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Resonance Raman scattering of light from a diatomic 
molecule 

D. L. Rousseau 

Bell Laboratories. Murray Hill, New Jersey 07974 

P. F. Williams 
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and Department of Physics, University of Puerto Rico, Rio Piedras, Puerto Rico 00931 

(Received 13 October 1975) 

Resonance Raman scattering from a homonuclear diatomic molecule is considered in detail. For 

convenience, the scattering may be classified into three excitation frequency regions-off-resonance Raman 

scattering for inciderit energies well away from resonance with any allowed transitions, discrete resonance 

Raman scattering for excitation near or in resonance with discrete transitions, and continuum resonance 

Raman scattering for excitation resonant with continuum transitions, e.g., excitation above a dissociation 

limit or into a repulsive electronic state. It is shown that the many differences in scattering properties in 

these three excitation frequency regions may be accounted for by expressions derived from simple 

perturbation theory. Scattering experiments from molecular iodine are presented which test and verify the 

general scattering theories. Spectral measurements, time decay measurements, and pressure broadening 

measurements were made on I, in the discrete resonance Raman scattering region; and spectral 

measurements at several excitation frequencies were made in the continuum resonance Raman scattering 

region. In each cace calculations based on general theories correctly describe the experimental data. 

I. INTRODUCTION behavior in these three regions is s o  great that they 

Over the past few years a great deal of interest has 

developed in the understanding of resonance Raman 

scattering and its  application to problems in chemistry, 
physics, and biology. Most of these studies have been 

devoted to either solids or  complex biological mole- 

cules, and relatively little attention has been given to  

simple gaseous molecules. Resonance Raman scat- 

tering i s  generally not well understood, and the work on 

solids and complex molecules has done little to  clarify 

the basic mechanisms. In solids, the lack of success 

may be attributed to complicated electronic structures, 

impurities, anisotropies, and ill defined electron- 

phonon interactions. Similarly, biological molecules 

often have strong complex absorption bands; vibrational 

modes may not be readily assigned; broad fluorescence 

frequently obscures the discrete structure; and the 

spectra have a marked excitation frequency dependence. 

In contrast, the electronic structure of some small 

molecules a r e  quite simple and very well known. 

Therefore, the properties of the light scattering from 

such molecules as the incident laser frequency is 

varied from nonresonance, to resonance with discrete 

vibration-rotation levels of an excited state, and then 

a t  high laser  energies to resonance with continuum 

states, should serve to elucidate the nature of the 

fundamental processes. In this paper we discuss the 

scattering behavior of monochromatic light when the 

intermediate states a r e  isolated discrete vibrational- 

rotational levels of a diatomic molecule and the scat- 

have been used to classify1 the re-emission into normal 

Raman scattering, resonance fluorescence, and reso- 

nance Raman scattering, respectively. This empirical 

classification, resulting from the marked differences in 

the scattering behavior, have led to a popular belief2 

that fundamental theoretical differences exist between 

Raman scattering, resonance Raman scattering, and 

resonance fluorescence. As pointed out recently by 

Behringer, 3 * 4  this problem i s  not new, but dates back 

to the turn of the century with the question of the dif- 

ferences between ordinary Rayleigh scattering and 

resonance Rayleigh scattering. Since this time, two 

schools of thought have evolved concerning the origins 

of resonance and nonresonance scattering. The f i rs t  
asser ts  that the long-lived resonance fluorescence pro- 

cess  is a different physical process than short-lived 

resonance   am an scattering. The distinction between 

the processes is made by asserting that in resonance 

fluorescence the excitation and re-emission may be 

divided into a real absorption followed independently by 

a real  emission. In contrast, i t  is  argued that in Ra- 

man scattering (or Rayleigh scattering) this bisection 

of the elementary processes is impossible. It is con- 

sequently concluded that two distinguishably different 

physical processes account for these phenomena. The 

other viewpoint is that resonance fluorescence and Ra- 

man scattering, including resonance Raman scattering, 

a r e  all one process with the empirical differences in- 

terpretable from the excitation frequency differences 

tering behavior when the intermediate states belong to alone. 

a continuum. 
Consideration of the scattering of monochromatic 

Empirically, very different scattering spectra a r e  light from simple gaseous diatomic molecules clarifies 
obtained if the incident laser frequency is far  from this question in a definitive way. As long as scattering 
resonance, is in resonance with transitions to discrete amplitudes from nearby states a r e  sufficiently small, 
states, or  i s  in resonance with transitions to  con- compared to  the resonant state under consideration, s o  
tinuum states. The differences between the scattering as to be neglected, and a s  long as quasielastic collision- 
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RAMAN 
SCATTERING 

FIG. 1. Classification of 

Raman scattering according 

to l a se r  frequency. A. The 

incident l a se r  frequency i s  

f a r  from resonance with any 

real  electronic transition, so 

normal Raman scattering is' 

observed. B. The incident 

l a s e r  frequency i s  in the 

region of discrete levels of 

a single electronic inter- 

mediate state. We t e rm 

this process d iscre te  reso- 

w nance Raman scattering. C. 
The incident frequency i s  in 

B C the range of a dissociative 

DISCRETE CONTINUUM continuum. We label this 

RESONANCE RESONANCE 
process continuum reso- 

RAM AN RAM AN 
nance Raman scattering;.. 

SCATTERING 

a1 broadening effects a r e  small, no distinction between 

resonance fluorescence and resonance Raman scatter-  

ing may be made. From perturbation theory a general 

expression may be derived which is valid for scatter-  

ing of monochromatic light independent of the excita- 

tion frequency. The spectrum of scattered light obeys 

this simple formalism and varies in a predictable sys- 

tematic way with excitation frequency. From the theory 

SCATTERING 

Ranzan scattering. In the center, when the incident 

frequency is in the region of discrete vibronic transi- 

tions we term the re-emission discrete resonance 

Raman scattering independent of whether o r  not the 

incident frequency is a t  exact resonance. To the right, 

when the incident frequency is  above the excited state 

dissociation limit in a continuum region, we label the 

re-emission a s  continuum resonance Raman scattering. 
i t  is  clear that even for exact resonance the excitation 

To illustrate the general light scattering principles 
and the re-emission process a r e  not independent, be- 

discussed in this paper we have selected molecular 
cause the emitted photon retains the phase information 

iodine a s  an example. I, was chosenfor the experiments 
of the excitation step. 

because i t  is nearly ideally suited both experimentally 
At exact resonance, the scattering amplitude diverges 

owing to the pole in  the denominator, and a damping 

term must be included. If we take the relevant matrix 

elements to  be  real, then doing s o  introduces an imag- 

inary component into the scattering amplitude which is  

strongly peaked a t  this resonant frequency. It then be- 

comes tempting to  classify the real  part  a s  resonance 

Raman scattering and the imaginary part  a s  resonance 

fluorescence. This arbitrary separation into ill-de- 

fined processes is confusing, however, since each term 

results from the same  perturbation expression. The 

contributions from each term a r e  most clearly seen in 

scattering from continuum intermediate states, in 

which case the real  and the imaginary terms contribute 

about equally to the scattering intensity and no physical 

differences between the scattering resulting from the 

two contributions may be  made. Furthermore, in con- 

sidering resonance with a single sharp intermediate 

state the scattering characteristics vary in a smooth 

continuous manner according to the Lorentzian line 

shape function of that state, and the question of where 

and theoretically. First ,  iodine's electronic structure 

and the energies of the vibrational-rotational levels a r e  

very well known6 from fluorescence, predissociation, 

and photofragmentation experiments. Secondly, io- 

dine i s  a single isotope, homonuclear diatomic mole- 

cule with only a single vibrational degree of freedom. 

Finally, a s  illustrated in Fig. 2, the presence of an 

excited electronic state with a dissociation limit a t  20, 
162 cm-I above the bottom of the ground state well, 

makes i t  possible to investigate resonance processes 

below the dissociation limit (in the discrete resonance 

Raman scattering region) and above the dissociation 

limit (in the continuum resonance Raman scattering 

region) with conventional argon and krypton ion laser  

sources. 

As was indicated in  Fig. 1, analysis of light scat- 

tering spectra divides naturally into three distinct re-  
gions with very different characteristics. The char- 

acteristics' from each of these regions a r e  listed in 

Table I and discussed in greater detail below. 

resonance fluorescence ends and resonance Raman 
In the case of ordinary nonresonance Raman scat- 

scattering begins becomes obviously meaningless. 
tering, the reradiation i s  characterized by the follow- -. 

For ease of discussion we wish to  classify the range ing: (1) The Rayleigh line is strong and the funda- 

of laser  frequencies into three distinct regions. This mental vibrational transition (Av = 1) is weak. The 

classification is illustrated in  Fig. 1. On the left, higher overtones a r e  weaker yet and a re  generally not 

when the incident frequency is far  from resonance with observed a t  all in the spectrum; (2) The scattered band 

a real  transition we label the re-emission as normal envelope is relatively broad, may have some structure, 
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INTERNUCLEAR SEPARATION (i) 

FIG. 2. The X and the B electronic state potential functions 

of molecular iodine. The dashed line at  20 162 cm-' is the dis- 

sociation limit of the B state. The numerical listing on the 

left corresponds to the excitation energies from v" = 0 of the 

ground state of the prominent argon and krypton laser lines 

(expressed in angstroms). 

and exhibits no dependence on the excitation frequency; 

(3) The scattering intensity varies slowly and smoothly 
(an w4 dependence) with excitation frequency; (4) The 

Stokes-anti-Stokes ra t io  may be  calculated from the 

Boltzmann factor; (5) The scattering time is very fast; 

(6) Addition of foreign gas does not quench the scat- 

tering intensity; (7) The Q branch depolarization ratio 

is small, with the exact value determined by the anisot- 

ropy in the polarizability. 

At higher incident laser  frequencies in the region of 

discrete resonance Raman scattering the properties of 

the re-emission a r e  significantly different: (1) The 

overtones may be  of comparable intensity and in fact 

may be a s  strong a s  the Rayleigh line. The ratio of the 

intensity of one overtone to  the next varies erratically; 

(2) With sufficiently narrow excitation each overtone 

consists of only a few very sharp lines. Their widths 
a r e  limited by the combination of the natural, collision- 

al, and Doppler broadening in addition to  possible nu- 

clear hyperfine splitting. The structure within each 

overtone changes erratically with small  incident f re-  

quency shifts; (3) The scattered intensity varies wildly 

with excitation frequency; (4) The Stokes-anti-Stokes 

ratio is not simply related to the ground state popula- 

tion factors and in  fact the anti-Stokes intensity may 

be  greater than the Stokes intensity in some cases; 

(5) At exact resonance the scattering time is long and 

is typically in the range of 10-5-10'8 sec, although a s  

the incident frequency is moved away from exact r e s -  

onance the scattering time becomes very short; (6) 
Addition of foreign gas strongly quenches the intensi- 

ty; (7) Generally the scattering of the Q branch i s  de- 
polarized, with a depolarization ratio of $. 

In the region of continuum resonance Raman scat- 

tering the observed spectra a r e  substantially different 

from those in the discrete resonance case: (1) Again 
there a r e  numerous overtones with comparable intensi- 

ty to the fundamental and the Rayleigh line, The in- 

tensity variation from one overtone to  the next i s  now 

very regular; (2) The band envelope within each over- 

tone region appears broad with considerable structure 

which smoothly changes as the excitation frequency i s  

varied; (3) The scattering intensity varies with the 

excitation frequency in a smooth systematic way; (4) 

TABLE I. Excitation-frequency dependent characteristics of light scattering from di- 

atomic molecules. 
-- -- - - 

Nonresonance Discrete resonance Continuum resonance 

Characteristics Raman scatterine Rarnan scatterinn Raman scatterine 

1. Overtone No overtones Strong; irregular Strong; systematic 

intensity variation variation 

2. Band Broad; structured; Sharp; erratic Broad; structured; 

envelope no frequency frequency dependence systematic frequency 

dependence dependence 

3. Frequency w i  

dependence 

of intensity 

Strong and erratic Strong and systematic 

4. Stokes-anti- cc Boltzman factor Not solely population Not solely population 

Stokes ratio dependent dependent 

5. Scattering Short S 10"~-10"~ Variable - 1 0 ~ ~ - 1 0 - ' ~  Short S; 10"~ sec 

time sec sec 

6. Quenching Unquenched Quenched 

behavior 
Unquenched 

7.  Q-branch Less than $ 2 Less than 

depolariza- 

tion ratio 

J. Chem. Phys., Vol. 64, No. 9, 1 May 1976 
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The Stokes-anti-Stokes ratio is not solely related to 

the ground state population factors but varies sys- 

tematically with incident frequency; (5) The scattering 

time is fast; (6) Addition of foreign gas does not quench 

the intensity; (7) The depolarization ratio is small and 
may be calculated from the electronic structure of the 

molecule. 

These disparate properties may be interpreted by 

using standard second order perturbation theory. In 

the next section the relevant expressions a r e  derived 

and in the following sections we use these results to  

discuss the interpretation of the properties listed here. 

We also present data obtained on molecular iodine 

which tests the validity of several aspects of the for- 

malism. 

II. THEORY 

The total scattering intensity I, in photons per mole- 

cule per second for a transition from the initial ground 

state, I G), to the final state, IF), may be given by the 

standard e x p r e s s i ~ n ~ * ~  

Here c is the velocity of light, I, i s  the incident inten- 

sity at frequency u,, and w, is the scattered frequency 

(~y,,),, is the polarizability tensor for the transition 

from I G) to IF) with incident and scattered polariza- 

tions indicated by a and p, respectively. The second 

order perturbation expression fo r  (a,,),, is 

In this expression w,, is the energy spacing between an 

excited rovibronic state I I )  and the ground state I G); 

and p is  the electron momentum operator. For the 

subsequent discussion we will neglect the second term 

in Eq. (2), since near resonance i t  is small in com- 

parison to the f i rs t  term owing to i ts  large resonance 

denominator. In addition, for simplicity we will neglect 

the polarization subscripts. It must be noted that Eq. 

(2) is completely general and i s  expected to correctly 

treat  both Raman and fluorescent processes within the 

limits of pertrubation theory. However, i t  is very dif- 

ficult to make meaningful interpretations or calcula- 

tions from it  because the states IF), I G), and I I )  must 

be described by complete rovibronic wavefunctions 

which depend on both nuclear and electronic coordinates. 

A variety of approximations and expansions a r e  there- 

fore made at this point, 218*9  after which the basic phys- 

ical processes often become obscured. In the discus- 

sion presented here we have adopted a very simplistic 

approach, but one which makes very transparent the 
frequency dependence of the light scattering. This 

general approach and other more sophisticated ones 
may be found in a variety of more lengthy discussions 

of the theories of Raman and resonance Raman scat- 

tering. 

In order to make Eq. (2) more manageable7 i t  is 

f i rs t  convenient to separate out the vibrational wave- 

function by using the Born-Oppenheimer approximation, 

dJe,v= Qe(r, R)ve,v(R) (3 

Here qe,, is the total vibronic wavefunction; Qe(r, R) is  

the electronic wavefunction (with electronic quantum 

number e )  which depends on the electron coordinates 

r and the nuclear coordinates R. qeVv(R) is a vibra- 

tional wavefunction of electronic state e with vibra- 

tional quantum number u.  

In writing Eq. (3) in this form we implicitly ignore 

the dependence of the wavefunctions on molecular 

orientation (the angular coordinates of R). Inclusion 

of this dependence in the matrix elements of Eq. (2) 
only results in a multiplicative factor which depends 

on the rotational quantum numbers and on the polariza- 

tion of the incident and scattered light. This factor i s  

responsible for the dipole selection rule on rotational 

transitions, but in most of the following discussion it 

plays no other role and for clarity of presentation i t  

will be ignored. In the discussion of continuum reso- 

nance Raman scattering we will want to compare inten- 

sities of lines with different rotational quantum num- 

bers,  and in Eq. (26) this rotational factor reappears 

a s  the factor b ,  . Detailed evaluation of these rota- 

tional matrix elements has been carried out most re- 

cently by Silverstein and St. peters" and by Jacon and 

Van Labeke. l1 

By substituting Eq. (3) into Eq. (2) we may rewrite 

the matrix elements a s  follows, 

( F ( P ~ I ) = ( ~ ~ ~ , ~ ( R ) ~ ~ ~ ( ^ / ,  ~ ) ( 6 1 ~ e , ( ~ ,  R) 'P~,,~(R)) (4) 

in which expression the electronic matrix element is 

M(R) = (eeF(~ ,  R) 1 0  ( e e r ( ~ t  R)) (5 

The electronic matrix elements, such a s  those shown 

here, a r e  expected to be weakly varying functions of 

the internuclear separation R, s o  they may be expanded 

in a rapidly converging Taylor series,  

In this equation M(5,) is the electronic matrix element 

evaluated a t  the equilibrium internuclear separation <,, 
and A 5  is the deviation from this separation. For 

simplicity, the expansion was carried out in a dimen- 

sionless variable 5 where 

p is the reduced mass of the oscillator and w, its har- 

monic frequency. 

Using the Taylor expansion we obtain for the zeroth 

and 1st  order terms in the perturbation ser ies  

(8) 
Now the states I g)  and I f )  correspond to vibrational 

J. Chern. Phys., Vol. 64, No. 9, 1 May 1976 
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wavefunctions of the ground electronic state and l i ) to 

the vibrational wavefunctions of the excited electronic 

state. For simplicity, we now a r e  considering only 

a single excited electronic state. It should be pointed 

out that the matrix elements of the type (f l i ) ,  etc., 

correspond to Franck-Condon overlap amplitudes. To 

understand the expected intensities in a light scattering 

experiment we must determine the magnitude of the two 

terms in Eq. (8) in various limits. 

A. Normal Raman scattering 

Firs t  let us consider the condition7 that the incident 

laser  energy i s  very much less than the energy w,, 

needed for a real  transition, i. e., w, << w,, . This 

represents off-resonance light scattering a s  indicated 

in diagram A of Fig. 1. Because of the above inequality 

the denominator in both terms may be considered near- 

ly a constant, Q = w,, - w, , and the sum over intermedi- 

ate states may then be contracted using completeness 

to give 

The vibrational wavefunctions a r e  orthogonal s o  the 

matrix element in the f i rs t  term gives a Kronecker 

delta function in the inital and final vibrational quantum 

numbers, vi', v;', and if we assume the ground elec- 

tronic potential i s  harmonic the second term vanishes 

unless v;' = v:' i 1. Therefore, for off-resonance light 

scattering 

where 

= (v:'/2)' l 2  if vi' = v;' - 1 . 
We see  from Eq. (10) that the f i rs t  term results in 

unshifted scattered radiation (Rayleigh scattering) and 

the second term gives re-emission shifted from the in- 

cident photon by plus or  minus one vibrational quantum, 

hence Raman scattering a t  the fundamental frequency. 

Because the Taylor ser ies  is rapidly converging, the 

Raman term is expected to be very much weaker than 

the Rayleigh term, and higher order terms in the ex- 

pansion which result in overtones in the Raman spec- 

trum a r e  expected to be weaker yet. Indeed, from a 
comparison of the Rayleigh to Raman scattering cross  
sections in simple gases i t  appears that the experimental 

ratio of intensities of the coefficients of the two terms 

in Eq. (10) is typically about 3 orders of magnitude. 

The weak variation of the energy denominator in Eq. 

(8) may be treated by expanding it in a Taylor ser ies  

about some average frequency, Q. Doing s o  results in 

the addition of another term in Eq. (9) proportional to  

(f l A5 Ig). This term may be significant and should be 
included in any detailed study of off-resonant Raman 

scattering, but its inclusion leaves the predicted quali- 

tative behavior of the scattering unchanged-the Ray- 

leigh line i s  much more intense than the fundamental, 

etc. Since we a r e  primarily interested in resonant 

scattering, for which case all approximations based on 

a slowly varying denominator fail completely anyway, 

a more complete discussion of these approximations 

would lead us too far  afield and we refer the reader to 

Ref. 8, where a complete discussion i s  presented. 

B. Discrete resonance Raman scattering 

1. Frequency spectrum 

In the limit of the laser  frequency coinciding with a 

real  transition (w, = w,,) for some l i ) independent of 

whether or not the levels a r e  discrete or  continuous, a 

situation completely different from the nonresonance 

case arises.  In this resonance condition in the sum 

over states in Fq. (8) in no approximation whatsoever 

a r e  the denominators constant, s o  the completeness 

argument fails and all terms may contribute to both 

the Rayleigh and the Raman scattering. However, be- 

cause of the rapidly converging Taylor ser ies  in which 

the coefficient of the second term in typically about 3 

orders of magnitude smaller than the first, most of the 

Rayleigh and the Raman scattering intensity will now 

result from the f i rs t  term alone i. e. 

No longer is there a selection rule discriminating 

against overtones, but instead the overtones a r e  ex- 

pected to be strong and dependent only on the magnitude 

of the appropriate Franck-Condon overlap factors. 

Further simplifications of Eq. (11) may be made for 

discrete resonance Raman scattering. When the in- 

cident frequency i s  in the discrete resonance region 

and resonant with a specific initial to intermediate 

state transition then that transition should dominate the 

summation and all other transitions a r e  weak in com- 

parison. Equation (11) may then be written 

Note that because we a r e  now considering resonance 

with a single discrete state, it is  necessary to include 

the damping term, ir, which was omitted from the 

previous formulas for simplicity. The linewidth, r, 
was of course not important in the off-resonance Ra- 

man case because i t  was s o  small in comparison to 

w,, - w, . From Eq. (1) we then obtain the following 
expression for the scattering intensity: 

From this equation we s e e  that the structurein the 

spectrum of the re-emitted light then will depend on the 

specific vibrational and rotational quantum numbers of 

the selected excited state. The intensities of the suc- 
cessive overtones will vary erratically depending on the 

J. Chem. Phys., Vol. 64, No. 9, 1 May 1976 
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magnitudes of the Franck-Condon overlap factors con- 

necting the intermediate and final states. A slight 

change in incident frequency will bring about resonance 

with a different discrete state of the complicated ex- 

cited state vibration-rotational manifold, with dif- 

ferent vibrational and rotational quantum numbers s o  

that a completely different appearing re-emission spec- 

trum may be observed. The effect of collisional ener- 

gy redistribution further complicates this spectrum a s  

will be seen later. 

2. Re-emission lifetime 

While the above discussion described the frequency 

dependence of the intensity variations for discrete 

Raman scattering, time dependent excitation intensi- 

ties12 a r e  needed to understand the re-emission life- 

time behavior. Consider a simple three level system 

such a s  that shown in Fig. 3.  The scattering process 

consists of the absorption of an excitation photon (fre- 

quency w,) and the emission of a Raman shifted pho- 

ton (frequency w,) with a consequent change in the sys- 

tem state from Ig) to If). Although throughout this 

section we use Raman scattering a s  our model in the 

lifetime calculations, the arguments a r e  equally ap- 

plicable to Rayleigh scattering. We now apply a pulse 

of light, such as that shown in Fig. 4, of frequency 

o, to the system and ask what the time response of 

the Raman shifted re-emission is. For the moment 

we consider arbitrary pulse shapes, with the only re-  

striction being that the pulse intensity i s  zero for t < 0. 

For weak excitation fields, the time response of the 

Raman shifted radiation may be determined by treating 

the excitation pulse as a perturbation on the system and 

using second order time dependent perturbation theory 

to calculate the probability amplitude for the system to 

be in state I f  ), with the emission of a Raman photon 

(w,), and the absorption of a laser  photon (w,) at  time 

t given that a t  t = 0 i t  was in I g). This amplitude will 

be denoted by ( f ;  w, l q2(t)), where w, is the frequency 

of the re-emitted Raman photon, and the subscript 2 

indicates that the state I $) is correct to second order. 

If the re-emission is observed with a spectrometer 

with frequency resolution function g(w), then the ob- 

served intensity of the Raman shifted radiation has the 

following proportionality: 

In order to eliminate distortions of the time response 

FIQ. 3. Model three level system for considering discrete 
resonance Raman scattering. w~ and w, are  the incident and 

scattered frequencies, respectively. 

(a) INCIDENT 

(b) SCATTERED 

FIG. 4. Incident and scattered theoretical pulse shapes. a. 

Rectangular laser  pulse with finite rise and fall times used in 

the calculations. b. Calculated scattered pulse shapes for 

resonant excitation ( A w =  0) and off-resonant excitation 

(Aw>> 7 ) .  

of the Raman intensity caused by using too narrow a 

frequency filter, the spectrometer frequency resolution 

is taken to be sufficiently broad that i t  passes essential- 

ly all of the Raman reradiation. Doing so, we may 

se t  g(w) = 1. 

If the excitation field i s  given by E,(t) = ei"~'s(t) ,  

where S(t) = 0 for t 5 0, then the second order transi- 

tion amplitude may be written 

where 

Here of, and wig  a r e  the energies of the states I f )  and 

l i ), relative to Ig) ; (2I3-l is the natural lifetime of the 

state l i); and the variables of integration, 7, T', cor- 

respond, respectively, to the time of absorption of a 

laser  photon and the time of re-emission of a Raman 

photon. 

Although the algebra is  somewhat tedious, the inte- 

gral  in Eq. (15) may be carried out and Eq. (14) evalu- 

ated. It is simpler, however, to note13 that the time 

dependence of the re-emitted light intensity is deter- 
mined by the time evolution of the population of the in- 

termediate state, i. e., 

where I (i I ql(t)) 1 is the admixture of the intermediate 

state I i) into the state Ig) by the perturbation, E,( t ) ,  

correct to f i rs t  order. In analogy with the preceding 

discussion, this quantity is determined by 

J. Chem. Phys., Vol. 64, No. 9, 1 May 1976 
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1 Using the above formulation, other pulse shapes such 
(i 1 = (i 1 P G(t) , (17) a s  a cusp function, may be handled with equal facility, 

We have chosen the shape shown in Fig. 4 because it 
where 

does not require the excitation to have been turned on 

G(t) = e-rt e-iwit J~~ ei(wi-fr)T e - i w L T  s (  T ) ~ T  . for an infinite time in the past, and since by choosing 

T sufficiently large, the deconvolution of the input 

pulse from the output is  relatively easy. 
Using Eq. (17) in Eq. (16), we obtain for the observed 

Raman intensity Specifically, the function S(t) is  defined by 

Upon specification of the pulse envelope function, = (1 - e-7T) e-7(t-T) T 5  t , 
S(t), the evaluation of G(t) proceeds simply. For 

(19) 

clarity of discussion, we take pulse to be a s  shown in where T i s  the pulsewidth, and y-I gives the r i se  and 

Fig. 4.  Finite exponential r i se  and fall times a re  fall time of the electric field of the pulse. Letting Aw 

assumed in order to minimize the effects of transients. = w,, - w, and 8 = y - r, the general result is  

A (d 
cosAwt - e'r(t-T) cosAw(t - T) - - (e-rt sinAwt - e'r't-T'sinAw(t - T)) r P t 2 T .  (20) 

Putting Eq. (20) into Eq. (18), the time dependence of the re-emission i s  determined. 

To obtain a qualitative understanding of the be- 

havior of I G(t) 1 ', i t  is desirable to take the excitation 

pulse r i s e  and fall times to be much faster than the 

natural lifetime of the excited state, that is, y>> I'. 

Under this condition for exact resonance, Aw = wit - w, 

= 0, we get 

2 
I G(t) I fo r  this case, a s  shown in Fig. 4, has a r i se  and 

fall time characteristic of the natural response time of 

the system (2r)-'. However, far  off resonance, the re-  

sponse i s  "fast" in that it follows the excitation pulse, 

a s  may also be seen from Eq. (20) by taking the case in 

which the shift from resonance is much greater than 

the Fourier broadening of the pulse, i. e. , Aw >> y. 

Then, 

The behavior of I G(t) 1 under this condition is also 

shown in Fig. 4. The case for Aw = y is more com- 
plicated because the behavior is, in this case, deter- 
mined by the rapidly oscillating s in  and cos terms in 

Eq. (20). 

From Fqs. (21) and (22) we find that on resonance 

the time response is "slow, " being limited by the natural 

lifetime of the excited state. Off resonance, the time 

response i s  fast, being limited by the temporal line 

shape of the probing pulse. The question of what the 

scattering time i s  in the intermediate region is an in- 

teresting one. Intuitively, we would expect the life- 

time to be governed by the uncertainty principle. In 
this argument the lifetime At for the re-emission i s  

expected tobe limited by the frequency difference Aw 

between the excited state transition frequency and the 

incident frequency, i. e. ,  At = l / A w .  That is, if energy 

is not conserved in the transition to  the excited state, 

by an amount Aw, then the time the molecule can spend 

in the state if limited to l / A w .  Unfortunately, efforts 

to measure such a scattering time a r e  complicated be- 

cause the precise definition of the scattering time be- 

comes unclear owing to limitations imposed by the fre- 

quency-time uncertainty principle. 

In order to measure a scattering time T in an off- 

resonance experiment, we must sharpen the r i se  and 

fall times (2y)-' of our excitation pulse s o  that T L  (2y)-'. 

If we expect a scattering time T of order l / A w ,  then 

this requires that Aw < y. In this region I G(t )  1 a s  
given by Fq. (20) is rather complicated, with a strong 

oscillatory component at frequency Aw. The leading 
and trailing edges of the response pulse a r e  by no means 
exponential, s o  that an unambiguous measurement of the 

scattering time is impossible. The cause of difficulty 

is easy to uncover. By temporally sharpening our ex- 

J. Chern. Phys., Vol. 64, No. 9, 1 May 1976 



3526 D. L. Rousseau and P. F. Williams: Resonance Raman scattering 

citation pulse, we have broadened its  frequency spec- 

trum by an amount y2 Aw. We now s e e  re-emission 
from a range of excitation frequency components, some 

of which a r e  resonant with the initial transition. The 

oscillatory behavior results from an interference of 

each of these re-emission components. Because even 

in physically allowable "gedanken" experiments a di- 

rect  measurement of the scattering time fails, l4 the 

question of the detailed nature of i t s  variation with in- 

cident frequency must be approached with some care,  

We can say that on resonance (AIJ = O), the scattering 

time 7 for the Raman process i s  equal to the natural 
lifetime of the excited intermediate state involved, 

and off resonance, TS l /Aw.  As we will discuss 

later, this prediction is completely consistent with all 

of our experimental results, 

3. Collision effects 

The frequency behavior of the scattering of mono- 

chromatic light in situations where collisions a r e  im- 

portant was derived first  by ~ u b e r ' ~  and later by Mollow 

and Omont et nl., l6 and the theory for  the temporal be- 

havior under such collisions was derived by Huber. '' 
In the derivation of the expected spectral re-emission 

properties that take place when molecular collisions 

may occur, l5 the collisional processes were treated 

in the impact approximation. We obtain for the Raman 

scattering 

We have neglected Doppler broadening and broadening 

of the ground and final states. The intermediate state 

linewidth consists of three Lorentzian contributions: 

yN corresponds to the natural lifetime; y, i s  the 

broadening resulting from a shorter lifetime caused 

by inelastic collisions, i. e., those collisions in which 

the molecule i s  knocked into a different quantum state; 

and y, is the contribution from quasielastic collisions, 

i. e., those collisions in which the phase of the oscil- 

lator is interrupted but it remains in the same quantum 

state. Note that the f i rs t  term in braces in this equa- 

tion is equivalent to our previously derived Eq. (13). 

In the limit of a very low pressure gas y, and y, a r e  

zero, s o  the second term in the braces in Eq. (23) 
vanishes. In this low pressure limit, and where only 

one intermediate state i s  contributing to the scattering 

amplitude, the f i rs t  term in Eq. (23) fully characterizes 

the light scattering. There is a phase memory be- 

tween the incident and scattered radiation and for an in- 

dividual molecule the scattering process is coherent 

regardless of whether or  not the incident frequency 

coincides with the center frequency of the transition. 

When the incident frequency is moved away from reso- 

nance, the intensity of the scattered light varies in a 

Lorentzian manner a s  defined by Eq. (23) and may be 

appropriately termed Raman scattering (resonance 

Raman scattering for exact resonance). 

As the gas pressure is increased, the second term 
in the braces in Eq. (23) becomes important. This 

term represents a physically distinguishable process, 

resulting from a disturbance in the excited state such 

that the phase is randomized. The re-emission in- 

tensity for this incoherent process compared to the 

Raman process is given by the probability for elastic 

collisional broadening divided by the probability for 

radiative re-emission without suffering an elastic col- 

lision, i. e., y, /(yN+ y,). Since all phase information 
is lost in the collision, in contrast to  the Raman term 
this term corresponds to independent absorption and 

emission processes. The emission resulting from the 

second term in Eq. (23) is  redistributed over the full 

width of the pressure broadened excited state, and in- 

dependent of the excitation frequency, it is centered at 

the resonant energy and has a lifetime of l /(yN+ y,). 

Obviously this may occur only if the line broadening 

mechanism includes a relaxation process which can 

take up or  remove energy. In gases this occurs through 

quasielastic collisional broadening where during a col- 

lision the phase of the oscillator is interrupted but the 

molecule remains in the same quantum state. Because 

this term results in a redistribution of the incident en- 

ergy, to  maintain generality we shall refer to i t  a s  the 

redistribution term,  We emphasize that the redistri- 

bution scattering requires the presence of some excited 

state relaxation process. In the absence of such a pro- 

cess only the Raman scattering remains, even for ex- 

actly resonant excitation. Simple energy conservation 

arguments then require the re-emission linewidth to 

be independent of the excited state linewidth. A similar 

derivation using density matrix formalism was carried 

out by  hen'' for solids and in Ref. 19, where the as- 

sumption was made that the ground state linewidths 

were very narrow, and an expression equivalent to Eq. 

(23) was obtained. 

The temporal response of this term under pulsed 

excitation was investigated theoretically by ~ u b e r "  

and a general expression was derived describing the 

time dependence of the intensity. Evaluating his ex- 

pression (Eq. 3.11 from Ref. 17) for slightly off- 
resonance excitation, we obtain a time decay in the 
limit of negligible collisional broadening effects of 
e-Yt consistent with our previous result. This result 

was obtained by assuming negligible collisional broaden- 

ing and that the natural lifetime r is significantly 

longer than the decay time of the excitation pulse y, 

If, on the other hand, the collision effects a r e  large, 

we obtain a time decay of e - r t .  We see  then that the 

contribution to the time decay of those molecules un- 

affected by collisions is one that follows the laser 

pulse, while the contribution from those that have un- 
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dergone pseudoelastic collisions has the time response 

of the intermediate state. 

C. Continuum resonance Raman scattering 

For excitation into the continuum, 20 just a s  in the 

case of discrete resonance Raman scattering, we must 

consider Eq. (11): 

and again we would expect overtones to be strong and 

depend only on the magnitude of the appropriate 

Franck-Condon factors. Here, because we a r e  dealing 

with a continuum, we may assume the limit of infinitely 

narrow states and i t  is not necessary to include the 

damping term,  However, a s  will be discussed later, 

i t  i s  necessary to  somehow accommodate the pole which 

occurs for those continuum states a t  exact resonance. 

For excitation into a continuum the resonant denomi- 

nator no longer picks out a single vibrational-rotation- 

a1 state transition. Instead, all populated vibrational- 

rotational levels of the ground electronic state a r e  at 
resonance with some continuum state. The re-emission 

observed in a given overtone now, rather than result- 

ing from a single vibrational-rotational transition, i s  

composed of a summation of lines resulting from Ra- 

man transitions from all the populated levels. This 

large number of superimposed bands has an averaging 

effect on the overtone intensities and frequency de- 

pendence. An additional difference exists between the 

discrete and continuum resonance cases, In the dis- 

crete case a given line in the re-emission spectrum 

results from single excited state energy level. Be- 

cause of the A J =  * 1 dipole transition selection rule, 

the next closest intermediate state which could con- 
tribute to the intensity of that line is one separated by 

the excited state vibrational spacing. Because of the 
resonance denominator this "off-resonance" scattering 

does not contribute significantly to  the intensity of the 

line in question. In contrast, though, in the continuum 

region the spacing of vibrational levels is effectively 

infinitesimal, and a given re-emission line gets in- 

tensity not only from the continuum state i t  is in exact 

resonance with but also from other nearby continuum 

states that a r e  only slightly off resonance. This serves 

as an additional averaging effect on the intensity. In 

the continuum resonance case the various overtones, 

rather than varying in a haphazard manner as in the 

discrete case, vary in a systematic manner because 

of those two averaging effects, Similarly, when the 

excitation frequency i s  changed the form of the spec- 

t r a  change in a very continuous and systematic manner 

as certain vibrational-rotational states become weighted 

more or  l e s s  heavily by the combination of the Franck- 

Condon factors and the resonance denominator. 

D. Conclusions from theory 

The behavior of the scattering as the incident laser  

frequency is varied from nonresonance, to  resonance 
with discrete states, then a t  higher energies to  reso- 
nance with continuum states should now be apparent 

and the differences in the properties listed in Table I 

reconcilable. In particular, according t o  Eq. (10) for 
nonresonance Raman scattering wertones would be 

expected to be very weak in comparison to the funda- 

mentals. In addition, the spectrum of the fundamentals 

should be highly structured owing to all the allowed 

Raman transitions from all the populated vibrational- 

rotational levels. In contrast, in the continuum re- 

gion the scattering according to Eq. (11) should con- 

s i s t  of numerous overtones of similar intensities and 

each having a great deal of structure. The scattering 

intensity in this case is governed by the weighted sums 

of the Franck-Condon overlap amplutides. When the 

incident frequency lies in the discrete region, the con- 

tinuum contribution i s  now obscured by the strong 

resonances with specific intermediate states. Again 

there should be numerous overtones but the intensities 

of the various wertones should vary erratically be- 

cause of the variations in the (f I i) overlap factor in 

Eq. (12). 

When the incident frequency i s  varied in normal Ra- 

man scattering, because it is far  from resonance and 

the resonance denominator may be considered to be 

constant [see Eq. (9)], all  of the frequency dependence 

is left in the wb factor of Eq. (1). On the other hand, 

for discrete resonance Raman scattering a small 

change in incident frequency causes the resonance to 

occur with a different intermediate state [ ~ q .  (12)] 

s o  a completely different spectrum is observed. In 
continuum resonance Raman scattering the spectrum 
also changes with excitation frequency, but owing to 

the averaging effects discussed the changes a r e  smooth 

and continuous. The Stokes-anti-Stokes ratio for non- 

resonance scattering is proportional to the population 

of the state involved. In both discrete and continuous 

resonance Raman scattering this ratio i s  not solely 

population dependent because the overlap factors also 

affect the experimental ratio, 

An upper limit for  the scattering time of a Raman 

process is approximately (Aw2+ r2)-1/2, where r is the 

natural linewidth. In the discrete region for exactly 
resonant excitation, Aw = 0, s o  the scattering time i s  

given by the natural lifetime of the state involved, 

typically 10-~-10-' sec. For incident frequencies off 

resonance with the discrete transition and for normal 

off-resonance Raman scattering, the upper limit of the 

scattering time i s  given by ~ / A W  (typically 10-14-1~-15 

sec  in the normal off-resonance Raman scattering 

case); and in continuum resonance Raman scattering 

an upper limit may be given by the time needed for the 

atoms to fly apart (- lo-'' sec). Although the definition 
of the scattering lifetime becomes unclear in these 

situations because a direct measurement by time de- 

cay can no longer be made, the manifestations of the 

shortened time for  the molecule-photon interaction do 

have a predictable effect on other physically measur- 

able properties such as foreign gas quenching; namely, 

quenching is observed only when the gas collision rate 

is comparable to the time for re-emission. Conse- 

quently, for off-resonance Raman scattering and for 

continuum resonance Raman scattering where the scat- 

tering time is fast, quenching of the Raman intensity is 

observed only a t  very high foreign gas pressures. On 
the other hand, for discrete resonance Raman scat- 
tering a t  exact resonance quenching i s  observed a t  
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very low foreign gas pressures (fractions of an  atmo- 

sphere). As the incident frequency i s  moved away 

from exact resonance in the discrete region, the t ime 

for re-emission becomes faster and quenching i s  only 

observed at higher pressures (- 1 atm). 

The depolarization ratio of Sand 0 rotational branches 

is independent of the incident frequency, but the de- 

polarization factor of the Q branch varies with the ex- 

citation frequency. For normal Raman scattering it is 

typically 0.001-0.01 and depends of the anisotropy of 

the polarizability. 22 In resonance the depolarization 

behavior has been treated recently by silverstein" and 

by Jacon and Van Labeke. " In each case they used 

perturbation theory and showed that, for high J,  the 

discrete resonance Raman Q branch depolarization 

ratio is $ and for continuum resonance Raman scatter-  

ing i t  i s  $ i f  the angular momentum along the inter- 

nuclear axis i s  zero. 

I l l .  EXPERIMENTAL RESULTS AND DISCUSSION 

Spectral and lifetime measurements were made on 

molecular iodine to test  the scattering theories, The 

well-established electronic states of I, make i t  a very 

suitable choice for such studies. As shown in Fig, 2, 

the excited state potential function B ( ~ I I ,  +,) has a dis- 

sociation limit 20 162 cm-' above the X('C ,+,) ground 

state. As such, there a r e  several  argon ion laser  

lines with frequencies above the dissociation limit and 

several  argon ion and krypton ion laser  lines below the 

limit, making the experimental studies in both re-  

gions straightforward, Numerous scatteringatz4 (or 

fluorescence) studies have been carried out in both 

regions but in general the emphasis has not been on 

detailed frequency dependence studies. We have, 

under high resolution conditions, studied the spectral  

changes occurring with several  different excitation 

frequencies above the dissociation limitz0; and we have 

measured the spectral and temporal changesz5 as the 

incident laser  frequency was tuned away from resonance 
with a transition to a single discrete state. Our re-  

sults a r e  consistent with the preceding theoretical dis- 

cussion and with the characteristics listed in the sec- 
ond and third columns of Table I. 

The spectral measurements were obtained in a stan- 

dard manner. Coherent Radiation Models 52 and 53 a r -  

gon ion lasers  were used a s  the excitation sources, 

and the light was focused into the gaseous reagent 

grade I, with a short focal length lens. The scattered 

light was gathered a t  right angles and focused onto the 

sl i ts  of a Spex 1401 Double Monochromator. The dis- 

persed light was detected with an ITT FW-130 photo- 

multiplier, amplified, and displayed on a s t r ip  chart 

recorder.  

A. Discrete resonance Raman scattering 

In these experiments the reagent grade I, was dis- 

tilled several  times prior to distillation into a sealed 

quartz spectroscopic cell. The pressure  of the I, in 

this cell was controlled by placing a low temperature 

bath around a side a r m  on the cell. Typically, how- 

ever, experiments were run with the side a r m  either 

a t  room temperature giving an I, pressure  of - 0.25 

Tor r  or at ice temperature giving a pressure of - 0.03 

Tor r .  In these experiments great care  was taken to 

insure that no residual a i r  remained in the sample cell, 

a s  i t  would yield spurious data due to quenching. 

1. Frequency spectrum 

The re-emission from I, in the region of discrete 

transitions i s  characterized by a se r i e s  of overtones 
of erratically varying intensity a s  shown in Fig, 5. 

This spectrum was obtained by single mode excitation 

in the 5145 A region. The vibrational fundamental 

appears a t  about 213 cm" and each overtone i s  sepa- 

rated by about this frequency. We have arbitrarily 

stopped the spectrum after the Av'' = 9 line, but sev- 

era l  more overtones may be readily seen, Each of the 

overtones results from a transition to a specific in- 

termediate excited u' state, in this case u' = 58 of the 

B state, and then a re-emission to the ground state 

with the overall change in the vibrational quantum num- 

ber  indicated in the figure. When the rotational selec- 

tion rule for a dipole transition is AJ= * 1, a s  i t  is  in 

I,, a pattern of doublets i s  observed in the emission, 
as seen here. This occurs because after the initial 

transition to the excited state with rotational quantum 

number J' re-emission to final states with J" = J ' +  1 
or J" = J' - 1 a r e  possible, resulting in a doublet. The 

overall change in the ground state vibrational quantum 
number J" then will be  0 and + 2 if the initial state is 

J' - 1 (designated an R transition) and it will be 0 and 

- 2 if the initial state i s  J ' +  1 (designated a P transi- 

FIG. 5. Survey spectrum of 

d iscre te  resonance Raman 

scattering f rom !2. The l a se r  

was  se t  a t  5145 A and single 
AV-1 I,_ moded with an  etalon. 

500 

FREQUENCY ( cm-I ) 
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FREQUENCY (cm-') 

FIG. 6. Re-emission spectra of the vibrational fundamental 

region of I2 excited ino the region of discrete resonance Raman 
scattering with 5145 A. The laser  mode spacing is about 130 

MHz. The top spectrum, labeled Mode t 20, was taken at the 

same laser  frequency as  the spectrum in Fig. 5. 

tion). The specific re-emission seen in Fig, 5 results 

from an initial transition from the u" = 1 vibrational 

and J" = 99 rotational level of the X state to the u' = 58, 

J' = 100 level of the B state and is therefore termed 

a 58' - 1" R(99) transition. 

As discussed in conjunction with Eq. (12), for dis- 

cre te  resonance Raman scattering only one inter- 

mediate state dominates the scattering, resulting in the 

re-emission doublets seen here. The intensity varia- 

tion between overtones results from variation in the 

Franck-Condon overlap factors between this intermedi- 

ate state and the final state, i. e., (f l i). The addi- 
tional structure seen near some of the overtones results 

from collisional transfer lines and re-emission lines 

from additional intermediate states that a r e  only slight- 

ly out of resonance. In the spectra reported here the 

linewidth of the individual lines is limited by the spectrom- 

eter resolution, but in line shape measurements with 

a Fabry-Perot spectrometer the expected Doppler plus 

hyperfine widths have been observed. 

By changing laser  modes i t  is possible to change 
from resonance with one intermediate state transition 

to  resonance with another. In Fig. 6 a higher resolu- 
tion spectrum of the vibration fundamental region of 

Fig. 5 is shown (labeled Mode # 20) and compared to a 

spectrum obtained with a laser  mode shifted by - 2.5 

GHz (labeled Mode # 0). In shifting the frequency by 

only 2.5 GHz, the emission doublet has disappeared 

entirely and a triplet is now observed. The triplet i s  

seen because the laser  is now at  resonance with two 

transitions-one a ~ [43 ' -0"  ~ ( 1 3 ) ]  and one an R[43'- 

0" ~ ( 1 5 ) ]  resulting in overlapping Q branch AJ" = 0 

and 0 branch (AJ" = - 2) and Q branch and S(AJ" = + 2) 
branch contributions, respectively. 

2. Re-emission lifetime 

The lifetime measurements were made on an appara- 

tus built and describedzs by R. Z. Bachrach in which 

the time decay i s  measured by a delayed coincidence 

technique. Again, Coherent Radiation Model 52 and 

53 argon ion lasers  were used a s  the excitationsources. 

The laser  beam was modulated acoustooptically to give 

rectangular pulses with a 3 nsec r i se  time although the 

time response of the electronics used in these experi- 

ments was not that fast. The width of the pulse could 

be varied continuously from about 20 nsec to several 

psecs, but most measurements were made with 100 

nsec pulses. The scattered light, after dispersion by 

the Spex monochromator, was detected by the FW-130 

photomultiplier. After feeding the signal to a time-to- 

amplitude converter, a decay curve was then obtained 

on a pulse height analyzer. Lifetimes ranging from 

about a 10 nsec lower limit could readily be measured. 

All the discrete resonance experiments reported here 

were carried out in the 5145 A region, where several 

I, absorption lines may be brought into resonance by 

tuning the single mode laser through the Doppler pro- 

file of the laser  line. The laser  tunes with discrete 

mode jumps of -95 MHz for the Model 53 laser, of 

- 130 MHz for the Model 52 laser. A total frequency 

range of nearly 10 GHz i s  available from this mode 

selection. In the lifetime measurements the spectrom- 

eter resolution was maintained a t  2 cm-' or  better s o  

that a single re-emission line could be isolated. All 

data were obtained in the frequency region of the vibra- 

tional fundamental (a frequency shift from the incident 

laser  of about 213 cm-I). 

To study the behavior of the lifetime on and off reso- 

nance the spectrometer was se t  t o  - 216 cm'l to isolate 

the S branch of the triplet shown in the bottom of Fig. 

6. The modes of the incident laser  were then changed 
s o  a s  to a t  f i rs t  be on resonance with the R(15) transi- 

tion resulting in this re-emission and then t o  gradually 

move out of resonance with the transition. Although the 

laser  was being shifted away from resonance, because 

the spectrometer was se t  at a specific frequency the 

behavior of a single discrete intermediate state was 

still being studied without interference from other 

transitions. Similar experiments a t  -213 cm-I were 

done on the Q branch [resulting from both the R(15) and 

P(13) transitions]. The time decay results25 of the S 

branch a r e  shown in Fig. 7. The laser pulse in these 
measurements was 100 nsec wide. The 0.0 GHz spec- 
trum was obtained by adjusting the laser frequency to 

obtain the maximum intensity of the re-emission from 

the P(13) and R(15) transitions, i. e . ,  to be precisely 

a t  resonance. The other time decay measurements 

were made by shifting the laser  modes away from this 

resonance position. The l / e  lifetime (- 300 nsec) of 

the on resonance (0.0 GHz in Fig. 7) is  significantly 
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FIG. 7 .  Time decay data for pulsed excitation of molecular 

iodine. The spectrometer was set to observe the re-emission 

from the Raman shifted S branch (- 216 cm-' shift) of the 

43'-0" R(15) transition. The laser pulse is  shown in the upper 

left. In the lower left is  the time decay data obtained for 

resonant excitation and on the right a re  data for off-resonant 

excitation shifted by 1.2 GHz and 2.2 GHz from exact reso- 

nance. The accumulation time was substantially different for 

each plot ranging from a few minutes for the 0 Gflz decay plot 

to several hours for the 2.2 GHz decay plot. 

shorter than that obtained in prior measurements. 29 

This results  from diffusion of iodine molecules out of 

the narrow illuminated region focused on the spectrom- 

e ter  entrance slit, thereby selectively discriminating 

against the long-lived events. With larger sl i ts ,  we 

recorded lifetimes of - 1 psec, consistent with prior 

measurements. 

At 1 .2  GHz off resonance there a r e  clearly two dif- 

ferent lifetime contributions-one short-lived re-emis- 

sion, decaying in a time limited by our 10 nsec tempo- 

ra l  resolution, and one long-lived component with the 

same decay constant a s  the 0.0 GHz measurement. 

Naively, on the basis of a single physical process one 

may have expected to see  a continuous change in life- 

time in this region and therefore may be tempted to 

interpret these results  at 1 .2  GHz a s  supportive evi- 

dence for two independent physical processes (long- 

lived resonance fluorescence and short-lived Raman 

scattering). However, consideration of the magnitudes 

of the quantities involved shows that it results  from the 

complicated line shape of the iodine absorption. It 

must be remembered that a frequency shift a s  small  a s  

20 MHz from resonance results  in an uncertainty- 

limited lifetime of 10 nsec, the lower limit of our tem- 

poral resolution. In addition, the absorption lineshape 

of iodine is not determined by i ts  natural (radiative and 

nonradiative) lifetime, but primarily by the Doppler 

broadening and the hyperfine splitting, resulting in a 

total linewidth of over 1 GHz. Consequently, incident 

frequencies in the wings of the absorption tail (see 1.2 

GHz spectrum in Fig. 7) a r e  on resonance (Aw < 100 

kHz) with some components within the Doppler profile, 

and very far  off resonance (Aw> 20 MHz) with others, 
giving the long- (natural lifetime) and short- (< 10 nsec) 

lived contributions, respectively. 

Further off resonance a t  2.2 GHz in Fig. 7, the re-  

emission is  dominated by the fast response and only a 

weak residual slow response remains. Decay curves 
similar to the 2.2 GHz curve were obtained from 1.6 

GHz off resonance to 2.6 GHz. Because of the weak- 

ness of the re-emission from this R(15) transition a t  

2.6 GHz off resonance, measurements beyond this 

point were not made. In measurements between 0.0 

and - 1.5  GHz off resonance the excitation frequency 

was still in the wings of the Doppler tail, s o  a s  the 

incident frequency was moved away from resonance the 

intensity of the "longw-lived component progressively 

became weaker with respect to the "shortM-lived one. 

However, for incident frequencies beyond 1,6 GHz off 

resonance where the incident frequency was in the 
Lorentzian wings of the absorption the relative intensi- 

ties of the two components no longer changed. 

It i s  worthwhile to note that the on-resonance (0 GHz 

in Fig. 7) predicted time response for y>> r given by 

Eq. (21) and depicted in Fig. 4 is  not consistent with 

the response actually observed. Specifically, the 

leading edge of the pulse is predicted to have a r i se  

quadratic in (I - e-rt), which i s  very different from the 

dependence observed in Fig, 7. This difficulty re-  

sults from two effects. First ,  in the decay spectrum 

of Fig. 7, the peak power of the laser  was - 50 mW, 

causing the resonant transition to  saturate. In Fig. 8 

we present on-resonance time decay data obtained 

with - 0.1 mW of power and an I, pressure  of 0.25 

Torr .  Note in particular the difference in the leading 

LINEAR 

I 1 I I I I I I I 

0 0.5 

TlME ( p s e c )  

FIG. 8. Linear and logarithmic display of time response re- 

sulting from excitation of room temperature I2 at  exact reso- 

nance. To obtain these data the laser power was lowered to 

0 .1  mW to reduce saturation effects. The dashed line corre- 

sponds to the position of the excitation pulse. 
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edge of the pulse. In this figure we believe the devia- larger than a natural linewidth for these transitions, 

tion from linearity in the decay portion of the log plot s o  that for excitation frequencies near the center of the 

results from photomultiplier noise. A second effect Doppler broadened profile, the re-emission intensity 

causing the pulse to  deviate from the simple (1 - e-rf)2 from the ensemble is to an excellent approximation 

dependence predicted by Eq. (21) results from the Dopp- given by !_", I G ( t )  1 d ~ w  . This integral is easily car- 

l e r  broadening. This broadening is typically much ried out using Eq. (20), with the following result: 

1 ~ ( f )  I2daw = 71 - (1 - e-"') - 2y(l - - (y- 2I')(1 - e-")' 1 

In Fig. 9 this function is plotted, and in the insert in not be expected until the collision rate equals the re-  

the upper right it i s  compared with the Fig. 8 data for emission lifetime. In Fig. 10 we present quenching 

the f i rs t  100 nsec. In the calculation (2r)" was taken data a t  several different excitation frequencies obtained 

to be 125 nsec, the measured value in Fig. 8, and (2y)-1 by adding foreign gas, Nz, to  the iodine cell. In Fig. 

was taken to be 3 nsec, The agreement between the 10 the labels on each curve correspond to the frequency 

observed and calculated spectra is quite satisfactory, shift in laser  modes (one mode - 130 MHz) with the 

In the direct lifetime measurements reported here, 

we conclude that on resonance the lifetime i s  slow and 

off resonance i t  is fast. As discussed, the uncertainty 

principle allows direct measurement only of an upper 

limit t o  the off-resonance lifetime. However, we might 

expect quenching behavior to serve a s  an indirect mea- 

su re  of intermediate lifetimes. By adding a foreign gas 

to the I,, quenching of the re-emission intensity would 

FIG. 9. Linear and logarithmic display of time response pre- 

dicted from Eq. (241 with a 100 nsec pusle. (23.1-' was taken 
to be 3 nsec for the l ase r  pulse rise time and (2r)- '  was taken 

to 125 nsec for the room temperature I2 response time. The 
insert i s  a linear display of the first 100 nsec of the response, 

and for comparison data points taken from Fig. 8 are  shown. 

P(13) and R(15) transitions. The spectrometer was se t  

to  observe the fundamental Raman re-emission a t  a 

frequency shift of about 216 cm". As expected, when 

the incident frequency is near the center of the reso- 

nance the foreign gas very rapidly quenches the fluo- 

rescence. Off resonance considerable foreign gas had 

to be added to  the cell before a change in the fluores- 

cence intensity was seen. One would like to  conclude 

from this that a lifetime for re-emission could be cal- 

culated from that pressure,  However, that would only 

be possible if all of the broadening resulted from in- 

elastic collisions, i. e., those lifetime broadening col- 

0 

I I I I 

0 I 10 100 loo0 

PRESSURE (mm Hg) 

FIG. 10.  Quenching behavior of the I2 re-emission upon the 
addition of N2 gas. The curves a re  labeled by laser  modes 
shifted from exact resonance with the P ( 1 3 )  and R(15)  lines. 

The laser  mode spacing is 130 MHz. 
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FIG. 11. Time decay data for the I2 re-emission obtained at 

two different I2 pressures. 

=*- 
.---:c;?-- 

L 

I I I I I I I  

lisions in which the molecule is knocked into a com- 

pletely different quantum state. Pseudoelastic col- 

lisions, though, which interrupt the phase but leave the 

molecule in the same quantum state, may a lso  take 

place. Broadening from such collisions in an off- 

resonance experiment effectively increases the absorp- 

tion linearly with pressure, but the quenching-decreases 

the fluorescence linearly with pressure,  giving a pres-  

s u r e  independent intensity in the low pressure region. 

Finally a point is reached where the absorption saturates 

s o  the overall fluorescent intensity s t a r t s  to  decrease. 

The pseudoelastic collisions then, a s  originally pointed 

out by St. Peters and Silverstein, 30 give a behavior 

qualitatively the same a s  one would expect from a life- 

time broadening mechanism, and conclusions may not 

be drawn about the system lifetime. 

.. .r.. . . . -.. ...,:- .*, ..-.,.-&,.-*. 
" I I I I , ,  

3. Coi/ision effects 

0 0.5 0 0.5 
TIME Gsec) 

To study the origin of the long-lived remnant shown 

in Fig. 7 a t  2.2 GHz, we have made a determination of 

the effect increased pressure  has on the lifetime re-  

sponse. '' The decay curves obtained in Fig. 7 were 

obtained a t  -0.03 Tor r  of I,. In Fig. 11 the decay 

curves obtained a t  - 1.7 GHz off resonance with I, 

pressures  of 0.25 T o r r  and 0.03 T o r r  a r e  presented. 

At 0.25 Tor r  of I, there a r e  two prominent components 

to the scattering. One has a fast r i s e  and decay (it 

follows the excitation pulse) and therefore results from 

the Raman contribution to the scattering [first term in 

braces in Eq. (23)]. The other contribution has an  ex- 
ponential r i se  and decay and we attribute i t  to the r e -  

distribution term. It has a lifetime of about 125 nsec, 

substantially shorter than the natural lifetime, a s  ex- 

pected, since a t  these pressures the lifetime i s  given 

by l /(yN + ~ r )  0 

As the I, pressure  is  lowered, y, decreases, s o  the 

relative intensity of the redistribution term to that of 

the Raman term also  decreases. Consequently, a s  
seen in  Fig, 11, at  0.03 T o r r  of I, the long-lived con- 

tribution is greatly reduced with respect to the short- 

lived component, The lifetime for the slow component 

is longer than that of the redistribution term at  the 

higher pressure  although not a s  long a s  expected on the 

basis of the natural lifetime. It exhibits a shorter de- 

cay constant than expected owing to  the spatial resolu- 

tion imposed by the narrow spectrometer sl i ts  used in 

the experiment. 

As a further study of the effects collisions have on 

the spectral re-emission, high resolution spectra were 

obtained. The measurements were carried out by di- 

recting the scattered light througti an interference filter 

centered a t  the Stokes frequency shift (- 213 cm-') and 

into a piezoelectrically scanned Fabry-Perot interferom- 

eter with a 10 GHz free  spectral range. The mea- 

surements were made in a near forward scattering 

geometry to reduce the effects of Doppler broadening 

and, a s  in the lifetime measurements, the excitation 

frequency was shifted 1.7 GHz away from the center of 

the resonant transitions. The resulting spectrum for 

0.25 Tor r  of I, is depicted by the points in Fig. 12. 

The sharp features in the spectrum result from Raman 

scattering from the S, Q, and 0 branches (in different 

orders of the interferometer) and the laser  line which 

leaked through the narrow band filter. In addition to 

the sharp features there i s  a broader underlying struc- 

ture. We attribute this to redistribution scattering. 

The sharp Raman features have widths limited by 

Fabry-Perot resolution. In contrast, the redistribu- 

tion scattering width regains the full width of the Dopp- 

l e r  broadened transition. 

The solid curve in Fig. 12 is a calculation of the 

spectrum obtained in the following manner. The f re-  

quencies of the sharp S, Q, and 0 Raman lines were 

fitted to coincide with the experimental frequencies and 
were assigned the expected 1, 2, 1 relative intensity 

ratios. Shifted 1.7 GHz away from each of the sharp  

Raman lines a redistribution band is  located. Its shape 

FREQUENCY 

1 GHZ - 
Q 

1\ 

I 

FIG. 12. High-resolution frequency spectrum of 214 cm-' 

Stokes re-emission of I2 obtained with 1.7 GHz off-resonance 

excitation. S', Q', and 0' correspond to the positions of the 
rotational branches obtained with resonant excitation. The 

points a r e  the experimental data. The solid line is a theo- 

retical curve, and the dashed line is the redistribution-scat- 

tering contribution. The bars  at the bottom indicate the 1 . 7  

GHz shift between each Raman-redistribution pair. 
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was determined from an optical absorption spectrum we 

obtained and its  intensity corrected for an accidental 

absorption a t  the Q branch resonance frequency. The 

resulting spectrum was then folded into a Lorentzian 

interferometer response function and a best fit to  the 

data was obtained by adjusting the relative intensity of 

the total Raman to the total redistribution contributions. 

The resulting redistribution intensity after convolution 

with the sli t  function i s  depicted by the dashed curve in 
Fig. 12. For the spectra reported in Fig. 12 we found 

that the redistribution term had an integrated intensity 

of about 0.8 that of the Raman contribution. We be- 

lieve the minor remaining discrepancies between the 

observed and calculated spectra result primarily from 

additional low intensity bands resulting from inelastic 

collisional transfer processes. 

The possible contribution from inelastic collisions 

merits more discussion. Experiments were carried 

out t o  determine if such collisions significantly in- 

fluence the time decay and frequency data. Fi rs t  the 

spectral structure of the fundamental vibrational transi- 

tion region (- 180 cm-'-250 cm-' shifted from the laser  

line) was examined in detail. AS may be seen in Fig. 

6, where part  of this spectrum is shown, transfer 

bands from inelastic collisions make only weak contri- 

butions to the spectrum. If substantial transfer band 

intensity from inelastic collisions were present in the 

1 em-' frequency window of the S branch used to mea- 

su re  the time decay, then near the region of the triplet 

strong transfer lines would be observed. Indeed, such 

lines a r e  observed when several millimeters of foreign 

gas a r e  added to the iodine. We conclude from their 

absence in our experiments that inelastic collisional 

transfer processes do not make a significant contri- 

bution to the lifetime data. 

Since the relative intensities of the two contributions 

(instantaneous and long lived) in Fig. 11 for 0.25 Tor r  

pressure a r e  approximately equal and since the broad 

and sharp features in Fig. 12 a r e  also of the same 

order, we believe that in the frequency spectrum of 

Fig. 12 we a r e  in fact observing the same contributions 

a s  in the time decay spectrum, Fig, 11, namely a con- 

tribution from pseudoelastic collisions. However, in 

the spectral measurements i t  was necessary to deter- 

mine if inelastic transfer lines passed by the narrow 

band filter and the Fabry-Perot interferometer in- 

fluenced the observed spectrum. Therefore we mea- 

sured the total transmission through the narrow band 

filter with the low resolution (1 cm-I) spectrometer and 

compared the integrated intensity of the transfer lines 

to  that of the S ,  Q, 0 triplet. From this measurement 
we found that the integrated intensity of the transfer 

bands from inelastic collisions is a factor of 3 too small 

to account for  the redistribution data of Fig. 12. We 
therefore conclude that the slow decay in Fig. 11 at 

0.25 Tor r  and the broad features in Fig. 12 result from 

pseudoelastic collisional redistribution processes. 

In the time decay spectra then, we may conclusively 

assign the long-lived component at 0.25 Tor r  as re-  
sulting from pseudoelastic collisional transfer pro- 

cesses. Although we believe that the long-lived com- 

FIG. 13. Time decay spectrum (data points) of a collisional 

transfer line resulting from inelastic scattering. The width of 

the laser pulse was 100 nsec and its position i s  indicated by 

the dashed line. 

ponent in the 0.03 Tor r  spectrum results from the 

same origin, we cannot rule out the possibility that i t  

results from excitation a t  the resonance frequency due 

to the spectral distribution of the laser  pulse.' Ex- 

periments done a t  lower pressure should elucidate this 

point. 

In the off-resonance pressure sensitive lifetime data 

of Fig, 11 the contribution from redistribution scatter- 

ing decays exponentially. If this contribution could be 

isolated in an experiment with exactly resonant excita- 

tion, for a 100 nsec pulse used in this work i t  should 

have a substantially different behavior, reaching a 

maximum somewhat after the termination of the excita- 

tion pulse due to the time evolution of the prepared 

state. Because of the limited frequency resolution in 
our time decay experiments, we have not been able to 

observe this effect for the pseudoelastic collisional 

processes. However, we have observed i t  by studying 
the time decay of a transfer line resulting from in- 

elastic collisions. As shown in Fig. 13, the time de- 

cay curve3' of a collisional transfer line reaches its 

maximum after the excitation pulse is turned off. 

B. Continuum resonance Rarnan scattering 

In experimentsz0 above the dissociation limit in the 

continuum region the gaseous iodine was in a sample 

cell held a t  a temperature of about 420 OK. By setting 
the temperature of an I, reservoir to about 360 OK, an 

Iz pressure of about 25 Tor r  was maintained. Spectra 

were obtained a t  excitation wavelengths of 4965, 4880, 

4765, and 4579 with a power level of about 500 mW. 

One half an atmosphere of gaseous nitrogen was in- 

troduced to one sample cell in order to measure the 
iodine temperature during a scattering experiment by 

monitoring the rotational distribution of the N,. The 
addition of the N, had a negligible effect on the struc- 

ture and the intensity of the re-emission. The iodine 
temperature due to heating in the laser  beam was de- 

termined to be 520-620 O K  depending on the excitation 

frequency. 
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FIG. 14. Survey spectrum 

of continuum resonance Ra- 

man scattering from IZ. The 

laser  exciption wavelength 

was 4880 A. 

FREQUENCY (WAVENUMEERS) 

When the excitation frequency i s  brought into the con- 

tinuum region many wertones  a r e  again observed, a s  

has been reported p r e v i ~ u s l y ~ ' ~ ~  and a s  i s  shown in Fig. 

14 for  excitation with 4880 A. In contrast to the dis- 

crete case, the relative intensity of one overtone to the 

next varies in a systematic way. The structure within 

each overtone is real  and results  from the 0 ,  Q, S 

branches of the multitude of vibrational and rotational 

transitions that a r e  occurring. This structure may be 

better seen under higher resolution conditions as shown 

in Fig. 15 for the overtone corresponding to  Av" = 5. 

As was first  pointed out by Kiefer and Bernstein, 32 con- 

sideration of the Fortrat  diagram for each of the rota- 

tional branches readily explains the origin of the struc- 

ture in the spectra. In this figure the sharp features 

a r e  all  S branches and their labeling corresponds to the 

initial and final vibrational levels, respectively, of the 

Raman transition. Each line consists of several  transi- 

tions within the S-branch manifold. Owing to the energy 

dispersion of the Q and0  transitions as seen in a 

Fortrat  diagram, 32 a well-defined band head i s  absent, 

and therefore these branches a r e  not well-defined dis- 

crete features in the spectrum. Instead, they lead to 

the broad underlying band seen in each spectrum. 

In the region of discrete resonance Raman scattering 

a change in the laser  frequency of 1 GHz resulted in a 

dramatic change in the scattering spectrum, In Fig. 

15, in changing the laser  frequency from 4965 to 4579 

A, over 1000 cm", the appearance of the spectrum has 

changed in a very continuous and systematic way. In 

particular, the relative intensity of the various hot 

bands has changed from a condition a t  long wavelengths 

where low v" hot bands dominate to  a condition a t  

shorter wavelengths where higher v" hot bands domi- 

nate. This systematic variation in  which higher hot 

bands dominate a t  higher laser  energies i s  true of all  

the overtones. Such a smooth variation in structure 

with incident frequency is expected on the basis of Eq. 

(11) and occurs because of the continuous variation in 

magnitude of the overlap factors a s  a function of ex- 

cited state energy. 

To more quantitatively interpret these continuum 

resonance Raman spectra we have numerically cal- 

culated a,f in Eq. (11) for depolarized continuum res-  

onance Raman scattering for several  overtones and 
laser  frequencies. In this calculation Eq. (11) was 
evaluated for transitions occurring via the B continuum 

states only. We have neglected to  consider the dis- 

crete states of the B potential well and the continuum 

states of the In,, potential whose shape, indicated 
schematically in Fig. 16, is not well known. The po- 

tential curves for both the B ~ t a t e ~ ~ * ~ '  and the X state35 

were obtained by interpolating between turning points 

which were empirically determined. Since the turning 

point data only included the banded region of the B 

states, we extrapolated the small  internuclear distance 

side of the curve with an a+ b/r12 curve. 

Once the potential curves were obtained, continuum 

wavefunctions for the B state and the bounded wave- 

functions for the X state were calculated numerically 

on a computer. The wavefunctions were calculated by 

solving a radial Schrtklinger equation by an equivalent 
finite difference equation. 36 From the resulting wave- 

functions, overlap integrals between the bounded vibra- 

tional states of the X potential and the continuum states 

of the B potential were calculated numerically. 

FREQUENCY SHIFT (cm-$1 

FIG. 15. Structure of the Av" = 5 transition for several laser 
frequencies in the continuum resonance Raman scattering re- 

gion. The sharp lines in the spectrum are S-branch transi- 

tions and the initial and final vibrational quantum numbers for 

each of these lines a re  assigned in the upper spectrum. 
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"2 3 4 

INTER-ATOMIC SEPARATION (8) 

FIG. 16. Potential energy curves of 12. 

To evaluate the Raman intensity, overlap factors 

were calculated between all the relevant ground state 

vibrational levels and a ser ies  of continuum levels. A 

small  enough net of continuum levels was selected s o  

that w e r l a p  factors for continuum wavefunctions a t  

energies not calculated could be obtained by interpola- 

tion. The potential curves were the J =  0 curves. At 

high J the shapes of the potentials change, and they both 

shift towards larger  internuclear separation. 37 How- 

ever, the effect of the rotational energy term does not 

substantially affect the shape of either the bottom of the 

X potential o r  the high energy region of the B potential 

near the inside turning point. Since the dominant con- 

tribution to the overlap integrals comes from the re-  

gion near this turning point, in the calculation reported 

here  we have neglected changes in shape of the poten- 

tial curves and have accommodated the changes in en- 

ergies of the potentials as a result of the rotational 

term, by shifting their relative positions by the ap- 

propriate rotational energies. In this manner we have 

calculated the intensities of Raman transitions originat- 

ing from the f i rs t  ten thermally populated vibrational 

levels of the X state for J  values up to J =  400. 38 

Since only one intermediate electronic state is being 

considered, Eq. (11) may be rewritten to accommodate 

the singularity a s  

where p(w,) is the density of continuum states. 

Using a,, we may now write Eq. (1) for each transi- 

tion to include the rotational and vibrational popula- 

tion factors and the 0, Q, and S brand intensity factors 

as follows: 

Here P is a constant that includes the vibrational and 

rotational partition functions, B is the iodine X state 

rotational constant, b ,  i s  the rotational branch intensity 

factor a s  given by Placzek and Teller, 39 and the zero  of 

energy was taken to be the bottom of the X potential 

well. Using this expression the Raman intensity for 

each vibrational rotational transition was calculated. 

All the rotational levels with significant population (up 

to  J =  400) and hot bands originating from the v" = 0 

to vf' = 9 ground electronic state levels were included 

in the calculation for each overtone. The calculated 

spectra were finally produced by convoluting the spec- 

t r a l  intensity with a two wave number rectangular sl i t  

function. 

In carrying out the calculation we have assumed that 

M(5) is constant. On the basis of  calculation^^^ of the 

electronic transition moment in I, we would expect this 

approximation to be valid since M(5) is nearly a con- 

stant over the internuclear separation range of interest. 

The contributions to the total intensity from the real  

and the imaginary amplitudes in Eq. (25) a r e  oscilla- 

tory with laser  frequency, a s  shown in Fig. 17. Here 

we have plotted the real  (solid curve) and the imaginary 

(dashed curve) transition amplitude a s  a function of the 

frequency above the B dissociation limit for the Ra- 

man transition v" = 4 - 7. Note that these amplitudes 

make approximately equal contributions to the intensity 

and oscillate in a mutually compatible way-for inci- 

dent frequencies in which one contribution is small, the 

other contribution tends to pass through a maximum. 

Similar behavior was observed for the other transitions. 

0 2 0 0 0  4 0 0 0  6 0 0 0  8 0 0 0  

FREQUENCY (cm'') 

FIG. 17. Variation of the real and imaginary parts of the 
transition amplitude with incident laser frequency for the Ra- 

man transition v" = 4  - 7.  The solid curve i s  the real contri- 

bution and the dashed curve is  the imaginary contribution. 
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It should be noted that this oscillatory behavior of the 

imaginary part  of the amplitude has been observed di- 

rectly40 in the discrete-continuum emission spectra 
in the I, E - B transition, 

In Fig. 18 we show the comparisons of the calculated 

and observed spectra for the Av" = 8 overtone and in 

Fig. 19 for the Au" = 3 overtone. The structure in Fig. 

18 is  similar to  the Az)" = 5 overtone shown previously. 

However, in the Av" = 3 spectrum in Fig. 19 for the 

4965 and 4880 A excitations, there i s  a clear distinc- 

tion between the S- and Q-branch envelopes. This dis- 

tinction has disappeared in the 4579 A spectrum. For 

high energy excitations these separate S and Q enve- 

lopes get washed out by the large number of h ~ t  bands 

in the spectrum owing to the tendency of higher hot 

bands to  become more prominent with higher laser  f re-  

quencies. On the other hand, a t  lower excitation fre- 

quencies where only the transitions originating from 

low v" levels a r e  strong, the S and Q envelopes may 

be resolved. 

The calculated spectra for these two se ts  of overtones 

a r e  shown on the right hand side of Figs. 18 and 19. 

Since the 4965 A excitation line i s  less  than 100 cm" 

above the dissociation limit, a spectrum for this wave- 

length was not calculated because contributions to the 
scattering from the discrete states a r e  expected to be 

large for this excitation line. The frequencies of the 

dominant freatures in the calculated spectra agree with 

those in the observed spectra within experimental er -  

-- __il 

OBSERVED r--- 

FREQUENCY SHIFT (cm- ' )  

FIG. 18. Experimentally observed and theoretically calculated 

iodine resonant Raman spectra fo r  the Av" = 8 transition. S 

numbers refer to the initial- and final vibrational state assign- 

ments of the S branches. 

r O~SERVLC CALCULATED 

I 
6 6 0  6 4 0  6 2 0  6 0 0  5 6 0  "'660 6 4 0  6 2 0  6 0 0  5 8 0  

FREQUENCY SHIFT (cm-') 

FIG. 19. Experimentally observed and theoretically calcu- 

lated iodine resonant Raman spectra for the Av" = 3 transition. 

S and Q numbers refer to the initial- and final- vibrational 

state assignments of the S and Q branches. 

ro r ,  The absolute intensity of the calculated spectrum 

for each laser  line was scaled to the experimental in- 

tensity. Except for this scale factor, these spectra 

were calculated with no adjustable parameters. 

In the calculated spectra, a s  in the observed spectra, 

the trend toward the dominance of higher hot bands a t  

higher l a se r  frequencies may be  seen. This results  

from changes in the magnitude of the Franck-Condon 

factors with incident laser  frequency. In all  the cal- 
culated spectra there i s  a general weakness of transi- 

tions originating from the lowest vibrational states 

(i. e . ,  v" = 0, 1) a s  compared with the observed spec- 

t ra .  We believe this discrepancy results  from our ap- 

proximation that the spectral features a r e  completely 

governed by the B continuum states. We have neglected 

contributions to the sum in Eq. (11) from the 'II,, r e -  

pulsive state and from the discrete levels of the B 

state. 

The ratio of the intensity of the second to seventh 

overtone was measured for each laser  excitation f re-  

quency, and a calculated ratio was also obtained. For 
spectra taken a t  4579 and 4765 A the calculated and 

measured intensity ratios agreed within experimental 

e r r o r  (- 10%). However, a t  4880 A the ratios differed 

by about 50%. Again we believe this difference a t  

4880 A results from including only the B continuum 

states in our intermediate-state calculation. We have 

not measured the relative intensities of a given over- 
tone with laser  frequency because variations in the 

absorption coefficient over the range of interest and 
also the thermal-lens effect complicate the experimen- 
tal measurement. 
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It i s  expected that the discrete states may make con- 

tributions to  the scattering intensities especially for 

laser wavelengths near the dissociation limit. In ad- 

dition, recent photodissociation41 and optical-absorp- 

tionS3 experiments have indicated that the Inl, re- 

pulsive state has a nonnegligible oscillator strength in 

the part of the spectrum we are investigating, and 

would therefore also make a contribution to the Raman 

scattering intensity. However, the position of this re- 

pulsive state i s  not well known. Although the contri- 

bution of the state to the resonant Rarnan intensity 

appears to be small, a quantitative determination of its 

optical properties in this frequency region should be 

possible after including the B discrete states in the 

summation in Eq. (11). We are currently investigating 

the possibility of using some simplified calculational 

procedures42 to facilitate this study. 
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