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Abstract

In this article, the oblique resonance wave phenomena are investigated by considering nonlinear coupled evolution 
equations with fractional time evolution. In order to investigate such physical phenomena arising in many branches of 
physics, the time fractional coupled (2 + 1)-dimensional nonlinear Schrodinger and long-short wave resonance interaction 
evolution equations are considered. The analytical solutions of considered equations are achieved by implementing the 
proposed auxiliary ordinary di�erential equation method along with the properties of Khali’s fractional derivatives. The 
obtained outcomes may be useful for better understanding the basic properties of internal oblique propagating wave 
dynamics in many branches of science and engineering.

Keywords Resonance traveling waves · Conformable fractional derivative · Auxiliary di�erential equation method · 
Obliqueness

Mathematics Subject Classi�cation 83C15 · 35C07

1 Introduction

Currently, rigorous theoretical and numerical investigates 
are made by considering the fractional model equations 
due to the involvement of non-locality and non-conserv-
ative physical systems [1, 2] in many �elds of physics. The 
logical solutions of such governing equations play a key 
role to divulge the behavior of coherent nonlinear struc-
tures. Besides, internal wave dynamics may be produced 
by balancing the nonlinearity of the phenomenon with 
dispersion or dissipation of the media. In such situations, 
nonlinear coherent structures come into view from an 
initial disturbance and travel as internal solitary waves. 
Already a large number of authors [3–21] have consid-
ered various kinds of numerical or analytical mathematical 
procedures to describe the coherent structures in many 

branches of physics. But, there are so many physical pro-
cesses are still unknown to study the physical scenarios 
that challenged continue to determine the analytical solu-
tions of fractional nonlinear evolution equations (FNLEEs). 
For this reason, scholars [22–30] are growing considera-
tion to study the behavior of physical issues in science and 
engineering by evaluating the solutions of FNLEEs.

In most of the actual physical problems, the propa-
gating waves with speed c sinΩ

1
�
x
+ c cosΩ

2
�
z
 remain 

constant in z-direction, which is analogous to a wave 
propagating with speed c sinΩ

1
�
x
 remained constant in 

z-direction. The physical processes for the later wave is 
obviously independent of Ω

1
 . That is, the set of oblique line 

waves may lies in one–one correspondence with the set 
of two-dimensional waves with any choice of Ω

1
 , Ω

2
 and 

c. It is therefore signi�cant to divulge oblique analytical 
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wave solutions because of the wave may be inclined to 
the propagating direction by depending on the shape 
of the physical issues and speed of the �ow. Conversely, 
references [31–36] have only constructed the analytical 
wave solutions of FNLEEs by overlooking obliqueness via 
the mathematical techniques. Very recently, a few authors 
[22–24] have only focused the in�uence of obliqueness 
on the analytical wave solutions of FNLEEs by consider-
ing the mathematical techniques, especially, the gener-
alized exp(−  φ(ξ))-expansion method and the modi�ed 
Kudryashov method. They have reported that the oblique-
ness extensively modi�ed the nature of wave dynamics.

More to the point, two coupled nonlinear partial dif-
ferential equations (NLPDEs) are derived by means of the 
method of multiple scales in describing the evolution of a 
three-dimensional wave-packet with wave number k on 
water of �nite depth or any varied environments. Such 
equations may be very helpful to investigate the stability 
of the uniform Stokes wave train to little disorder when the 
length scale is large compared with 2�∕k . In this case, the 
disorder may be produced oblique plane waves in which 
the amplitude dissimilarity is much smaller than the phase 
dissimilarity. To illustrate, Benney [37] was �rst proposed 
the Long-Short Resonance Interaction Equation (LSRIE) for 
reporting capillary-gravity waves in deep water. Later on, 
Oikawa et al. [38] and Ohta et al. [39] have reported the 
resonance phenomena between a long interfacial wave 
and a short surface wave in a two-layer �uid by determin-
ing (2 + 1)-dimensional interaction equations. But, the cou-
pled (2 + 1)-dimensional nonlinear Schrodinger equation 
(NLSE) has been occurred in investigating the resonance 
wave phenomena in diverse environments [40–42], where 
the complex valued function indicates the amplitude of 
a surface wave packet and the real valued function indi-
cates the velocity potential of the mean �ow interacting 
with the surface waves [21]. The interacting phenomena 
between these waves are not only existed in �uid dynam-
ics but also existed for studying the resonance structures 
in bio-physics, plasma physics and nonlinear optical sys-
tems. Further, Zakharov [43] has been considered more 
complex systems of waves in the vicinity of nonlinear 
Schrodinger equation to analyze the evolution of a nar-
row-banded packet of two-dimensional surface waves. It 
is therefore to consider two-dimensional FNLEEs for study-
ing the physical issues in science and engineering.

It is noted that Jiong [44] has been provided an e�-
cient method, so called the auxiliary equation method for 
obtaining the preferable analytical solutions of NLEEs. But, 
no research work has been reported the oblique propa-
gating analytical resonance solutions of FNLEEs via the 
proposed novel auxiliary ordinary di�erential equation 
method (AODEM). Hence, this research work is reported 
the obliquely propagating resonance wave solutions of 

the considered coupled NLSE and LSRIE with fractional 
time evolution by employing the proposed method. In 
addition, the influences of obliqueness and fractional 
parameter on the resonance wave solutions of consid-
ered FNLEEs are discussed for understanding the dynam-
ics of nonlinear resonances arising in many nonlinear 
physical systems. Thus, the paper is planned as follows: In 
Sect. 2, the oblique resonance analytical solutions are con-
structed by using novel AODEM taking the conformable 
time fractional derivative into account. In Sect. 3, some 
of the obtained solutions are displayed graphically along 
with physical descriptions. Finally, the conclusions are pre-
sented in Sect. 4.

2  Oblique resonances of FNLEEs via AODEM

Before going to implement AODEM, it is necessary to know 
the reader about the conformable fractional derivatives 
(CFDs). CFDs are very useful to convert the FNLEEs into 
ODEs for understanding the physical issues in real world 
problems, where the non-locality as well as non-conserva-
tive physical systems play an essential role. To do so, Khal-
il’s et al. [45] have recently introduced the useful de�nition 
of CFD of order �(0 < � ≤ 1) as

Based on the above derivative, the properties that rep-
resented as (1) D�

�
(af (�) + bg(�)) = aD�

�
f (�) + bD�

�
g(�) , 

for all a, b ∈ ℜ , (2) D�
�
(�� ) = ���−� , for all � ∈ ℜ , (3) 

D�

�
(f (�)g(�)) = f (�)D�

�
g(�) + g(�)D�

�
f (�) and (4) D�

�
(f (�)∕

g(�)) =
(

g(�)D�

�
f (�) − f (�)D�

�
g(�)

)

∕g2(�) are obtained. 
Now, the essence of new AODEM can be presented in the 
following [44]:

Step 1 The following variable transformations and the 
above properties of CFDs are used to convert the cou-
pled FNLEEs into nonlinear ODEs of integer order:

where l is the speed of the reference frame, respectively.
Step 2 Suppose that the solution of nonlinear ODEs can 
be expressed by a polynomial in Φ(ξ) as follows:

where n
i(i = 1, 2, 3,…N) are real constants with 

n
N
≠ 0 to be determined, N is a positive integer to be 

D
�

�
(f )(�) = lim

T→0

f
(

� + T�1−�
)

− f (�)

T
, for all � > 0.

(1)

� = (x cos (Ω) + y sin (Ω)) ± l
t�

�
, cos2 Ω + sin

2
Ω = 1,

(2)U(�) =

N
∑

i=0

n
i
Φi(�),
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determined. The function Φ(ξ) is the exact solution of 
the following AODE:

where a, b and c are real parameters to be strong-
minded. Equation (3) divulges the following solutions:

If a > 0 subsequently,

If a > 0 afterwards,

If a > 0,Δ > 0 after that,

If a < 0,Δ > 0 then,

If a > 0,Δ < 0 then,

If a < 0,Δ > 0 then,

If a > 0, c > 0 then,

(3)
dΦ

d�
=
√

aΦ2(�) + bΦ4(�) + cΦ6(�),

(4)Φ1(�) =

⎛⎜⎜⎜⎝

−absech2
�√

a�

�

b2 − ac

�
1 + � tanh

�√
a�

��2

⎞⎟⎟⎟⎠

1∕2

,

(5)Φ2(�) =

⎛⎜⎜⎜⎝

abcsch
2
�√

a�

�

b2 − ac

�
1 + � coth

�√
a�

��2

⎞⎟⎟⎟⎠

1∕2

,

(6)Φ3(ξ) =

⎛⎜⎜⎜⎝

2a

�
√
Δ cosh

�
2
√
a�

�
− b

⎞⎟⎟⎟⎠

1∕2

,

(7)Φ4(ξ) =

⎛⎜⎜⎜⎝

2a

�
√
Δ cos

�
2
√
−a�

�
− b

⎞⎟⎟⎟⎠

1∕2

,

(8)Φ5(ξ) =

⎛⎜⎜⎜⎝

2a

�
√
−Δ sinh

�
2
√
a�

�
− b

⎞⎟⎟⎟⎠

1∕2

,

(9)Φ6(ξ) =

⎛⎜⎜⎜⎝

2a

�
√
Δ sin

�
2
√
−a�

�
− b

⎞⎟⎟⎟⎠

1∕2

,

(10)Φ7(ξ) =

⎛⎜⎜⎜⎝

−asech2
�√

a�

�

b2 − 2�
√
ac tanh

�√
a�

�
⎞⎟⎟⎟⎠

1∕2

,

If a < 0, c > 0 then,

If a > 0, c > 0 then,

If a < 0, c > 0 then,

If a < 0,Δ = 0 then,

If a > 0,Δ = 0 then,

If a > 0 then,

If a > 0, b = 0 , then,

where Δ = b2 − 4ac and ε = ±1.

Step 3 By substituting (2) into the converted ODE and 
using Eq. (3), collecting all terms with the same order 
of Φ together, the left-hand side of the converted ODE 
is de�ned into another polynomial in Φ . Equating each 
coe�cient of this polynomial to zero, yields a set of 
algebraic equations for n

i
(i = 0, 1, 2, 3,… ,N) , a, b, c, k 

and l  by using Maple.

(11)Φ8(ξ) =

⎛⎜⎜⎜⎝

−a sec2
�√

−a�
�

b2 + 2�
√
−ac tan

�√
−a�

�
⎞⎟⎟⎟⎠

1∕2

,

(12)Φ9(ξ) =
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acsch
2
�√
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�
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√
ac tanh
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�
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1

2

,

(13)Φ10(ξ) =

⎛⎜⎜⎜⎝

−a csc
�√

−a�
�
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√
−ac tanh

�√
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�
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1∕2

,

(14)Φ11(ξ) =

�

−
a

b

�

1 + � tanh

�
√

a

2
�

���1∕2

,

(15)Φ12(ξ) =

�

−
a

b

�

1 + � coth

�
√

a

2
�

���1∕2

,

(16)Φ13(ξ) = 4

�

ae2�
√

a�

(e2�
√

a� − 4b)2 − 64ac

�1∕2

,

(17)Φ14(ξ) = 4

�

±ae2�
√

a�

(1 − 64ace4�
√

a�

�1∕2

,
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Step 4 Suppose the value of the considered constants 
can be achieved by solving the algebraic equations that 
obtained in Step 4. Substituting the values of the con-
stants together with the solutions of Eq. (3), one can 
archive a hung amount of preferable exact traveling 
wave solutions of the FNLEEs.

2.1  Oblique resonance wave solutions of coupled 
NLSE with fractional time evolution

The coupled (2 + 1)-dimensional nonlinear Schrodinger 
equation (NLSE) having fractional time evolution is con-
sidered as

Here �1(x, y, t) is complex valued function that deter-
mined the amplitude of a surface wave packet, where as 

�2 = �2(x, y, t) is real valued function that determined the 
velocity potential of the mean �ow interacting with the 
surface waves arises in many physical systems [41–43]. 
Equation (18) is also considered in a number of di�erent 
physical contexts for investigating slow modulation e�ects 
of the complex amplitude �

1
 with weak nonlinearity or a 

monochromatic wave in a dispersive medium.
Let us initiate with the following variable transform:

(18)
i
���1

�t�
−

�2�1

�x2
+

�2�1

�y2
+ ���1

��
2
�
1
− 2�

1
�
2
= 0

�2�2

�x2
−

�2�2

�y2
−

�2

�x2
(���1

��
2
) = 0

⎫
⎪
⎬
⎪
⎭

.

(19)�1(x, y, t) = e
i
[

k(x cos (Ω)+y sin (Ω))±�
t�

�

]

U(�)

�2(x, y, t) = V (�)

}

,

where k is the wave number. It is mentioned that the trave-
ling waves are not necessarily need to de�ne in the same 
direction. With the help of Eqs. (1) and (19) along with the 
properties D�

�
(�� ) = ���−� of conformable fractional deriv-

ative, Eq. (18) is converted to

(20)
− cos (2Ω)U��(�) +

(

k2 cos (2Ω) − �
)

U(�) − 2U(�)V (�) + U3(�) = 0

cos (2Ω)V ��(�) − cos2 Ω
(

U2(�)
)��

= 0

}

,

with l = 2k cos(2Ω) . Simplifying second equation of 
Eq. (20), one can archive as follows:

Inserting Eq. (21) into �rst equation of Eq. (20) gives

Applying the homogeneous balance principle to Eq. (22) 
provides N = 1 . Hence, Eq. (2) can be changed to

with n
0
 and n

1
 being constant terms to be strong-minded. 

Substituting Eq. (23) along with Eq. (3) into Eq. (22) and 
collecting all terms with the same order of Φ(ξ) together, 
the left-hand sides of Eq. (22) are transformed into a poly-
nomial in Φ(ξ) . Setting each coe�cient of each polyno-
mial to zero, one can derive a set of algebraic equations 
for n0, n1, a, b, c, k,�, � and Ω as follows:

(21)V (�) =
cos2 Ω

cos (2Ω)
U
2(�).

(22)

cos (2Ω)U��(�) +
[

� − k
2
cos (2Ω)

]

U(�) +

(

1

cos (2Ω)

)

U
3(�) = 0.

(23)U(ξ) = n0 + n1Φ(�),

(Φ(ξ))0 = �n0 − 2k2 cos2 (Ω)n0 + k
2
n0 +

n3
0

2 cos2 (Ω) − 1
= 0,

(Φ(ξ))1 = 2n1 cos
2 Ωa − n1a + �n1 − 2k2 cos2 Ωn1 + k

2
n1 +

3n2
0
n1

2 cos2 (Ω) − 1
= 0,

(Φ(ξ))2 =
3n2

1
n0

2 cos2 (Ω) − 1
= 0,

(Φ(ξ))3 =
n3
1
+ 2n1(cos (2Ω))

2
b

cos (2Ω)
= 0,

(Φ(ξ))5 = 3n1c cos (2Ω) = 0.
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Solving the above set of algebraic equations, one obtains

According to Eqs. (19), (23) and Eqs. (4)–(17), the follow-
ing exact traveling oblique wave solutions for conformable 
fractional system (18) are obtained:

If a > 0 then,

n0 = 0, n1 = n1, a = a, b = −
n2
1

2 cos2 (2Ω)
,

c = 0,� = k
2 cos (2Ω) − cos (2Ω)a.

(24)

�1
1
(x, y, t) =

√

2a cos (2Ω)sech

�

√

a

�

(x cosΩ + y sinΩ) ± 2k cos (2Ω)
t�

�

��
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�

i

�

k(x cosΩ + y sinΩ) ±
�
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� t�

�

��

,

(25)�1

2
(x, y, t) = 2a cos2 Ω cos (2Ω)sech

2

�

√

a

�
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t�

�

��

,
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�

��

,

(27)�2

2
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2

�

√

a

�
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�
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(28)

�3
1
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�

�

�

�

a

cosh
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√
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�
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t�

�

��

+ 1

× exp

�

i

�

k(x cosΩ + y sinΩ) ±
�

k2 cos (2Ω) − a cos (2Ω)
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�

��

,

(29)

�3
1
(x , y, t) =

4a cos (2Ω) cos2 Ω

cosh

�

√

a
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(x cosΩ + y sinΩ) ± 2k cos (2Ω)
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i sinh
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�
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If a < 0 then

It is noted that the above resonanctraveling wave solu-
tions are obtained by taking � = 1 from the solutions of 
Eq. (3). One can easily �nd any other solutions for using 
ε = −1 in Eqs. (4)–(17).

2.2  Oblique resonance wave solutions of coupled 
LSRIE with fractional time evolution

In this subsection, the following coupled (2 + 1)-dimen-
sional LSRIE are taken for studying oblique resonance 
wave phenomena due to appearance of fractional time 
evolutions in the physical systems:

(32)

�5
1
(x, y, t) = 4n1

�

�

�

�

�

�

�

a exp
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2
√

a
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�
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2
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a
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�
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1
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�
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�

��

,
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2
=
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�
2
√
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√
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,
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where �
2
 and �

1
 is defined as the long interfacial 

wave and the short surface wave packets, respec-
tively. Using Eqs. (1) and (19) along with the properties 
D�
�
(�� ) = ���−� of conformable fractional derivative into 

Eq. (38) yields
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}

,
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with l = 2k cos2 Ω − sinΩ . Integrating second equa-
tion of (39) by choosing the localized boundary condi-
tions U, V → 0 , U′, V ′

→ 0 , U′′, V ′′
→ 0 ,… as � → ±∞ into 

account, with respect to � yields

Employing Eq. (40) into �rst equation of Eq. (39) gives

Hence, Eq. (2) can be renewed according to the homog-
enous balancing principle to

Now, substituting Eq. (42) along with Eq. (3) into Eq. (41) 
yields the following nonlinear algebraic equations taking 
di�erent power of Φ(�):

(40)V (�) =
2 cosΩ

l
U
2(�),

(41)

cos2 ΩU��(�) +
[

� − k
2 cos2 Ω + k sinΩ

]

U(�) −
2 cosΩ

l
U
3(�) = 0,

(42)U(�) = n
0
+ n

1
Φ(�).

Solving this set of algebraic equations using Maple, one 
found solutions as

According to Eqs. (19), (40), (42) and the general solutions 
of (3) (Eqs. 4–17), one can achieve the following exact 
traveling oblique wave solutions for conformable frac-
tional system (38):

If a > 0 then,

(Φ(ξ))0 ∶ −n0k
2 cos2 Ω + n0k sinΩ + n0� −

2n3
0
cosΩ

l
= 0,

(Φ(ξ))1 ∶ n1a cos
2 Ω − n1k

2 cos2 Ω

+ n1k sinΩ + n1� −
6 cosΩn2

0
n1

l
= 0,

(Φ(ξ))2 ∶ −
6 cosΩn2

1
n0

l
= 0, (Φ(ξ))3 ∶ 2bn1 cos

2 Ω

−
2 cosΩn3

1

l
= 0,

(Φ(ξ))5 ∶ 3cn1 cos
2 Ω = 0.

n0 = 0, n1 = n1, a = a, b =

n2
1

l cosΩ
,

c = 0,� = k
2 cos2 Ω − a cos2 Ω − k sinΩ.

(43)

�1
1
(x, y, t) =

√

−al cosΩsech

�

√

a

�

(x cosΩ + y sinΩ) ±
�

2k cos2 Ω − sinΩ
� t�

�

��

× exp

�

i

�

k(x cosΩ + y sinΩ) ±
�

k2 cos2 Ω − a cos2 Ω − k sinΩ
� t�

�

��

,

(44)�1

2
(x, y, t) = −2a cos2 Ω sec2 h

�

√

a

�

(x cosΩ + y sinΩ) ±
�

2k cos2 Ω − sinΩ
� t�

�

��

,

(45)

�2
1
(x, y, t) =

√

al cosΩcsch

�

√

a

�

(x cosΩ + y sinΩ) ±
�

2k cos2 Ω − sinΩ
� t�

�

��

× exp

�

i

�

k(x cosΩ + y sinΩ) ±
�

k2 cos2 Ω − a cos2 Ω − k sinΩ
� t�

�

��

,

(46)�2

2
(x, y, t) = 2a cos2 Ω csc2 h

�

√

a

�

(x cosΩ + y sinΩ) ±
�

2k cos2 Ω − sinΩ
� t�

�

��

,

(47)

�3
1
(x, y, t) =

√

2l cosΩ

�

�

�

�

a

cosh
�

2
√

a
�

(x cosΩ + y sinΩ) ±
�

2k cos2 Ω − sinΩ
� t�

�

��

− 1

× exp

�

i

�

k(x cosΩ + y sinΩ) ±
�

k2 cos2 Ω − a cos2 Ω − k sinΩ
� t�

�

��

,
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If a < 0 then,

(48)�3

2
(x, y, t) =

⎛
⎜⎜⎜⎝

4a cos2 Ω

cosh

�
2
√
a
�
(x cosΩ + y sinΩ) ±

�
2k cos2 Ω − sinΩ

� t�

�

��
− 1

⎞
⎟⎟⎟⎠
,

(49)

�4
1
(x, y, t) =

√

2l cosΩ

�

�

�

�

a

i sinh
�

2
√

a
�

(x cosΩ + y sinΩ) ±
�

2k cos2 Ω − sinΩ
� t�

�

��

− 1

× exp

�

i

�

k(x cosΩ + y sinΩ) ±
�

k2 cos2 Ω − a cos2 Ω − k sinΩ
� t�

�

��

,

(50)�4

2
(x, y, t) =

⎛⎜⎜⎜⎝
4al cos2 Ω

i sinh
�
2
√
a
�
(x cosΩ + y sinΩ) ±

�
2k cos2 Ω − sinΩ

� t�

�

��
− 1

⎞⎟⎟⎟⎠
,

(51)

�5
1
(x, y, t) = 4n1

�

�

�

�

�

�

�

a exp
�

2
√

a
�

(x cosΩ + y sinΩ) ±
�

2k cos2 Ω − sinΩ
� t�

�

��

�

exp
�

2
√

a
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(x cosΩ + y sinΩ) ±
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�
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�

i

�
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�
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�

��

,

(52)�5
2
=

32 cosΩn2
1
a exp

�

2
√

a
�

(x cosΩ + y sinΩ) ±
�

2k cos2 Ω − sinΩ
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�

��

l
�

exp
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2
√

a
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(x cosΩ + y sinΩ) ±
�

2k cos2 Ω − sinΩ
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�
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l cosΩ

�2
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(53)

�6
1
(x, y, t) =

√

2l cosΩ
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�

�

�

a

cos
�

2
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(55)
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(x, y, t) =
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2l cosΩ

�
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⎞⎟⎟⎟⎠
.

Further, the resonance wave becomes pulse like hump-
shape structures with the increase of time. The influ-
ences of obliqueness on the wave propagation keep-
ing y-axis constant by considering another hump shape 
soliton solutions as mentioned in Eqs. (32) and (33) and 
periodic wave solutions as mentioned in Eqs. (34) and 
(35) of the coupled NLSE and their interaction are dis-
played in Fig. 2 with the remaining parameter constants. 
It is observed as of Fig. 2a, b that the wave function ||�1

|
| 

( �
2
 ) are changing with the changes of obliqueness in 

which the amplitudes are increasing (decreasing) with 
the increase obliqueness within the range Ω < 90

◦

 . In 
addition, Fig. 2c, d shows that the periodic wave solution 
are also changing with the changes of obliqueness. How-
ever, the solutions as mentioned in Eqs. (43) and (44) 
of LSRIE is produced hump-shape scattered structures, 
like Fig.  1, which is ignored for simplicity. The effect 
of obliqueness and fractional time evolution on the 
obtained analytical solutions as presented in Eqs. (47) 
and (48) of LSRIE are also displayed in Fig. 3 keeping 
the y-axis and the remaining parameters constant. It is 
found that from Fig. 3 that the pump-shape structures 
are obtained due to the above obtained solutions of 
LSRIEs in which it behaves pluse-like pump shaped with 
the changes of time and obliqueness. The influences of 
obliqueness on other interacting soliton and periodic 
wave solutions of NLSE and LSRIE are overlooked for 
convenience.

The analytical solutions of NLEEs are obtained based 
on the propagating wave in the xy-plane by consider-
ing the most convenient way is the direction cosines of 
the uniform plane, where the equiphase surfaces are 
planes perpendicular to the direction of spread. So, the 
analytical solutions that presented in this article of con-
sidered equations are obtained in new forms involving 
of di�erent forms. It is therefore no needed to compare 
any solutions of the considered coupled FNLEEs that 
obtained by other existing methods due to the inclusions 

Here, the above resonance traveling wave solutions are 
obtained by choosing � = 1 from the solutions of Eq. (3). 
One can easily find any other solutions for assuming 
� = −1 in Eqs. (4)–(17).

3  Result and discussion

It is well recognized that the oblique spatial solitons in a 
Bose–Einstein condensate (BEC) are produced as a natural 
physical basis via the Cherenkov production of dispersive 
sound waves by a small wall in the supersonic �ow of a BEC 
is assumed into account. On the other hand, the approach-
ing waves have ridge lines virtually parallel to the shore at 
the seashore. This may be occurred to some extent puz-
zling individual that ocean waves may propagate in any 
direction and thus approach the shore from any angle. 
Due to emergence of obliqueness and its potentiality in 
many �elds of physics, the resonance wave analytical solu-
tions for the coupled FNLEEs have demonstrated via the 
novel AODEM. Additionally, some of nonlinear resonance 
wave phenomena in the vicinity of coupled FNLEEs are 
displayed graphically along with the relevant physical 
discussions.

Figure 1 displays the nonlinear resonance wave phe-
nomena by assuming the obtaining solutions Eq. (24) 
and Eq. (25) of the coupled NLSE having fractional time 
evolution for different values of obliqueness ( Ω ), frac-
tional parameter ( � ) and time (t) with the constant val-
ues of remaining parameter. It is observed as of Fig. 1a 
that the resonance wave phenomena are propagat-
ing in the same direction in which the amplitudes are 
decreasing with the increase of Ω ( Ω ≥ 50

◦

 ). While, the 
resonance wave phenomena are propagating in the 
opposite direction with the increase of Ω ( Ω ≥ 50

◦

 ). Also, 
the amplitudes of ||�1

|
| are decreasing with the increase 

of Ω ( Ω ≥ 50
◦

 ), but the amplitude of �
2
 are increasing 

and then decreasing with the increase of Ω ( Ω ≥ 50
◦

 ). 
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of obliqueness. Besides, the advantage of considered 
method over other existing methods is very powerful and 
easy to use with the computation software and provided 
a hung amount of preferable solutions. It is also noted 
here that the obtained analytic solutions of considered 
equations are cheeked by inserting back into the consid-
ered equations and found correct. Hence, the nonlinear 
resonance waves phenomena are predicted in this article 
may be very useful for not only in understanding inter-
nal resonance wave generation in ocean engineering but 
also resonance wave dynamics in many branches of sci-
ence and engineering.

4  Conclusions

Two coupled NLEEs with fractional time evolution have 
been considered for reporting oblique nonlinear wave 
phenomena for better understanding resonance physical 
issues in any varied physical situations, where the physical 
processes become non-local as well as non-conservative. 
The novel AODEM has been applied to acquire analytical 
solutions of the considered equations for describing such 
physical phenomenon. It has been found that the oblique-
ness and fractionality have remarkably modi�ed the envi-
ronment of oblique propagating resonance wave dynam-
ics. It has also been investigated that the scattered solitons 

Fig. 1  Nonlinear resonance wave phenomena taking the analytical solutions ||�1
|
| [Eq. (24)] and �

2
 [Eq. (25)] for di�erent values of a Ω with 

� = 0.5 , b � and time with Ω = 45
◦

 . The remaining parameter are chosen as a = 1.2 , k = 0.5 and t = 1
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are propagating smoothly in vicinity of coupled NLSE, but 
become narrower in vicinity of coupled LSRIE. Hence, the 
obtained results would be helpful in understanding the 
nature of internal oblique propagating resonance wave 
dynamics not only in ocean engineering, Bose–Einstein 

condensate, plasma physics, but also in any varied nonlin-
ear physical systems. It may be concluded that this article 
is an example for constructing resonance wave phenom-
ena by considering obliqueness. One may also consider 
other FNLEEs for obtaining oblique resonance waves in 

Fig. 2  E�ect of obliqueness on traveling wave solutions a ||�1
|
| 

[Eq.  (32)], b �
2
 [Eq.  (33)], c ||�1

|
| [Eq.  (34)], d �

2
 [Eq.  (35)], e interac-

tion between soliton solution ||�1
|
| [Eq.  (32)] and �

2
 [Eq.  (33)] and 

f interaction between periodic wave solution ||�1
|
| [Eq.  (34)] and d 

�
2
 [Eq.  (35)] with respect to x and Ω , respectively. The remaining 

parameter are chosen as � = 0.5 , a = 1.2 , d = 0.5 , k = 0.5 and t = 1
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Fig. 3  E�ect of a obliqueness with t = 1 , and b fractional time evolution with Ω = 45
◦

 on analytical solutions ||�1
|
| [Eq. (47)] and �

2
 [Eq. (48)]. 

The remaining parameter are considered as � = 0.5 , a = 3.5 , y = 0 and k = 1

any physical situations via the AODEM, but beyond the 
scope of this article.
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