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Resonance fluorescence in a waveguide geometry
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We show how to calculate the first- and second-order statistics of the scattered fields for an arbitrary intensity

coherent-state light field interacting with a two-level system in a waveguide geometry. Specifically, we calculate

the resonance fluorescence from the qubit, using input-output formalism. We derive the transmission and reflection

coefficients, and illustrate the bunching and antibunching of light that is scattered in the forward and backward

directions, respectively. Our results agree with previous calculations on one- and two-photon scattering as well

as those that are based on the master equation approach.
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I. INTRODUCTION

Interaction between an atom and a laser beam tuned close to

one of the atomic resonances leads to light emission from the

atom (i.e., resonance fluorescence) with a rich set of spectral

and temporal properties. Spectrally, as the laser intensity

is increased the emitted light will develop symmetric side

lobes around the central excitation frequency and the resulting

spectral shape is called the Mollow triplet [1]. Temporally, the

light emitted will also show antibunching with a second-order

correlation that has a minimum for zero time delay [2].

Recent advances in integrated optics [3,4] and supercon-

ducting circuits [5] make it possible to think about quantum

systems connected to each other via waveguides that operate

at optical or microwave frequencies. For such waveguide

embedded systems, the Mollow triplet was observed in the

emission spectra from a single superconducting qubit [6] and

correlation measurements were also reported [7–9]. These

structures were later shown to work as a switch [10] or a

router [11]. In the optical domain, resonance fluorescence

was modeled in photonic band-gap waveguides [12] and

experimentally investigated in a system where a fiber was

coupled to a quantum dot [13,14].

Conventional modeling of resonance fluorescence focuses

on light that is emitted in a direction perpendicular to the

direction of the laser excitation [15–18] which results in

antibunched statistics. In multiqubit systems it is possible

to observe both bunching and antibunching due to the

interference of light emission from different qubits [19–21]. In

a waveguide geometry excitation and observation directions

are colinear as shown in Fig. 1. The transmitted amplitudes

have contributions from both the incident waves and the

emitted waves from the atom. The resonance fluorescence

effect is therefore different from the conventional situation.

In a previous study based on two-photon scattering off of a

qubit embedded in a waveguide, bunching and antibunching

of light due to the interference of the incoming light with

the scattered fields in the transmitted and reflected directions,
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respectively, was predicted [22]. In this work, as an original

contribution, we will extend the two-photon analysis to the

case where the excitation is made with an arbitrary intensity

coherent state. We will make use of input-output formalism

[23] recently generalized to waveguide structures [24] to

derive analytical expressions for the second-order correlation

functions for the reflected and transmitted fields. We will

further show that the low excitation limit of the coherent-state

solutions agrees very well with the two-photon results. The

Mollow triplet will naturally emerge in our analysis. A distinct

feature of our analysis is that we can calculate the multitime

correlations without specifically referring to the quantum

regression theorem.

The outline of this article is as follows. In Sec. II we

will provide the necessary definitions and derive the single

and double time correlations for one-way waveguides by

using input-output formalism. In Sec. III we will extend the

analysis to two-way waveguides and derive the spectra of

the transmitted and reflected fields. Section IV will have the

analysis on double time correlations for the scattered fields

where we compare the coherent-state and the two-photon

results. We will conclude the article in Sec. V.

II. DERIVATION OF THE SINGLE AND DOUBLE

TIME CORRELATIONS

A system consisting of a qubit interacting with photons in

a waveguide is described by the Hamiltonian H = H0 + H1,

where [24]

H0 =
∫ ∞

−∞
dω ω a†

ωaω,

(1)

H1 =
1

2
�σz +

V
√

vg

∫ ∞

−∞
dω (σ+aω + a†

ωσ−).

Here ω is the atomic transition frequency, a†
ω and aω are the

creation and annihilation operators for photons at frequency ω,

respectively. σ− and σ+ are the lowering and raising operators

for the qubit σz = [σ+,σ−]. V denotes the coupling strength

between the atomic states and the waveguide modes, and vg

is the group velocity of the propagating waveguide mode. In

the derivation of the Hamiltonian we make the dipole and
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FIG. 1. (Color online) Schematic of the system under investiga-

tion. A right-going coherent state (rin) at frequency k and an arbitrary

intensity, propagating in a waveguide denoted by the long horizontal

lines, is incident on a two-level system with energy separation � and

a spontaneous emission rate τ−1. After interacting with the qubit,

the transmitted (rout) and the reflected (ℓout) light has both a coherent

(ω = k) and an incoherent (ω �= k) component.

the rotating wave approximations, linearize the waveguide

dispersion around the excitation frequency to obtain the group

velocity, and assume that the photons are at a frequency in the

vicinity of the excitation wavelength so that the linearization

can be justified [24].

We set

1

τ
= π

V 2

vg

, ain(t) =
1

√
2π

∫

dω aω(t0)e−iω(t−t0),

aout(t) =
1

√
2π

∫

dω aω(t1)e−iω(t−t1),

where ain and aout are the input and output fields defined long

before (t0 → −∞) and long after (t1 → ∞) the interaction

between the qubit and the the photons takes place. The two

fields are related by

aout(t) = ain(t) − i

√

2

τ
σ−(t). (2)

Through the help of the Heisenberg equations of motion and

the definitions of the input and output fields, we can write

the following set of input-output equations for a single qubit

system [24]

dσ−(t)

dt
= i

√

2

τ
σz(t)ain(t) −

(

1

τ
+ i�

)

σ−(t),

dσ+(t)

dt
= −i

√

2

τ
a†in(t)σz(t) −

(

1

τ
− i�

)

σ+(t),

dσz(t)

dt
= −i2

√

2

τ
[σ+(t)ain(t) − a†in(t)σ−(t)]

−
2

τ
[σz(t) + 1]. (3)

In this article we will be interested in the statistics of the

scattered fields when a coherent-state input is incident on the

qubit. We define the incoming coherent state at frequency k as

|α+
k 〉 = e−|αk |2/2

∞
∑

n=0

αn
k√
n!

|n+
k 〉 = e−|αk |2/2

∞
∑

n=0

αn
k a

†
in(k)n

n!
|0〉,

such that

ain(t)|α+
k 〉 =

1
√

2π

∫

dk′ain(k′)e−ik′t |α+
k 〉

=
αk√
2π

e−ikt |α+
k 〉 =

ωR

2

√

τ

2
eiφ−ikt |α+

k 〉. (4)

The value of αk is in general complex valued. We define αk ≡
|αk|eiφ . ωR ≡ 2|αk|/

√
πτ is the Rabi frequency.

The expectation value of an operator O is given as

〈O〉 ≡ 〈α+
k |O|α+

k 〉.

To describe resonance fluorescence in a waveguide, three

classes of correlation functions will be of importance: ones

with one operator, ones with two operators at two different

times, and ones with three operators at two different times,

that is,

c1(t = 0,t ′) =

⎛

⎜

⎝

〈σ−(t ′)〉
〈σ+(t ′)〉
〈σz(t

′)〉

⎞

⎟

⎠
, c2(t,t ′) =

⎛

⎜

⎝

〈σ+(t)σ−(t ′)〉
〈σ+(t)σ+(t ′)〉
〈σ+(t)σz(t

′)〉

⎞

⎟

⎠
,

(5)

c3(t,t ′) =

⎛

⎜

⎝

〈σ+(t)σ−(t ′)σ−(t)〉
〈σ+(t)σ+(t ′)σ−(t)〉
〈σ+(t)σz(t

′)σ−(t)〉

⎞

⎟

⎠
.

To calculate these expectation values, we use input-output

equations (3) and multiply them from the left and the right

with the necessary terms.1 We then take the expectation values,

make use of Eq. (4) and the commutator [ain(t ′),σ−(t)] = 0 for

t ′ � t [25] to arrive at the following set of differential equations

for all three classes of expectation values (n = 1,2,3)

d

dt ′
cn(t,t ′) = B(t ′)cn(t,t ′) + bn, where B =

⎛

⎜

⎝

−(1/τ + i�) 0 1
2
iωRe−ikt ′eiφ

0 −(1/τ − i�) − 1
2
iωReikt ′e−iφ

iωReikt ′e−iφ −iωRe−ikt ′eiφ −2/τ

⎞

⎟

⎠
, bn =

⎛

⎜

⎝

0

0

bn

⎞

⎟

⎠
.

These are called the optical Bloch equations with radia-

tive damping. For different n, the inhomogeneous term bn

and the initial conditions at t ′ = t are different: b1 = − 2
τ

,

1For instance, to get the second set, c2(t,t ′), we need to multiply (3)

evaluated at time t ′ by σ+(t) from the left.

b2 = − 2
τ
〈σ+(t)〉, and b3 = − 2

τ
〈σ+(t)σ−(t)〉. Previously, the

same results were derived through the help of the quantum

regression theorem [16,18]. However, the derivation here

follows naturally within input-output formalism. In Appendix

A we provide the derivation of the general solution to the Bloch

equations and in Appendix B explicit solutions for all cn are

listed.
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III. DERIVATION OF THE FLUORESCENCE SPECTRUM

OF THE TRANSMITTED AND THE REFLECTED

LIGHT

Up till now, our analysis did not distinguish between right-

and left-going waves. Indeed, the Hamiltonian we wrote was

for a chiral (i.e., one-way) waveguide. For a regular two-way

waveguide where fields propagate in both directions, the

Hamiltonian has separate input and output operators for right

(r) and left (ℓ) propagating waves [24]. The equations of

motion become

dσ−

dt
= i

√

2

τ
σzrin + i

√

2

τ
σzℓin −

(

2

τ
+ i�

)

σ−,

dσ+

dt
= −i

√

2

τ
r†inσz − i

√

2

τ
ℓ†inσz −

(

2

τ
− i�

)

σ+, (6)

dσz

dt
= −i2

√

2

τ
[σ+(rin + ℓin) − (r†in + ℓ†in)σ−]

−
4

τ
[σz + 1].

We can decompose the right and left input or output states as

rin/out(t) =
ain/out(t) + åin/out(t)√

2
,

(7)

ℓin/out(t) =
ain/out(t) − åin/out(t)√

2
,

and as a result arrive at the Hamiltonian H = H0 + H1, where

H0 =
∫

dω ω (a†
ωaω + å†ωåω),

H1 =
1

2
�σz +

√
2V

√
vg

∫

dω (σ+aω + a†
ωσ−).

The fields a and å are even and odd combinations, respectively,

of the right and left propagating fields. The interacting part of

the Hamiltonian H1 depends on a only and the å dependence

is solely in the noninteracting part H0. Except for an additional

term in H0,2 the two-way Hamiltonian is very similar to the

chiral Hamiltonian in Eq. (1). Hence we will be able to make

use of the results of the previous section in the analysis of

two-way waveguides. To do so, we decompose a right-going

coherent state with frequency k into two separate (even and

odd) channels [26]

exp[αr†in(k) − α∗rin(k)]|0〉

= exp

[

α
a
†
in(k) + å

†
in(k)

√
2

− α∗ ain(k) + åin(k)
√

2

]

|0〉

≡
∣

∣

∣

∣

α+
k√
2

;
α+

k√
2

〉

(where the first term in the bra-ket refers to the even channel

and the second term to the odd channel) such that

ain(t)

∣

∣

∣

∣

α+
k√
2

;
α+

k√
2

〉

= åin(t)

∣

∣

∣

∣

α+
k√
2

;
α+

k√
2

〉

= åout(t)

∣

∣

∣

∣

α+
k√
2

;
α+

k√
2

〉

2Note also that the extra factor of
√

2 in front of V in H1 will lead

to a redefinition τ → τ ′ ≡ τ/2.

=
αk√

2
√

2π
e−ikt

∣

∣

∣

∣

α+
k√
2

;
α+

k√
2

〉

=
ωR

2

√

τ ′

2
eiφ−ikt

∣

∣

∣

∣

α+
k√
2

;
α+

k√
2

〉

, (8)

where τ ′ ≡ τ/2 absorbs the
√

2 factor. As one can see, the odd

channel is interaction-free and thus is an eigenstate of åin(t) =
åout(t) whereas the even channel is subject to H1. Nevertheless,

it is the combination of both the even and odd channels that lead

to the right- and left-going fields. The two-channel expectation

value of an operator O is defined as

〈〈O〉〉 ≡
〈

α+
k√
2

;
α+

k√
2

∣

∣

∣

∣

O

∣

∣

∣

∣

α+
k√
2

;
α+

k√
2

〉

.

To calculate the spectral properties of the transmitted fields,

we need to calculate the Fourier transform of 〈〈r†out(t)rout(t +
δt)〉〉 with respect to δt (see Fig. 1). By using (7) we can write

〈〈r†out(t)rout(t + δt)〉〉
= 1

2
〈〈[a†out(t) + å

†
out(t)][aout(t + δt) + åout(t + δt)]〉〉.

The application of Eq. (2) with τ → τ ′ results in

=
1

2

[

ω2
R

τ ′

2
e−ikδt − iωRe−iφ+ikt 〈〈σ−(t + δt〉〉

+ iωReiφ−ik(t+δt)〈〈σ+(t)〉〉 +
2

τ ′ 〈〈σ+(t)σ−(t + δt)〉〉
]

.

One can show that the two-channel expectation values of

operators are the same as their single-channel expectation

values [i.e., those in Eq. (5)] except for the substitution τ → τ ′.
The derivation can be made by using (6), taking the relative

expectation values, and using (8) to simplify the results.

Therefore, we can use the steady-state values from Appendix B

to arrive at

〈〈r†out(t)rout(t + δt)〉〉 =
1

τ ′
R2

4

(

−1 + D2 + 1
2
R2

1 + D2 + 1
2
R2

)

e−ikδt

+
1

τ ′ 〈〈σ+(t)σ−(t + δt)〉〉,

where

D = (� − k)τ ′, and R = ωRτ ′.

To calculate the Fourier transform of this expression, we need

to know 〈〈σ+(t)σ−(t + δt)〉〉 for δt < 0 as well. By using the

identity 〈〈σ+(t + δt)σ−(t)〉〉 = 〈〈σ+(t)σ−(t + δt)〉〉∗ we can see

that the expectation values for δt < 0 are related to those with

δt > 0 by complex conjugation. The Laplace transform results

in Appendix B thus allow us to calculate the Fourier transform
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KOCABAŞ, REPHAELI, AND FAN PHYSICAL REVIEW A 85, 023817 (2012)

as

G(1)
r (ω) ≡ Fδt [〈〈r†out(t)rout(t + δt)〉〉]

=
1

τ ′
1

√
2π

1
2
R2

1 + D2 + 1
2
R2

[

πδ(ω − k)

(

D2 +
1

2
R2

D2 + 1
2
R2

1 + D2 + 1
2
R2

)

+
R2

τ ′5
(ω − k)2τ ′2 + 4 + 1

2
R2

|P [−i(ω − k)]|2

]

,

where the function P is as defined in Eq. (B4). We will use the

noninteracting case, that is,

G(1)
r0

≡ Fδt [〈〈r†in(t)rin(t + δt)〉〉] =
√

2πR2

4τ ′ δ(ω − k)

for normalization. As a result, the coherent part of the

correlation function, one which is proportional to δ(ω − k),

will be given by

g(1)
rcoh

=
1

1 + D2 + 1
2
R2

(

D2 +
1

2
R2

D2 + 1
2
R2

1 + D2 + 1
2
R2

)

. (9)

For reflected fields we need to do a similar analysis for

〈〈ℓ†out(t)ℓout(t + δt)〉〉. By using (7) and (2) we can see that

〈〈ℓ†out(t)ℓout(t + δt)〉〉 =
1

τ ′ 〈〈σ+(t)σ−(t + δt)〉〉.

The Fourier transform of this term is given by

G
(1)
ℓ (ω) ≡ Fδt [〈〈ℓ†out(t)ℓout(t + δt)〉〉]

=
1

τ ′
1

√
2π

1
2
R2

1 + D2 + 1
2
R2

×
[

1 + D2

1 + D2 + 1
2
R2

πδ(ω − k)

+
R2

τ ′5
(ω − k)2τ ′2 + 4 + 1

2
R2

|P [−i(ω − k)]|2

]

.

We again normalize with respect to the noninteracting case,

and obtain

g
(1)
ℓcoh

=
1 + D2

(

1 + D2 + 1
2
R2

)2
(10)

for the coherently backscattered fields. The incoherent parts

of the reflected and transmitted fields are equal to each other

and are given by

g
(1)
incoh =

1

π

1

1 + D2 + 1
2
R2

R2

τ ′5
(ω − k)2τ ′2 + 4 + 1

2
R2

|P [−i(ω − k)]|2
.

In Fig. 2 spectral features of the transmitted and reflected fields

are plotted. Note that the results (9) and (10) agree with those

in Refs. [6,11].

IV. DERIVATION OF THE SECOND-ORDER

CORRELATION FUNCTION OF THE TRANSMITTED

AND REFLECTED LIGHT

Now that we have calculated various first-order correlations

and investigated spectral properties of scattered fields, we

can start to look into the time-dependent statistics of the

transmitted and reflected fields. To do so, we will begin by

investigating the second-order correlation function in a chiral

waveguide g(2)
c given by

g(2)
c (δt) = lim

t→∞

〈a†out(t)a
†
out(t + δt)aout(t + δt)aout(t)〉

〈a†out(t)aout(t)〉〈a†out(t + δt)aout(t + δt)〉
.

By using (2) and the results from Appendix B it can be shown

that

〈a†out(t)aout(t)〉 =
1

τ

R2

8
.

Similarly, after some algebra we arrive at the following formula

for the Laplace transform of g(2)
c

Lδt [g
(2)
c (δt)] =

1

s
+

8

1 + D2 + 1
2
R2

s
(

s + 1
τ

)

P (s)
.

Using the expression above, we can show that

lim
R→0

g(2)
c (δt) =

ψ
(2)
k,p(t,t + δt)

1√
2

[

ψ
(1)
k (t)ψ

(1)
p (t + δt) + ψ

(1)
p (t)ψ

(1)
k (t + δt)

]

=
∣

∣

∣

∣

1 +
4

(D + i)2
e−i

|δt |
τ

(D−i)

∣

∣

∣

∣

2

,
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FIG. 2. (Color online) Coherent part of the transmitted (solid) and

reflected (dashed) fluorescence spectrum for R = ωRτ ′ = {0.1,2,5}
corresponding to the blue, red, and green curves respectively. The

reflected fluorescence for R = 5 (dashed green curve) is plotted after

being multiplied by 5. Inset shows the incoherent part (ω �= k case as

depicted in Fig. 1) of the spectrum with the Mollow triplet for zero

detuning (D = 0).
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FIG. 3. (Color online) Plots of g(2) for D = 2 and R = {0.2,4} for the red and black curves, respectively. The dashed blue curve is the

normalized two-photon wave function. (a) One-mode case; (b) two-mode, transmitted case; (c) two-mode, reflected case. As can be seen, the

two-photon calculations are indistinguishable from resonance fluorescence ones for R = 0.2 but not for R = 4.

where ψ (1) [ψ (2)] is the one-photon [two-photon] wave

function.3 As a result, we have shown that the second-order

statistics of a low-intensity coherent-state input and a two-

photon input to a qubit are the same.

For the two-mode case, we will need to calculate the

correlation functions for the right-going (r) and the left-going

(ℓ) fields as

g(2)
r (δt) = lim

t→∞

〈〈r†out(t)r
†
out(t + δt)rout(t + δt)rout(t)〉〉

〈〈r†out(t)rout(t)〉〉〈〈r†out(t + δt)rout(t + δt)〉〉
,

g
(2)
ℓ (δt) = lim

t→∞

〈〈ℓ†out(t)ℓ
†
out(t + δt)ℓout(t + δt)ℓout(t)〉〉

〈〈ℓ†out(t)ℓout(t)〉〉〈〈ℓ†out(t + δt)ℓout(t + δt)〉〉
.

The normalization terms are given by

〈〈r†out(t)rout(t)〉〉 =
1

τ ′
R2

4

D2 + 1
2
R2

1 + D2 + 1
2
R2

,

〈〈ℓ†out(t)ℓout(t)〉〉 =
1

τ ′

1
4
R2

1 + D2 + 1
2
R2

.

After some algebra done by the help of an automatic noncom-

mutative algebra system [27] we get

Lδt

[

g(2)
r (δt)

]

=
1

s
+

1

A2P (s)

×
[(

s +
1

τ ′

)(

(1 + 2A)s +
1 + 4A

τ ′

)

+
D2

τ ′2

]

,

where A = D2 + 1
2
R2, and

Lδt

[

g
(2)
ℓ (δt)

]

=
2

τ ′2

(

1 + D2 +
1

2
R2

)

s + 1
τ ′

sP (s)
.

In the limit R → 0 the second-order correlation results

for coherent-state and two-photon inputs in a two-mode

waveguide can be shown to equal each other, just like in

the chiral case (see Fig. 3). As was previously predicted,

the interference of incoming and scattered fields leads to

3See equations (43) and (120) in Ref. [22] for the one- and two-

photon wave functions, respectively. Note that the photons are at the

same frequency (i.e., k = p).

bunching and antibunching in the forward and backward

directions, respectively. When R is increased, the response

of the qubit gets saturated and there is less bunching in the

forward direction but the reflected fields continue to show

strong antibunching. In Refs. [28,29] g(2) was calculated

for a low-intensity coherent-state interacting with a qubit

in a waveguide where the qubit was coupled at a rate Ŵ′

to nonwaveguide modes as well. Our results supplement

these previous investigations by analytically describing the

scattering of an arbitrary intensity4 coherent state off of a

qubit for the Ŵ′ = 0 case.

V. CONCLUSION

In this article we used input-output formalism for waveg-

uides to analyze how an arbitrary intensity coherent state

scatters off of a qubit embedded in a waveguide. We provided

analytical results for the spectra as well as the second-order

correlation functions of the transmitted and reflected fields.

This work supplements the previous work on two-photon

calculations and shows that the two formulations agree for

low-intensity coherent-state inputs. We predicted that the

transmitted fields are bunched and the reflected fields are

antibunched for coherent-state inputs, similar to the case

for two-photon scattering. Very recent experiments in circuit

QED agree with these observations [30]. Functional devices

(e.g., transistors [28], switches [10], or routers [11]) that

make use of multilevel systems require both control signals

that are in a coherent-state basis and single- or multi-photon

Fock states that carry the information. We demonstrated the

versatility of input-output formalism with which one can do

analysis either based on Fock states to calculate the full

scattering matrix, or based on coherent states with an emphasis

on correlation measurements. Additionally, it is possible to

investigate nonlinear effects such as the ac Stark [31] and

Lamb [32] shifts using the methods developed to characterize

qubit-coherent-state interactions. Lastly, our approach paves

the way to calculations involving higher-order correlation

functions that become relevant when the qubit is strongly

excited; in a recent cavity QED experiment asymmetry in time

for g(3) was demonstrated [33].

4We still operate within the bounds of the dipole and the rotating-

wave approximations used in the derivation of the Hamiltonian.
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APPENDIX A: GENERAL SOLUTION TO THE BLOCH EQUATIONS

In this Appendix we will provide the general solution to the differential equation

d

dt ′

⎛

⎜

⎝

x1(t,t ′)

x2(t,t ′)

x3(t,t ′)

⎞

⎟

⎠
= B(t ′)

⎛

⎜

⎝

x1(t,t ′)

x2(t,t ′)

x3(t,t ′)

⎞

⎟

⎠
+

⎛

⎜

⎝

0

0

b(t)

⎞

⎟

⎠
, where B(t ′) =

⎛

⎜

⎝

−(1/τ + i�) 0 1
2
iωRe−ikt ′eiφ

0 −(1/τ − i�) − 1
2
iωReikt ′e−iφ

iωReikt ′e−iφ −iωRe−ikt ′eiφ −2/τ

⎞

⎟

⎠
,

with the initial conditions given at t ′ = t by x1(t,t), x2(t,t), and x3(t,t). Here b(t) is the inhomogeneous term, independent of t ′.
The solution method we use is the same as the one in Refs. [2,15]. We begin by writing down the equations separately as

dx1

dt ′
+

(

1

τ
+ i�

)

x1 =
1

2
iωRe−ikt ′eiφx3,

dx2

dt ′
+

(

1

τ
− i�

)

x2 = −
1

2
iωReikt ′e−iφx3,

dx3

dt ′
+

2

τ
x3 = iωR(eikt ′e−iφx1 − e−ikt ′eiφx2).

Integrating x1(t,t ′) from t ′ = t to t + δt and making a change of variables results in

x1(t,t + δt) = x1(t,t)e−(1/τ+i�)δt + i
ωR

2
eiφe−(1/τ+i�)(t+δt)

∫ δt

0

dme[1/τ+i(�−k)](t+m)x3(t,t + m). (A1)

Likewise, for x2 and x3 we get

x2(t,t + δt) = x2(t,t)e−(1/τ−i�)δt − i
ωR

2
e−iφe−(1/τ−i�)(t+δt)

∫ δt

0

dme[1/τ−i(�−k)](t+m)x3(t,t + m), (A2)

x3(t,t + δt) = x3(t,t)e− 2
τ
δt +

τ

2
b(t)

(

1 − e− 2
τ
δt
)

+ iωRe−iφ

∫ δt

0

dme
2
τ
meik(t+m)e− 2

τ
δtx1(t,t + m)

− iωReiφ

∫ δt

0

dme
2
τ
me−ik(t+m)e− 2

τ
δtx2(t,t + m). (A3)

Substituting (A1) and (A2) in Eq. (A3) results in

x3(t,t + δt) = x3(t,t)e− 2
τ
δt +

τ

2
b(t)

(

1 − e− 2
τ
δt
)

+ iωRe−iφx1(t,t)eikt e
−[ 1

τ
+i(�−k)]δt − e− 2

τ
δt

1
τ

− i(� − k)

−iωReiφx2(t,t)e−ikt e
−[ 1

τ
−i(�−k)]δt − e− 2

τ
δt

1
τ

+ i(� − k)
−

ω2
R

2

∫ δt

0

dm′x3(t,t + m′)
e−[ 1

τ
+i(�−k)](δt−m′) − e− 2

τ
(δt−m′)

1
τ

− i(� − k)

−
ω2

R

2

∫ δt

0

dm′x3(t,t + m′)
e−[ 1

τ
−i(�−k)](δt−m′) − e− 2

τ
(δt−m′)

1
τ

+ i(� − k)
.

Once we take the Laplace transform of these equations with respect to the δt variable, the convolution integrals simplify and we

are left with

X3(s) =
(

s + 2
τ

)[(

s + 1
τ

)2 + (� − k)2
]

(

s + 2
τ

)[(

s + 1
τ

)2 + (� − k)2
]

+ ω2
R

(

s + 1
τ

)

{

x3(t,t)
1

s + 2
τ

+
τ

2
b(t)

(

1

s
−

1

s + 2
τ

)

+ iωRe−iφx1(t,t)eikt 1
(

s + 2
τ

)[

s + 1
τ

+ i(� − k)
] − iωReiφx2(t,t)e−ikt 1

(

s + 2
τ

)[

s + 1
τ

− i(� − k)
]

}

.

Using (A1) and (A2) we get

X1(s) = x1(t,t)
1

s + 1
τ

+ i�
+ i

ωR

2
eiφe−iktX3(s + ik)

1

s + 1
τ

+ i�
,

X2(s) = x2(t,t)
1

s + 1
τ

− i�
− i

ωR

2
e−iφeiktX3(s − ik)

1

s + 1
τ

− i�
.

These results are the general solution to the Bloch equations expressed in the Laplace domain.
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APPENDIX B: CORRELATION FUNCTION CALCULATIONS

1. Single time correlations

The calculation of 〈σ−(t)〉, 〈σ+(t)〉, and 〈σz(t)〉 can be made by using the results from the previous section. The inhomogeneous

term is b(t) = − 2
τ

. We assume that the atom is initially in its ground state such that x1(0) = x2(0) = 0, x3(0) = −1. The Laplace

transforms of the expectation values are

Lt [e
ikt 〈σ−(t)〉] = −i

ωR

2
eiφ

(

s + 2
τ

)[

s + 1
τ

− i(� − k)
]

sP (s)
, (B1)

Lt [e
−ikt 〈σ+(t)〉] = i

ωR

2
e−iφ

(

s + 2
τ

)[

s + 1
τ

+ i(� − k)
]

sP (s)
, (B2)

Lt [〈σz(t)〉] =
−

(

s + 2
τ

)[(

s + 1
τ

)2 + (� − k)2
]

sP (s)
, (B3)

where

P (s) =
(

s +
2

τ

)[(

s +
1

τ

)2

+ (� − k)2

]

+ ω2
R

(

s +
1

τ

)

. (B4)

The t → ∞ limit of these quantities is also of interest. We get

lim
t→∞

〈σ−(t)〉 =
− i

2
R(1 − iD)

1 + D2 + 1
2
R2

e−ikt+iφ, lim
t→∞

〈σ+(t)〉 =
i
2
R(1 + iD)

1 + D2 + 1
2
R2

eikt−iφ, (B5)

lim
t→∞

〈σz(t)〉 + 1

2
= lim

t→∞
〈σ+(t)σ−(t)〉 =

1
4
R2

1 + D2 + 1
2
R2

. (B6)

Here D ≡ (� − k)τ stands for the normalized detuning frequency and R ≡ ωRτ for the normalized Rabi frequency.

2. Double time correlations of two operators

To calculate 〈σ+(t)σ−(t ′)〉, 〈σ+(t)σ+(t ′)〉, and 〈σ+(t)σz(t
′)〉 we use initial values at t ′ = t under steady-state conditions when

t → ∞ such that 〈σ+(t)σ−(t)〉 is given by Eq. (B6), 〈σ+(t)σ+(t)〉 = 0 and 〈σ+(t)σz(t)〉 = −〈σ+(t)〉 is given by Eq. (B5). The

inhomogeneous term is b(t) = − 2
τ
〈σ+(t)〉. After some algebra we get

Lδt [e
ikδt 〈σ+(t)σ−(t + δt)〉] =

1
4
R2

1 + D2 + 1
2
R2

P (s) − 1
2
ω2

R

(

s + 2
τ

)

sP (s)
,

Lδt [e
−ikδt 〈σ+(t)σ+(t + δt)〉] =

− 1
4
R2e−2iφ+2ikt

1 + D2 + 1
2
R2

P (s)− 1
2
ω2

R(s+ 2
τ

)

sP (s)

[

s + 1
τ

+ i(� − k)
]

− 1

s + 1
τ

− i(� − k)
,

Lδt [〈σ+(t)σz(t + δt)〉] =
− i

2
Rτe−iφ+ikt

1 + D2 + 1
2
R2

{

P (s) − 1
2
ω2

R

(

s + 2
τ

)

sP (s)

[

s +
1

τ
+ i(� − k)

]

− 1

}

.

Note that the Laplace transforms are taken with respect to δt .

3. Double time correlations of three operators

We multiply input-output equations (3) evaluated at time t ′ by σ+(t) from the left and σ−(t) from the right and take the

expectation values to arrive at the double time correlations of three operators. The initial values are given by

〈σ+(t)σ−(t)σ−(t)〉 = 〈σ+(t)σ+(t)σ−(t)〉 = 0, 〈σ+(t)σz(t)σ−(t)〉 = −〈σ+(t)σ−(t)〉 = −
〈σz(t) + 1〉

2
,

and the inhomogeneous term is

b(t) = −
2

τ

〈σz(t) + 1〉
2

.
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The expectation value of σz(t) is at its steady-state value given by Eq. (B6). If we compare the initial values and the inhomogeneous

term to the case of single time correlations, we see that they are exactly the same except for the scaling term 〈σz(t) + 1〉/2 which

is given by Eq. (B6). Thus the results are just rescaled versions of the single time correlation ones and are given by

Lδt [e
ikδt 〈σ+(t)σ−(t + δt)σ−(t)〉] = (B1) × (B6), Lδt [e

−ikδt 〈σ+(t)σ+(t + δt)σ−(t)〉] = (B2) × (B6),

Lδt [〈σ+(t)σz(t + δt)σ−(t)〉] = (B3) × (B6),

where the Laplace transforms are taken with respect to δt .

APPENDIX C: SHORT NOTE ON NUMERICS

The differential equations that we analyzed so far can be transformed into time-independent forms by the substitution

σ̃− = eiktσ−, σ̃+ = e−iktσ+, and σ̃z = σz,

where k is the frequency of the incoming photons. For instance, the single time expectation values of σ̃−, σ̃+, and σ̃z can be

written as

d

dt

⎛

⎜

⎝

〈σ̃−〉
〈σ̃+〉
〈σ̃z〉

⎞

⎟

⎠
= M

⎛

⎜

⎝

〈σ̃−〉
〈σ̃+〉
〈σ̃z〉

⎞

⎟

⎠
+

⎛

⎜

⎝

0

0

− 2
τ

⎞

⎟

⎠
,

where the matrix M is given by

M =

⎛

⎜

⎝

−
(

1
τ

+ i�̃
)

0 i ωR

2
eiφ

0 −
(

1
τ

− i�̃
)

−i ωR

2
e−iφ

iωRe−iφ −iωReiφ − 2
τ

⎞

⎟

⎠
,

and �̃ ≡ � − k. Other expectation values have the same form as well. This is a much more convenient formulation for purely

numerical studies with which we verified the analytical results reported in the previous Appendices.
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