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Abstract. Run-up of long waves on a beach consisting of

three pieces of constant but different slopes is studied. Linear

shallow-water theory is used for incoming impulse evolution,

and nonlinear corrections are obtained for the run-up stage.

It is demonstrated that bottom profile influences the run-up

characteristics and can lead to resonance effects: increase of

wave height, particle velocity, and number of oscillations.

Simple parameterization of tsunami source through an earth-

quake magnitude is used to calculate the run-up height ver-

sus earthquake magnitude. It is shown that resonance effects

lead to the sufficient increase of run-up heights for the weak-

est earthquakes, and a tsunami wave does not break on cho-

sen bottom relief if the earthquake magnitude does not ex-

ceed 7.8.

1 Introduction

Resonance phenomena play a significant role in the run-up

amplification and lead to different physical effects for waves

in coastal zones: long duration of water oscillations, later ar-

rival of waves with maximal amplitude compared with lead-

ing waves, and group structure of waves. Meanwhile, usually

these effects are neglected when the run-up processes are

studied. A large part of theoretical results for run-up stage

are based on rigorous analytical solutions of the shallow-

water theory for waves climbing on a beach of constant slope.

This approach was suggested in the pioneer work by Carrier

and Greenspan (1958). They applied the hodograph transfor-

mation to the nonlinear system of shallow-water equations

and obtained a linear wave equation for an auxiliary func-

tion; all physical variables (free surface displacement, depth-

averaged velocity, offshore coordinate and time) were ex-

plicitly expressed using this function and its partial deriva-

tives. The main advantage of wave equations for an auxil-

iary function having a form of cylindrical wave equation is

that it has to be solved on a semi-axis with given bound-

ary conditions while the initial equations have to be solved

in a domain with an unknown moving boundary (shoreline).

Meanwhile, the explicit form of the analytical solution gen-

erally requires the numerical manipulations to present physi-

cal variables in the wave field. That is why various shapes of

the incident solitary wave have been specially analyzed: soli-

ton (Pedersen and Gjevik, 1983; Synolakis, 1987), sine pulse

(Mazova et al., 1991), Lorentz pulse (Pelinovsky and Ma-

zova, 1992), Gaussian pulse (Carrier et al., 2003; Kânoğlu,

2004; Kânoğlu and Synolakis, 2006), N waves (Tadepalli

and Synolakis, 1994; Kânoğlu, 2004), and some specific lo-

calized disturbances (Tinti and Tonini, 2005; Pritchard and

Dickinson, 2007; Dobrokhotov and Tirozzi, 2010). It should

be noted that different formulas for maximum run-up of soli-

tary waves of various shapes can be provided in terms of

wave amplitude and significant wave length describing prac-

tically important cases with good accuracy (Didenkulova et

al., 2008; Didenkulova and Pelinovsky, 2008; Antuono and

Brocchini, 2010a, b). Various shapes of the periodic incident

wave trains such as the sine wave (Carrier and Greenspan,

1958; Madsen and Fuhrman, 2008), cnoidal wave (Synolakis

et al., 1988; Synolakis, 1991) and nonlinearly deformed pe-

riodic wave (Didenkulova et al., 2006, 2007) have been also
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studied to obtain the run-up characteristics. It is important to

mention that the run-up height is higher if a periodic incident

wave is cnoidal or a nonlinearly deformed wave compared

with a simple sine wave of the same amplitude and period.

Some results are obtained for irregular incident waves mod-

eled by the Fourier superposition of the sine waves with ran-

dom phases (Didenkulova et al., 2010, 2011) or the random

set of solitons (Brocchini and Gentile, 2001).

In all studies mentioned above, the rigorous analytical

solutions are obtained if the wave propagates on a plane

beach of constant slope. Really, such a plane can approxi-

mate the face-shore bathymetry only, and then it has to be

matched with a horizontal bottom profile. In fact, the rigor-

ous analytical solutions can be obtained here in the linear

theory only (Synolakis, 1987; Pelinovsky, 1996, 2006; Mad-

sen and Fuhrman, 2008). If the bottom slope in face-shore

area is small, the extreme run-up characteristics weakly dif-

fer from a case when the bottom has constant slope every-

where. Nonlinearity leads to the correction of obtained re-

sults. First of all, there is nonlinear wave deformation in the

region where inclination of bottom changes. This effect is

thoroughly investigated with use of boundary value approach

for pulse-like and periodic input including waves propagat-

ing over different kinds of non-planar bathymetries in Broc-

chini et al. (2001) and Antuono and Brocchini (2007, 2008,

2010b). In this case the wave evolution seems to be unaf-

fected by the bottom perturbations. The second one is that

a wave moving on horizontal bottom nonlinearly deformed

within nonlinear shallow-water equations as Riemann wave

and its shape in the entry of plane beach differs from an ini-

tial shape (Didenkulova et al., 2006, 2007). It should be noted

that both factors amplify the run-up heights. A new effect that

appeared for the wave run-up on a plane beach matched with

horizontal bottom is the influence of the bottom slope on the

shape of water oscillations on the shore. If the incident wave

has a bell shape, the water oscillations on the shore repeat its

shape if the bottom slope is big (limiting case is a vertical

wall), and accompanied by the negative second oscillation if

the bottom slope is small. Such behavior is explained by the

resonance effects, which are weak for such geometry – from

a physical point of view, it is an open resonator1 (Pelinovsky,

1996, 2006; Madsen and Fuhrman, 2008). If the bottom slope

differs relatively little from the uniform value, the changes of

run-up height are also small (Soldini et al., 2013).

For more complicated geometry of coastal zone consist-

ing of several pieces with different slopes, the solutions for

each region of constant slope are matched (Kânoğlu and Syn-

olakis, 1998; Didenkulova, 2009). Simplified solutions in

the form of a product of such elementary solutions can be

given if the incident wave length is less than a bottom piece

length. For general ratio between these different lengths, as

it is known, the resonances appear due to multi-reflection

1If the wave maker is located near the shore, of course, the reso-

nant effects are big (Stefanakis et al., 2011; Ezersky et al., 2013).

from matching points and interference between such waves.

Some allusion on possible resonances for wave run-up can

be found in Kajiura (1977) and Mazova (1985). They in-

vestigated linear approximation of the run-up characteristics

due to sine incident wave. Resonance phenomena are impor-

tant for tsunami waves (LeBlond and Mysak, 1981; Massel,

1989; Mei, 1983; Neu and Shaw, 1987). Photos of tsunami

wave trains in different coastal locations became well known

after the 2004 Indonesian and 2011 Japanese tsunamis. Usu-

ally the appearance of resonance effects is connected with a

complicated two-dimensional bathymetry of bays and jagged

coastal line. In the present paper, we aim to investigate run-

up resonance phenomena for a one-dimensional case of wave

propagation. We intend to show that, for certain frequencies

depending on bottom profile, run-up amplification may be

high even for very simple bathymetry, and it influences the

shape of the water oscillations on the coast.

The paper is organized as follows. In the second section

we describe our model of bottom profile and present the re-

sults for run-up amplification versus the frequency of linear

harmonic incident wave. In the Sect. 3 results of calculations

of the run-up characteristics caused by Gaussian impulse and

N-wave impulse are presented. Section 4 is devoted to non-

linear effects appearing in run-up. Discussion of result appli-

cability for natural hazard description and some conclusions

are given in Sect. 5.

2 Theoretical model and run-up due to linear harmonic

wave

Long wave run-up on a long beach is described by 1-D non-

linear shallow water equations:

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= 0, (1)

∂η

∂t
+

∂

∂x
[u(h + η)] = 0, (2)

where u is the depth-averaged velocity, h = h(x) is the un-

perturbed water depth, η = η(x, t) is the free surface dis-

placement, and g is the acceleration of gravity. In the linear

approximation, the system in Eqs. (1)–(2) is transformed into

one equation:

∂2η

∂t2
− g

∂

∂x

[

h
∂η

∂x

]

= 0. (3)

To demonstrate the resonance effects in the run-up character-

istics, we use three piece-wise profiles of unperturbed depths

that are typical for a real ocean bottom: (Zone A) continental

shelf 0 ≤ x ≤ x0, (Zone B) continental slope x2 < x < 0, and

(Zone C) constant depth (see Fig. 1). Such topography was

used in numerous papers on tsunami run-up. We would like

to emphasize that in some cases such a simple model of bot-

tom profile describes very precisely natural conditions. For
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Fig. 1. Schema of bottom profile.

instance, exactly such a model was used to prepare numeri-

cal simulations of tsunami near the Indian coast (Neetu et al.,

2011).

The wave field in zone of constant depth (Zone C) is pre-

sented as a sum of incident and reflected harmonic waves

with constant amplitude Ai and Ar:

η =
(

Aie
−ik(x0−x) + Are

ik(x0−x)
)

e−iωt . (4)

In zone (Zone B) with a constant bottom slope tanβ (conti-

nental slope), we seek a harmonic solution of the following

form:

η = A(x)e−iωt , (5)

where ω is the frequency and A(x) is an amplitude function.

By inserting Eq. (5) into Eq. (3), the amplitude equation for

harmonic wave is represented as

g tan(β)(x1 − x)
∂2A

∂x2
− g tan(β)

∂A

∂x
+ ω2A = 0. (6)

After introducing the variable transformation,

σ̄ = 2ω

√

x1 − x

g tanβ
. (7)

Equation (6) can be simplified to the Bessel equation of the

first kind:

σ̄
∂2A

∂σ̄ 2
+

∂A

∂σ̄
+ σ̄A = 0. (8)

Its solution may be expressed as a sum of the zeroth order

Bessel functions of the first J0 and second Y0 kinds with two

constants C1 and C2:

A = C1J0 (σ̄ ) + C2Y0 (σ̄ ) , σ̄ = 2ω

√

x1 − x

g tanβ
. (9)

In the nearshore zone (Zone A), the solution for wave am-

plitude is also presented in Bessel functions. Taking into

account that the wave field should be limited at the shore

(x = x0), the wave amplitude is described by

A = RJ0(σ ), σ = 2ω

√

x0 − x

g tanα
, (10)

where R is also constant (in general, complex constant). It is

evident that R describes the amplitude of the water level os-

cillation on unmoved shoreline (linear run-up height). If the

bottom has the constant slope everywhere, the value of |R |
computed in the linear theory coincides with run-up height in

nonlinear theory (Synolakis, 1987; Pelinovsky and Mazova,

1992). For more complicated geometry, this statement is not

proved and we will discuss this later.

Using continuity conditions for horizontal velocity and

free surface displacement for x = 0 and x = x2 (see Fig. 1),

one can match solutions in different segments at this transi-

tion points and obtain the following system of equations:

For x = 0,

RJ0 (σ0) = C1J0 (σ̄0) + C2Y0 (σ̄0, ) (11)

RJ1 (σ0) = C1J1 (σ̄0) + C2Y1 (σ̄0.) (12)

For x = x2,

C1J0 (σ̄1) + C2Y0 (σ̄1) = Aie
−ik(x0−x2) + Are

ik(x0−x2), (13)

C1J1 (σ̄1) + C2Y1 (σ̄1) = −iAie
−ik(x0−x2) − iAre

ik(x0−x2), (14)

where σ0 = σ(x = 0), σ̄0 = σ̄ (x = 0), σ̄1 = σ̄ (x = x2), and

J1 and Y1 are the first-order Bessel functions of first and sec-

ond kinds.

If the incident wave amplitude Ai is known, the linear run-

up height R can be evaluated by solving the last system of

Eqs. (11)–(14):

R = K(ω)Ai,

K(ω) =
2(J0 (σ̄0)Y1 (σ̄0) − J1 (σ̄0)Y0 (σ̄0))

W (Y0 (σ̄1) − iY1 (σ̄1)) − N (J0 (σ̄1) − iJ1 (σ̄1))
e−ik(x0−x2), (15)

where

W = J0 (σ̄0)J1 (σ0) − J0 (σ0)J1 (σ̄0) ,

N = Y0 (σ̄0)J1 (σ0) − J0 (σ0)Y1 (σ̄0) .

The term in numerator of Eq. (15) may be simplified using

Wronskian (Abramovich and Stegun, 1964) as presented in

Kânoglu and Synolakis (1998):

J0 (σ̄0)Y1 (σ̄0) − J1 (σ̄0)Y0 (σ̄0) = −
2

πσ̄0
.

Figure 2 represents run-up amplification |R|/Ai for three dif-

ferent sets of bottom slopes characterized roughly for the In-

dian coast bathymetry (Neetu et al., 2011) where the Makran

tsunami was observed on 27 November 1945. If the bottom

slopes in zones A and B are the same, the resonance effects

are very weak (dash-point curve in Fig. 2), and this coincides
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Fig. 2. Run-up amplifications for three sets of bottom slopes, h0 =
2500 m, h1 = 200 m.

with known results (Pelinovsky, 1996, 2006; Madsen and

Fuhrman, 2008). But in the case of different bottom slopes

in zones A and B, resonance effects are clearly visible (solid

and dashed lines in Fig. 2). Several resonant modes with fre-

quencies (ω1,ω2, . . .) may be excited in the coastal zone, and

the amplification coefficient can reach values of 10–20 times.

Characteristic period of the first resonant peak T = 2π/ω1

is roughly 2 h, which coincides with the observed tsunami

record in this area (1.5–3 h) according to Neetu et al. (2011).

3 Run-up due of solitary bell and N impulses

Resonance curves given in the previous section show a sub-

stantial increase of run-up heights for certain frequencies of

harmonic incident waves. Whereas run-up height for har-

monic waves is given by Eq. (15), the oscillations of wa-

ter level on the shore (linear run-up) generated by solitary

tsunami wave may be presented using Fourier transforma-

tions:

R(t) =
1

2π

∫

K(ω)S(ω)e(−iωt)dω, (16)

where S is the Fourier transformation of incident wave

S(ω) =
∫

η(t)e(iωt)dt . (17)

Usually the shape of the incident tsunami wave is unknown,

and it is characterized by different functions (see for instance

Didenkulova et al., 2008). We chose here two characteristic

and qualitatively different cases: the initial displacement of

the free surface of one sign and alternating displacement with

a zero averaged value. In the first case the incoming wave at

the point x = x2 is a Gaussian pulse, and in the second one a

so-called N pulse:

ηinG = η0e
(

−(t/τ0)
2
)

, (18)

ηinN = η0

(

t

τ0

)

e
(

−(t/τ0)
2
)

. (19)

Both pulses are characterized by two parameters: the du-

ration and amplitude. Within linear theory, the value of wave

amplitude is not important and can be used for scaling of run-

up characteristics. The second parameter, wave duration τ0,

plays an important role due to resonance effects.

Meanwhile, in tsunami practice, both parameters (ampli-

tude and duration) of the incident wave are not indepen-

dent and are determined by the parameters of the tsunami

source. Here we apply our theoretical results to tsunamis gen-

erated by underwater earthquakes. Now, the characteristics of

the tsunami source are calculated using the Okada solution

(Okada, 1985), and they depend on the several fault parame-

ters. For simplified estimates it is more convenient to have the

relations between tsunami source parameters and earthquake

magnitude. Such relations are known in seismology (Sato,

1979; Wells and Coppersmith, 1994). Similar relations are

given for parameters of tsunami source (Pelinovsky, 1996,

2006; Bolshakova and Nosov, 2011). Here we will use the

following relations between the displacement amplitude of

the free water surface η0 (measured in meters) and the char-

acteristic size of tsunami source L (measured in km) with the

earthquake magnitude M (Pelinovsky, 1996, 2006):

log(η0) = 0.8M − 5.6, (20)

log(L) = 0.5M − 2.2. (21)

In the shallow-water approximation, the duration of tsunami

waves going out the source is τ0 = L/
√

gh, where h is water

depth in the tsunami source. Of course, Eqs. (20) and (21)

are very approximated and should be used only for simplified

estimations.

Thus, we can use the magnitude of a earthquake to de-

scribe solitary bell, or N wave. The results of calculations of

linear run-up function R(t) for various values of the earth-

quake magnitude are presented in Fig. 3. Duration of the

incident tsunami waves decreases, and then magnitude de-

creases, and its spectrum width increases. This means that the

weakest earthquake induces more resonant modes in coastal

zones than the strongest earthquake. As a result, the number

of water oscillations on the shore increases with magnitude

decreasing (compare Fig. 3a and b). If the initial shape is

N wave, the number of oscillations is higher than for Gaus-

sian input because its spectrum is narrower (compare right

and left graphs in Fig. 3a). It is important to mention that

run-up height of N waves is higher than for bell waves, and

this was obtained firstly in Tadepalli and Synolakis (1994).

Using a simple formula, it is possible to estimate propaga-

tion time T1 (delay between incoming wave and computed

signal at the coast) for our model.

T1 =
2

tanβ

(
√

h0

g
−

√

h1

g

)

+
2

tanα

√

h1

g
.

The propagation time for parameters corresponding to Fig. 3

is estimated as T1 ≈ 103 s. It should be noted that for longer
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Fig. 3. Incident wave and water oscillations on the shore for

h0 = 2500 m, x2 = 23 km, h1 = 150 m, x0 = 15 km, tanα = 0.005,

tanβ = 0.1, and different earthquake magnitudes: (a) M = 7.5

(L = 35 km) and (b) M = 8.5 (L = 110 km).

impulses (Fig. 3b), calculated propagation time (T1 ≈ 450 s)

is less than for shorter impulses (T1 ≈ 850 s) (Fig. 3a). This

difference is evidently due to duration of impulses. The

length of a long impulse is longer than the length of a shelf

zone, and reflected waves should be taken into consideration

when propagation time is calculated as a time needed for im-

pulse maximum, or impulse zero to reach the shore.

Figure 4 demonstrates that the run-up amplification factor

(R/η0) decreases with increasing earthquake magnitude up

to M = 7, and then it remains almost constant. A tsunami

generated by strong earthquake has a long wavelength, and in

this case as indicated in Fig. 4, the resonance effects are very

weak. The weakest tsunamis having the shortest wavelength

are amplified more due to resonance effects. Increasing of the

bottom slope in zone B (tanβ) reduces the run-up height as

it might be expected.

Maximal run-up height grows with earthquake magnitude

increasing as it is shown in Fig. 5. It should be noted that

resonance effects “lift up” the values of run-up height for the

weakest earthquake, whereas run-up height weakly depends

on the values of the bottom slopes in the given ranges under

consideration. It is important to note that curves in Figs. 4

and 5 are obtained in the linear approximation. Criteria for

applicability of the linear solution will be discussed in the

next section.

Fig. 4. Run-up amplification factor for Gaussian impulses and

N wave impulse x0 = 40 km (tanα = 0.005), x0 = 10 km (tanα =
0.02), x0 = 4 km (tanα = 0.05), h0 = 4000 m, and h1 = 200 m for

different inclinations of continental shelf and continental slope:

(a) tanβ = 0.1 (x2 = 40 km), (b) tanβ = 0.5 (x2 = 8 km), and

(c) tanβ = 3 (x2 = 1.3 km).

4 Estimations of nonlinear effects

Calculations of maximal run-up heights in Sects. 2 and 3

were done in linear approximation. As it is indicated above,

it is difficult to solve the nonlinear shallow-water equations

for piece-wise bottom profiles. Taking into account that bot-

tom slope is changed at depth of 4000 and 200 m, and wave

amplitude does not exceed a few meters, we may assume that

all nonlinear effects are manifested in the last run-up stage.

In this case we may use the rigorous solution of the nonlin-

ear shallow-water equations for the long wave run-up on a

beach of constant slope, which is very well developed (see

references in Introduction). Here following Pelinovsky and

Mazova (1992), we convert the obtained linear solution into a

“nonlinear” solution. According to this procedure, we should

firstly find a “linear” expression for horizontal velocity on the

www.nat-hazards-earth-syst-sci.net/13/2745/2013/ Nat. Hazards Earth Syst. Sci., 13, 2745–2752, 2013



2750 A. Ezersky et al.: Resonance phenomena at the long wave run-up on the coast

unmoved shoreline (x = 0), which is followed by kinematics:

U(t) =
1

tanα

dR

dt
, (22)

where as earlier tanα is bottom face-slope. “Nonlinear” ve-

locity of the moving shoreline, u(t), can be obtained from the

linear function U(t) by the Riemann transformation (Peli-

novsky and Mazova, 1992):

u(t) = U

(

t +
u

gtanα

)

. (23)

It is evident that maximal values of “nonlinear” and “linear”

velocities coincide.

Vertical displacement of the moving shoreline, r(t) can be

found from a kinematic condition:

r(t) =
∫

u(t)dt

tanα
.

And after, substitution of Eq. (16) can be reduced to

r(t) = R

(

t +
u

tanαg

)

−
u2(t)

2g
. (24)

It should be noted that this is only true for the analytical

structure of the solution, but the solution itself also depends

on the data assignment as an initial value or a boundary value

problem (Antuono and Brocchini, 2007).

The important conclusion from Eq. (24) is that extremes

of the vertical displacement in the linear and nonlinear theo-

ries coincide (in this moment the horizontal velocity u = 0),

confirming the use of linear theory to predict extreme values.

Therefore, the linear theory adequately describes the run-up

height.

Simple formulas of Riemann transformation from linear

to nonlinear solutions allow us to obtain the wave-breaking

criterion. Strictly speaking, this criterion is found from the

zero condition for a Jacobian of hodograph (Legendre) trans-

formation. Note that this transformation was used to obtain

Eqs. (15)–(17). On the other hand, the solution for velocity

in Eq. (16) resembles the well-know Riemann wave in non-

linear acoustics and hydrodynamics (the role of coordinates

plays the inverse value of the g tanα). Such a wave would

overturn with an increase of amplitude. Exactly this fact

has been used in Pelinovsky (1996, 2006) and Didenkulova

(2009) to find wave-breaking criteria on the shore. From

Eq. (16) it is easy to calculate the time derivative of the ve-

locity in an incident wave.

du

dt
=

dU/dt

1 − dU/dt
g tanα

(25)

tends to the infinity when the denominator approaches zero.

As follows from the theory of hyperbolic equations, it leads

to the gradient catastrophe identified and to the plunging

Fig. 5. Maximal run-up height (in m) versus the earthquake magni-

tude for Gaussian impulses and N wave impulse for x0 = 40 km

(tanα = 0.005), x0 = 10 km (tanα = 0.02), x0 = 4 km (tanα =
0.05), h0 = 4000 m, and h1 = 200 m for different inclinations

of continental shelf and continental slope: (a) tanα = 0.1 (x2 =
40 km), (b) tanα = 0.5 (x2 = 8 km), and (c) tanα = 3 (x2 =
1.3 km).

breaking of the long water waves. In this case a water dis-

placement contains the jump of its first derivative. This im-

plies the condition of the first wave breaking:

Br =
max(dU/dt)

tanαg
=

max(d2R/dt2)

tan2 αg
= 1, (26)

where the parameter Br has the sense of breaking parame-

ters. Figure 6 shows the temporal evolution of the break-

ing parameter, linear and nonlinear water level oscillations

on the shore and shoreline velocities versus time for soli-

tary impulse and N wave impulse for magnitude M = 8. The

difference is clearly seen between linear and nonlinear solu-

tions for a moving shoreline. It is important to mention that

the breaking parameter is less than 1, so the tsunami wave

should climb on the shore without breaking for the chosen

Nat. Hazards Earth Syst. Sci., 13, 2745–2752, 2013 www.nat-hazards-earth-syst-sci.net/13/2745/2013/
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Fig. 6. Breaking parameter Br, linear (solid line) and nonlinear

(dash line) variations of water level R on shore and shoreline veloci-

ties U versus time for h0 = 4000 m, h1 = 200 m, tanα = 0.005, x0 =
40 km, tanα = 0.1, x2 = 23 km, and M = 8: (a) Gaussian wave, and

(b) N wave.

bottom geometry. It should be emphasized that for all results

presented in Figs. 4 and 5 criterion Br < 1 is satisfied.

5 Discussion and conclusions

The run-up of tsunami waves on the coast is studied for the

following bottom geometry: ocean of constant depth, steep

continental slope, and beach of gentle constant slope. It is

demonstrated that run-up characteristics strongly depend on

the frequency of the incident wave due to resonance ef-

fects. They are studied for conditions of the Indian coast

where the 1945 Makran tsunami was recorded. Amplifica-

tion ratio can be 10 times higher than for a case of a uni-

form, averaged slope. The run-ups of solitary waves of bell

or N shape are studied in detail. It is found that run-up of

N wave is higher than for solitary waves. This is due to

stronger manifestation of the resonance effects for N wave

than for bell-shaped waves. Using simple parameterization

of tsunami source through an earthquake magnitude, the run-

up heights are calculated versus earthquake magnitude. It is

shown that the resonance effects can “lift up” the values of

run-up heights for the weakest magnitudes due to resonance

amplification of the shortest waves generated by the weakest

earthquake. Nonlinear correction of obtained results is given.

It is shown that, for typical conditions of the Indian coast

where the 1945 Makran tsunami was observed, the break-

ing parameter is less than 1, and tsunami waves climb on the

coast with no breaking.
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