J,, fJ 1‘

J

CALIFORNIA INSTITUTE OF TECHNOLOGY

ENGINEERING
CIT - ELECTRON TUBE & MICROWAVE LIBRARY
— LABORATORY REPORT ot

RESONANCE OSCILLATIONS IN A HOT
NON-UNIFORM PLASMA

by
Jerald V. Parker

Technical Report No. 20
Nonr 220(13)

May 1963

A REPORT ON RESEARCH CONDUCTED UNDER

CONTRACT WITH THE OFFICE OF NAVAL RESEARCH



RESONANCE OSCILLATIONS

IN A HOT NON-UNIFORM PLASMA

by

Jerald V. Parker

Technical Report No. 20
CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadens, Californis

A Technical Report to the Office of Naval Research

Contract Nonr 220(13)

May 1963



RESONANCE OSCILLATIONS IN A HOT NON-UNIFORM PLASMA

J . V. Parker
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ABSTRACT

The hydrodynamic equations of a hot non-uniform
plasma are solved numerically in slab geometry to obtain the
resonant frequencies and associated wave functions. The
splitting of the various resonances is shown to depend on the

parameter: (slab thickness + Debye length).



Resonance Oscillations

in a Hot Non-Uniform Plasma

Jerald V. Parker

Until recently the large splittings of the Dattner resonances have
remained unexplained, although a small splitting can be shown to result
from non-zero temperatures .

In a recent letter Weissgle,s2 has shown that results in qgualitative
agreement with observations can be obtained by assuming a non-uniform
electron density. 1In order to facilitate comparison of the theory with
experiment it is necessary to calculate the frequencies of the resonances
for some approximately correct electron density distributions.

The equations used below to describe the behavior of a non-uniform
plasma in the collisionless approximation are the linearized hydrodynamic
equations and Maxwell's equations. Since experiments have generally been
conducted in plasmas for which one free space wavelength is large com-
pared to the dimensions of the pilasma, one can make a gquasi-static
analysis.

The equations are then
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where n f(r) is the steady state electron density and vhere it has been



assumed that

n = n f(r) + nl f(o) =1
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Since these waves will propagate adiabatically we can relate Py and bl

as follows:
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are the plasma frequency and the Debye length at the point r=0.
Despite the complexity of this equation the calculations progress quite
easily if one chooses to work in plane geometry.

If one considers the one-dimensional problem illustrated in Figure 1,

the following simplifications can be made. First only gz exists which



Figure 1.

reduces the order of the equation by one; second, the resulting equation

can be integrated once to yield
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Using the boundary condition that Vl normal vanishes at the edge of the

plasma, one can evaluate the constant X .
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The final simplification results if one changes to the dimensionless
variable s = z/d and recognizes that a resonance in this plane geometry

is characterized by the vanishing of the external field so that one need

solve only the homogeneous equation
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The density functions f(z) wused in these calculations are taken

3

from the work of S. Self” and represent theoretical curves for a low

density plasma. They asre shown in Figure 2. The small slope discon-
tinuities are due to the approximation used in the calculations.

The results of numerical solution of this equation for several
d . 2
;‘5)

points are the results of numerical solution of the differential equation.

values of the parameter ( are shown in Figure 3. The circle

The triangle points were found using the WKB method since the differen-
tial equation is difficult to solve for very short wavelengths. The
dotted lines connecting the points are included to show which points
belong to the same mode and to indicate the general trend of the fre-
quencies but do not represent actual data. The solid line shows the
ratio of mean density to the square of the frequency of the lowest mode
atl oy -

In general it way be seen that the splitting of the resonant fre-
guencies is dependent on the paremster (d/kD) and the splitting is
largest for smail values of this parameter.

Figures L znd 5 show how this strong splitting is induced by the
non-uniform plasma density. Both figures show the electric field at
resonance for various ¢ifferent modes. Figure 4 shows the modes @,

Wy; Wys Qg for a fixed value of (d/kD)2 . At a given freguency
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propagate plasma waves, while the remainder cannot. As w 1s increased

that portion of the plasma for which w2 > (z > zc) can

the propagating region becomes longer and successively more half



wavelengths of the wave can be fit into 1t.

In Figure 5 the mode w is shown for various values of (-5-31-)2
d .2
x;)

decreases. Since the thickness of the sheath and the wavelength are

One can see that as ( increases the wavelength of the oscillation

proportional to Ap the resonant frequency of the mode W which can
propagate primarily in the sheath region, tends to remain constant.
It 1s concelivable that this effect might cause one or more reson-

ances to remain at frequencies below the lowest plasma frequency

2
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would mean that the resonances would remain split even in the limit of

2
(see Fig. 2 for (d/&D) =0 in the limit XD -0 . This

zero temperature and that the curves in Figure 3 would tend to a limit

> 1 as (g;) -+ ® . This does not, however, seem to be the case
although one cannot be certain of extrapolations based on such limited
data.
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Fig. 2.
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Electron Density Profiles. The points where the local plasma
frequency equals one of the resonant frequencies, i.e.,
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2
me_ f(s) = Wy (L = 0,1,:+-) are indicated.
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Fig. 3. Resonant Frequencies and Average Density
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