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Hunter, John D., John G. Milton, Peter J. Thomas, and Jack semble synaptic activity (Mainen and Sejnowski 1995; No-
D. Cowan. Resonance effect for neural spike time reliability. J. wak et al. 1997; Tang et al. 1997), in contrast to those
Neurophysiol. 80: 1427–1438, 1998. The spike timing reliability produced by a constant current stimulus. Precise spike time
of Aplysia motoneurons stimulated by repeated presentation of responses are also observed in motion-sensitive neurons inperiodic or aperiodic input currents is investigated. Two properties response to time-varying visual stimuli in the fly (de Ruyterof the input are varied, the frequency content and the relative van Steveninck et al. 1997). These results suggest that theamplitude of the fluctuations to the mean (expressed as the coeffi-

intrinsic noise in the spike-generating mechanism is lowcient of variation; CV). It is shown that, for small relative ampli-
relative to the intensity of the fluctuating input currents.tude fluctuations (CVÉ 0.05–0.15), the reliability of spike timing
In interpreting these results, an important consideration isis enhanced if the input contains a resonant frequency equal to the

firing rate of the neuron in response to the DC component of the the magnitude of the fluctuations in the input relative to the
input. This resonance-related enhancement in reliability decreases current necessary to cause neuronal spiking. It is not difficult
as the relative amplitude of the fluctuations increases (CV r 1). to appreciate that spike timing will be reliable when the
Similar results were obtained for a leaky integrate-and-fire neuronal relative magnitude of the input fluctuations is high. In the
model, suggesting that these effects are a general property of en- presence of noise, the width of interspike interval (ISI) dis-coders that combine a threshold with a leaky integrator. These tribution is inversely proportional to the slope of the mem-observations suggest that, when the magnitude of input fluctuations brane potential (dV /dt) at threshold (Goldberg et al. 1984;is small, changes in the power spectrum of the current fluctuations

Stein 1967b). A current with a large amplitude fluctuatingor in the spike discharge rate can have a pronounced effect on the
component will cause threshold crossings with a steeperability of the neuron to encode a time-varying input with reliably
slope than will a constant current and thus generate moretimed spikes.
reliably timed spikes in the presence of noise. An analogous
slope condition exists for the synchronization of a network

I N T RODUC T I O N of neurons to a coherent input (Gerstner et al. 1996).
However, in many situations, the fluctuating componentConsiderable effort was devoted to measuring and model-

ing the statistical properties of spike trains generated by of the input is relatively small (Calvin and Stevens 1968;
Church and Lloyd 1994; Steriade 1997; Steriade et al. 1993;neurons in response to known stimuli (Otmakhov et al. 1993;

Perkel and Bullock 1968). An unsettled question is which Wilson and Kawaguchi 1996). Here we show that even
under these conditions it is possible for the spike timing toproperties of the output neural spike train encode the infor-

mation concerning the neuron’s input (Geisler et al. 1991; be reliable through a resonance phenomenon (Fig. 1) . An
input signal may be divided into two components, a DCSoftky 1995). Candidate neural codes include the mean rate

of firing (Redman et al. 1968), the distribution of interspike component and a time-varying component. The neuron’s
firing rate ( fDC) in response to the DC component placesfiring times (Sanderson et al. 1973; Werner and Mountcastle

1963), pattern of spikes (Middlebrooks et al. 1994; Optican constraints on the types of signals that may be encoded with
reliably timed spikes in the presence of noise. Suppose atand Richmond 1987; Segundo et al. 1966;) , and the precise

times that the neuron fires (Hopfield 1995; Mainen and Sej- time 0 a spike occurs on the rising phase of an input signal
and the membrane potential is reset to rest. If the time-nowski 1995). A precondition of a spike time code is that

the times of response to an input signal be reliable in the varying component of the input is small compared with the
DC component, then the next spike will not occur until somepresence of noise (Calvin and Stevens 1968; Fatt and Katz

1950). However, neuronal responses are notoriously vari- time approximately equal to TDC, the inverse of the fDC . If
the time-varying component of the input signal is increasingable, and this variability was the source of long-standing

interest (Croner et al. 1993; Geisler and Goldberg 1966; around time TDC, the spike time distribution will be narrower
than if the time-varying component is decreasing at thisHolt et al. 1996; Softky and Koch 1993; Stein 1965; Wilbur

and Rinzel 1983; Wu et al. 1994). In the visual cortex, this time because of slope considerations. Thus we expect small-
amplitude periodic signals that are modulated at a frequencyvariability reflects ongoing cortical activity (Arieli et al.

1996) and the influence of eye movements (Gur et al. 1997). fDC or its harmonics to generate more reliably timed spike
trains than other frequencies. A number of theoretical inves-A recently emphasized experimental paradigm concerns

the measurement of the reliability of spike timing when a tigations and experimental observations of neurons and neu-
ral models with periodic inputs noted the importance of fDCneuron is repeatedly given the same time-varying input. Pre-

cisely timed spike trains are produced by neurons in response in generating phase-locked firing patterns (Keener et al.
1981; Knight 1972a,b; Rescigno et al. 1970; Scharsteinto aperiodic input signals in which current fluctuations re-
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FIG. 1. Leaky integrate and fire model with constant and periodic inputs. A : membrane potential in response to a DC
input current. B : membrane potential trajectory with input current modulated at f / fDC Å 0.65. C : trajectory when f / fDC Å
1.0. Dashed lines in A–C indicate the threshold for spiking. D– F : distribution of spike times for 1,000 presentations of the
currents shown in G– I in the presence of noise. For each of the 3 inputs, initial conditions were chosen to trigger a spike
at time 0 in the absence of noise, resulting in a peaked spike time distribution around 0 when noise is added. Note that the
1st peak in the spike distribution is sharper in response to the sinusoidal currents (E and F) than in response to a DC input
(D) because the slope of the membrane potential at threshold crossing is steeper; the initial conditions were chosen so that
the 1st spike in the deterministic case would occur at the same phase of the sinusoids. At the 2nd threshold crossing, the
slope of the membrane potential trajectory in C is steeper than in A or B , which causes a narrower spike time distribution
in the presence of noise (D– F) . The input currents are shown in G– I . See text for discussion. m Å 10 nA, m Å 0.05,
fDC Å 8.7 Hz, f Å 1.22, R Å 5 MV, C Å 10 nF, u Å 45 mV, and sn Å 40 nA; for A , D , and G , m Å 0.

1979). However, the possibility that fDC plays a fundamental a neuron. Taken together, these results suggest that even
small changes in membrane properties or in tonic inputs thatrole in shaping the response of neurons to aperiodic inputs

was not investigated. affect fDC can have a substantial impact on the ability of a
neuron to encode certain inputs with reliably timed spikes.Here we demonstrate that spike time reliability in response

to aperiodic signals depends on the frequency content and
modulation amplitude of the input and the fDC of the neuron. M E T HOD SThe results are presented in three sections. The first section
describes spike timing reliability when sinusoidal inputs are Slowly adapting motoneurons (Aplysia)
repeatedly presented to a slowly adapting Aplysia buccal

Aplysia care, immobilization, and dissection were carried outmotoneuron. This section shows the dependence of spike
with the use of procedures given by Church and Lloyd (1994).timing reliability on the frequency content of the input signal
Slowly adapting motoneurons were identified in the dissociated,and fDC for periodic inputs. The second section examines intact buccal ganglion based on size, location, and firing criteria.spike timing reliability when the neuron repeatedly receives We used neurons that were not spontaneously active and that fireda set of aperiodic signals. This section demonstrates that regularly (after an accommodation transient) in response to appliedspike timing reliability is lowest when the aperiodic signal DC inputs. The ISI coefficient of variation [CV; mean (m) of

does not contain frequencies around and including fDC and intervals divided by the SD of the intervals] in response to these
highest when it does. Finally, the third section demonstrates DC injections was 0.05 { 0.03. Experiments were performed in
that all of these experimental observations can be readily artificial seawater with 0.5 mM Ca2/ to minimize synaptic inputs

from other neurons. Typical input resistances were Ç5–10 MV.accounted for by a leaky integrate and fire (LIF) model of
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M spike times are identical in each of the records, then the summedInput signals
record will contain N spikes at each of the M times where a spike

Periodic (sinusoidal) input signals were generated numerically occurs and none otherwise. In this case the time-series variance
with the use of an AD2210 (Real Time Devices) A/D board inter- will be maximal.
faced with a personal computer. A set of aperiodic input signals The formulation (Eq. 1) , however, makes no distinction between
used in a single experiment was generated as follows. A white two spikes that occur closely together (although not at the same
noise signal from an analog noise generator (model 1390-B, Gen- time) and two spikes that are distant. Therefore we convolved the
eral Radio) was filtered with an analog low-pass Bessel filter summed record with a weighting function that spreads the effect
(model 902, Frequency Devices) with a corner frequency of 2 kHz from the spikes temporally
and was digitally sampled at 4 kHz. This noise was then convolved
with an a-function, i.e., f ( t) Å t exp(0t /t) , where t Å 4 ms to X ( t) Å !

t

0
x(t)h( t 0 t)dt (2)

create the broadband signal A. Signal A was then filtered with a
Chebyshev type I band-stop digital filter with a band-stop region The time-series variance s 2

X of the weighted spike-train sumfrom 0.85 to 1.15 fDC to create signal B. The same signal A was X ( t) is computed by substituting X for x into Eq. 1 . We chose theused to create the control signal C with a band-stop region from weighting function0.4 to 0.7 fDC . The digital filtering was performed with the use of
the Matlab software package (The MathWorks) . A different set

h( t) Å !l exp0lt if t ¢ 0

0 otherwise
(3)of three signals was used for each experiment. These three signals

were normalized so that the m, SD, and rms amplitude (ss) were
equal.

We normalized the reliability statistic R so that it ranged between
zero and one by comparing it with the maximum value expected

Stimulation protocol if each of the M spikes in the N spike trains occurred simultane-
ously. If the minimum interspike interval is long compared withThe DC component of the current injections ranged from 5 to
l01 , the value smax (see APPENDIX ) is22 nA, generating firing frequencies ranging from 7 to 24 Hz. This

firing rate range encompasses the upper end of the physiological
smax Å

N 2Ml

2t
0 N 2M 2

t 2
(4)range at which most buccal neurons fire during feeding behavior

(Church and Lloyd 1994). Slower firing rates were not examined
where t is the length of the record. The reliability statistic is thenbecause it was difficult to design notch filters for very low frequen-
the time-series variance normalized so that it ranges from zero tocies and to maintain the neuron in a stable state long enough to
onecollect sufficient numbers of spikes for statistically reliable results.

Recordings were performed in bridge mode with an AxoClamp 2B R Å s 2
X /s 2

max (5)amplifier. All D/A and A/D signals were low-pass filtered with
an analog Bessel filter (model 902, Frequency Devices) with a Other statistics for spike time reliability were developed (see
corner frequency of 2 kHz and were digitized at 4 kHz. The current Victor and Purpura 1996 and references therein). The main advan-
stimulation protocol was automated, and cells were stimulated for tage of our method is that it can be computed on a spike-by-spike
2 s with an interstimulus interval of 6–8 s, depending on the basis in real time, and the use of adaptive smoothing filters (Mainen
experiment. Cells were first stimulated with a series of DC inputs, and Sejnowski 1995; Nowak et al. 1997) is not required. The
and the average instantaneous firing frequency was computed over correlation coefficient between our reliability statistic and that used
the second one-half of each stimulus interval; if the average rate in Mainen and Sejnowski (1995) for our data was r Å 0.96.
was stable for two consecutive trials, the aperiodic stimulus proto-
col began with the use of precomputed input signals with the Data analysisappropriate frequency content for this firing rate. This rate defined
fDC for the duration of the experiment. Ten blocks of the four We compared the reliability of spike timing in response with
stimuli (DC, A, B, and C) were presented; the presentation order signals that contain frequencies around fDC and in response to sig-
within each block of four was randomized over the 10 trials. nals that do not. Because the Aplysia motoneurons accommodate,

fDC changes during the stimulus period. Thus statistics were com-
puted over the region where the average instantaneous firing fre-Reliability statistic (R)
quency in response to the DC component alone was within the
band-stop region around fDC defined by signal B. In addition weTo quantitatively evaluate spike timing reliability, we developed
required that ¢70% of these spike trains fell within this interval.a reliability statistic. For each voltage trace, a corresponding point-
This requirement helps exclude those cases in which the firing rateprocess spike train record was determined (Perkel et al. 1967). A
of the neuron slowly changed from stimulation to stimulation.computationally efficient way to assess the extent to which N spike
Experiments in which this interval was õ0.5 s in length weretrains have spikes occurring at the same time is to add the point
discarded; 14 experiments failed to meet these criteria. For the 48processes together and compute the time-series variance s 2

x of the
experiments that did satisfy the criteria, the length of the analysissum, defined as
interval was 1.3 { 0.34 s.
The value l01 Å 10 ms was used for the weighting function ins 2

x Å
1
t !

t

0
x(t)2dt 0 "1t !

t

0
x(t)dt#2 (1)

Eq. 3 because small differences in buccal motoneuron spike times
on this scale were shown to have a dramatic effect on excitatory
junction potentials in a facilitation paradigm (Cohen et al. 1978).where x is constructed by summing the N separate point-process

spike trains and t is the length of the record. If the spike times are Other choices of l01 over the range 2–10 ms changed the value
of R for a given experiment but did not qualitatively alter thecompletely independent in each of the N spike records, then each

point in the summed record will contain on average the same results.
Nonlinear regressions were performed (SigmaPlot) with thenumber of spikes as any other point, and the time-series variance

will approach zero with large N . On the other hand, if each of the Marquardt-Levenberg algorithm (Press et al. 1992) with a double
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exponential model function (see RESULTS). The use of linear or on the spike timing reliability, we stimulated an Aplysia
single-exponential model functions did not change the significance buccal motoneuron with a periodic current of the form
of the findings. m(1 / m sin(2pf t)) . The mean spike frequency when the

neuron was stimulated by the DC component alone was used
LIF model to estimate fDC . When f / fDC Å 1.0, a 1:1 phase locking

pattern was observed, and when f / fDC Å 0.65, an irregularThe LIF neuron can be represented by an RC circuit with a
response pattern was obtained. Figure 2 shows the spikecurrent source and a potential reset after an action potential at
timing reliability for these two choices of f / fDC . Clearly,threshold. The membrane potential between firings is given by the
spike timing reliability is much poorer when the input fre-solution to
quency is such that a simple phase-locking pattern does notdV ( t)

dt
Å 0 1

RC
V ( t) / 1

C
I( t) (6) arise (cf. Fig. 2A with 2B) .

where V ( t) is the membrane potential, R is the membrane resis- Aperiodic inputstance, C is the membrane capacitance, and I( t) is the input current.
The potential is reset to zero after an action potential at threshold The observations shown in Figs. 1 and 2 suggest that
u; spikes with an amplitude of 100 mV are added at threshold aperiodic signals that contain the frequency band around fDCcrossings in the figures for ease of viewing. will lead to more reliable spike times than signals lackingFor periodic inputs, I( t) Å m(1 / m sin(2p f t / f)) / snj( t) this component. To test this hypothesis, we constructed sets√
Dt where m is equal to the mean of the current, m is the fractional of three different aperiodic input signals: signal A consistedmodulation amplitude, f is the frequency, f is the phase, and j( t)

of broadband, low-pass filtered noise; signal B was con-is the Gaussian distributed white noise with zero mean and unit
structed as signal A was, except that frequencies around andvariance. sn is a constant that scales the SD of the noise term. The
including fDC were removed by digital filtering; and signalstep-size of numerical integration was Dt Å 0.5 ms; this value

was chosen because it is small compared with the membrane time C was a control signal with a band removed below fDC .
constant over the parameters investigated, and the reliability statis- Figure 3 shows a detail of one set of these three signals with
tic remained approximately constant with smaller step-size choices. their power spectra. In each case the signals have an identical
The equation was integrated in FORTRANwith the use of a fourth- m, SD, and ss . Although the currents cannot be easily distin-order Runge-Kutta algorithm rk4 . The neuronal current noise was guished by visual inspection alone, they are readily distin-generated numerically with the use of pseudo-random number gen- guishable by their power spectra.erator gasdev from Press et al. (1992), which is based on the Box- Figure 4 shows the results of a single trial in which signalsMuller algorithm.

A, B, C, and D were repeatedly presented to an AplysiaThe aperiodic inputs were generated as described above for the
neuron. When a DC input is injected into the neuron, theAplysia inputs, and a noise term was added to simulate the intrinsic
spike timing between trials is least reliable (RDC Å 0.08).noise in the preparation. To assess spike timing reliability of the

LIF model for aperiodic inputs, 20 phase-randomized surrogates When the broadband signal A containing fDC is given to
each of signals A, B, and C were generated. Each surrogate input the neuron, the spike timing is most reliable (RA Å 0.54).
has the same power spectrum as the original but has a randomized However, when the aperiodic signal B lacking fDC is pre-
phase spectrum (Theiler et al. 1992). sented to the neuron, there is a substantial decrease in spike

time reliability (RB Å 0.19). Removing other frequency
R E S U L T S bands but leaving fDC did not have a significant effect on

spike timing reliability (RC Å 0.53).Periodic inputs To examine the effect of the amplitude of the input current
fluctuations on spike time reliability, it is necessary to nor-The effect of periodic stimulation on neurons that fire

periodically was extensively studied both experimentally malize this amplitude to the magnitude of a current sufficient
to cause neuronal spiking. This need arises, in part, because(Knight 1972b; Matsumoto et al. 1980; Perkel et al. 1964)

and theoretically (Ascoli et al. 1977; Glass et al. 1980; the neurons investigated varied in size. In our experiments,
the magnitude of the DC component was chosen to triggerHolden 1976; Keener et al. 1981; Knight 1972a; Rescigno

et al. 1970; Scharstein 1979). For some modulation ampli- repetitive spiking in the physiological range (see METHODS),
and thus this value, the mean of the current inputs, servestudes and frequencies, it is possible for the neuron to become

entrained to the periodic stimulus so that for each n cycles as an appropriate normalization factor. Thus we describe the
amplitude fluctuations in the input current by the CV, i.e.,of the stimulus there are m cycles of the spontaneous rhythm

(n :m phase locking). In addition to regular, phase-locked the SD divided by the mean.
Figure 5 examines the enhancement of spike time reliabil-patterns of neuron firing, complex aperiodic firing patterns

arise in some parameter regimes (Glass et al. 1980; Hayashi ity by frequency content around fDC as a function of the CV
of the input current. At each point, we plot the ratio ofet al. 1983; Ishizuka and Hayashi 1996; Kaplan et al. 1996).

The critical frequency fDC plays a special role in neural reliability generated by the band-stop signals (RB or RC) to
the reliability generated by the broadband signal (RA). Ifphase-locking because 1:1 phase locking occurs even in the

limit of vanishingly small modulation amplitude (Knight the band around fDC is critically important, one expects the
ratio RB/RA õ 1 and the ratio RC/RA É 1 because in the1972a).

These studies did not specifically address the issue of former case only signal A contains the frequency band,
whereas in the latter case both signals contain it. For modula-spike time reliability as a function of input frequency. To

illustrate the effects of the frequency, f , of a periodic input tion amplitudes that are small compared with the DC compo-
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FIG. 2. Spike time reliability in Aplysia motoneurons
with periodic inputs is dependent on fDC . Superposed voltage
traces from 10 different trials recorded from a buccal moto-
neuron for 2 different periodic current inputs: A : f / fDC Å
0.65; B : f / fDCÅ 1.0, where f is the frequency of the periodic
input, and fDC is the firing rate in response to the DC compo-
nent of the periodic input. m Å 20 nA, fDC Å 21 Hz, and
the amplitude is 5 nA. Scale bar for voltage traces is 10 mV
by 100 ms and for current traces is 5 nA by 100 ms.

nent, this dependence on fDC is pronounced and decreases be the theoretical value because the two signals will be
the same at zero modulation amplitude and will alsowith increasing modulation amplitude. When the CV is high,

there is no effect on spike time reliability from filtering equal one for sufficiently large values of x . The second
condition arises because it is presumed that either inputthe aperiodic signals; all signals generate almost perfectly

reliable firing times. Previous studies that showed highly signal will generate highly reliable firing times at suffi-
ciently large fluctuation amplitudes [ as was observed inreliable firing times utilized inputs in the large fluctuation

amplitude limit [ss /m Å 0.67, as shown in Fig. 1 of Mainen Mainen and Sejnowski (1995 ) ] , and thus the R ratio will
be one. The decay constants of the two exponentials forand Sejnowski (1995)] .

To statistically quantify this effect, we fit the experi- the function plotted in Fig. 5A are a Å 22.5 and b Å 7.4
and in Fig. 5B are a Å 6.8 and b Å 5.9. This analysis ( seemental data to the model function y ( x ) Å 1 / e0ax 0

e0bx , where x is the input current CV and y is the mean Fig. 5 legend ) indicates that aperiodic signals lacking
the frequency band around fDC generate significantly lessratio of the reliabilities generated by two signals to be

compared (Fig. 5 ) . This model function was chosen be- reliably timed spikes than either the broadband signal or
the control band-stop signal. Moreover, this dependencecause it is constrained to be one at x Å 0, which must

FIG. 3. A detail of 3 current traces (A , C ,
and E) with their power spectra (B , D , and
F) . Top panels : broadband signal A. Middle
panels : signal B with a band-stop region
around the critical frequency fDC . Bottom
panels : signal C, which is a control signal
with a band-stop region below and does not
include fDC . mÅ 10.9 nA, ss Å 1.6 nA. Power
spectra shown were computed with Welch’s
average periodogram method from a long
segment of the three signals; the traces used
in the adjacent plots are samples from this
longer segment. Current traces (A , C , and E)
show in greater detail the regions between
the hatch marks and the end of the current
step in Fig. 4.
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FIG. 4. Spike time reliability in Aplysia
motoneuron with aperiodic inputs. Super-
posed voltage traces from 10 different trials
recorded from a buccal motoneuron for 4 dif-
ferent input signals. A : broadband aperiodic
input; B : band-stop input lacking frequencies
around fDC; C : band-stop control input lacking
frequenciesÇ0.55 fDC but containing frequen-
cies around fDC; D : DC component only. Cur-
rent input signals are shown underneath the
spike trains (signals A–D , respectively); the
region between the hatch marks and the end
of the signal may be seen in greater detail in
Fig. 3. All traces shown here (A–D) are from
a single experiment in which the order of the
40 current presentations was randomized; the
means and SDs of the aperiodic current inputs
are equal; mÅ 10.9 nA, ssÅ 1.6 nA. Although
all aperiodic input signals (A–C) generated
more reliable firing times than did the DC
trial, signals containing power in the fre-
quency bands around fDC (A and C) generated
significantly more reliable firing times than
those that did not (B and D); see Fig. 5. Spike
time reliability for each series is given above
each voltage trace. Hatch marks denote a re-
gion of 0.68 s in length that is not plotted
because the neuron is accommodating and the
firing frequency is outside the analysis region.
Scale bar above voltage trace in A is 20 mV
by 100 ms and above current trace is 10 nA
by 100 ms; axes in B–D are scaled similarly.

is a function of the relative amplitude of the current because this is the simplest representation that incorporates
two essential properties of a spiking neuron, i.e., a firingfluctuations.
threshold and leaky integration. For this model (Eq. 6) , the
critical frequency fDC isIntegrate-and-fire model

fDC Å 0 1
RC $ ln (1 0 u

mR#%01
(7)The spike timing reliability of a LIF model of a neuron

was examined for the same type of inputs used to stimulate
the Aplysia motoneuron. We choose to study a LIF model where m is the DC input current. The observation that spike

FIG. 5. Dependence on fDC for aperiodic
inputs is a function of input current coefficient
of variance (CV). Spike time reliability for
each input was computed from the firing
times in 10 trials. The mean and standard
error of the ratio of the reliability generated
by a band-stop signal (RB or RC) to that gener-
ated by a broadband signal (RA) is plotted for
each CV value. Some experiments had CV
values that did not fall along the abscissa
points plotted; in those cases the nearest CV
value was chosen. The number of experi-
ments used in computing each point is shown
above the error bars in A . An experiment
where a band-stop and a broadband signal
generate equally reliable firing times will fall
along the horizontal line at one. Statistics
cited are from a nonlinear regression, and the
solid lines show the best fit to a double-expo-
nential model function. A : band-stop removes
a frequency band around and including fDC
(F(1,46) Å 10.9, P õ 0.002). B : band-stop
removes a frequency band below and not con-
taining fDC (F(1,46) Å 0.8, nonsignificant). A
different set of aperiodic signals was used in
each experiment. The data presented in Fig.
4 fall at 0.15 on the abscissa.
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FIG. 6. Spike timing reliability for the
leaky integrate and fire model (LIF) of a neu-
ron with periodic inputs. Top panels show
superposed voltage traces from 40 presenta-
tions of periodic input to the model at (A)
f / fDC Å 0.65 and (B) f / fDC Å 1.0. Current
traces are shown below. Scale bar for voltage
traces is 10 mV by 100 ms and for current
traces is 2 nA by 100 ms. Results for a range
of frequencies are summarized in C . Each
point indicates the spike time reliability in
response to a single frequency input, repeat-
edly presented (40 times for 15 s each) to a
model neuron with an independent white
noise current. Reliable spike times are ob-
served at harmonics and subharmonics of
fDC . Arrows indicate the frequencies 0.65 fDC
and 1.0 fDC from the Aplysia experiments and
simulations shown in A and B of Figs. 1, 2,
and 6. m Å 10 nA, m Å 0.25, R Å 5 MV,
C Å 10 nF, u Å 45 mV, fDC Å 8.7 Hz, sn Å
40 nA.

times in response to DC inputs are unreliable implies that tions significantly affect the value fDC, the locations of the
peaks remain around the harmonics and subharmonics of fDCthere is some intrinsic noise in the current source (Calvin

and Stevens 1968; Fatt and Katz 1950; Mainen and Sejnow- (not shown).
The spike timing reliability of the LIF model to aperiodicski 1995; Tuckwell 1989). To incorporate this feature, we

added a small amount of Gaussian distributed white noise inputs is summarized in Fig. 7. We presented broadband
signals A and band-stop signals B and C to the model andto the current source in the model.

The reliability of the LIF model for periodic inputs is computed the reliability of spike times in the presence of
noise. For all aperiodic signals, reliability increased with theshown in Fig. 6. As was observed in Aplysia , periodic inputs

at the critical frequency generated highly reliable firing times input current CV, and the form of this increase parallels
that demonstrated by Mainen and Sejnowski (1995). Thisin the presence of noise, in contrast to nearby frequencies

(cf. Fig. 6A with 6B) . Two parameters in the model were is expected from slope arguments (cf. Fig. 1). Figure 7 shows
the reliability for the three signals A, B, and C as a functionmatched with those of the Aplysia experiment presented in

Fig. 2, the ratio f / fDC and fractional modulation amplitude of input current CV. Although reliabilities of all three in-
creased with input current CV, the band-stop signal B (aster-m . Figure 6C shows the reliability summarized for a broad

range of frequencies. Maximal spike time reliability occurs isks) , lacking the frequency band around fDC, generated ap-
preciably less reliable spike time responses than did thearound f / fDCÅ 1.0. Enhanced reliability is also seen in peaks

around the harmonics and subharmonics of fDC . This was broadband signal A and the control band-stop signal C. An
additional control signal with a band-stop region above fDCalso observed for the Aplysiamotoneurons (not shown). For

other frequencies, such as f / fDC Å 0.65, the reliability is was also investigated. This signal, like the control signal C,
did not generate significantly different reliability statisticspoor. The qualitative features of Fig. 6C can be readily un-

derstood by examining fixed points of the firing time return from signal A (not shown). Thus only the aperiodic signals
lacking the frequency band fDC generated significantly lessmap for the LIF model with periodic inputs (Rescigno et al.

1970); the sharp transitions from highly reliable firing times reliable spike trains in the presence of noise.
This difference is illustrated by comparing the ratio of theto low reliability correspond to the loss of stable fixed points

in the return map. reliability in response to the band-stop with that in response
to the broadband signal (Fig. 8, A and B) for the model. WeA full treatment of the parameter space of the LIF model

with periodic inputs in the absence of noise is given by plotted{SD bars about the mean of the ratio of the reliability
statistics for the 20 sets of signals tested at each point, soKeener et al. (1981). Bulsara et al. (1996) made progress

on the stochastic model under the assumptions that u /mR É the mean (not plotted) will fall at the midpoint of these bars
for any point along the abscissa. For modulation amplitudes1 and that the period of the forcing is the slowest time scale

in the system. Our work shows that extensions of the model small compared with the intrinsic noise source (SD of noise/
mean of controlled input equals 0.09), the system is domi-to include refractory periods and nonlinear conductance

terms preserve the features of Fig. 6C . Although these addi- nated by the noise, and there is a large deviation about one,

J752-7/ 9k2c$$se53 08-25-98 17:03:17 neupas LP-Neurophys



J. D. HUNTER, J. G. MILTON, P. J. THOMAS, AND J. D. COWAN1434

FIG. 7. Spike timing reliability for the
LIF model of a neuron with aperiodic inputs.
The three aperiodic signals A, B, and C were
presented (40 times for 8.2 s each) to the
LIF model in the presence of noise, and the
spike time reliability R was computed. This
procedure was repeated for 20 different sets
of signals A, B, and C and the average re-
sponse at each input current CV is shown.
Signal A, solid line; signal B, asterisks; sig-
nal C, dashed line. Only signal B lacks the
band around the critical frequency fDC .
Model parameters are the same as those in
Fig. 6.

indicating that the reliability was dictated by chance rather the frequency band around fDC, there is more than a twofold
decrease in the spike time reliability when compared withthan the controlled input.

As the modulation amplitude of the controlled input ap- the broadband signal A for input current CVs around 0.05–
0.12 (Fig. 8A) . The effect decreases with increasing modu-proaches that of the intrinsic noise level, one begins to see

an effect of the frequency content of the input signal on lation amplitude (see DISCUSSION). For the control signal C,
both signals contain the frequency band around fDC . Thusspike time reliability. For the band-stop signal B, lacking

FIG. 8. Dependence on critical fre-
quency for aperiodic inputs to leaky inte-
grate and fire model is a function of input
current CV. A : average ratio of RB/RA is
computed as a function of current CV. A
ratio of one indicates no effect from filtering
the signal on spike time reliability. Bars
show the mean { SD of the reliability ratio
from 20 different sets of signals A, B, and
C at each point. B : ratio of RC/RA is plotted.
The best fit curves from the Aplysia data
presented in Fig. 5 are plotted with solid
lines for comparison. Ratios are computed
from the same data presented in Fig. 7.
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FIG. 9. Spike time reliability as a function of the magnitude of current fluctuations for the LIF model receiving (B) a
broadband current input A and (D) a band-stop current input B lacking frequencies around fDC . Modulation intensity of
these currents was periodically increased to mimic situations where neurons receive bursts of large amplitude inputs, as in
regularly spiking cortical neurons during sleep. During the burst periods, the amplitude of the input current fluctuations is
high (CV Å 1) and spike timing reliability is insensitive to the presence of fDC (cf. raster plots in A and C) . In the regions
between the bursts, where the amplitude of the current fluctuations is small (CV Å 0.15), spike timing reliability is sensitive
to the presence of fDC (compare raster plots in A and C) . Parameters for the LIF model are the same as in Fig. 6.

the mean of the ratio RC/RAÉ 1 at all modulation amplitudes, these conditions is insensitive to the frequency content of
the input (cf. Fig. 9A with 9C) . Our results indicate that,indicating no effect of filtering on spike time reliability (Fig.

8B) . In Fig. 8, A and B , the solid line shows the best fit even when the amplitude of the fluctuations is small ( in-
terburst regions of Fig. 9, B and D) , it is possible for spikeline to the Aplysia data for comparison with the model. The

line for the experimental data falls within Ç1 SD of the timing to be reliable. In contrast, for small amplitude fluctu-
ations spike timing reliability is sensitive to the frequencymean of the model results.
content of the input (cf. Fig. 9A with 9C). This is because
under these considerations the mechanism for spike timingD I S CU S S I ON
reliability operates through a resonance phenomenon. Thus

The relevance of our observations for spike time reliability information stored in small fluctuations in a neuron’s input
is illustrated schematically in Fig. 9. The amplitude of the can also be transmitted in the form of reliable spike times.
input signal to a neuron typically shows considerable varia- That the same results were observed whether we studied
tion, with regions of small fluctuations interspersed with Aplysiamotoneurons or an integrate and fire neuron suggests
large fluctuations. Examples include regularly spiking corti- that they are a general property of encoders that combine a
cal neurons undergoing sleep rhythms (Steriade et al. 1993), threshold with a leaky integrator (Knight 1972a).
Aplysia motor neurons during feeding like behavior (Church The resonance-related enhancement in spike time reliabil-
and Lloyd 1994), evoked responses of visual cortical neu- ity is greatest when the amplitude of the input current fluc-
rons (Jagadeesh et al. 1992), and spiny neostriatal neurons tuations is small. An analysis of the effect of the amplitude
receiving synaptic barrages (Wilson and Kawaguchi 1996). of current fluctuations on spike time reliability must take
When the amplitude of the fluctuating component is large into account the size of the neuron because larger currents
enough alone to cause a neuron to spike (burst regions in are needed to stimulate larger neurons to fire. With this in
Fig. 9, B and D) , spike timing will be reliable (Fig. 9, A mind we normalized the magnitude of the fluctuations in the

input current to the magnitude sufficient to cause neuronaland C) . However, the spike time reliability that occurs under
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spiking (expressed as the CV). The resonance-related en- coherent input. Such populations received attention because
of their ability to encode subthreshold aperiodic inputs (Col-hancement in spike time reliability is maximal when CV

Ç0.05–0.15. However, other normalizations would serve lins et al. 1995) and to recover the precise spike times of a
coherent spike train input (Pei et al. 1996). Periodic inputsequally well and may be more experimentally accessible

than current magnitudes. For example, one such approach that cause stable 1:m phase locking, i.e., synchronization,
are precisely those that generate reliable firing times in theutilizes the ISI distribution resulting from the aperiodic input

current. The definition of small in the requirement of small presence of noise (n :m phase-locked solutions where n x 1
generate less reliable spike times because there are multiplemodulation amplitude essentially requires that the spike in-

tervals generated by the aperiodic current approximate TDC . spike time solutions for a given cycle of input) . Likewise,
the synchronization of uncoupled populations to aperiodicThus the mean and width of the ISI distribution generated

by the aperiodic input currents serve as a measure for the inputs will have the same dependence on fDC as was pre-
sented here in the context of spike time reliability.importance of the contribution of fDC to the current spectrum.

The expectation is that distributions with means far from Although our experiments do not address the question of
whether precise spike times carry information in vivo, theyTDC or broad widths will not show the fDC dependence. We

also examined the reliability ratios from Fig. 5 as a function do indicate necessary conditions for certain input signals to
be reliably encoded with precise spike times. Not surpris-of the CV of the ISI distribution generated by the application

of the broadband signal A. With qualitatively similar results, ingly, spike time reliability depends on both the intrinsic
properties of the neuron as well as the nature of the inputthe maximal effect was found for interval CVs ranging from

0.15 to 0.25. signal. What is surprising is the fact that there is a range of
input modulation amplitudes for which small modificationsThe resonance phenomena that give rise to reliable spike

times when the fluctuations are small are intimately depen- in either the frequency content of the input or the firing rate
of the neuron can dramatically alter spike timing reliability.dent on the interplay between the frequency content of the

input current fluctuations and the neuron’s firing rate, fDC . That the same neuron can be either a rate or a spike time
encoder may have important implications for neural coding.For example, we observed a twofold decrement in spike

timing reliability in signals with a band-stop Ç14 Hz (B)
compared with signals with a band-stop Ç10 Hz (C) for A P P END I X
small-amplitude signals. The frequency fDC encapsulates

Here we determine the normalization factor smax . We assumemany parameters of the neuron, including the action poten-
that the number of spikes M is the same for each of the N spiketial threshold, leakiness of the membrane, and afterhyperpo-
trains. If the minimum ISI is long compared with l -1 , then only thelarizing currents (Baldissera and Gustafsson 1971; Kernell
most recent spike from each spike train will make an appreciable1968; Schwindt and Calvin 1972; Stein 1967a). Modifica- contribution at time t to the convolution integral in Eq. 2 . Undertions in any of these parameters that bring the firing rate this assumption, the time-series variance s 2

X is closely approxi-into the range where the frequency spectrum of the current mated byfluctuations contains power may switch the neuron from a
mode where only the rate is reliable to one where the times s 2

X Å 1
t !

t

0
"∑N
jÅ1

h(t 0 tj i#2dt 0 "1t !
t

0
∑
N

jÅ1
h(t 0 tj i)dt#2 (8)

are reliable as well. Conversely, modifications that affect the
frequency spectrum, such as changes in the time courses of

where tj i is the most recent spike of the j th spike train at or beforesynaptic currents, can have the same effect.
a given time t.A recent study also examined the relation between spike
To compute smax , we assume that each of the M spike times intime reliability and the frequency content of an aperiodic

the N records is identical. Letting tki Å tj i Å ti for each of the i Åinput to a neuron (Nowak et al. 1997). These authors
1, . . . , M spikes, and defining t0 Å 0 and tM/1 Å t , one obtainsshowed that large amplitude, high-frequency inputs in the g on substitution of the exponential weighting function into Eq. 8range (30–70 Hz) facilitate spike time reliability compared

with a low-frequency input. Because the two signals used
s 2
max Å

1
t ∑

M

iÅ0
!
ti/1

ti

N 2l 2e02l(t0 ti)dt 0 "1t ∑
M

iÅ0
!
ti/1

ti

Nle0l(t0 ti)dt#2 (9)by these authors had different SDs, it is not possible to
ascribe the observations solely to the spectral content of the
input. Nonetheless, high-frequency fluctuations such as those Making the substitution u Å t 0 ti , and replacing the upper

limits of integration with " (because ti/10 ti ! l -1 by assumption),in the g range would be expected to increase the slope of
the above expression is closely approximated bythe membrane potential at threshold crossings, thus leading

to increased spike time reliability. The role of g range fre-
s 2
max Å

N 2Ml

2t
0 N 2M 2

t 2
(10)quencies for small modulation amplitudes was not examined

by Nowak et al. (1997). Our results suggest that for small-
This is the expression given in Eq. 4 .modulation amplitudes it is not the presence of g range

frequencies per se that facilitates spike timing reliability but
the presence of frequencies around the spiking rate of the We thank L. Fox and P. Lloyd for advice concerning Aplysia and assis-

tance in the dissections. We also thank E. Curiel, A. Dimitrov, J. Foss, T.neuron (and possibly certain harmonics or subharmonics;
Mundel, and P. Ulinski for useful comments; J. Crate and B. Mintzer forsee Fig. 6) .
assistance in the design of the electronics for these experiments and theAlthough we discussed our results in terms of spike timing computer hardware interfacing; and F. Moss for the donation of the noise

reliability for a single neuron, they are applicable to the generator.
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