-n), n and en in the second degree of the Hamiltonian 

by Q~, Q; and the momentum compaction factor G, respectively,t 

The resonance o -Q ±Q =0 might be relevant in electron storage 
~ z s 

rings. This third order resonance is not excited in an ideal "linear" 

machine (see (3.5)), but it can be excited by a skew quadrupele field. 

This skew field may be due to e.g. rotational errors of the normal 

quadrupoles or is sametimes intentionally installed in an electron 

storage ring (see e.g. Bac79a). 

The influence of a skew quadrupele component n k · , defined by s ew 

n = R2(1!kJ 
skew B

0
p oz 0 

on the synchro-betatron resonance Q -Q !Q ~o is obtained by x z s 

(3.45) 

t see also section 4.2.3, chapter 4 for the relation between en and a. 
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substituting the corresponding vector potential into the general 

Hamiltonian and following the procedure as outlined in this chapter. 

The relevant term - responsible for the excitation of the resonance -

is nskewp 6xz and the Hamiltonian is (see also (3.35)) 

H = ! p2 + ! Q2x2 + ! p2 + ! Q2z2 + 
2 x 2 x 2 z 2 z 

+!~ez 2 I + nskewpexz + ••••• 

(3. 46) 

y2 - u 
0 

We note that the skew field also gives rise to a term nskewxz, 

exciting the resonance Q -Q =0. It is allowed to split both cases when x z 
the betatron oscillations in n k xz give rise to terms which can be s ew 
regarded as being fast with respect to the term coming from nskewp6xz. 

Sometimes it may be necessary to treat both cases simultaneously but 

this gives rise to complications with regard to the procedure as 

sketched in chapter I. In this sub-sectien we will only take into 

account the term nskewp 6xz. 

The next step in examining the resonance is the use of action and 

angle variables. For the transverse motions these are defined in (1.24) 

and for the longitudinal motion we write 

hJ I e (u - -::::z)/Q cos ~s s y
0 

s 
(3. 47) 

p = lzQ J I (a. - ! 2) sin ~s e s s y
0 

I in which we assumed to work above transition energy, i.e. u> - 2 • 
Yo 

Retaining the constant and slowly varying terms in the 

Hamiltonian (3.46) only, the result is 

K = QxJx + QzJz- QsJs + ~h 2 (u- ~z)J~ 
0 

+ K
0 
~ sin (~ - ~ - ~ ) x z s x z + s 

(3.48) 

in which the upper (lower) sign holds for the resonance Q -Q +Q =0 x z s 
(Qx-Qz-Qs=O). The excitation term K

0 
is the average value of the 

function K which is defined by 

I 
K =- n 2 skew (3.49) 
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The actions Jx• Jz are related to the amplitude of the betatron 

oscillations (or to the emittances, see (2.16) in chapter 2), whereas 

J is related to the amplitude of the synchrotron oscillation i.e. to s 
the momentum variation in the beam according to 

(3.50) 

The description of the six-dimensional problem represented by 

(3.48) is simplified by a reduction to a two-dimensional problem by 

two successive transformations of the type (1.32). 

The final Hamiltonian becomes: 

K = llQJ2 + I~ h2 (a _ I )J2 
Y2 2 

+ 
0 (3. 51) 

+ Ko(Jo - 31 + J2)!(JI + J )!Ji sin cp2 - 2 2 

with llQ = :;: Q ± Q - Qs x z 
J2 J s 
cp -2 cps :!:: (cpz - .p ) 

x 
J J + J 

0 x z 
Jl J - J 

z + s 

The action variables J
0 

and J
1 

are constants of the motion because 

,P
0 

and .p 1 do not appear in this Hamiltonian. Returning to the non

reduced amplitudes x and z of the horizontal and vertical betatron 

oscillations and substituting the amplitude of the synchrotron 

oscillation (3.50), the constants of the motion are 

Q 'Z2 
+ _z_ 

R2 
• constant 

Q i2 1 ... 
(3. 52 ) 

;2 :; a - :Y~(~P)
2 

= constant 
Qs o) 

The first relation shows that the sum of the transverse 

amplitudes remains constant, exactly the result which is also valid 

in case of the pure betatron resonance ~-Qz=O. However, .in case of 

the resonance 0 -Q ±Q =0 the energy exchange occurs via the 
'x z s 

synchrotron motion as represented by the second relation of (3.52). 
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It is interesting to know the amount of energy exchange. This 

exchange can be calculated by substituting the extreme values ± I for 

sin ~ 2 in K (3.51). In most cases J is much larger than J and J 
s x z 

and the relative change in J will be small. Starting from a vertical 
s 

amplitude which is zero, i.e. J • 0, the energy exchange is given by z 

J _z,max 

J 
0 

and J is proportional with the maximum value of the square z,max 
of the vertical amplitude, 

(3 .53} 

The strength of the skew quadrupale field - and thus K - is usually 
0 

determined by the advisable amount of betatron coupling via the 

resonance Qx-Qz•O (see e.g. Bry75, Gui76 and Bac79a). Typical values 

of K lie in the order of 0.01 to 0.05 (see e.g. Bac79a). Substitution 
0 

of K
0 

0.05 and furthermore liQ = 0.01 and Js • 2.5 10-6 (e.g. a=O.I, 

Q •0.02 and liP/P =10-3; see table 1.1 and Bac79a) leads to 
s 0 

J /J = 6.Jo-s. 
z,max o 

Thus, the coupling effect via the resonance Q -Q !Q =0 gives an x z s 
appreciable amount of energy exchange in case of extremely small 

values of liQ - e.g. liQ ~ Jo-5 - only. 

Bearing in mind that the energy exchange via the pure betatron 

coupling is e.g. J /J = 0.5 (Bac79a}, it is obvious that the z,max o 
above-discussed synchro-betatron resonance can generally be neglected. 

Moreover the coupling is influenced by the non-linearity of the 

synchrotron oscillation, which changes Qs with synchrotron amplitude 

thus giving a ttlimiting effect" (see chapter 5). 

Finally we derive arelation from (3.51), satisfied by·the fixed 

points, i.e. J
2 

0, ~ 2 

ZlliQI = IK I I 
0 fiTT 

x z s 

0 : 

IJ J - J J - J J I z s x s + x z (3.54) 

One bas to be very careful with interpreting 2ltiQI as being 11the" 

stopband width, especially if one of the variables J , J or J 
x z s 

approaches zero. We refer to chapter 5 for a description of this 

phenomenon and it will turn out a good insight in the resonance 

behaviour is obtained by phase plane considerations. 
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Substitution of typical values f~r the transverse emittances (see 

table 1.1 ), the momenturn variatien in the beam (3.50) and K results 
0 

in a ~Q value of the order 10-5 to 10-4• 

3.6.2 Radial-longitudinal coupling due to the off~omentum function 

. and its derivative in the cavity 

The coupling between the radial and the longitudinal motion due 

to a non-zero value of the off-momentum or dispersion function and its 

derivative at the position of the cavity is described by the 

Hamiltonian (3.43). 

The secend line in the representation of the Hamiltonian (3.43) 

may have a considerable influence only when Q is not too small. 
s 

Applying the transformation (3.34) this Hamiltonian can be written in 

the form {omitting third line of (3.43)) 

I Q~ 
+2-~--

- -a y2 
0 

e2 + •••• 

where k is a positive integer and p represents the p-th harmonie 

(3 .55) 

of the Fourier expansion {3.22). The coefficients ak and bk depend on 

the cavity configuration. They can be calculated from (3.43) and 

(3.22), Without going into detail we mention that ~ and bk are 

proportional to eV/(k!). 

As x, px oscillate with a frequency Q and e with Q , the dispersion 
x s 

function and its derivative at the cavity can excite resonances of 

the type 

Q ± kQ = ±(p ± h) = integer 
x s 

(3.56) 

with h is the harmonie number defined in (3.13); we emphasize that p 

is not directly a multiple of the periodicity of the cavity 

configuration, e.g. for one cavity p = 1,2,3, •• (see (3.23)) and 

for two cavities with a phase difference of 0° between the electric 

fields p = 1,3,5, •• (see (3.24)). 

As the strength of the excitation term is inversely proportional 

tok!, the resonance will be severe only for machines having a large 

value of Qs• 
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Resonances excited by a non-zero value of the off-momentum 

function (and its derivative) at the position of the cavity have been 

observed in NINA (Cro71) and SPEAR II (SPE75, Cha75, SPE77) and indeed 

show the above-mentioned characteristics, i.e. in both cases Qs was 

of the order of 0.1 (large !), whereas the strengthof the resonance 

decreaeed with increasing energy (decreasing eV, see (3,19)) and could 

be influenced by a rearrangement of the cavities (positions and number), 

For electron storage rings the resonance will not be important. 

Qx is not too close to an integer (e.g. Qx = integer + 0.25) and Qs 

is usually very small (e.g. Q = 0.02; see table 1. I). Moreover eV is 
s 

In the past Piwinski, WrÜlich and Chao gave the physical 

explanation of this coupling effect and investigated the resonance 

using matrix representations for the betatron and synchrotron 

oscillations (Piw76, Cha77, Piw78). 

The excitation of the resonance can be calculated from the 

Hamiltonian (3.55) knowing the lattice and the HF parameters. From 

the equations of motion it turns out that (use action and angle 

variables, similar to the previous sub-section) 

A2 I 

Qxx + a - Y~ ({FF = constant, 
R2 - kQS po) 

(3 .57) 

where A indicates the amplitude of the oscillation. The upper (lower) 

sign in (3.57) holds for ~ + kQs = integer (~- kQs = integer). 

Eq. (3~57) shows that the two modes exchange their energy for the 

sum resonance when working above transition energy, whereas both 

amplitudes can grow in case of the difference resonance, contrasting

with pure betatron resonances (see section 1.5.2, chapter 1). 

In an 11ideal 11 machine no vertical dispersion exists and resonances 

Qz ! kQ
8 

= integer do not appear. However, a non-zero vertical 

dispersion function can be produced by e.g. dipole imperfections 

(horizontal field component) or by a rotated (skew) quadrupole which 

causes linear coupling between the transverse motions. 
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Finally we consider the coupling effect which results in a 

change in Q , similar to sectien 3.4. This effect is described by the 
x 

third line in (3.43). In a first order approximation, i.e. in the 

limit where the "radial electric focusing" is weak and consiclering the 

case of two equally spaeed cavities with a 0° phase difference between 

the electric fields (see (3.24)), the tune change is 

he V sin cp (o n2 + (nè) 
2

) 
CP--xe ~ • 

(3 .58) 

In fact, this formula is the "alternating gradient" analogue of 

eq. (3.38a), 

3.7 Discussion 

In this chapter we presented a simultaneons treatment of the 

transverse and longitudinal motions in a circular accelerator and 

illustrated the theory with discussions of coupling effects due to 

the acceleration process and to a skew quadrupele field. 

To show all possible resonances due to the various field 

components one has to use the total Hamiltonian (see Cor82). 

We will simply quote some possible synchro-betatron resonances not 

treated in this thesis: 

- third order resonances excited by a sextupole field: 

0 ±2Q sp, 2Q ±Q =p and 2Q ±Q =p, 
'x s x s z s 

- fourth order resonances excited by an octupole field: 

3Qx~Q 6 =p, 2Qx±ZQ
6
=p, ~±3Q 6 =p, !~±2Qz±Q 6 =p and 2Qz±2Q

6
=p, 

in which p is a multiple of the periodicity of the magnetic field 

component that excites the resonance. 

In general, the various field components will have their major 

effects on the betatron motion. Betatron resonances will be the 

subject of the following chapters. 
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CHAPTER 4 ONE-DIMENSIONAL NON-LINEAR BETATRON MOTION 

4.1 Introduetion 

One of the first steps in designing an accelerator or storage 

ring is the choice of the pattern of the linear guide field, i.e. 

bending and focusing magnets, At this stage, non-linearities in the 

guide field are ignored, Paradoxically, when such a "linear" machine 

has been designed and built, there is often a need of non-linear 

magnetic fields to prevent high-intensity instahilities and sextupole 

and octupole magnets may have to he installed. Besides, these 

multipales will also influence the hetatron motion. 

One of the intensity.-limiting instahilities which may appear in 

a storage ring with a HF system is the so-called head-tail 

instahili ty (Pel69, San69). Without mentioning the detailed mechanism, 

it is sufficient to know that its growth depends on the chromaticity •• 

The cbramaticity is the change of the hetatron number due to a 

momentum deviation. The natural chromaticity, i.e. the cbramaticity 

in the "linear" machine, is due to the fact that a partiele with 

higher momentum (off-momentum) experiences a smaller focusing force 

than that experienced by the reference (= on-momentum) particle. 

In order to stabilize the heam against the head-tail effect, the 

cbramaticity must he altered from its natural negative value into a 

value equal to zero or slightly positive (San69). An off-momentum 

partiele moves on a new equilibrium orbit displaced from the reference 

orbit. Therefore it will - if sextupole terms are present in the 

magnetic field - experience an effective quadrupale term, proportional 

to this displacement. It will thus undergo a shift in,Q with respect 

to the on-momentum particle. So the cbramaticity ~y be modified by 

the deliberate inclusion of sextupole fields in the lattice. 

Generally, sextupole fields will he provided by special magnets rather 

than hy pole-face windings in each dipole magnet. A realistic 

distribution of sextupoles is one placed close to an F-quadrupole and 

one close to a ·D-quadrupole. This arrangement allows almost 

independent control of horizontal and vertical chromaticities (Gen72, 

'Bac79a); 
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For PAMPUS the positions of the sextupoles are indicated in 

figure 1.2: 4 sextupoles in each unit cell, all having a lengthof 

0.25 m. The required sextupole fields to produce zero cbramaticity 

vary from 2 T/m2 at Q ~Q g 2.10 toabout 60 T/m2 at o =Q = 6 (see x z ~ z 
Bac79a). 

Since no HF accelerating system bas been planned in !KOR, the 

head-tail effect is not liable to occur. Nevertheless, sextupoles are 

planned. IKOR should be an isochronous ring (see JÜ181) and as we will 

explore later, the main use of sextupoles in the compressor ring is 

to reduce the dependenee of the transition energy on position to keep 

conditions uniform across the beam and to get the maximum benefit of 

working close to transition energy (Fis80). 

With respect to the importance of non-linear magnetic fields, we 

mention the beneficia! effect of octupoles on collective instabilities. 

Such an instability becomes dang~rous when the growth rate is exceeding 

the damping rates of other mechanisms wich affect the coherent motion. 

One such mechanism is the Q-spread in the beam (Landau damping; Lan46, 

Her65). When the natural tune spread is small, one may get the 

required amount of Landau damping by putting sextupoles and/or 

octupoles in the machine. As sextupoles - which give a momentum 

dependent tune spread - may be needed to counteract the head-tail 

effect, they can usually not be used effectively f?r Landau damping 

and therefore octupoles are often installed to produce an amplitude

dependent Q-spread. 

In this chapter we will first explain the purpose of extra 

sextupole fields in IKOR and their required strength will be calculated 

(section 4.2). 

In section 4.3 we describe the effects of non-linear magnetic 

fields on the betatron motion. Besides the intentional or "lumped" 

multipoles, there are also non-linear fields due to imperfections in 

the linear guide field elements. The study of one-dimensional 

betatron resonances enables us to calculate allowed strengtbs of the 

correction elements or to fix an upper limit on permissible field 

tolerances. 
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The one-dimensional resonances are generally studied by ignoring 

the fast oscillating terms and retaining the resonant or slowly varying 

termsin the Hamiltonian only (see section 1.5, chapter 1). However, 

a precise trestment is obtained by application of transformations 

which eliminate the fast oscillating terms in the degree in question 

in the Hamiltonian. 

The procedure to achieve this bas already been sketched in Hag62, 

in which the third and fourth degree terms in case of AVF cyclotrons 

have been treated. In this chapter we will perform a general theory 

for an A.G. accelerator, starting with the introduetion of the Twiss 

parameters via the transformations of section 2.3. 

Further, an advanced examinatien of the consequences of the various 

transformadons will he carried out. The final theory shows "first" 

as well as "second order" effects of non-linear magnetic fields on 

the betatron motion. 

Examples will illustrate the theory in section 4.4. 

4.2 Lumped sextupoles in IKDR 

In this section we illustrate the role of lumped sextupoles in 

!KOR and calculate their required strength. 

!KOR is an option in the SNQ project in West-Germany (SNQ81I,II, 

III). The aim of the compressor ring IKDR is to have the opportunity 

to compress the 500 ps linac proton pulse to one of less than I ps, 

before sending it on a neutron production target. 

!KOR is proposed to operate at high intensities (2.7 tol 4 ppp) and the 

relative beam losses must be kept small. So the design must ensure 

that beams can be injected, accumulated and ejected again almost loss

free. An azimuthal void in the beam is one of the requirements to 

achieve this. To maintain the void during accumulation (about 

700 turns = 500 ps) it is proposed to operate the machine near 

transition energy (y = ytr). In that case the revolution period is 

almost independent on the partiele energy (isochronous operation) 

and the shrinking of the void can be reduced to an acceptable level. 
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To optimize operatien at highest intensity, the lattice should 

ensure that y as a function of the radial beam position (= momentum) tr 
can be controlled. As ytr depends on the position even in a "linear" 

machine, it is planned to use sextupoles to maintain the property of 

isochronous operatien across the aperture. 

4.2.2 Chromatic effects on y 
--------------------- tr 

Werking at transition energy (y = ytr) means that the revolution 

frequency w of the particles does not depend on their momentum P. 

In general the dependenee of won P consists of two contributions: 

P dw P dL P dv 1 w dP = L dP - v dP = a - y2 (4.1) 

with L the length of the orbit of a partiele with kinetic momentum P 

and velocity v; a is the momenturn compaction factor and y is the ratio 

of the total energy of the partiele to its rest energy. 

The reference partiele which has momentum P moves along theorbit 
0 

withlength L ,whereas a partiele with a slightly different momentum 
0 

P = P + ~p moves on a new equilibrium orbit. The difference in orbit 
0 

length due to a momentum deviation àP can be written as 

àL 6P( ~p ) L = ao P 1 + al P + • • • 
0 0 0 

so that for particles with a momentum P P
0 

+ 6P holds 

t ~; = a 0 ( 1 + (1 - a
0 

+ 2a1) ~P) 
0 

in which we retained only the first order terms in 6P/P , 
0 

Because 

P dL 1 
LdP=a=...,-2 

Ytr 

we can write eq. (4.3) as 

2 2 ( ~p) ytr = y 1 - (l - ao + 2al)-p tr,o 
0 

with 
I =-

and this eq.(4.5) describes the behaviour of y .with momentum. tr 
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Experiments at the CERN Proton Synchrotron have shown it to be 

useful to satisfy the condition 1/y2- 1/y~r ~constant, i.e. 

independent of the position (see Cap81). Because of space charge 

effects in IKOR this quantity is chosen slightly positive, namely 

equal to 0.01 (see JÜ181). 

As in first order in óP/P holds · 
0 

y2 = y2 (1 + 2132 liP) (4. 7) 
0 0 p. 

0 

with 13
0 

v/c (the subscript "o" rafers to the raferenee particle), 

we conclude that the CERN "recommendation" implies the following 

condition to be 

(for I I ) -2 - - = constant • 
Y Y~r 

(4.8) 

When the quantities a
0 

and a1 are known, eqs.(4.5) and (4.8) give the 

relevant behaviour. As we will see in the subsequent sub-section, the 

influence of sextupole fieldsappears in the quantity a1. 

Todetermine the role of sextupoles in the process of ytr control, 

expressions for the quantities a
0 

and a 1 are derived. 

As mentioned before, the displacement x of the equilibrium orbit 
e 

due to a momenturn deviation is related to the off-momentum function n 

by (see also section 3.5) 

(4.9) 

and the change in the orbit length is (from (1.2)) 

Lo 2 2 
AL L - L I { .!l liP + .!.(dn) e~·P) } ds 

o 
0 

p P
0 

2 ds P
0 

(4.10) 

The displaced equilibrium orbit due to the momenturn deviation - and 

thus n- can be determined by using the Hamiltonian (1.18) and 

substituting P = P + AP with P = eB p·. 
0 0 0 
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The relevant Hamiltonian becomes: 

I == I "' 
+ - e;xp2 - - sx3 

2 x 6 . 

(4.11) 

in which the marks above the variables indicate the reduced variables 

(see 1.16a), whereas the field components e:, n, S are defined in (1.19). 

The first degree term in x in (4.11) indicates the presence of 

the new equilibrium orbit. Application of the transformation (1.20) 

fixes this equilibrium orbit by the requirement that first degree 

terms vanish. Writing 

( 4. J 2) 

we obtain the relations 

(4. 13) 

n'1' + (e: 2 - n)n1 = - e: + (2e2 - n)n + (!s - e: 3)n2 +! e:(n') 2 
0 2 0 2 0 

in which the prime means differentiation to the azimuth a: ' = d/de. 

We emphasize that n0 and n1 are now reduced functions, i.e. the 

off-momentum function divided by R. 

The terms e;2n0 e: 3n2 and e:(n') 2 are of the order l/p or l/p 2 (p is 
• 0 0 

the radius of curvature) and can therefore be neglected for very 

large machines. In expresaioris for the off-momentum function in 

(Fau79) these terms do not appear. However, for IKOR these terms 

should not be neglected. 

From (4.13) it is obvious that the influence of sextupoles only 

appears when the equilibrium orbit is solved up to second order in 

t:.P/P • 
0 

Using the theory of section 2.3, the equations of (4.13) are simply 

soluble. The results are 

G(O) 
eipNlJ! 'V = q2 I no 

p q2 - (pN)2 

G(l) 
(4.14) 

"' = - n + Q2 I ipNl/J nl e 
0 q2 _ (pN)2 p 
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with Q the horizontal tune, N the machine periodicity and - in 

conformity with (2.22) and (2.25) - : 

dl/I Rde 
= tlxQ 

and furthermore 

L G(O)eipNljl 
p p 

3/2 -3/2 3/2 -3/2 1 
(4. I 5) 

tlx R (2g2 - n)n0 + tlx R (ZS - E 3 )n~ + 

1 3/2 -3/2 
+- Etl R (n')2 2 x 0 

The quantities a0 and a1 are obtained by substitution of the solutions 
"' "' . n

0 
and n1 Ln (4.10) and this equation is subsequently set equal to 

(4.2): 
G(O)G(O) 
p -p 

Q2 _ (pN)2 
(4.16) 

G(O)G(I) 
I -p P + _t_ 
p q2 - (pN)2 4~ao 

2~ 

J<n') 2 de 
0 

0 

Of course the sextupole magnet is most effective at a position with 

large values of both tlx and n. 
In IKOR this point of view leads to two positions: one near the F 

quadrupele, the other one just in front of the bending magnet, see 

figure 2.3. However, the latter one is less favourable because the 

long straightsectionis necessary for ejection (SNQSIIII). 

To control ytr in IKOR, a sextupole magnet with a lengthof 0.4m 

is placed in each unit cell between the F and Dl quadrupele, as 

indicated in figure 1.3. 

The corresponding values of tlx and the non-reduced n function are 

(see figure 2.3): a ~ 27 m/rad and n ~ 6.7 m. 
x 
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The Fo·n'ier components needed for the calculation of a 0 and a 1 are 

given in (Cor81a) and the resulting values are (see also Cor81b): 

a 0 = 0.202 

a2B 
1.81- 2.62(~) • 

oX 0 

'(4.17) 

Substitution of these data into (4.5) yields the behaviour of y as tr 
a function of the sextupole strength. In figure 4.1 the quantity 

1/yir- l/y2 is plotted versus the sextupole field for a relative 

momenturn deviation of 5.10-3, 

This analytical result is compared with the result obtained with the 

AGS computer program, running at CERN (Kei75, Ris79). 

The CERN "recommendation", working at constant value of 

1/yir- l/y2 ,(4.8), requires a sextupole strengthof about 1.15 T/m2 • 

This rather low value is a result of the large 6 - value at the x 
position of the sextupole (see figure 2.3). A position near the D2 

quadrupele (see figure 2.3) should require a strength which is about 

50 times as large. 

0.010 f ~~- Y21 Hy;l - Y21 l 
·ytr tr,O 0 

Figure 4.1 
-0.005 

(1/y~~-1/y 2 J-(l/y~r 
0
-1/y;) versus the sextupole fie~ in IKOR for 

-3 .. 
öP/P

0
=5.10 .. using the anaZytiaaZ methad and the AGS progrom (--). 

In the preceding sections we pointed out reasons why multipales 

are often included in a starage ring. However, these multipales also 

influence the non-collective partiele motion. Their effects on the 

betatron motion will be described in the following sections. 
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4.3 Non-linear Hamilton theory 

In this section we will develop a general theory to treat the 

effects of non-linearities on the one-dimensional betatron motion. 

The differences with existing theories have already been discussed 

in the introduction, The final theory enables us to examine "first" 

as well as "second order" effects of non-linear magnetic fields. 

As the treatment is similar for both transverse motions, only the 

horizontal one will be discussed, We will use the advance knowledge 

of section 1,5,1, 

To describe non-linear effects we analyze the general Hamiltonian 

(1.19), After substitution of z=O, p =0 we write 
z 

(4.18) 

For aonvenience ~e omitted the bars above the variabZes x and p • 
+ x 

The non-linear part of the Hamiltonian is represented by H , 

The 9-dependence in the secend degree in (4,18) is removed by the 

transformations (2.22) and (2,25) and the new Hamiltonian becomes 

-H(x- p- ,,Jo) - I Q-p2 + I Qx-2 + ~R o H+(x-,p- ) 
• '"' -- -2 " x 2 x x x 

(4.19) 
\' -k-1 
I.. fk,l (IIJ)x px 

k,l 
k+l=nt3 

with k and 1 positive integers and n=k+l indicates the degree of the 

term in question in this Hamiltonian,t The functions fk 1 (ljl) contain 
• combinations of the Twiss parameters and non-linear fields, fringing 

fields etc. and are periodic in liJ, 

Introduetion of action and angle variables J and $ (see (2.27)) 

leads to a Hamiltonian which is apt to study non-linear effects. 

For convenience we use complex exponentials and (4.19) becomes 

(4.20) 

t In the rest of this chapter the symbol n is used to indicate the 
degree of a term in the Hamiltonian. This should not be confused 
with the normalized quadrupele component n, defined in (1.19). 
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The index m is limited by the order of the non-linearity, i,e, 

m takes the integral values ±n, ±(n-2), ••• down to ±J for n odd and 

down to 0 for n even, 

The function F(m)(~) in (4,20) is defined by 
n 

I 
k,l 

a (m) f (~) 2n/2 
k,l k,l 

k+l=n 

where the complex quantities a~mi are defined by the relations 
' 

cosk~ sinl~ = L ~mi eim~ 
m=±n,±(n-2),,, ' 
with n=k+l 

The functions F(m){~) satisfy the relation 
n 

F~m)(~) = (F~-m)(~)r-

in which * means the complex conjugate (c,c,), 

(4,2Ja) 

(4,2Ib) 

(4,22) 

As we are most interested in the sextupole and octupole fields 

we mention their contribution to the function F(m): 
n 

- sextupole field (n=3) 

F{l) = 3F(3) = - l /:2 S 5/2R-5/2QS 
3 3 8 x 

s = - ~(
32

!zJ is the normalized sextupole field, 
B

0
p ax 

0 

- octupole field (n=4) 

F(O) = lF(2) = 6F(4) 
4 2 4 4 

o = - ~ 4 [::~z] is the normalized octupole field, 
op o 

(4,23) 

(4. 24) 

Other contributions to the functions F(m)(~) can be found from the 
n 

Hamiltonian (1,19) and following the way as sketched in this section, 

The next step in the development of the theory is the eliminatien 

of the ~-dependence in the n-th degree terms of (4,20), 
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4.3.1 Non-linear transformations 

For the eliminstion of the w-dependence in the n-th degree of 

(4,20) we consider 

K = QJ + v F(m)(''') im~ n/2 f' L n o/ e J , n 1xed 
m 

The first transformation is of the sametype as (2,15), used in 

section 2,2, More generally we write: 
n 

j~ - J2u <~.$) 
n 

(4. 25) 

(4.26) 

where"' we assume that the correction terms J-J and ~-~ are small, 

Expressed in the new variables J,~, the Hamiltonian (4,25) becomes: 

n 

i<:i.~;w> = QJ + g(~,lj!)j2 + 

(4.27) 

with 

(4.28) 

We suppose that the lowest order theory is applicable up to amplitudes 

equal to those of the fixed points (i,e, J = Jf ), To check the 

l .d. f b' h · h ,p, J-n-1 va 1 1ty o t 1s approac we reta1n t e extra term 

In the derivation of this Hamiltonian (4,27) we used the approximations 

~-1 ~-1 

g(+,~) = g(~-~2 nj2 ,$) = g(~,$) - ~ u J2 ag 

and n n 
} = J2 + ~ !!:!n JU-l 

2 a$ 

2 n 3 ~ 
(4.29) 

(4.30) 

The difference between ~ and +is neglected in the 2(n-l)th degree 

terms in the second line in (4,27) because we will not carry out the 

calculations toa still higher degree, This second line in (4,27) is 

the direct result of the eliminstion of oscillating parts in the 

n-th degree, Now we will first analyze the n-th degree part in (4,27). 
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The eliminatien of the oscillating parts in the n-th degree of 

(4,27) is achieved with the transformation (4,26?, if the function U 
n 

satisfies the condition 

osc g($.~) = osc(Q !go-~+ L F(m)(~) 
ê4l a~ m n 

im~ 
0 e J = ' (4,31) 

in which osc g($,~) indicates the oscillating parts of the function 

g defined in (4,28), 

Todetermine Un(i,~) we expand F~m)(~) in a Fourier series according 

to 
(4.32) 

in which N is the periodicity of the non-linearity in question, 

In case of extra correction elements, this is often the periodicity 

of the linear guide field (i,e, number of unit cells), However, if the 

non-linearity is due to field imperfections, one generally has 

N = 1,2,3,., • 

The function U is periodic in N~ and referring to the requirement 
n 

(4.31) we lookfora solution of U of the form 
n 

u <$.~> = t I i(m~ + pNljJ) u e • 
n 

m p 
m,p 

Substitution of (4,32) and (4.33) into (4,31) leads to 

u m,p 

iF(m) 
n,p 

pN - mQ with pN .f mQ 

( 4. 33) 

(4.34) 

The function U ($,~) is known now (see (4,33)) and all oscillating 
n 

termsin n-th degree part are transformed to higher degree 2(n-l) 

(see (4.27)). The relation pN = mQ represents a resonance and terms 

with pN-mQ<<I are called slowly varying or resonant terms which can 

not be transformed by (4,34). 

In this section we will examine the influence of the resonant 

terms. In the Hamiltonian (4,27) we keep these resonant terms, 

whereas all other terms are transformed to higher degree in the way 

explained above. 
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The last term in (4,28) is the only term which leads to a resonant 

n-th degree term, The values of p and m for which resonance occurs 

are denoted by p and m • Using the Fourier series of F(m)(w) (4.32), r r n 
the Hamiltonian (4.27) becomes 

K = QJ + L L 
mr pr 

n 

F(mr) ei(mri + PrNw) j2 
n,pr 

where ~ and Pr occur in positive as well as in negative pairs. 

(4.35) 

The higher degree terms are neglected now but we shall return to them 

in a subsequent section. 

A special kind of "resonant" term appears for mr=O, Pr=O, 

Strictly speaking this term is not a real resonant in the sense that 

the betatron number Q should have a specific value according to 

~Q=prN• The term with mr=pr=O is always present in even degree 

(neven)- see (4,21)- and it is preferablein this case to speak of 

a constant term, 

Moreover, we have the resonant terms with ~~0. After applying a 

transformation of the type (1.26), the ~-dependence in (4.35) is 

removed and we find 

+ 

with j J and i 

n 
\' F(O) =2 
L n 0 J + 

n even • 

Returning to a real representation, this Hamiltonian becomes 

N n n 
K = (Q- Pr tj + l F(O) jZ + 2IF(mr)lj2 cos(m; + ~F) 

mr} n n,O n,pr r 

n even 

where mr and Pr are now both positive integers and 

F(~) .. IF(mr)l ei~F 
n,pr n,pr 

( 4. 36) 

(4.37) 

(4.38) 

The second term in the r,h,s, of (4.37) - which only appears in even 

degree - gives rise to an amplitude-dependent tune change àQ 

!!-1 
áQ(j) = ~ F(O) j2 

2 n,O 
, n even (4,39) 
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This tune change can stabilize the resonant character because it can 

take the motion out of the resonance, 

Examination of the flowlinea in phase space gives a good insight 

in the (in)stability of the motion, For the unstable fixed points 

(j 0, ; = O) we find 

Q _ PrN 
mr 

(4.40) 

where the 
Q _ PrN + 

mr 

prN 
upper sign holds if Q- mr + llQ(jfp)>O and the lower sign if 

llQ(jfp)<O, 

Next we want to define the stopband width of the resonance. 

This can be done in several ways. A possible definition of the width 

is the range of Q for which the stabie area is less than the beam 

emittance, Other definitions are obtained when using the areas of 

the circles with radius l2j . or l2jf as sketched in figure 4,2, mLn p 
These areas are obvious when we remind the reader that the beam is 

represented by a circle when the non-linear field is turned off, 

The variations in the definitions are not too important as long as 

one is consistent in their use. 

In this thesis we will use the definition with the area 2~j . • mLn 
Thus, a beam emittance which exceeds the area 21Tj . is "not allowed", mLn 
Substitution of this requirement into (4,40) leads to the following 

sufficient condition for stable motion: 

(4.41} 

where c is defined considering the phase plane for F(O) = 0 (see 
n n 00 

fig. 4.2): 

12 (4.42) 
1. 21 

and TI€ is the beam emittance as defined insection 2.1. chapter 2. 
x 

Applications will be given later in section 4.4, after having 

discuseed the higher degree terms, i,e,terms of 2(n-l)th degree in 

the Hamiltonian (4,27). 
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FigUPe 4. 2 

Phase plane jor third (m =3) and jourth o~er resonanaes (m =4) with 

F~~~ = 0. ~en F~~b ~ 0 ~he trajeatories are slightly dijje~ent (Hag62). 

In this thesis the stopband width is dejined by taking the shaded area 

as the maximwn allowed "normaUzed" emittanae. 

The terms of 2(n-l)th degree (JU-l) in (4,27) are of interest 

because: 

- these terms may give rise to a change in Q, depending on the 

amplitude, This effect will influence the stability criterion when 

Q is near a resonant value, 

- these terms may contribute to resonance effects, It turns out that 

the resonances with m = n, n-2,,,, are not the only possible 
r 

resonances that may arise from a.n-th degree term in the initial 

Hamiltonian (4.19). 

-n-1 The higher degree, J , in (4,27) consists of two parts, For 

simplicity we shall treat them separately, 

First we examine the term U og/8~, 
n 

If there is ~ resonance in the n-th degree, g=O because of (4.28) 

and (4,31) and U 8g/a$ gives no contribution to the higher degree 
-n-1 n 

term J 

If there is a resonance mrQ=prN in n-th degree, all oscillating 
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partsingare made zero by using the function U (see (4.31)). 
n 

Thus g only contains a constant or slowly varying term. Since the 

terms with m = ± m are excluded from the function U (see (4.33) and r n 
(4.34)), this function U consists of rapidly oscillating terms.

u 
Consequently the function U ag/a~ contains no constant or slowly n 
varying parts and will not contribute to an amplitude-dependent tune 

change or a resonance effect. 

Secondly we consider the other term of higher degree in (4.27). This 

term is periodic in w and ~ and can be expanded in a Fourier series. 

Using (4.33): 

im2 4> e 

L L A ei(m~ + pNw) 
m p m,p 

(4.43) 

±2'.. • with m = !2n, ±(2n-2), ••• and p = 0, !t, 

After substitution of the Fourier series for F(m)(w)((4.32)) 
n 

and the 

expression for u ((4.34)) into (4.43), A m,p can be written as 

A m,p 

m1oP1 

F(ml) F(m-ml) 
L ml n,pl n,p-pl 

m1 Pl P1N - m1Q 

with m !n, :t(n-2), ••• and p = 0, :tt, ±2, •••• 

In this summation resonant terms in the n-th degree are excluded 

(ml'f I mr I, Pd•l Prl; mlF-Imrl' Pl>'-1 Pr I) • 

(4 .44) 

The final contribution to the higher degree term in (4.27) is now 

~2 L I A ei(mi + pNw) Jn-1 • (4.45) 
m P m,p 

This term leads to an amplitude-dependent tune change when m=O, p=O. 

When there is a resonance mrQ=prN in n-th degree, we have to look for 

slowly varying termsin this 2(n-l)th degree term (4.45), which 

correspond to the resonant Q-value. 

When there is no resonance in n-th degree, this higher degree term 

might lead to new resonance effects. 
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The higher degree term (4,45) is of secend degree in the Fourier 

components of the field that excites the resonance (see (4.44)), 

whereas the original constant or resonant terms are all of first degree 

in the Fourier components (see (4.37)), In future we shall speak of 

"first order" effects when dealing with terms up to the first power 

in the Fourier components. So-called "second order" effects (second 

degree in the Fourier components) are thus caused by the higher degree 

terms which are a direct consequence of the transformation (4.26). 

These concepts "first" and "second order" should not be .confused with 

the order of a resonance (see section 1.5, chapter t). 

Besides the first order tune change (4.39) which only comes from 

even degree, a secend order tune change exists, caused by the higher 

degree term (4,45), for which there is no restrietion for n. 

This secend order amplitude-dependent tune change is given by (from 

(4,45) with m=O, p=O) 

- n -n-2 AQ(J) = -(n-I)A J 2 o,o 
with 

F(m) F(-m) 
n,p n,-p 

(4.46) 

Ao,o = r L m 
m p pN - mQ 

Thus, sextupoles (n=3) which do not produce a first order 

amplitude-dependent tune change produce a second order one, 

proportional to the square of the betatron amplitude (and thus to J), 

Octupoles (n=4) produce a first as well as a second order tune change, 

proportional respectively to the square and to the fourth power of 

the betatron amplitude (J and ]2), 

Numerical results will be given in sectien 4,4, 

The higher degree term (4.45) can give rise to new resonances. 

We consider the case for which there is no resonance in n-th degree, 

but there is a resonance mrQ = prN in the 2(n-l)th degree, 
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The total Hamiltonian is then: 

(Q - prNlj + (F(O) + ~2 AO,O)jn-1 + 
mr) 2n-2,0 

(4.47) 

= - PrN 
with J J and cp cp + -- 1/J 

mr 

and where m and p occur in positive and negative pairs. 
r r 

The term in (4.47) with coefficient F
2
(IDr

2
) is the original resonant 

n- oPr 
term in 2(n-1)th degree, whereas A is the contribution from the 

mr,Pr 
lower degree n. 

This means that e.g. third degree terms in the initia! Hamiltonian 

(4.19) can also excite fourth (mr=4) and second order resonances (mr=2) 

(both "second order" effects). 

In a first order effect sextupoles produce a resonance of the type 

3Q=prN but moreover they can excite a resonance of the type 4Q=prN. 

An illustration of this resonance effect will be given in the 

following section. 

4.4 Applications 

In this section we give some results of applications of the 

preceding theory on !KOR and PAMPUS. 

An important souree for the excitàtion of third order resonances 

is a sextupole field. Besides the lumped sextupoles for cbramaticity 

or ytr control, there will also be imperfections of sextupolar nature 

e.g. in dipole magnets. 

For stable motion near the resonance 3Q=p N the following 

condition should be fulfilled ((4.41) with F(OJO = 0): 
n, 

I 
PrNI Q - -3- 2:. 

with 

N 21T/N 1/2( 2 J . - J (/2/24)Qo5/2 !.___ _L!k e-~prNl/J d•'• 
2rr 

0 
"x B p ()x2 'I' ' 

0 0 
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This eq. (4.48) gives the "required" distance to the resonance 

when the sextupole strength is known (in case of the lumped elements). 

When the strength is not known (in case of imperfections) - and a 

working point is chosen - the considerations will lead to a maximum 

allowed sextupole strength, i.e. to tolerances for the magnetic field. 

Results for PAMPUS and !KOR are listed in table 4.1. 

For PAMPUS (8 unit cells) we considered the influence of the 

chromaticity-sextupoles. Besides the 8-fold periodicity, there will 

also be astrong 16-fold periodicity, as can be seen in figure I .2. 

As the PAMPUS working point had not been fixed, we examined both 

cases, i.e. 3Q=8 and 3Q=J6. For the calculation of the Fourier 

components we used the 

at Q~8/3 :(a2Bz/ax2 )SF 

at Q~J6/3:(a 2 Bz/ax 2 )SF 

sextupole fields as given in Bac79a: 

3.5 T/m2 , (a2Bz/ax2)SD -4.7 T/m2 

20 T/m2 , (a2Bz/ax2)SD - 45 T/m2• 

and 

The subscripts SF ans SD indicate the positions of the sextupoles: 

SF is located near the F-quadrupole whereas SD is located near the 

D-quadrupole (see figure 1.2). 

for 

the 

For !KOR we considered the resonance 3Q=ll due to the sextupoles 

the control of y (strength 1.15 T/m2 , see section 4.2.4) and tr 
resonances 3Q=IO and 3Q=ll excited by sextupolar imperfections 

in the dipole magnets. In principle the imperfections affect all 

dipoles, resulting in astrong systematic component (N=IJ, p =1, 
r 

3Q=JJ) but moreover there will be a component due to randomly 

distributed imperfections. As !KOR is proposed to operate at Q ~3.25 
x 

we investigated the resonance 3Q=IO (Q-10/3~-0.083) excited by a 

IOth harmonie of a sextupole component in only one dipole magnet 

(i.e. pr=JO and N=J). 

The considerations concerning the imperfections result in 

tolerances for the magnetic field. 

In this section we have only considered the contribution of 

sextupole fields to the influence on the resonance effect. In principle 

there are more terms contributing to the relevant Fourier component 

F(3 ) as can beseen from (1.19). However, these can be treated in 
3,pr • 

quite a similar way and moreover they are, in general, small compared 

to the sextupole contribution (see Cor80a). 
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TabZe 4.1 

Requi~ements made by the ~esonanae 3Q=p~N exaited by a sextupoZe fieZd. 

Fo~ PAMPUS with 3Q=B and 3Q=16 we used ~espeativeZy e =5.0 10-
5 m.~ad 

-6 -4 x 
and e =4.7 10 m.~ad. Fo~ IKOR e =1.5 10 and the p~oposed Q-value 

x . x 2 2 
is 3.25 so that Q-10/3=-0.083 and Q-11/3=0.417. B" = (a B jax ) is 

2 z 0 

the sextupoZe fieZd in T/m 

resonance p N sextupole 
r field 

PAMPUS 

3Q = 8 8 lumped 

3Q "' 16 2 8 lumped 

IKOR 

3Q = IJ I 11 lumped 

3Q = 10 10 dipole 
imperf. 

3Q· = IJ IJ dipole 
imperf. 

1Fj3 ) I re~uired distance 
•Pr IQ-p N/31 

0.12 

14.4 

7 .) 

3.6IB"I 

43. 2IB"I 

r 

0.001 

0.036 

0.065 

toleranee for 

\
Q-10/31=0.083 
Q-11/3 =0.417 

IB"I~ 2.5 T/m2 

IB"I~ 1.1 T/m2 

Because of the small value of the required distance to the 

resonance, the lumped sextupoles will not lead to problems with 

respect to the one-dimensional resonance 3Q=prN. 

A sextupolar imperfection in the dipoles must be smaller than 

1.1 T/m2 (in !KOR). In practice one should prefer to stay well below 

this value. We can measure ~Bz(z=h) as a function of x, where ~Bz is 

the deviation from the magnetic field B (field in the dipole on the 
0 

reierenee orbit). When we assume ~Bz(x=O,z=O)=O and the field 

imperfection at x=d to be entirely due to a sextupole term, we may 

write 

~~ = d2 (a2B] 
B 2B ~ o z=O,x=d o 

(4.49) 

Fora good field region of 20 cm (see JÜ181), we get an allowed 

imperf eetion ~B /B = 4.10-3 at the "edge" of the dipole (d = 0 .lm). 
z 0 

In practice a value of 2.10-4 can be reached without too excessive 

costs. 
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Termsof fourth degree in the Hamiltonian (4.19) leadtoa tune 

change which depends on the betatron amplitude and can excite fourth 

order resonances (see section 4.3.3). 

!~!!~-~!!!!!!!!i~ 

First of all there is a tune change caused by the kinematical 

terms in the original Hamiltonian (I .19), which we call the inherent 

tune change. Additionally there is a tune change due to octupole 

fields e.g. lumped Landau octupoles or imperfections in the guiding 

elements. 

In principle, the tune change depends on both horizontal and vertical 

amplitude. Strictly speaking one must consider the coupled betatron 

motion which will be done in chapter 5. In order to illustrate the 

theory we consider the horizontal motion only. Especially in electron 

storage rings the neglect of the vertical motion is not too serious 

because of the maximum vertical amplitude being much smaller than the 

maximum horizontal one. 

The function F~O) - that determines the tune change, see (4.39) -

thus consists of two terms. The contribution of the kinematical term 
I 4 8 px (see (1.19)) can be calculated with (4.19) and (4.20), whereas 

the contribution of the octupole field is given in (4.24). 

Thus - for n=4 - we find for the "first order" tune change: 

t..Q = 2 F(O) J 4,0 (4. 50) 
with Lo Lo 

F (0) R J 3y2 ds + J (a3Bz1 fl2 ds] 
4,0 3271 0 x 0 B P ax3 x 

0 0 

The first term represents the inherent tune change, the second 

one shows the influence of the octupole field. yx and flx are the 

well-known Twiss parameters, defined in chapter 2, eq.(2.12). 

The maximum inherent tune change for PAMPUS is given in figure 4.3 

as a function of the horizontal tune. We note that this result is 

obtained by substituting j = iEx/R in (4.50). 
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Figure 4.3 

Inherent tune ahange for PAMPUS as 

a tunetion of the tune Q:r! for a 

partiele with a betatron amplitude 

aorresponding with the relation 

J = f <-:/R. The order of maeni tude 

ie aharaaterietia of aommon 

electron etoraee rings. 

For !KOR there holds <.x=3r.z (see table 1.1) and in order to calculate 

the maximum inherent tune change one should deal with coupled betatron 

motion. Nevertheless, to get the order of magnitude we considered a 

partiele with a vertical amplitude equal to zero and a horizontal one 

corresponding to <. = 1.5 10-4 m.rad (table 1.1). 

Eq(4.50) results i~ F~~b = 16.8 and consequently 

t.Q. = 8.10-5 
1nherent ,max (!KOR) • (4.51) 

Generally, the inherent tune spread in .the beam is rather small 

and octupoles are aften used in the accelerator or starage ring to 

provide a tune spread in order to prevent instability of the beam. 

Because the amplitude is proportional with the square root of the B

function (see (2.7)) it is obvious that the octupoles are most 

effective at positions with a high S -value. x 

As an example we take the positions of the octupoles in PAMPUS 

being the same as the positions of the sextupoles (see fig. I .2) and 

having a length of 0.25 m • As we consider only the horizontal motion 

here, the octupole in front of the F-quadrupole is mainly of interest 

because of the large Sx value. From (4.50) one can calculate the 

needed octupole fields to achieve a certain tune spread in the beam. 

The result for PAMPUS is plotted in figure 4.4 (see also CorSOa). 
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Figure 4,4 

Maximum tune change per unit of the 

ootupo~e strength foP PAMPUS. On~y 

one oatupo~e in eaah unit ae~l~ at 

the position of the sextupole SF 

near the F-quadrupole (fig. 1.2) 

with a length of 0,25 m is taken 

into aaaount. The order of magnitude 

is aharaatePistia of aommon eleatron 

storage Pings. 

The required tune spread in the beam strongly depends on the 

characteristics of the instability which has to be prevented. 

A common number for the tune spread is of the order 10-3 to 10-2 

(HÜb72, Rug76). As an example, a maximum tune change 8Q=2.10-3 at 

~=3.25 for PAMPUS would require an octupole strength of about 

200 T/m3. The order of magnitude is typical of a common electron 

storage ring. 

The discussion whether or not octupoles should be included in 

!KOR to provide an adjustable tune spread, has not been finished yet. 

As an illustration, we assume an octupole with a length of 0.4 min 

each unit cell at the position of the sextupole magnet (see fig.2.3 

S ~ 27 m/rad). The octupole contribution to the Fourier component 

F~O) is then 170(a3B /ax3) • The tune change with amplitude is known 
4,0 z 0 

from (4.50) and the maximum tune change becomes (substituting 

j = l SI: with e: = I .5 10-4 m.rad and R = 32.18 m): 
2 R x 

8Q = 8.10-t;(~:~zJ (!KOR) (4. 52) 
0 

A more accurate result is obtained by studying the coupled betatron 

motion in chapter 5. 
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~~~~E!~~~-~~~~!~ 

Consiclering the fourth order resonances 4Q=p N, the excitation 
r 

term due to the octupole fields will, in general, be the most important 

one in starage rings. As noticed in section 4.3.3, the amplitude

dependent tune change will affect the stability limits. 

According to (4.41), the following condition must be fulfilled: 

with 

and 

p N 
jQ---1:....+ 

4 

c 4 = I .21 

(4) . 
F 
4,pr 

2~/N ( 3 ) 
N f (I /96}Q83 !__ .!JkJ = z; 

0 
x B p ax3 

0 0 

(4. 53) 

Given the distance to the resonance, the allowed octupole field 

can be calculated. For IKOR (Q ~ 3.25) we consider as examples: 
x 

- the influence of lumped octupoles - one in each unit cell at the 

position of the sextupole magnet, see fig. 1.3- on the resonance 

4Q=ll (Q-II/4o:0.5), 

- the influence of a 13th harmonie component of an imperfection in 

only one of the lumped octupoles on the resonance 4Q=l3 (Q-13/4o:O), 

- the influence of an octupolar imperfection in all F-quadrupoles on 

the resonance 4Q=II. 

The results are listed in table 4.2. 

Tab Ze 4. 2 

Requirementa for the oatu:pole fields B"1=(a3Bjax3) 
0 

in IKOR due 

to the reaonanaes 4Q=11 (Q-11/4=0.5) and 4Q=13 (Q-13/4"0); ê is 

a relative oatupole field deviation. 

resonance pr N octupole F(O) F(4) field requirements 
field 4,0 4,pr B"' in T/m3 

4Q = 11 11 lumped 170B'" 29B'" B"' <-395 or B'">-194 

4Q = 13 13 imperfect. 170B"'+ 2 .6êB'" ê <-17.3 or ê > -8.5 
in lumped 15êB'" 

4Q = I I I I imperfect. 215B'" 36B'" B"' <-31 0 or B"'>-154 
in F-quads 
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The result from the upper line in table 4.2 leads, tagether 

with (4.52), to an achievable tune shift 6Q <- 0.32 and 6Q > - 0.15. 

In practice the needed Q spread in the beam will be of the order of 

10-3 to 10-2 and the octupoles will not give any problems with respect 

to the resonance 4Q=ll. 

The tolerances in the lumped octupoles are so weak that this 

aspect hardly needs any attention (second result table 4.2). 

The requirements for the field quality of the F-quadrupoles with 

respect to the octupole component is not stringent either: 

the field on the pole tip should fulfil the condition 

I Boct,pole I "' l. a2l (a
3

Bz) 1 (Èb) I < o .09 
B d l 6 ax3 oct ax quad -

(4. 54) 
qua ,po e 

with 2a=0.21 m the diameter of the quadrupele aperture and 

(aB /ax) d = 3 T/m (see table 1.1). z qua 
It is clear that in practice this requirement (4.54) can be fulfilled 

without any problems. 

An amplitude-dependent Q change affects the stability limits and 

is in first order theory predicted as caused by terms of even degree 

only. However, also terms of odd degree produce a Q change depending 

on the amplitude. Eq.(4.46) shows that thesecondorder tune change 

is proportional to the square of the Fourier component F(m) • 
( ) n,p 

In general the function F m contains sextupole (n=3) or octupole 
n 

fields (for n=4) but also terms arising from the bending magnets, 

fringing fields etc. (see (1.19)). Taking into account all these 

contributions leads to mixed terms and subsequently to an expression 

which is quite unmanageable. As we are particularly interested in the 

role of sextupole and octupole magnets, only these terms are 

considered in detail. 

When there is no resonance in third degree, the second order 

Q change due to sextupoles can be written as (using (4.23) and (4.46)) 

4.55) 
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with the Fourier components F(3) defined in (4.48). 
3,p 

When there is a resonance 3Q=prN in the third degree, the 

resonant terms must be excluded in the expression of (4.55) and.the 

result becomes 

~Q = 54 qj l F(3) F{3) [ + I ] + 
p+±p 3,p 3,-p (pN)2 _ gq2 (pN)2 _ q2 

r 

(4. 56) 

The sextupoles for chromaticity control in PAMPUS lead to a maximum 

second order Q change of about àQ=7.10-6 at Q =2.25 and AQ=-8.10-4 
x 

at ~=6.25 (see Cor 80a). The order of magnitude of these numbers 

will be characteristic of the majority of common electron starage 

rings. 

For IKOR the sextupoles (strength 1.15 T/m2) give a maximum secend 

order tune change of ~Q=-1 .6 to-3. Th is rather "large" value is both 

due to the high B value at the sextupole position and to the large 
x 

beam emittance. 

There is no such second order Q change due to sextupoles in the 

vertical plane, since we have only one orientation of sextupoles in 

the machine. So-called skew sextupoles will lead to such a Q change 

vertically and of course there is also a vertical tune change due 

to coupling effects. 

Quite similarly one can derive the second order tune change due 

to the octupoles. Using (4.46) with n=4 and (4.24), we find: 

AQ = 192 QJ2 L F(4)F(4) ( I + J 
p 4,p 4,-p (pN)2 - 16Q2 (pN)2 - 4Q2 

(4.57) 

where the Fourier components F
4
(4) are defined in (4.53). 
,p 

When there is a resonance, the resonant terms must again be excluded, 

similar to (4.56). 

For PAMPUS this second order tune change is about 103 times 

smaller than the first order one. In common electron storage rings 

and synchrotrons only the first order effects of the octupoles have 

to be considered. 
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Higher order effects of sextupoles or octupoles may manifest 

themselves in e,g, resonance effects in higher degree terms (see 

sectien 4.3.6), As an illustration we consider the influence of 

sextupole fields on the fourth order resonance 4Q=N. Furthermore, we 

assume no resonance in the third degree, 

The Hamiltonian of interest is ((4,47) with n=3): 

( N)= ( (O) 3 ) =z 
Q- 4 3 + F4,o + IAo,o 3 + 

+ ~ ~ 
(4.58) 

~ Pr 

When we take into account the octupole fields only in the original 

fourth degree term in the Hamiltonian, the Fourier components F~ 0 6 
and F4(

4l 1 are defined in (4,50) and (4.53). The term A in (4.58) 
•- mroPr 

originates from the lower degree terms and contains the sextupole 

field via the relations 

L + 3F (3 ) F (3) 
- 3,p 3,:!:1-p 

p 
( 3 +-1 J (4.59) 
pN :j: 3Q pN + Q 

with the Fourier components F
3
(3) defined in (4.48), 
,p 

Examinatien of the Hamiltonian (4,58) again leads to a condition 

to avoid unstable motion, similar to the procedure outlined in 

sectien 4,3,3, 

The influence of the sextupoles and octupoles on the resonance 4Q=N 

is stuclied by camparing the magnitudes of the coefficients A±4 ,±1 and 

F~~i· Assuming an octupole strength that produces a tune change 

of 2,10-3 for PAMPUS at Q ~ 2, the influence of the chromaticity

sextupoles on the resonance 4Q=8 is about a factor 102 smaller than 

the used Landau octupoles (see Cor80a), 

In common electron starage rings the secend order effects of the 

sextupoles will he of minor importance, 
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We may conclude that the "second order" effects of the non-linear 

fields are, in general, small and negligible for machines like IKOR 

and common electron storage rings. 

It seems justified to treat the coupled betatron motion by 

keeping the resonant terms in the original Hamiltonian only, i.e. 

transformations to remove the fast oscillating parts are not performed, 

Finally, we note that non-linear fields which are larger by an 

order of magnitude may be necessary for stability control in 

futuristic accelerators (Don77). In that case one is obliged to 

consider effects which are of "second order" in the strength of these 

non-linear fields, 

It is not allowed to apply this theory when the "second order" effects 

are comparable or even larger than the "first order" ones, 
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CHAPTER 5 TWO-DIMENSIONAL NON-LINEAR BETATRON MOTION 

5,1 Introduetion 

The results of the preceding chapter showed that in the majority 

of common synchrotrons and starage rings, the one-dimensional betatron 

resonances can be studied accurately by only taking into account the 

constant and slowly varying terms in the initial Hamiltonian. 

This procedure will be applied in this chapter to study non-linear 

coupled betatron motions in synchrotrons and storage rings, 

A treatment of the resonances should again result in requirements for 

the distance to the resonance line or for the strength of the 

non-linearity, in order to "guarantee" stable motion, 

Guignard has recently worked out a general treatment of sum and 

difference resonances (Gui76, Gui78). He remarked that the phase space 

representation is not suitable for the discussion of two-dimensional 

betatron resonances. Therefore he generalized the methad with the 

so-called "resonance curves" as introduced earlier by Hagedorn and 

Schoch for the description of one-dimensional resonances (Hag57, 

Scho57), 

However, the remedy to get round the "difficulty" of the complicated 

four-dimensional phase space has already been mentioned in chapter 1: 

the Hamiltonian can be simplified to one descrihing a one-dimensional 

problem by the transformation (1,32). The resulting Hamiltonian 

enables us to study trajectories in a phase plane and this will lead 

to a good insight in the resonances m1Q + m2Q = p N. x z r 

This theory offers the possibility to evaluate the importance 

of a non-linear magnetic field, to judge the necessity to compensate 

it and finally to calculate at what distance from resonance the 

werking point should be, in order to keep the motion stable or to 

keep the beam blow-up within given limits. Further expressions for 

the tune changes - depending on the betatron amplitudes ~ are given. 

We should like to report in advance that in some special cases 

- namely the resonances with m1 = I or m2 = I - the results of our 
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treatment show qualitative discrepancies with the theory of Guignard. 

We will return to this subject in due course, 

In section 5,2 and 5,3 we derive a general Hamiltonian which is 

suitable for the study of two-dimensional betatron resonances, In 

section 5,3 some aspects of Guignard's theory are discussed too, 

Our description, using phase plane representations, is illustrated in 

section 5,4 and 5,5 for the third order sum resonances and in section 

5,6 results for !KOR are given, 

The amplitude-dependent change of the tunes, due to octupole fields, 

is examined in section 5.7 and moreover, the limiting effect of 

octupole fields on the resonant character will be shown in section 5,8, 

Finally, we treat the fourth order difference resonance 2Qx-2Qz=prN' 

This resonance with pr=O might be of interest in electron stor.age 

rings which are often operated with nearly equal tunes. Usually the 

difference resonances are ignored because the oscillation amplitudes 

always remain finite. However, the amplitudes may grow to unwanted 

values, A formula is derived, which indicates a condition or 

recommendation in order to avoid these large amplitudes (section 5,9), 

5.2 Hamiltonian for transverse motions 

To study the betatron resonances we start with the time-independent 

Hamiltonian. Generally, its non-linear part is a polynomial of higher 

than second degree in the variables x, px' z, pz with coefficients 

which are functions of e (see (1,19)), The kinematical terms are 

usually small (see also chapter 4) and since we are especially 

interested in the effects of sextupole and octupole fields we only 

take these into account, In that case the non-linear part of the 

Hamiltonian only contains the variables x and z. With this assumption 

the notation is much more simplified and it is not a restrietion of 

the subsequent theory (see CorBOb), 

We write the Hamiltonian (1,19) now as 

~ k 1 
t. ~ 1 (e)x z 

k, 1 ' 
(5 ,1) 

k+l~3 

For simpZiaity we omitted the bars above the variabZes, 
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Next, the elimination of the 6-dependence in the quadratic part of 

(5,1) is achieved by the transformation to action and angle variables 

according to (2,30), 

To study the resonance m1Qx+m2Qz•prN' we restriet ourselves to 

the low frequency part of the Hamiltonian. On the one hand this 

includes all terms with zero frequency (constant terms, they appear 

only in even degree) and on the other hand the terms with very low 

frequency associated with the condition m1Q +m2Q •p N, x z r 
Using complex exponentials, the Hamiltonian is 

k 1 

K = QXJX + QZJZ + L F(O,O) } l + 
k,l,O x z k even 

1 even (5. 2) 

in which the non-linear field is expanded in a Fourier series: 

with V (6) defined in (2,28) and analogously to (4.21): 
x,z 

In analogy with the one-dimensional case there is an amplitude

dependent tune change, provided k and 1 are both even numbers, 

These tune changes satisfy the relations: 
k-2 1 

ÄQ = I 
x k,l 

k~2 

I 
k,l 
1~2 

~ F(O,O) J ~2-- J 2 
even 2 k,l,O x z 

k 1-2 
l F(O,O) J 2 J --z--

even 2 k,l,O x z 

(5, 4) 

From the equations of motion, dJ /dO=oK/34> and d4> /d6=-'iJK/'èiJ , x,z x,z x,z x,z 
it can be shown that these tune changes may tend to limit the build-up 

of amplitude, thus "stabilizing" or "limiting" the resonant behaviour, 
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In sectien 5,8 we will illustrate this limiting effect due to octupole 

fields. In the next section we evaluate the resonant Hamiltonian, 

5,3 Resonances in non-linear coupled betatron oscillations 

The resonant Hamiltonian (5.2) can now be transformed to an 

equivalent one, descrihing a one-dimesional problem, This type of 

transformation has been illustrated in chapter 1 (see (1,32) and 

(1,33)), The resulting Hamiltonian is 

with 

and 

J = J 2 z 

+ 1: 
k,l 
even 

(5. 5) 

As it has no essential consequences for the subsequent description 

we fix BF=O, 

Since we are mostly interested in the growth of the oscillation 

amplitudes and do not care so much about the absolute value of the 

phases. we haven chosen a new relative phase ~I which is a cyclic 

variable: dJ1/de = 0, The constant J 1 is completely determined by 

initial conditions, 

The meaning of oQ in (5,5) is illustrated in figure 5,1, 

Using (5,5), trajectories in a phase plane with as polar 

coordinates e,g, 12J2 and ~ 2 can be calculated from the equations of 

motion, In general, there will be a stable and an unstable region, 

Once the separatrix has been found, the required distance to the 

resonance can be evaluated by putting a circle within the boundary. 

analogously to the treatment in chapter 4, We remind the reader that 
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the beam is represented by a circle in this phase plane when the non

linear field is turned off. 

Figure 6.1 

m2l601 

Jm~•m~ 

Illuatration of the meaning of 

&Q (mlQx + m2Qz - prN)/m2 

in the (Qx,Qz) working diagram. 

m1Qx+mz0z•PrN 

Before starting the examinatien of the phase plane, we want to 

emphasize a consequence of the choice of the new variables in (5,5). 

Because of the definition in (5,5), the constant of the motion J
1 

can 

be negative in case of a sum resonance only. 

Since 

J 
x 

J + !,IJ ?:. 0 • 
1 m2 2 

(5. 6) 

a negative value of J
1 

results in an unphysical region in the phase 

plane, namely the area inside the circle with radius 12J2 = /-2~J 1 , 

Particles on this circle have a horizontal oscillation amplitude 

equal to zero (Jx=O), 

In case of a difference resonance, J
1 

is always pos1t1ve and (5.6) 

results in an unphysical region outside the circle with radius 

12J2 = /-2~J 1 , Both cases are sketched in figure 5,2. 

;,2 
-t'---J---;f-t'-f-Tt<;C-;H'-f--1-:ft--'--!i •Do 

~:tz;i~J/~ 
{a) Lf~ ' 1 

Figure 5.2 Physical and unphysiaal regionsin the phase plane: 

(a) sum resonance, (b) differenae resonanae. 
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It will turn out to be very convenient to define a parameter q 

for the description of the resonance problem in the phase plane: 

(5. 7) 

The fixed points in the phase plane may again provide some 

understanding, They are characterized by the conditions j 2=0 and ~ 2 =0 
('=d/da), Ignoring the constant terms in the Hamiltonian (5.5) and 

returning to the variables Jx and Jz' we find the following condition 

fulfilled by the fixed points: 

Substitution of the horizontal and vertical emittances 

the variables J , J according to J = -2
1 e /R - see 

X Z X;Z X;Z 

e and e: for x z 
(2.16) -

results in the formula which Guignard has defined as "the" stopband 

width, This derivation seems more transparent than the one given by 

Guignard (Gui76, Gui78), 

However, we emphasize that (5,8) yields both stable and unstable fixed 

points, This may indeed have important consequences for the stopband 

definition, A good insight in the behaviour and the positions of the 

stable and unstable fixed points in the phase plane is required, 

As a consequence of not discriminating between the stable and the 

unstable fixed points, the formula of Guignard shows an inaccuracy in 

some special cases: for m1=1 (or m2=1) the stopband width increases 

infinitely when J (J ) approaches zero whilst J (J ) is fixed. This x z z x 
means that particles in the central area of a beam can then become 
11more unstable" compared to those in the outer area, which is hard to 

understand, This peculiar result has recently been reported in (Cor81c) 

and also by Ohnuma (Ohn81), 

5.4 2Q + Q = p N._,.;;e.;;;;x;;;;c.;;;;i,.;;,t.;..ed.;;;......b;;.;y.._s:.,;k;,;.e:.,;w;......;s;..;e;,;.x;..:t;..:;u~n-"o-"1-"e....;;;.f.;;..ie.;;;......ld;;;,s;;.. -x--z-r- J. 

As an illustration of the study of coupled resonances, we treat 

the resonance 2Q +Q =p N (i,e, m1=2 and m2=l), It may be of interest x z r 
for !KOR since Q ~3.25, Q ~4.4 and N=ll so that 20 +Q -11~-o.t • The x z 'x z 
above-mentioned resonance can be excited by a x2z-term in the 
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Hamiltonian (5,1) which can arise from skew sextupole fields 

(a2B /ax2) , These fields may be due to imperfections in the guiding x 0 

field or, for instance, due to a rotational error x of the normal 

sextupoles (32B /3x2 ) which are usually installed in a machine: 
z 0 

(;~~x] .. - 4x(~~~zJ (5.9) 
0 0 

The third degree Hamiltonian is now (see (5,5)): 

K = oQJ + 2jF(Z,t) 1 (J + 2J
2
)J

2
i cos ~ 2 2 2,1,pr I 

J - 2J x z J 
z 

(5.10) 

and 

oQ 2Qx + Qz -prN 

21f/N 
F(2,1) = j! f ~ B B!R-3/2 S ei(2~x + Vz- PrN6) d6 

2,1,pr 21r 0 8 x z skew 

in which S k is the "normalized" skew sextupole field defined by s ew 

A return to cartesian coordinates simplifies the description of the 

behaviour of the fixed points. The qualitative behaviour of these 

points in the phase plane with polar coordinates I2J2 and ~ 2 is 

schematically sketched in figure 5,3. 

When q2 < 24J
1 

there is neither an unstable nor a stable fixed point. 

For q2 • 24J
1 

there is one fixed point, splitting up when J
1 

decreases 

(or q increases). Another two fixed points appear when q2 < -8J
1

• 

These latter points both lie on the circle with radius 1-J
1

, being 

the boundary of the unphysical region (see also fig,5.2), 

Gorreeponding trajectories in the phase plane are shown in 

figure 5,4 fora fixed value of q and different values of J
1

, From 

these considerations it is obvious that a stable region exists if and 

only if 

- l q2 < J <....!... q2 
8 I 24 

(5. 12) 

Analogously to the one-dimensional case we are now interested in 

the required value of oQ or in the allowed field strength (value of 

F(Z,I) ) in order to avoid unstable motion. 
2, I ,pr 
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Figure 5,3 BehavioUP of the fixed points foP 2Q +Q =p N. The dashed 
airales indieate the boundary of thexun~hy~ieal region. 

FigUPe 5,4 
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-6 
J1 = - 9.10 

Flowlinea in the (12J9.~$ 2 J phase plane for the ~sonance 
2Q +Q =p N for diffe~nt values of J

1 
and q=7.5 10-3 

(oQ ~7.5 10-2 and F 2 f2~l) = 10). 
~.J.,.p:l!' 



Since the separatrix is known, the maximum allowed emittance - i.e. 

the "beam circle" must lie entirely inside the stable region - can be 

expressed in the coordinates of the unstable fixed point now being a 

function of J 1 and q, This procedure results in curves in a J ,J 
x z 

diagram with q as the parameter, For the resonance considered the 

result is plotted in figure 5,5, When the horizontal and vertical 

emittances (corresponding to maximum transverse amplitudes) are given, 

the required value of q can easily be found. 

As an illustration we consider !KOR with ~ =3~ =1,5 10-4 m,rad 
x z 

leading to J =3J =2,3 Jo-6 and consequently q ~ 1,06 10-2• 
x z 

In the foregoing consideration we examined a case with q positive, 

A similar argument also serves for negative q and in principle the 

condition lql ~ 1,06 10-2 should be fulfilled in !KOR, In section 5,6 

we will work out this result and its consequences for the allowed 

rotational errors or field imperfections. 

20.lö7 .----.,-------,-----,-----,-----,-----,----, 

Figure 5.5 Curves for constant values of q in the J ,J diagram for 
x z 

the roesananee 2Q +Q =p N. For IKOR there must hold 
-3 x z Y' 

q~10.6 10 

Note that Jx(J
2
=0J<j

4 
q2 and J

2
(Jx=OJ<}

6 
q2

• 

Last but not least we emphasize the fact that the value of the minimum 

required q diminishes monotonically when J decreases (J ~) and J z z x 
is constant, which is in accordance with the physical point of view, 

The difference with the formula of Guignard can be explained by the 

fact that in his definition of stopband width (see (5,8)) for constant 
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E and decreasing E , the nature of the fixed point changes from x z 
unstable to stable. 

5. 5 ~-+_2_Qz _=_p rN:.;,...e=.;x::.c=.;~;..· t:;;e:;;d:....:b;..!X_;;n;:o:::r::m;:a::l...::.s=.;ex=tu::Jp.,;o;,.l:;;e:...:f:.:i:.::e:.:l;:d:.:;.s 

The resonance Qx+2Qz=prN (ml=l, m2=2) can be excited by normal 

sextupole fields in the accelerator (xz2-term in the Hamiltonian (5.1)) 

and is examined in a similar way as the previous one. 

For this case the Hamiltonian (5.5) is 

K = oQJ +2IF 0 •2) I (J + .!..J )!J cos 24>2 2 1,2,pr I 2 2 2 

with J = J - .!.. J 
I x 2 z 

J 
z 

I 
oQ = 2(Qx + 2Qz -prN) 

and 
2n/N 1 "( 2 a) F(l,2) = ~ f .!..l:f S2S R-3/2 Se~ ~x+ ~z- PrN d6 

1,2,pr 2n 0 8 x z 

(5. 13) 

in which S is the "normalized" sextupole field defined in (1. 19). 

For the resonance Q +2Q =p N the trajectories in the phase plane 
x z r 

with polar coordinates 12Jxand 24>2 arequalitatively the same as the 

trajectories for 2Q +Q =p N in the phase plane with polar coordinates x z r 
12J2=12Jz and 4> 2 which are sketched in figure 5.4. 

Examinatien of the phase plane shows that a stable region exists if 

and only if 

(5. 14) 

Analogously to the previous section we determine the curves for 

constant q-values in the Jx,Jz diagram. The result is depicted in 

figure 5.6 and in principle the problem of the required distance to 

the resonance or allowed sextupole strength is solved. As an example 

the situation for IKOR is indicated. As a same reasoning holds for 

both negative and positive values of q, in IKOR the condition 

lql ~ 4.9 10-3 should be fulfilled. 

In the next section we will investigate the consequences of this 

requirement. 

106 



Figur'e 5.6 Curves for eonstemt vazu".s of q in the Jx'Jz diagram for 

the resonanee Q +2Q =p N. For IKOR there must hoZd 
_

3 
x z r 

q-z.4.9 10 

Note that Jx(J
3
=0) q 2 and J

3
(Jx=OJ<i q2 • 

5,6 Applications 

In this section the consequences of the results of the preceding 

sections are calculated for the lattice of !KOR, 

We examine the effects of the normal sextupoles used for the 

control of y (strength 1,15 T/m2 , see section 4.2) and of skew tr 
sextupole fields due to a rotational error of a lumped sextupole and 

due to imperfections in non-ideal dipoles, 

The results of the figures 5,5 and 5,6 lead to a required óQ-value 

or to tolerances for the magnetic field, These results are listed 

in table 5. I. 
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Table 5.1 

Effeets of sextupole fields - noPmal and skew - on the third order 

sum resonances for IKOR : Q o:J. 25., Q "'4. 4. 
x z 

2Qx+Q
4

=11+óQ : öQ=-D.1 and jql~10.6 10-J 

Qx+2Qz=11+2oQ: óQ=0.525 and lql~4.9 10-
3 • 

The noPmaL sextupole field is indiaated by B'' and the skew sextupole 

f ield by B" skew• 

resonance pr N excitation 

Qx +2Qz =11 I 

2Qx+Qz=ll 11 

2Qx+Qz=ll I 

11 lumped sext. 
1.15 T/m2 

11 dipole imperf. 

I rot. error X 

11 dipole imperf. 

2.1 0.01 

14.6B" 

2.2x 

40,0B" skew 

toleranee 
B" in T/m2 

IB"I< 7.2 

X < 4 rad 

IB"~ 0.25 s w 

The lumped sextupoles - both the strength and a rotational error -

will not give rise to problems with respect to the resonances 

considered. 

However, a systematic skew sextupole component in each dipole may be 

harmful. When 

with AB the vertical field deviation from the nominal field, the last 
z 

requirement of table 5.1 results in an allowed imperfection of to-4 T 

at x=4 cm, z=l cm, 

It might be useful to place an extra skew sextupole in the machine 

to cancel this critical dipole effect. A possible position for a 

correction element is between the bending magnet and the F-quadrupole 

(see fig.J,3, freespace 0.5 m), Assuming only one such element in 

the whole machine with a length of 0,3 m, its strength should be 

about 100 times larger than the skew sextupole component in the 

dipoles, When the dipole imperfection is completely due to a skew 

field and is e.g. 2,10-4 T at x•4 cm, z=l cm, the needed skew sextupole 

should have a strength of about 50 T/m2 • 
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A pole diameter of 20 cm then leads to a field of 0.25 T on the poles. 

Finally, we calculate the required value of óQ for the upper case 

of table 5.1 using the formula of Guignard, Eq,(5,8) with m1=1, m2=2, 
F

1
( 1

2
•2)1 = 2.1 and substitution of J • ~ 2

1 /R leads to óQ = 0.007, 
' ' x, z x, z 

This somewhat smaller value of óQ compared to the result of table 5,1 

is due to Guignard's definition of the stopband width: it is related 

to the fixed points, whereas in our definition the beam must lie 

entirely within the stable region, See, in illustration of this, 

fig.4.2 for the one-dimensional analogue, 

5.7 Amplitude-dependent tune chan~e due to octuEole fields 

Fourth degree terms in the original Hamiltonian (5,1) produce an 

amplitude-dependent tune change (when k and 1 are even) which is 

(see (5,4)): 

2F(O,O) J 
4,0,0 x 

+ F(O,O) J 
2,2,0 z 

2F(O,O) J 
0,4,0 z 

+ F(O,O) J 
2,2,0 x 

(5, I 5) 

Taking only into account the octupole fields, the relevant Fourier 

components are given by (see (5.3)): 

(5. 16) 

in which the factor 1/16 between the square brackets holds for k=4 

or 1=4 and the factor -1/4 for k=l=2. 

From these equations above, it is obvious that the octupoles are most 

effective on positions with large amplitude functions B • x,z 

In electron storage rings - in which the maximum vertical 

amplitude is often much smaller than the maximum horizontal one -

thus J <<J - the coupling between the transverse motions is more 
z x 

pronounced for the vertical tune change, 

Consequently the results for PAMPUS of figure 4.5 (horizontal tune 

change) do not change much due to the coupling. Numerical results 

for the vertical tune change are given in (Cor80b), 
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As an illustration for IKOR, we assume two octupoles with a 

length of 0.4 m in each unit cell: one between the quadrupales F and 

Dl (same position as the sextupole for y control) and another one tr 
justin front of the D2 quadrupale (see lattice in fig.1,3). 

The values of 

ax .. 27 m/rad 

a at these positions are (see fig.2.3): x,z 
and B = 2.5 m/rad between F and Dl, whereas 

z 
37 m/rad just in front of D2. Bx 4,1 m/rad and Bz 

For simplicity the B x,z functions are assumed to be constant in the 

octupoles. 

Substitution of the emittances into (5.15), i.e. J =-=-E
2
1 /R, x,z x,z 

leads to the maximum tune change in the beam as a function of the 

octupole fields, In matrix form the result is 

(
liQ J ( 73 
l\QX = -15 

z 

-9) (B 1 11

] 
17 • w-s B~_r (5. 17) 

in which B''' and B111 repreaent the octupole field (in T/m3) at the 
F D2 

two positions, respectively. 

By placing an octupole at a position with high B -value and another 
x 

one at high B -value, the horizontal and vertical tune change can be 
z 

controlled almost separately. 

The required strength of the octupoles, to achieve a certain tune 

spread in the beam, can easily be obtained by inverting (5,17). 

We mention that a maximum horizontal and vertical tune change of 10-2 

requires the octupole fields to be Bp''=23 T/m3 and B~i'=SO Tfm3, 

It is obvious that the sign of the tune change - which might be of 

interest in relation to other resonances - has a considerable influence 

on the needed octupole fields. 

Finally, we make two remarks, 

Firstly, the result for liQx in (5,17) agrees quite well with the 

result in chapter 4 - in (4.54) the betatron coupling has been 

ignored - when we omit the octupole near the quadrupale D2. 

Secondly, the tune change t;Qx hardly depends on the octupole near the 

quadrupale D2 as long as its strength does not exceed the strength of 

the octupole between the F and Dl quadrupele, 

As reported before, these tune changes may limit the beam blow-up 

when resonance occurs. This "limiting" effect will be discussed now. 

110 



5,8 Limiting effect of octuEole fields 

In the discussion on the third degree resonances we only 

regarded the excitation term F(lmlîmf) I , This term might give rise 
m1 • mz tPr 

to an amplitude growth. We are going to discuss the feature of an 

amplitude-dependent tune change limiting this increase of the amplitude. 

An illustration for a one-dimensional case is given in (Hag62), 

Consirlering the resonance m1o +mzQ =p N, the Hamiltonian 
~ z r in the 

variables J 2 and ~ 2 is (see (5,5)) 

K = oQJz + ZIF<Imlfmzl) I I (Jl 
m1 , mz oPr 

(5. 18) 

and F(O,O) defined 
k,l,O in (5. 16). 

term in (5,18) with coefficient V results in a change of the ml,mz The 

effective value of oQ, whereas the term W causes the limiting 
ml,mz 

effect, In spite of the presence of octupole fields, there is the 

unfortunate case of no limiting effect at all in case W = 0, 
ml,m2 

We treat the influence of the octupoles on 20 +Q =p N. This 
"x z r 

resonance has already been discussed in sectien 5,4 by omitting the 

fourth degree terms. Results for different values of v2,l and WZ,I 

are plotted in figure 5.7. There is no longer an unstable region in 

the sense that the amplitudes can grow infinitely. The upper result 

in fig.5.7 can be compared with the first plot in fig. 5,4, A certain 

value of 6Q should be preserved also when octupoles are present 

because amplitudes may undergo a large (although limited) growth, 

The secend and third plot in fig. 5.7 can be compared with the 

unstable situation of the last plot in fig, 5.4. It is obvious that 

the values of v2, 1 and w2, 1 play an importantroleon the detailed 

shape of the phase plane figures, 

lil 
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Figure 5.7 Illustration of the limiting effect of oatupoles on the 

resonanae 2Q +Q =p N ~ith q=7.5 10-
3 

in the (12J 2 ,~ 2 J 
x z r 
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phase plane. The various cases aan direatly be aompared 

~ith plots of figuPe 5.4, in ~hiah no oatupoles ~ePe 

present. The region within the dashed airale is unphysiaal. 



5,9 The fourth order difference resonance 2Q -2Q =p N 
}!;-- z-""'r-

As a last example of the study of two-dimensional betatron 

resonances, we investigate the difference resonance 2Q -2Q =p N=O, 
x z r 

Usually the difference resonances are considered to be stable because 

of the limited amplitudes, but nevertheless we are interested in it 

as too large amplitudes may occur. 

The resonance 2Q -2Q =0 may be important in e,g, electron starage x z 
rings which are aften operated at nearly equal tunes and the Landau 

octupoles can excite this resonance, In that case the second order 

resonance Q -Q =0 - excited by skew quadrupale fields - may be 
x z 

important too, Since this latter resonance has already been discussed 

by several authors (Bry75, Gui78, Bac79a) it will not be treated here, 

The relevant Hamiltonian becomes (from (5,5)): 

with J = J + J 
I x z 

ÖQ = Qz - Qx (5. 19) 

F(2,-2)=- __ I __ fnB B R2 (a3~z} ei(2~x- 2~z) de 
· 2,2,0 32n O x z B

0
P êx 

0 

and v2,-2. w2,-2 both defined in (5,18), 

For the moment the examinatien of the resonance is simplified 

by putting v
2 

_
2

=0 and w
2 

_2=0, At the end of this section we will . . . 
then generalize the results for the case with v2,_2#o and w2,_2+o. 

The first step in the investigation of the resonance is the 

calculation of the behaviour of the fixed points, Their qualitative 

behaviour in the lï.f2,+2 phase plane is schematically sketched in 

figure 5,8, The region outside the dashed circles indicates the 

unphysical region as already explained in section 5,3 (see also 

tigure 5,2), 
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Figure 5.8 Qualitative behaviour of fixed points in the 12J 2 ,~ 2 
phase plane for- the Pesonance 2Q -2Q =0. The aPea outside 

x z 
the dashed aiPCle with radius 12J2 = 12J

1 
is unphysiaal; 

J
1 

= J + J , öQ = Q - Q and q = êQ/F. 
x z z x 

Phase plane trajectories belonging to the situations depicted 

above are plotted in figure 5,9 for different (positive) values of öQ 

and constant values of J 1 and Fi 2 2-~)• The value J 1=9.10-7 corresponds 
• • (2 -2) 

with the emittances of PAMPUS at ~~Qz~3.25. The value IFz,z,o 1=250 

is obtained from Landau octupoles. providing ~~- 3.25 to- 3 • 

Considering the flowlinea in fig. 5.9, it is clear that the two 

lower cases are less favourable because of the very large amount of 

energy exchange between the transverse motions. Consequently we 

recommend a situation with 

(5 .20) 

The energy exchange - strictly speaking the exchange of amplitude 

squares - is determined by substituting the extreme values ±i for the 

eosine function into the invariantKof (5.19). We obtain the relation: 

2- (lql+ 2J1J + (lql - 2Jl + tJ = 0 
r + l 2J r - 2J 

z,max z,max 
(5. 21) 

with r • J . /J and the upper (lower) sign holds for êQ > 0 
z,m1.n z,max 

(êQ < 0). J . and J are related to respectively the minimum z,m1.n z,max 
and maximum vertical oscillation amplitude, 
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Figure 5.9 Flowlinea in the {/2J' 2 ~ ~ 2 J phase pZa:ne for the resona:noe 

2Qx- 2Q
2 

= 0; J
1 

= 9.10-7 a:nd IF~:2~~JI = 250. 

As an example the ratio r for PAMPUS at Q ~q ~3.25 with J
1
=9.I0-7 is x z 

given in figure 5,10, 

In case J + 0 the ratio r + ~~. 
z,max ~I 

ll5 
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Figure 5.10 

The ratio J . /J for PAMPUS 
z,m~n z,max _

7 
at Q~~Q 3 ~3.25, J 1 =J~+J 3 =9.10 , 

for two different values of q: 
-6 -6 

q=4.0 10 and q=1.8 10 • 

As mentioned in the beginning of this section, we now generalize 

the previous considerations for the case v2._2 ~ 0 and w2,_2 ~ 0. 

The recommendation - analogous to (5.20) - in order to avoid too 

large energy exchange between the transverse oscillation modes now 

beCOJ:!leS 

V J 2W J I + 2,-2 I + 2,-2 I > 2J lq IF(2,-2)1 IF(2,-2)1 - I 
2,2,0 2,2,0 

(5. 22) 

The energy exchange itself can again be obtained by taking the 

extreme values ±1 for the eosine function in (S.J9)(see Cor80b). 
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CHAPTER 6 CONCLUDING REMARKS 

Here we give a few summarizing and concluding remarks from the 

theory and calculations presented in this thesis. 

To describe the partiele motion in circular accelerators, the HF 

accelerating electric field and a time-dependent magnetic field are 

incorporated into the general Hamilton function via a time-dependent 

vector potential consisting of a fast and slowly varying part. 

This approach is of interest particularly in case of an odd number 

of cavities in the accelerator. 

- The analytica! formulae of the Twiss parameters - expressed in the 

Fourier componentsof the linear guide field, see (2.19) -have a 

simple shape for not too large a field modulation (see (2.21)). 

In the considered cases in which the S-function in a lattice varies 

from 3 to 30 m/rad, the expressions yield satisfactory results. 

- The simultaneous description of the transverse and longitudinal 

motion shows various coupling effects. Principally, the synchro

betatron resonances can be stuclied in a way similar to the procedure 

to study coupled betatron resonances (see chapter 5). 

- A "Central Position" phase - instead of the well-known HF phase -

turns out to be a proper canonical variable for the description of 

the synchrotron motion (chapter 3). The difference between the 

CP and HF phase is most pronounced in central regions in case of 

high harmonie acceleration. 

The results correspond with results derived by Schulte and Ragedoorn 

in the case of cyclotrons with Qx=l (Schu78, Schu80) 'and with 

results derived by Gordon (Gor82), both with different treatments. 

The definition of the CP phase is extended to the case of motion in 

a time-dependent magnetic field with an alternating gradient 

structure. 
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- The resonance Q -Q ±Q =0 - excited by a skew quadrupale field- will x z s 
be relevant only in case of an extremely small "distance" to the 

resonance. For common electron storage rings (~~Qz) we find a 

significant energy exchange between the transverse motions via the 

longitudinal motion for e.g. lqx-Qz±Qsj~J0- 5 • 

- The off-momentum function and its derivative at the position of the 

cavity can excite resonances of the type Q ±kQ =integer. The 
x s 

resonance can lead to a substantial effect only in accelerators with 

a large Qs value and large value of the ratio of the peak voltage 

over the kinetic energy, i.e. in the beginning of the acceleration 

process. 

- Working above transition energy, the sum (difference) of the 

transverse and longitudinal oscillation amplitudes remains constant 

in case of a sum (difference) synchro-betatron resonance. Below 

transition energy the behaviour is similar to coupled betatron 

resonances. 

- The control of ytr in !KOR can be achieved by including a sextupole 

magnet in each unit cell. The analytica! results correspond quite 

good to results of the AGS computer program running at CERN (see 

section 4.2). 

- Terms of m-th degree in the Hamilton function (m~3) can contribute 

to resonances of higher order than m. Fortunately, these so-called 

"second order" effects on the betatron motion are negligible in the 

majority of common synchrotrons and storage rings. 

- The effects of non-linear coupled betatron resonances m1~+m2Qz=prN 

become clear by an examination of flowlines in a phase plane. 

The treatment of chapter 5 leads, in case m1=l or m2=1 to results 

which differ qualitatively from results of the general approach 

of Guignard (Gui76, Gui78). We obtain Guignard's results when not 

discriminating between the stabie and unstable fixed points in 

phase plane. 
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SUMMARY 

This thesis deals with a general theory for the description of 

resonance and coupling effects in circular partiele accelerators. 

For this we use the Hamilton formalism. The theory is mainly applied 

to the proposed proton accumulator ring IKOR in West Germany and to 

an electron storage ring which is characteristic of existing 

synchrotron radiation facilities (PAMPUS; this project bas been 

dismissed meanwhile by the Dutch government). 

For the description of coupling effects between the transverse 

(=betatron) and longitudinal (=synchrotron) motions a general theory 

is developed. For that purpose the HF acealerating electric field and 

the time-dependent magnetic field are incorporated in the Hamilton 

function via a time-dependent vector potential consisting of a fast 

and a slowly varying part. The final theory offers the possibility 

to examine the influence of so-called synchro-betatron resonances on 

the partiele motion. The theory is applicable to any circular 

accelerator with an arbitrary Dee or cavity configuration. 

The concept "Centra! Position" phase {CP phase) arises and is based 

on the same idea as the CP phase introduced by Schulte and Hagedoorn. 

To make the theory suitable for any circular accelerator, i.e. for 

cyclotrons, synchrotrons and storage rings, the concept CP phase is 

extended for machines with an A.G. field structure and a time-dependent 

magnetic field. 

In case of weak coupling between the radial and the longitudinal 

motion the theory shows a change in the radial tune Qx caused by the 

acceleration process. This corresponds with results given by Schulte 

and Gordon both using different treatments. 

The effect of the synchro-betatron resonances Q -Q ±Q =0 is generally x z s 
of minor importance unless the distance to the resonance becomes 

extremely small: in common electron storage rings if 1Qx-Qz±Q 8 I~I0-
4 

or even ~10- 5 • 

Resonances of the type Qx±kQ
6

=p (k and p integers), excited by the 

off-momentum function and its derivative in the cavities, will be 

significant only in case of large Q values (Q ~0.1) since the effect 
s s 

decreases fast with the order of the resonance. 

Coupling effects between the transverse motions are studied by 

ignoring the acceleration process (betatron theory). Application of 
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canonical transformations in linear betatron theory, used to achieve 

a well-suited Hamilton function for further study, leads to analytica! 

formulae for the Twiss parameters a, S and y. In the cases considered, 

the representation of the S-function produces satisfactory results 

rather quickly. For S-values between 3 and 30 m/rad in a lattice, only 

a restricted number of terms of a series have to be taken into account 

to obtain results with a relative deviation within a few per cent 

compared with results of a matrix code. 

The one-dimensional betatron theory shows "first" as well as 

"second" order non-linear effects caused by e.g. sextupole and octupole 

magnets. The first (second) order effects are described by expressions 

which are of first (second) degree in the field components. 

A sextupole magnet seems necessary in !KOR to obtain the maximum 

benefit of working close to transition energy. For the control of ytr 

a sextupole with a length of 0.4 m is planned in each unit cell. The 

needed strength turns out to be about 1.15 T/m2 and this result 

corresponds quite good with results of the AGS computer program running 

at CERN. 

Octupole magnets can be used to enlarge the tune spread in the beam. 

In case octupole fields will be used in !KOR their strengtbs will be 

at most 102 T/m3. 

In the cases considered, the "second order" non-linear effects are a 

factor 102 to 103 smaller than the "first order" effects. 

The treatment of the coupled betatron resonances mlQx+mzQz=p 

leads to stopband widths or field tolerances using phase plane 

considerations. In this context we mention that the resonance 2Qx+Qz=11 

imposes a strong requirement upon the dipole quality in IKOR (Qx~3.25, 

Qz~4.4). The skew sextupole component in these dipoles mustbesmaller 

than 0.25 T/m2• To cancel this critica! effect, one skew sextupole 

with a strength of 50 T/m2 and a length of 0.3 m, placed at a well

defined position in the machine, seems to be sufficient. 

For the resonances with m1=1 or mz=1 there are qualitative 

discrepancies with the general theory of Guignard. These can be 

explained when not dicriminating between the stable and unstable 

fixed points in the phase plane, 
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SAMENVATTING 

Dit proefschrift handelt over een algemene theorie voor de 

beschrijving van de invloed van resonantie- en koppelingseffecten op 

de deeltjesbeweging in circulaire deeltjesversnellers. De theorie 

wordt hoofdzakelijk toegepast op de voorgestelde protonenring IKOR in 

West-Duitsland en een elektronenopslagring die karakteristiek is voor 

de huidige synchrotronstralingsbronnen (PAMPUS; dit project is 

inmiddels door de Nederlandse overheid afgewezen). 

Voor het opstellen van een algemene theorie is gebruik gemaakt 

van het Hamilton formalisme. Na het toepassen van een aantal geschikte 

transformaties worden Hamilton functies verkregen, waarin de ver

schillende effecten zichtbaar zijn. 

Om de koppelingseffecten tussen de transversale (=betatron) en 

longitudinale (=synchrotron) bewegingen te beschrijven zijn het 

hoogfrequente versnellende elektrische veld en het tijdsafhankelijke 

magnetische veld ingebouwd in de Hamilton functie. Daartoe is een 

tijdsafhankelijke vectorpotentiaal ge~ntroduceerd bestaande uit een 

snel en een langzaam variërend deel. De theorie blijkt toepasbaar op 

elke circulaire versneller met een willekeurige Dee- of trilholte

configuratie en leidt tot de invoering van een "Central Position" fase 

(CP-fase). Deze CP-fase is op dezelfde idee gebaseerd als de CP-fase 

zoals die ge~ntroduceerd is door Schulte en Hagedoorn. Om de theorie 

geschikt te maken voor elke circulaire versneller, zoals voor 

cyclotrons, synchrotrons en opslagringen, is het begrip CP-fase 

uitgebreid voor een tijdsafhankelijk magnetisch veld en een 

"alternating gradient" veldstructuur. Uit de theorie volgt onder 

andere dat bij zwakke koppeling tussen de radiale en longitudinale 

beweging een verandering in het radiale betatrongetal ~ optreedt die 

wordt veroorzaakt door het versnelproces. Dit is in overeenstemming 

met resultaten gegeven door Schulte en Gordon die beiden een andere 

methode gebruikten. 

De theorie is ook geschikt om zogenaamde "synchro-betatronresonanties" 

te bestuderen. Het effect van de resonanties ~-Qz±Qs=O blijkt in het 

algemeen van weinig belang voor de deeltjesbeweging, behalve wanneer 

de afstand tot de resonantie uiterst klein wordt: in gewone elektronen

opslagringen kunnen de effecten slechts dan relevant zijn als 
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IQx-Qz±Qsi~Io- 4 of zelfs ~~o- 5 • Resonanties van het type Qx±kQs=p 

(ken p gehele getallen), die geëxciteerd worden door de "off-momentum" 

functie en zijn afgeleide op de plaats waar de versnelling plaats vindt, 

zullen slechts belangrijk zijn als Qs groot is (Qs~O.I) aangezien het 

effect snel afneemt met de orde van de resonantie. 

Koppelingseffecten tussen de transversale (betatron) bewegingen 

onderling, worden bestudeerd door het versnelproces buiten beschouwing 

te laten. Het toepassen van kanonische transformaties, nodig om de 

Hamilton functie in een geschikte vorm te krijgen voor de verdere 

studie, leidt in de lineaire betatrontheorie tot analytische formules 

voor de Twiss parameters a, S and y. De uitdrukking voor de S-functie 

geeft in de beschouwde gevallen tamelijk snel bevredigende resultaten: 

slechts een beperkt aantal termen van een reeks is nodig om voor S

waarden die in een rooster variëren van 3 tot 30 m/rad resultaten te 

verkrijgen met een relatieve afwijking van hooguit een paar procent 

vergeleken met resultaten van een matrixcomputerprogramma. 

De één-dimensionale betatrontheorie beschrijft zowel "eerste orde" als 

"tweede orde" niet-lineaire effecten die veroorzaakt worden door 

onder andere sextupool- en octupoolmagneten. 

Een sextupoolmagneet lijkt bijvoorbeeld nodig in IKOR om maximaal 

profijt te trekken van het werken dicht bij de overgangsenergie. 

Wanneer in elke eenheidscel zo'n sextupoolmagneet op een goed 

gedefinieerde positie geplaatst wordt, is bij een lengte van 0.4 m 

een sterkte van 1.15 T/m2 nodig. Dit resultaat komt goed overeen met 

dat van het AGS programma van CERN. 

Octupoolmagneten kunnen gebruikt worden om de spreiding in de betatron

getallen Qx en Qz in de bundel te vergroten. Als die in IKOR nodig 

zijn zal hun sterkte maximaal 102 T/m3 bedragen. 

In de beschouwde gevallen bleken de "tweede orde" effecten, dat wil 

zeggen effecten die beschreven worden door uitdrukkingen die van de 

tweede graad zijn in de veldgrootheden, tengevolge van de multipcol

magneten een factor 102 tot 10 3 kleiner te zijn dan de "eerste orde" 

effecten. 

De theorie voor de bestudering van de twee-dimensionale (gekoppelde) 

betatronbeweging en in het bijzonder van de resonanties mlQx+mzQz=p 

leidt, door gebruik te maken van faseruimtebeschouwingen, tot stop

bandbreedtes of toleranties voor het magnetisch veld. Zo stelt de 

resonantie 2Qx+Qz=ll hoge eisen aan de kwaliteit van de dipoolmagneten 
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in !KOR (~o:3,25, Qz=4.4). De "skew" sextupoolcomponent in deze 

dipolen moet kleiner zijn dan 0,25 T/m2• Om dit effect op te heffen 

lijkt é.én "skew" sextupoolmagneet met een lengte van 0.3 m en een 

sterkte van 50 T/m2, geplaatst op een goed gedefinieerde positie, 

voldoende, Voor de resonanties met m1=l of m2=l zijn er duidelijke 

kwalitatieve verschillen met de resultaten van de theorie van Guignard. 

Deze verschillen kunnen worden verklaard wanneer geen onderscheid 

gemaakt wordt tussen de stabiele en instabiele vaste punten in de 

faseruim te. 
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STELLINGEN 

I. Analytische uitdrukkingen kunnen op eenvoudige wijze een goed 

kwantitatief inzicht verschaffen in het verloop van de Twiss 

parameters die het lineaire gedrag van deeltjesbanen in circulaire 

versnellers beschrijven. 

Dit proefsahrift., hoofdstuk 2. 

2. In opslagringen met een grote waarde van het synchrotrongetal Q 

(bijvoorbeeld van de orde 0.1) heeft een waarde van het radiale 

betatrongetal ~ beneden een geheel getal de voorkeur boven een 

waarde boven een geheel getal. 

Dit proefschrift., hoofdstuk 3. 

s 

3. De door Guignard afgeleide formule voor de stopbandbreedte voor 

somresonanties m 1 ~+m 2 Qz=p geeft voor m1=1 of m2=1 een niet-fysisch 

beeld; dit wordt veroorzaakt door het feit dat geen onderscheid 

wordt gemaakt tussen stabiele en instabiele vaste punten in de 

faseruimte. 

Dit proefsahrift., hoofdstuk 5. 

4. In een verdere uitwerking van de door Buys en De Jonge gegeven 

uitdrukking voor de relaxatietijd van resonante soliton-fonen

verstrooiing zou het verschil in dimensie van beide excitaties 

tot uiting moeten komen. 

J.A.H.M. Buys en W.J.M. de Jonge. 

Ruropean Conferenae Abstraets 6A(1982)208. 

5. Als bij een interpretatief taalsysteem de monitor in de taal zelf 

is geschreven, biedt het grote voordelen als de eigenlijke 

interpretator als 're-entrant'-systeemprocedure aangeroepen kan 

worden. Dit kan in het bijzonder tot een goed bibliotheekmechanisme 

leiden. 

P.W.E. Verhelst en N.F. Verster, PEP: An interaative programming 

system with an ALGOL-like programming language. 

Mathematisah Centrum Amsterdam, IW 1?2/81 (1981). 



6. Voor de berekening van de activiteit van 81 Rb/ 81 ~r-generatoren op 

het moment van gebruik mag de extra produktie van 81 Rb vanuit 
81 ~b, bij korte bestralingstijden en indien het ijken van de 

generator kort na het bestralen geschiedt, niet verwaarloosd worden. 

E. Aaerbi et al.~ Int. J. of Appl. Rad. a. Isotapes 32(1981)465. 

7. De berekening van de invloed van een niet ideale 2~-~-intersectie 

in een opslagring op de transversale deeltjesbeweging met behulp 

van een matrixvoorstelling van veldvrije ruimten en dunne lenzen 

verloopt eenvoudiger en sneller dan de methode van Autin en Verdier. 

B. Autin en A. Verdier~ CERN ISR-LTD 76-14 (1976). 

8. De techniek van pseudo-random-gecorreleerde looptijdmetingen kan 

aanzienlijk worden vereenvoudigd wanneer bundelmodulatie wordt ver

kregen met optisch pompen in plaats van met een mechanische chopper. 

9. Voor het maken van een protonenmicrobundel met lage-energie 

cyclotrons is het gewenst bij het ontwerp van dergelijke cyclotrons 

voorzieningen te treffen die bij een voldoend grote externe bundel

stroom (bijvoorbeeld 10 ~A) een voldoend kleine energiespreiding 

in de geëxtraheerde bundel bewerkstelligen (bijvoorbeeld enkele 

tienden tot een promille). 

JO. Bij al het doemdenken moeten we niet vergeten dat ook de toekomst 

eens 'die goeie ouwe tijd' zal kunnen zijn. 

11. Met betrekking tot het probleem van de verwerking van chemisch 

afval is in het verleden de uitdrukking 'zand erover' soms al 

te letterlijk gehanteerd. 

Eindhoven, 17 september 1982 C.J.A. Cor.sten 


