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Resonance saturation for four-nucleon operators
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In the modern description of nuclear forces based on chiral effective field theory, four-nucleon operators
with unknown coupling constants appear. These couplings can be fixed by a fit to the low partial waves of
nucleon-nucleon scattering. We show that the so-determined numerical values have a remarkable similarity to
values extracted from phenomenological one-boson-exchange models in a low momentum expansion. We also
extract these values from various modern high accuracy nucleon-nucleon potentials and find again the same
similarity. This paves the way for estimating the low-energy constants of operators with more nucleon fields
and/or external probes.

DOI: 10.1103/PhysRevC.65.044001 PACS nuni)erl3.20.Gd, 12.39.Fe, 24.80y, 24.85+p

[. INTRODUCTION atic analysis exists for the finite dimension-two couplings of
the pion-nucleon effective Lagrangidil], where it was
Effective chiral Lagrangians can be used to investigate thelemonstrated the LECs are saturated in terms of baryon reso-
dynamics of pion and pion-nucleon as well as nucleonnance excitation in the-, u-, andt-channel meson reso-
nucleon interactions. In all cases, one has to consider twonances. Much less is known about dimension three and four
distinct contributions, namely tree and loop diagrams, whickhcouplings, but for certain processes resonance saturation has
are organized according to the underlying power countindbeen shown to work quite well, e.g., in neutral pion photo-
[1,2]. To a given order, one has to consider all local operatorproduction off protond12]. A somewhat different scheme
constructed from pions, nucleon fields, and external source@ncluding also meson-resonance loppgas introduced in
in harmony with chiral symmetry, Lorentz invariance, andthe study of the baryon octet masses in R&8]. The situa-
the pertinent discrete symmetries. Beydod even atlead-  tion is very different concerning few-nucleon systems, where
ing order in the chiral expansion, these operators are acconanew type of operators with& nucleon fields appear$or
panied by unknown coupling constants, also called low+eactions involvingA=2 nucleong Only recently, a com-
energy constant§LECs). In principle, these LECs are plete and precise determination of the f&kwave and five
calculable from QCD but in practice need to be fixed by a fitP-wave LECs in neutron-proton scattering has become avail-
to some data or using some modaWhile in certain cases able[14]; thus it is timely to ask the question whether the
sufficient data exist allowing one to pin down the LECs,numerical values of these four-nucleon coupling constants
often some good estimate for these constants beyond naiv@n be at least qualitatively understood from some kind of
dimensional analysis is needed. In the meson sector, the teasonance saturationThis will be the topic of the present
LECs of the chiral Lagrangian at next-to-leading orderpaper.
(NLO) have been determing@], and their values can be The traditional approach to nuclear forces is the exchange
understood in terms of masses and coupling constants of thaf pions and heavier mesons and the consideration of excited
lowest meson resonances of vector, axial-vector, scalar, arslates of the nucleon. The simplest, rather successful ap-
pseudoscalar character, maybe with the exception of the scproach, considering only exchanges of single mesons and
lar sector with vacuum quantum numbgsss]. This is called  neglecting all excited states of the nucleon, is the one-boson-
resonance saturation, it has been used, e.g., to estimate LE©schange moddlOBE). If fine tuned it provides in the form
at next-to-next-to-leading ordéNNLO) (see, e.g., Ref.7])  of the CD Bonn[18] or Nijmegen I, I1[19] potentials an
or for the extended chiral Lagrangian including virtual pho-essentially perfect description of the rich set of nucleon-
tons as dynamical degrees of freed@h? A similar system-  nucleon (NN) data. We pose the question whether the physi-
cal ingredients of these modelsneson masses, coupling
constants, strong form factor parametecan be related to
*Email address: evgeni.epelbaum@tp2.ruhr-uni-bochum.de the LECs of the chiraNN forces. To that aim we perform a
TEmail address: u.meissner@fz-juelich.de low-momentum expansion of the various heavy-meson ex-
*Email address: walter.gloeckle @tp2.ruhr-uni-bochum.de
SEmail address: c.elster@fz-juelich.de
These LECs can also be calculated in lattice gauge theory. For far the nonleptonic weak LECs is less clda0].
first attempt in the Goldstone boson sector using the strong coupling®Note that in the pioneering workl6] global fits with 26 free
expansion see Reff3], while the most recent quenched calculation parameters where performed, which presumably do not allow to pin
for these LECs is given in Ref4]. down the LECs in a unique way. For more details and further dis-
2For a critical discussion of resonance saturation concerning theseussion on various differences between our formalism and the one
LECs, see Ref.9]. Note also that the status of resonance saturatiorof Ref.[16], see Refs[17,14].
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changes. This leads to a string of contact forces with increasNijmegen | and Il interactiong19], with equally perfect de-
ing powers of momenta added to the one-pion exchangescriptions of NN scattering data. This group, including CD-
That form can be compared to théN forces determined in  Bonn, Nijmegen I,Il, Argonne V18 potentials is often re-
chiral perturbation theory, which parametrizes short rangderred to as high-precisiohlN potentials. We find similar
physics in terms of a corresponding string of contact forcesesults as for the OBE potentials. This paves the way for
accompanied by the LECs and explicit one- and more-piorestimating the low-energy constants of operators with more
exchanges. The latter can be equally expanded in order toucleon fields and/or external probes. We mention that in
enable a direct comparison of contact forces in both apstudies of pion production in proton-proton collisions or
proaches. In this first study we do not address the questiomharge symmetry breaking in tHéN interaction, ideas of
whether such a comparison is not somewhat blurred by theesonance saturation have already been (i28¢24. Also,
fact that the typical momentum range of the OBE potentiald-riar [25] has discussed aspects of integrating out heavy-
and the chiraNN forces are different. The momentum range meson fields to generate local four-nucleon operators with
smoothly cut off for OBE potentials is typically 1-2 GeV, given LECs but did not attempt a detailed comparison with
whereas for the chiraNN forces considered here it is existing models of the nuclear forces as done here.
500-600 MeV. A presumably more adequate comparison The outline of the article is as follows. In Sec. Il we
would be to rewrite the OBE force into phase equivalentdiscuss the effective chiral Lagrangian for nucleon-nucleon
effective ones belonging to the same low-momentum rang@éteractions, in particular the four-nucleon terms and their
as the chiral one. This can be achieved along the line workedorresponding coupling constants. We then summarize how
out in Ref.[20]. Since we do not expect a qualitative changethese LECs are determined at NLO and give a novel pre-
of the results in which we are only interested in this firstscription to calcuate the NNLO chiral effective field theory
study, we refrain from doing that. (EFT) potential. In Sec. Ill we show how to calculate these
For the comparison it is important that the chiral forces doLECs from existing boson-exchange or phenomenological
not support deeply bound, spurious states, which can occyrotentials and compare the resulting values with the ones
in the effective field theoryEFT) approact14] and are not obtained in EFT. Section IV is devoted to the study of the
relevant, since they lie outside the theory’s domain of valid-naturalness of these coupling constants and the implications
ity. Their existence, however, destroys the phase equivalenad Wigner's spin-isospin symmetry. Our conclusions are
to the OBE models, which are free of these spurious statesummarized in Sec. V. Some technicalities are relegated to
To get rid of spurious bound states in the NNLO chiral po-Appendices.
tential we had to make a specific choice for the subleading
LECs c3 and c, which occur at NNLO and drive therm
coupling to the nucleon. In principle, they should be fixed in
the 7N system. As we found in Ref14], taking the numeri- A. Effective Lagrangian and definition of LECs

cally quite large values of the's from the Q° analysis of To be specific, we briefly discuss the approach to chiral
the wN system does not allow us to fit theN data without | agrangians for few-nucleon systems proposed by Weinberg.
introducing the unphysical deeply bound states. The domigpe starts from an effective chiral Lagrangian of pions and
nant part of thee; andc, is known to be due to an interme- ncleons. including in particular local four-nucleon interac-

diate A [11], which in theNN system correspond to dia- tions that describe the short-range part of the nuclear force,
grams with intermediatel states. In the meson exchange symbholically

picture of theN N force it is well established that graphs with

intermediateA-isobar states and pion exchange are overly Lot=LorT Lont LaN, (D)
attractive in low partial waves. This attraction is counterbal-

anced by an additionalrp exchange with intermediatd ~ where each of the terms admits an expansion in small mo-
stateg21,22. In order to account for this cancellation in the menta and quarkmeson masses. To a given order, one has
EFT we make the choice to subtract out theontribution in  to include all terms consistent with chiral symmetry, parity,
the c; values. This leads to a novel description to calculatecharge conjugation, and so on. The last term in @gjcon-

the NNLO chiral effective field theory potential, which is tains the four-, six-,. . . nucleon terms of interest here. From
free of deeply bound spuriousN states and leads to an the effective Lagrangian, one derives the two-nucleon poten-
equally good description of tidN phase shifts as using the tial. This potential is based of@ modified Weinberg count-
unsubtractea; values[14,15. Clearly this choice of the; ing [17]; more precisely, one organizes the unitarily trans-
values requires more investigations in the future by underformed infrared nonsingular diagrams according to their
standing better the role of the intermedidteexcitation at  power(chiral dimensiohin small momenta and pion masses
low energies, where the kinematics is apparently quite differ{for a detailed discussion, see Rgt7]). To leading order
ent in theNN system compared to theN system. With all  (LO), this potential is the sum of one-pion exchan@®E

that in mind we can obtain the LECs from the OBE models(with pointlike coupling and of two four-nucleon contact

in terms of their resonance parameters, and find them strikinteractions without derivatives. The low-energy constants
ingly similar to the ones determined in the EFT picture di-accompanying these terms have to be determined by a fit to
rectly from theNN data. In a further step we extended our some data, such as the tavave phase shifts in the low-
investigation to other modemN force models of more phe- energy regior(for np). At next-to-leading orde(NLO), one
nomenological character, the Argonne V188] and the has corrections to the OPE, the leading order two-pion ex-

Il. CHIRAL EFFECTIVE FIELD THEORY
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change graphs and seven-dimensional two four-nucleowherefg(p) is a regulator function chosen in harmony with
terms with unknown LECsgfor the np system. Finally, at  the underlying symmetries. Within a certain range of cutoff
NNLO, one has further renormalizations of the one- and corvalues, the physics should be independent of its precise form
rections to the two-pion exchange graphs includingand valug26]. That this is indeed the case has been demon-
dimension-two pion-nucleon operators. The correspondingtrated in Ref[14]. The central object of the study presented
I(_CEISS'I;an ble Qetefrm_ined frcl)m the th:iff{“ pe_rl_trl:rbati_o? theor)fhere are the LECs related to the four-nucleon operators. In a
analysis of pion-nucleon scattering. The existence o . . =
shallow nuclyear boFl)Jnd statéand large sgattering lengths ipectroscopm notation these are Ca"@dSO’ Cigy Cosy
forces one to perform an additional nonperturbative resumCss , Cap, -3s,:=C,, Cip , C3po, Csp,, and Csp,. In the
m?“"”- This is done here b_y obtaining _the bound and. Scaltf'ollowing, we will collectively denote these &; and C;,
tering states from the solution of the Lippmann-Schwinger ) ~
equation. The potential has to be understood as regularizefESPectively. The two LECsC; stem from the two
and the regularization is dictated by the EFT approach emmnomentum-independent four-nucleon operators, while the

ployed here, i.e., sevenC; are related to two-derivative operators as they ap-
pear in the effective Lagrangiawe have adopted the nota-
V(p,p')—fr(p)V(p,p ) fr(p’), (2)  tion to the two-nucleon potential given in R¢R7)),

Luw=LQR+ LR+,
@ - _ L NN = S eaNt t
ENN:_ECS(N N)(N N)_ECT(N aiN)(N'a;N),
1 1
L= = 5C{(NTaN)?+ [(GNN]?} = (C1 = 5Co) (NTGN)[(NT)N]+ 2 Co(NTN)[NTN + 9PN'N]

- I§C5€ijk({(NT(9iN)[(ajNT)UkN]+[((9iNT)N](NT0'jf9kN)}_(NTN)[(aiNT)UjﬂkN]+(NT0'iN)[(’9jNT)(9kN])

1 1
Cet ZC7) (0ik0j1 + 6y ;) +| 2C3+ —04) dij 5k|}{[(‘9i’9jNT)0’kN]+(NTUkaiajN)}(NTUIN)

"2 2

1 1/1
- 5[06(5ik5j| + 8, 8¢j) + Ca8ij 8] (NTo i N)[(9;NT) o N] — §<§C7(5ik5j| + 6j 6j) — (4C3—3Cy) 5ij 6y

X[(3iNTog;N) + (9;NT o giN) I(NToN), 3

whereN denotes thénonrelativisti¢ nucleon fieldsN=(p,n)", o, (1=1,2,3) are the Pauli spin matrices, and the summation
convention for repeated indices is understood. Since we are not considering external sources here, we only have partial
derivatives acting on the nucleon fields. To arrive at this expression for the most general effective Lagrangian with four
nucleon field operators, we have made use of partial integration, Fierz transformation, and the equation of motion for the
nucleons. We also require reparametrization invarid@8 of the Lagrangian, which allows us to further reduce the number

of independent terms as compared to R&B]. The complete derivation of Eq3) within the heavy-baryon formalism is
presented in Ref.27]. Note that the effective LagrangidB) corresponds to the rest-frame system of the nucleon with the
velocity operator given by ,=(1,0,0,0). The resultin@N contact potential readsn the center-of-masg.m) systenj

- -

_ : - =2 o2 ) 2 2 2L 102
Veon=Cst Cr(oq-03) +C19°+ Cok“+ (C3q°+ Cyk?) (071 02) +iCs

(GXK)+Ce(q- 01)(q- 05) + Cy(k- 0y)

X (K- ay), (4)

whereq=p’—p andk=(p+p’)/2 are the transferred and (where i=1,2 labels the nucleonsappear For example,
the averaged momentum, respectively éﬁ“iﬁ') corre- Pp-meson exchange will naturally lead to a contribution
sponds to the initiaffinal) momentum of the nucleons in the ~71- 72. In principle, at NLO, one can write down 18 opera-
c.m. system. Closer inspection of Eg) might lead to the tors in the effective potential and not just nine as appear here.
question why no operators containing the isospin matriges What seems to be completely missing are the nine operators
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TABLE 1. Values of the LECs at NLO and NNLO for the cutoff valuAs=500, .. .,600 MeV. Also
given are the contributions from two-pion exchange at NLO and NNLO that are contained in the values of the

LECs as explained in the text. Ti& are in 10 GeV 2 and theC; in 10* GeV *.

LEC TPENLO) TPENNNLO) C;(NLO) Ci(NNLO)
E:lso —0.004 0.003 —0.156...,—-0.110 —0.16Q...,—-0.158
Clso —0.585 —0.070 1.048...,1.253 1.135...,1.134
6351 0.013 0.001 —0.155...,-0.023 —-0.159...,-0.134
Css1 0.653 —-0.181 0.250...,0.840 0.637...,0.587
CE1 —0.195 0.117 —-0.302...,-0.384 —-0.369...,-0.326
Clpl —0.069 —0.099 0.260...,0.273 0.234...,0.268
Capo —0.436 —-0.071 0.800...,0.855 0.727...,0.857
C3pl 0.252 0.011 —-0.126 ...,—0.093 —-0.141 ...,0.026
C3p2 —0.023 0.036 —-0.325...,-0.259 —0.464 ...,—0.445
involving products of isospin matrices. However, we remind 2\/577
the reader that only nine of these 18 operators are indepen- C3D1_351= C61=T(4CG+ C,).

dent. The terms in the Lagrangian related to the other nine
can be eliminated using Fierz transformatiof%,17].
Equivalently, one can perform an antisymmetrization of the B. LECs at next-to-leading order

two-nucleon potential to eliminate redundant terms as used | ot s now discuss the determination of NLO LECs of the
in Refs.[29,14,27. Clearly, the set of operators we choose t0opira| EFT potential. In contrast to what was done in Ref.
work with is one but not the unique possibility. [14], we also include the leading charge dependence effect,
As stated before, there are tweeven LECs related t0 \yhich js the charged to neutral pion mass differenth]
operators with zer¢wo) derivatives. These constants can be _ M _-—M o, in the OPE potentiaffor a systematic study
most easily dege”g"”ed by a fit to ti® andP-wave phase o ,ch effects, see RdB0].) Fitting the low neutron-proton
shifts and the*S;-°D; mixing parameter at low energies, (np) partial waves §,P and the tripletS-D mixing) for
which leads naturally to certain linear combinations, i.e., th%enter-of—mass energies below 50-100 MeV, one obtains

already enumerated _spec_troscopic LE.CS' The pre(_:ise relati(me numerical values of the LECs for the given regulator and
of the LECST appearing In the effective Lagraljglan to thecut01‘f value. We work here with an exponential regulator,
spectroscopic ones is taken from Rlf4] (correcting some

typographical errors in that reference fr(p)=exp —p*A%), (6)

Elso=4w(cs— 3Cy), where the momentum cutofk is varied between 500 and
600 MeV (a more detailed discussion of various regulator
functions is given in Ref[14]). Therefore, we obtain a range
of values for each LEC in the given partial waves. For a
direct comparison with one-boson-exchange models, we
'égsl: 47r(Cg+Cq), need to further add the two-pion exchan@dE) contribu-
tion, which stems from the box, triangle, and football dia-
grams. This is done by expanding the contributions of these
Cag= 2(1201+ 3C,+12C3+3C,4+4C¢+Cy), (5) graphs in terms of local operators with increasing powers of
13 derivatives and projecting onto the appropriate partial waves
(this method is described in more detail beJoWhe so ob-
2ar tained numerical contributions in each partial wave are listed
Cip= 37 (—4C1+Co+12C5—3C,+ 4Cs—Cy), in Table | in the column TPENLO) (for explicit analytical
expressions, see Appendiy.AObviously, these numbers are
2 cutoff independent.
_cT _ . In contrast, the OPE is retained because all potentials we
Copp= 3 (74C1HCom4Cs+ Ca+2C—8Co+2Cy), will compare to include it as well. We note that some of these
potentials contain a pion-nucleon form factor, but since it
2m only depends on the momentum transfer squared and appears
Capy= 5 (=4C 1+ Cy—4Cs+ C,—2Cy), quadratically, it does not influence any four-nucleon operator
with zero or two derivatives. With this in mind, we present in
Table | the resulting values of the LECs for the cutoff vary-
ing from 500 to 600 MeV. This is the optimal range found in
the study of few-nucleon systefi4,31] as well as proton-

Clsoz 7T(4C1+ C2_ 1203_ 3C4_ 4C6_ C7),

2
C3Po: ?(—4C1+ C,—4C53+C,+4C5+12C5—3Cy),
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proton scattering30] in the framework used here. For more
discussion about the choice of the cutoff in the EFT see Ref.

[26]. Note that in principle we could take smaller values for T P

the cutoff. In such a case one would get a slightly less pre- F—————— N\NANSN
cise description of the data. Lowering thevalue too much

would, however, result in losing the interesting physics of A A

many-meson exchanges, which is driven by chiral symmetry
and which is parameter free. Also it is clear that due to our }F—=—===-¢ b ee—————
choice of the regulating function, E¢6), one would have to T [
restrict oneself to a smaller energy range when chooging
<500 MeV. For example, at the enerd,,=300 MeV,
which corresponds to a c.m. momentum of about 375 MeV, FIG. 1. Classes of diagrams that cancel to large extent. One

one has forA=400 MeV fg~0.7. Thus, significant devia- representative TPE graph and ome graph are shown. Solid,

tions from the data would appear at these energies at least Youble, dashed, and wiggly lines represent nucleansions, and
the partial waves with large angular momenta, which are, mesons, respectively.

governed by the OPE and TPE and do not require iteration of
the potential. Since we want to have a quantitatively goothoson-exchange or phenomenological potentials, in which
description of the data also at intermediate energies up tthe parameters are tuned in a way that no such additional
Ei.b=200 MeV, we refrain from loweringA beyond bound states appear.
500 MeV. The sharp cutoff might be a better choice for There is also a more microscopic argument. In models
studies with smaller values df. Further, one could not sub- including the A(1232) resonance explicitlflike the Bonn
stantially increase the cutoff values if no unphysical deeplyf22] or Utrecht[21] models, such strongly attractive contri-
bound states are allowdd4,32.* Also from physical rea- butions stem from the TPE with intermediatestates. In low
sons it would probably not make much sense to further inpartial waves these graphs are almost completely canceled by
crease the values of the cutoff without explicit treatment ofgraphs with intermediatd states in which one of the pions
the heavy degrees of freedd26]. Important is the fact that is replaced by @ meson; see Fig. 1. It is even stated in Ref.
the A dependence should get weaker and weaker with inf22] that “the 27 contribution appears, in general, too attrac-
creasing order in the expansion. We clearly see this effect ufive and a consistent and quantitative description of all phase
to the order we have explored the EFT approach. Last but nahifts can never be reached.” Further work on a detailed
least, a similar upper bound fox was also found in Ref. understanding of correlatedrp exchange has been per-
[33]. formed by Holinde and co-workers; see R&5]. In the EFT
approach, the precise order in which the diagrams with
intermediateA start contributing to four-nucleon operators
C. Phase-equivalent potentials and LECs depends on the representation of the vector fiéhasl thus
at next-to-next-to-leading order need not appear at the same order as the corresponding 2

We now turn to the determination of the LECs based or@raphs. In order to account for the described cancellation
the NNLO potential. Here, we perform a modification as@nd to avoid appearance of deeply bound states in the low
compared to the work presented in REf4]. At that order, partial waves, we have constructed a new chiral poter_1t|al at
the pion-nucleon LECs; 5 , appear, which have been taken NNLO wherein the NNLO TPE graphs we have substituted
from the CHPT analysis ofrN scattering in the interior of the 7N LECs,
the Mandelstam triangl84]. As already shown in Refl11],
these values can be understood in terms of baryon and meson
resonance excitations, with a particularly strong contribution ) A
from theA(1232) resonance. While the natural size for thesd!Sing the formalism of Ref.11] to calculate thesi”. More
LECsis 1 GeV!, typical values found foc; andc, from  precisely, we have allowed for some fine tuning of the
mN scattering data are;=(—4.70+1.16) GeV ! andc,  within the bounds given in that reference. By this method,
=(3.40+0.04) GeV'!, respectively. The resulting TPE the equivalent TPE graphs with intermediate are sub-
with insertion of these operators improves the fit but leads tdracted and the aforementioned cancellations are effectively
a very strongly attractive central potential, as witnessed byaken into account. For a typical NNLO fit, we usg=
the appearance of deeply bound states, e.g., in the deuteror0.81 GeV !, c3=—1.15 GeV'!, andc,=1.20 GeV ™.
channel. These states do, however, not influence the lowsrom that, we obtain the NNLO TPE contribution listed in
energy physics in the two-nucleon system. However, the reTable I (for explicit analytical expressions, see Appendix A
sulting potential is clearly not phase equivalent to the oneA more detailed description of this procedure and further

justification of it as well as discussion of the uncertainty in

determination of the;’s are given in Refs[36,15. The so
“Although, as will be stressed in Sec. Il C, such spurious boundletermined TPE NNLO contribution and the corresponding
states would not affect low-enerdyN observables, direct compari- LECs are displayed in Table I. It is important to note that in
son with the realisticNN potentials would not be possible. the cases where the TPE contribution is large, the NNLO

Ci—>Ei:Ci_CiA, i=3,4 (7)
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correction is sizably smaller than the NLO one. The resultingohysics in three- or four-nucleon systems does not depend on

values for the LECE; andC; at NNLO are consistent with the choice of the unsubtracted or subtracted the latter

the ones found at NLO. That is an important result. choice is closer to standard nuclear physics in which three-
Before procceding, we would like to stress that the NNLObody forces lead to small binding energy correctipifs). In

potential with the reduced values of the LEGs, describes ~ fact, applying directly the potential from Reff14] to such

the phase shifts with the precision comparable to the NNLGPYystems leads to much smaller binding energies from the

result of Ref.[14]. In Fig. 2 we show the twap Swave two-nucleon forces alone. However, such a separation of the

phase shifts'S, and 3S,; and the3S,-3D, mixing parameter total binding energy intd\N and 3 contributions is not
at NLO (left pane) and NNLO (right pane) in comparison ©observable and therefore this scenario is not ruled out. These
to the Nijmegen phase shift analy$RSA). To regularize the  topics will be discussed in much more detail in Réf5]. At

LS equation, we have used an exponential regulﬁa}()ﬁ) this ?:]a%e, bOtththﬁmj dlslcuissi[gd he_refare watl)le. Itis f;:ur to
—exp—pYA%. The two lines correspond to cutoffd say that more detailed calculations in few-nucleon systems

—500 and 600 MeV. We note that the description of theave t0 be performed to ultimately clarify this issue. We
phases improves when going from NLO to NNLO and thatproce_ed .usmg the modified dimension-two pion-nucleon
also the cutoff dependence gets weakespecially at low couplings; cf. Eq(7).

energies This is to be expected from a converging EZB|

and we emphasize again that this is not the result of an in-
creasing number of free parameters. A direct comparison
with Figs. 4 and 5 of Ref[14] indeed shows that these  \we consider first genuine one-boson-exchange models of
phases are reproduced with the precision comparable to thge NN force, in which the long-range part of the interaction
NNLO calculation with the Iarger values for th]? For the is given by OPE(|nc|ud|ng in genera| a pion_nudeon form
other phase shifts and a more detailed discussion, see R¢écto|j’ whereas shorter distance physics is expressed in

[15]. _ N terms of a sum over heavier mesons,
We are now in the position to confront the LECs deter-

mined from chiral effective field theory with the highly suc-

cessful phenomenological/meson models of the nuclear VNN:VWJFM:;;Y MU ®)
force. Before doing that, some discussion concerning the

NNLO potential constructed in Ref14] is in order. It is a where some mesons can be linked to real resonasoel as
perfectly viable scenario to use the unsubtracted values fahe p meson or are parametrizations of certain physical ef-
thec; as done there, since the resulting deep bound states dects, e.g., the light scalar-isoscalar meson is needed to
not influence the physics in the two-nucleon system. Assupply the intermediate-range attractidnt it is not a reso-
noted already, a direct comparison of the contact terms in theance. The corresponding meson-nucleon vertices are given
potential with the ones obtained from the meson-exchange dn terms of one(or two) coupling constari§) and corre-
phenomenological approaches cannot be made. While theponding form factds), characterized by some cutoffy, .

lll. LECs FROM BOSON EXCHANGE AND
PHENOMENOLOGICAL NN POTENTIALS
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: (11)

1+2
ME AR

and accordingly for other types of form factofdipole,
monopole normalized to 1 ett=M§, etc). The coupling
constants are either determined in the fit to k¢ scattering
FIG. 3. Expansion of a meson-exchange diagram in terms oftNd bound state data or are taken from other sources, the
local four-nucleon operators. The dashed and solid lines denote tH@rm factor cutoffs always having to be determined from the
mesonM=p,c, o, ... and the nucleons, respectively. The blob fit. It is obvious from these considerations that such heavy-
and the square denote insertions with zero and two derivatives, ileson exchanges generate four-nucleon terms with zero,
order. The ellipses stands for operators with more derivatives.  two, four, etc., derivatives.
In Appendix B, we collect the explicit formulas for scalar,
These form factors are needed to regularize the potential gseudoscalar, and vector meson exchanges, which can be
small distancelarge momentgbut they should not be given applied to any of the OBE potentials by using the appropriate
a physical interpretation. As depicted in Fig. 3, in the limit of masses and coupling constafésd should be used instead
large meson masses, keeping the ratio of coupling constant @f the symbolic formulas given beforeAs a typical example
mass fixed, one can interpret such exchange diagrams asfer an OBE potential we consider the Bonn-B varig87].
sum of local operators with increasing number of derivativedts short-range part is build from scalar,( ), pseudoscalar
(momentum insertionsIn a highly symbolic relativistic no- (7), and vector mesonp( ) exchanges, and the pertinent
tation, this reads contributions to the LECE;,C; are listed in Table Il. An-
other(more recentOBE potential is the Nijmegen 93 poten-

_ g%l | — 9%\ — _ g’t tial (denoted Nijm-93 [19]. The Nijmegen 93 potential is
(NPiN)| =——|(NP;N)= W)(NPiN)(NPIN)"' W) particular since it also includes mesons with strange quarks
Mgt R R but total strangeness zeftike the scalare(1300) or the
X(WPiN)(ﬁP‘N)nL (9 $(1020) mesonsand a low-energy representation of the

Pomeron, which usually is needed to describe very high en-
ergetic proton-proton scattering. &) flavor symmetry is
imposed so that certain couplings are linked. The various
contributions to the LECs are displayed in Table Ill. Some of
the individual terms are unnaturally large particular those
Yrom the Pomeroh but the total contribution of the scalar

where theP; are projectors on the appropriate quantum num
bers for a given meson exchan@ecluding also Dirac ma-
trices if needegdand Mg is the mass of the corresponding
heavy meson. It should be kept in mind here that one usuall
mgkes use of the nonrelat[V|st|c expansion, I.€., _the Diragector is quite similar to the ones in the Bonn-B potential, as
spinors on the right-hand side of E(®) coincide with the comparison of Tables Il and IIl reveals.

Pauli spinors. In the case of a momentum-dependent meson- The vector meson contributiong ( ») are very similar

nuc!eon coupling, such as for a monopole form factor NOT%or both potentials. The resulting LECs for these two OBE
malized to one at=0, potentials are summarized in Table IV. Note that the varia-
) tion in the values of the LECs resulting from taking different
_ An (10 potentials is much smaller than the range over whichGhe
_gAfﬂ—t’ are distributed. Further, the somewhat large spread for the
Clplis possibly due to the fact that in traditional OBE models
then the coefficient of the firétdependent term in Eq9) is  the phase shiftP; is usually not too well described. This
modified to can be related to higher-orderexchanges. Thus, a spread in

a(t)

TABLE Il. Contributions of the various boson exchanges to the LECs for the Bonn-B potential and the
corresponding sum. Thg; are in 1¢ GeV 2 and theC; in 10* GeV *.

LEC 7 o S ) p Sum
E:lso 0.000 —0.392 —0.023 0.287 0.011 -0.117
Cis, 0.033 1.513 0.036 —0.560 0.254 1.276
6331 0.000 —0.424 0.070 0.287 —0.034 -0.101
Css, —0.011 1.030 —0.108 -0.777 0.526 0.660
C, —0.032 0.000 0.000 0.077 —0.455 -0.410
Cip, —0.022 —0.607 0.059 0.536 0.488 0.454
Cap, —0.067 —0.786 —-0.011 1.187 0.597 0.921
Csp, 0.045 —0.860 —0.015 0.753 0.003 —0.075
Csp, 0.000 —1.008 —0.024 0.536 0.101 —0.396

044001-7



EPELBAUM, MEISSNER, GL@KLE, AND ELSTER PHYSICAL REVIEW C65 044001

TABLE lll. Contributions of the various boson exchanges to the LECs for the Nijmegen 93 potential.
Pseudoscalars;, n'; vectors,p, w, ¢; scalarsag, €, fy,a,; Pomeron. Th@:i arein 1¢ Gev 2 and theC; in

10* Gev 4.

LEC 7 7' p ® b ag € fo a, Pom.
6180 0.000 0.000 0.020 0.237 0.001 —0.031 —0.578 —0.201 0.001 0.490
Clso 0.041 0.013 0.191 —0.445 —-0.002 0.134 3.461 0.867 —0.005 —2.829
6351 0.000 0.000 —0.055 0.237 0.001 0.094 —0.578 —0.201 —0.003 0.490
Casl —0.014 —-0.004 0.550 —0.700 —0.003 —0.403 3.461 0.867 0.015 —2.829
CE1 —0.038 —0.012 —0.383 0.090 0.000 0.000 0.000 0.000 0.000 0.000
Clpl —0.027 —0.009 0431 0.423 0.002 0.250 —2.194 —-0.539 —-0.010 1.791
Csp, —0.082 —0.026 0.645 1.167 0.006 —0.072 —1.985 —0.466 0.003 1.613
Csp, 0.054 0017  0.032 0.660  0.003 -0.078 —2.087 —0.501 0.003 1.700
Csp, 0000 0.000 0114 0457  0.002-0.090 —2.308 —-0.579 0.003 1.887

Clplis not surprising. The OBE models under consideratiorNijmegen I,11[19] as well as the Argonne V18\-18) [38]

exhibit differences in the mixing parametes, indicating Potentials. For the former, one-pion exchange is supple-
variations in the tensor force. Thus a somewhat larger spreafiented by heavy-boson exchanges with adjustable param-
in (;6l and Cgslshoukj be expected. Now comparing to the eters that are fitted for aflow) partial waves separately. The
LECs determined using the chiral EFT potential listed inAV-18 potential starts from a very general operator structure
Table | we see a striking similarity. This result is somewhatin coordinate space and has fit functions for all these various
surprising, because the phenomenological potential modefperators. Note that we have switched off the various elec-
are not constructed based on any power counting nor chirdfomagnetic corrections implemented in the Av-18 potential
symmetry, plus in many cases contain quantum field theoreticode. Such potentials can also be expanded in terms of four-
cally ill-defined form factors. Still, it is gratifying to see that nucleon contact operators with increasing dimension. We do
the contact part of thsIN potential does not depend on how not give the details here but only mention that we have done
the short-distance physics is parametrized. To our knowlthis using numerical methods. The corresponding LEGs
edge, this is the first time that a direct link between theandC; are also listed in Table IV. Again the resulting LECs
Weinberg program of systematically deriving nuclear forcesare very similar to each other, especially the larger values.
from chiral Lagrangians to these phenomenologically sucThe smaller ones show now a larger relative variation. One
cessful potentials has been achieved in a truly quantitativlas to conclude that on this level of comparigsae intro-
manner. ductory remarksthe LECs of the effective chiral forces can-
There exists also a different class of potentials, which areot be determined quantitatively from the high-precision po-
constructed to givey?/datum=1 fits to theNN data base tentials but the qualitative similarity is remarkable and
like the high-precision charge-dependent CD-Bonn 2000 poespecially the linkage to the OBE potentials may carry a
tential [18]. It contains two scalar-isoscalar mesons in eactphysical message. In Fig. 4 we give a graphical representa-
partial wave up to angular momentuds5 with the mass tion of the LECs obtained in EFf. Table ) compared with
and coupling constant of the secoamdine-tuned in any par- the results from the six potential models considered feze
tial wave. The other high-precision potentials are theTable V). Note that(a) the uncertainties for the LECs deter-

TABLE IV. Results for the LECs for various OBE and other types of potentials as explained in the text.
The so-called high-precision potentials are marked by an asteriskCThee in 1d GeV 2 and theC; in

10* Gev 4.

LEC Bonn-B CD-Bonfi Nijm-93 Nijm-1* Nijm-11* AV-18*
E:lso —-0.117 —0.140 —0.061 —-0.137 —0.091 —0.037
Cug, 1.276 1.388 1.426 1.391 1.357 1.409
6331 —-0.101 —0.103 -0.014 —0.058 0.029 0.026
Csg, 0.660 0.869 0.940 0.762 0.795 0.867
Ce1 —0.410 —0.315 —0.343 —-0.221 —-0.241 —0.226
Clpl 0.454 0.228 0.119 0.328 0.401 0.290
Csp, 0.921 0.956 0.802 0.802 0.949 0.723
Cspl —0.075 —0.051 —0.197 —0.059 —0.075 0.067
Cap2 —0.396 —0.451 —0.513 —0.453 —0.451 —0.467
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15 where thec,,, are dimensionless numbers ahgn,n are

5 o Bomn-B > Nijm-1 non-negative integers. Here,l 2counts the number of
L © CD-Bonn < Nijm-II | 4 . .
I_ A Nijm-93 v AV-18 nucleon fieldsm the number of pions, and the number of
10 R g - derivatives or pion mass insertions. All nucleon isospin op-
v s erators and so on are nonessential to this formula and indi-
- -3 v -
a

cated by the ellipsis. Note that this naive power counting
cannot be applied to cases with spurious bound states, as
witnessed by the so-called limit cycle behav[@9,40,33.
- Here, we only consider potentials with no such spurious
v bound states; thus the relevant scale for the four-nucleon
0'0_. § | E _Ia N interactions without derivativesl £ 2m=n=0) is the in-
- - 8 a i verse of the pion decay constarit,=92.4 MeV, squared

L LHS ' o and two derivative termsl €2 m=0n=2) are suppressed
-05[~ "1 by two inverse powers of the chiral scalg=1 GeV. For

— — the LECs from the Lagrangiaf8) naturalness thus amounts
QSO QSO C351 CBS] Ctl C’ll’l (:3?0 C3P1 C3P2 to

0.5 —

FIG. 4. LECs from phenomenological models and chiral EFT.
The left-most band refers to NLQ@he length reflects the variation

with the cutoff, the middle bar is NNLO*, and the symbols corre- Coo0 . Co02
spond to the indicated potentiaksee inset The C; are in T (iI=ST), Cj~ 272 (i=1,....7,
10* GeV 2 and theC; in 10* GeV “. m X 13

mined from different OBE and high-precision potentials are

small [typically, about 0.3 in the corresponding unitsee .
L and thec,gy and c,, should be numbers of order oni
Table )] compared to the range of variation of the LECSthere is not some suppression due to some symnises

dotermined in, EFT are in most cases smaler than the barfioW: Such argumens, of course, cannot say anything

spanned by the potential modelaven if one only includes out the signs of the LECs. Also, it is_ important to realize

the high-precision ongs the p(efactors that accompany the various terms of the La-
grangian. For example, there is a relative factor of 4 in the

IV. NATURALNESS OF THE LECs AND WIGNER mofnzent“m Sﬁgaceﬁlrepfezsemat'on between terms=(p
SYMMETRY —p)° and ~k“=(p’+p)°/4. Such factors need to be ac-
_ . . _ counted for. Consequently, we give in Table V the corre-
First, we wish to investigate whether the LECs deter-sponding coefficients o, and c,g, of the LECs as deduced
mined in Sec. Il are of natural size. In the present context ofrom our NLO and NNLO fits using Eqg5). Inspection of
Weinberg power counting, dimensional scaling arguments althe table reveals that the numbers fluctuate between 0.3 and
low one to express any term of the effective Lagrangian withg 5, i.e., the values found for these LECs are indeed natural,
nucleon and pion fields as well as derivative and pion masgiith the notable exception df.Cy, which is much smaller
insertions(for a derivation and further discussion, see, e.g.than ongexcept for the upper limit of NLO cutoffs, which is

Ref.[25]) as already close to the edge of having stable fitse also the
NT(- NV | ™ oM\ discusion in Ref.[14].)]. As just mentioned, symmetry can
13=C|mn(z—) (_) ( i ”) f2A2, (120 lead to the suppressidor enhancemenbf certain coupling

f2A fr Ay o constants. In fact, 65 years ago Wigridd] proposed that

TABLE V. Naturalness coefficients of the LECs at NLO and NNLO for the cutoff valles
=500, ...,600 MeV. ThefCgr and thef2A%C; are dimensionless.

NLO NNLO

f2Cs -1.053...,-0.303 -1.079...,-0.953
f2Ct —0.002...,0.147 0.002...,0.040
f2A%C, 1.707....,3.162 3.143. .. ,2.665
4f2A%C, 1.348...3.246 2.029...,2.251
f2A2C, —0.047...,-0.315 0.403, ..,0.281
4f2A%C, —0.583,...,—0.933 -0.364,...,—-0.428
2f2A5Cs 2.418,...,2.314 2.846, ..,3.410
f2A%Cs —0.385,...,—0.651 -0.728,...,~0.668
4t2A%C, -1.790,...,—2.120 -1.929,...,-1.681
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SU(4) spin-isospin transformations are an approximate symmodels have a striking similarity to the values found in EFT.
metry of the strong interactions. Such a transformation ha3his can be considered as a kind of resonance saturation.
the form (3) We have shown that with the exception of one
dimension-zero couplingthe LEC Cy), all LECs are of
natural size. The smallness 6f is due to Wigner’'s spin-
isospin symmetry, as was already pointed out for the case of
a theory with pions integrated out or treated perturbatively.
with 0"=(1,5), TV:(L;), ande,,, are infinitesimal group Clearly, these f_indings haye further-reaching conse-
parameters. This symmetry emerges in the large number G€nces. On one side, they might allow us to further con-
color limits of QCD[42] and thus features prominently in strain m_odels of the nucleon—nu_clgon interaction applicable
the nuclear forces derived from Skyrme-type models. It wa&t €nergies where the EFT description cannot be used. On the
recently showrf43] that in the limit where th&wave scat- Other hand, in case of external sour¢ssch as photonsor
tering lengthsa, s, andasg, go to infinity, the leading terms multmucleon operatorgas they appear, e.g., in the_descrlp-
in the EFT for strongNN interactions(with pions treated tion of the three—b(_)dy forcesthese consMerapons will allow
perturbatively are invariant under Wigner's 9@ spin-  YS to at least estimate novel LECs that will appear. In the

isospin transformations. This can be seen most easily frortter case of three- and more-nucleon systems, performing a
the leading four-nucleon operators as used fege Eq(3)]. dlre_ct flt for new adjustable pgre}mete(r{;the leading non-

In this basis, the first term is clearly invariant under WignerVanishing three-nucleon force is included 3N observables
transformationgcf Eq. (14)], whereas the second termC+ will be a very expensive task with respect to computer
obviously breaks the SW) symmetry. In the Weinberg ap- power. 'Therefore it might be very helpful'to have a rpugh
proach employed here, the ieading order potential consists &stimation for the values of various couplings appearing in
these two four-nucleon operators supplemented by the ond® 3N force.

pion exchange. Still, the Wigner symmetry is kept intact to

good precision since the resulting fit values ©f are siz- ACKNOWLEDGMENTS

ably smaller than the corresponding ones @y (see Table . . :
V). Stated differentlyC+ is unnaturally small because of the we V¥OUId like tho Itk}alnl;_Hwoygm Kamgdfa and Agdreas
Wigner symmetry. This can be understood from the fact thawgﬁga or Tanyd €lp :‘Jth IScussions :;m i ?r providing us
at very low energies, where one is essentially sensitive to the 1 computer codes of the various potentials.
(S-wave scattering lengths, the pion-exchange contribution

can be expanded in powers of momenta, leading to terms APPENDIX A: REDUCTION OF THE
with at least two derivativegsee Appendix B One thus TWO-PION-EXCHANGE CONTRIBUTIONS

effectively recovers the situation eluded to in Rp43]. As stated before, we have to add the contribution of the
However, for larger momentesay of the order of the pion 1pg g the LECs so as to be able to compare with the boson-
mas$, the nonperturbative treatment of the pions as progychange potentials. The explicit expressions for the renor-

p
ON=ie,,0"1"N, N=(n), wn,v=0,123 (14

posed by Weinberg is mandatory. malized TPE potential at NLO can be found in REf7].
Expanding those in powers (ifandlz allows for a mapping
V. CONCLUSIONS AND SUMMARY on the spectroscopic LEC&f course, the TPE contains

In this paper, we have investigated the low-energy con/Many other contributions, which are, however, of no rel-
stants with zero and two derivatives that appear in the four€vance for this discussigniwe get
nucleon contact interactions of the chiral effective Lagrang-

ian for the nucleon-nucleon forces. Our main findings can be ano_ EEN,_O_ (1+4g3—8gaM?
summarized as follows: 1, 3 3 2454

(1) We have determined the LECs for the NLO and i
NNLO potentials, including the dominant charge- 2 4
dependence effect from the pion mass difference in the one- CNLO:2+ 179, — 889
pion exchange. To avoid the unphysical bound states at 1s, 1447Tfj‘7

NNLO, we have argued that one has to subtractAheon-

tribution from the dimension-two pion-nucleon LECs. This is 2+ 1792 - 40g",

in agreement with two-boson-exchange models, where the cNo_
two-pion-exchange contribution is cancelled largely by 35 487-rff,
graphs.
(2) We have shown how to deduce similar type of contact g
operators from boson-exchange models in the limit of large Q‘Loz — —A, (A1)
meson masses. This allows us to calculate the LECs in terms ' 4\/§7Tfi
of meson-nucleon coupling constants, meson masses, and
(unobservablecutoff masses. In a similar manner, one can o 2+ 1792 - 16g%
examine the so-called high-precision potential models. We C =———
have found that in all cases, the LECs determined from these Py 72mf
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2+ 1792+ 74g* with m the nucleon mass. These expressions depend on the
cN©O= — #, dimension-two LEC%, 34 as discussed before. We note that
3o 216mf, all these contributions vanish in the chiral limit.
CNLO 2+ 17gi— 6194A APPENDIX B: REDUCTION OF ONE-BOSON EXCHANGES
3Py 2167Tfi , Here, we give the explicit expression for scalar, pseudo-
scalar, and vector meson exchange contributions to four-
wo | 2+ 179279 nucleon operators with zero or two derivatives, as depicted
B PV R in Fig. 3. Note that we will also include v as well as Ih?
Py 2167wa

corrections, which are, strictly speaking, of higher orders in
i o i ) the power-counting scheme we are working with and (oot
Note that in the chiral limit, the two leading contact interac- partly) present in the NLO and NNLO potentials. There is,
tions do not get renormalized by TPE. Furthermore, thesgqever, no contradiction since adding or subtracting those
expressions only depend on the lowest-order pion-nucleog,ms from the potential would lead to changes smaller than
coupling~ga (or, by virtue of the Goldberger-Treiman rela- e |evel of accuracy of our approach. The contributions for
tion, ong,y). Similarly, we can give the additional TPE 5 particular OBE potential can be obtained by using the ap-
NNLO contributions to the various LECEor an explicit propriate masses, and coupling constdated form factors

expression of the renormalized NNLO TPE potential, segmployed there. To obtain the most general expressions, we
e.g. Ref[14]), include any form factor as

2 2 3 -
~ ga(—16+192n(—2c,+c3)+25g,) M7, ) 32 i
&NNLO_ , NN G- -
) 256mf* m(99) = ay )2 (q%), (B1)
~ 3g2(16+64m(—2c,+C3)—21g2)M3 where the coefficientr; =1 if the form factor is normalized
clo= -, to 1 atq?=0 or a,# 1 if the form factor is normalized to 1

3 256m f4 - )
! g atg?= —Mf,' (with M, the mass of the meson under con-

sideration, or it might include the meson-nucleon coupling

2 2
nnLo_ Ja(—368-192m(10c, — 11¢5+4cC,) + 861 M, constanig,, . We will give the generic expression where the

C >
s 307211ff’, ’ corresponding vertices are written g§Fy(q?), with Fy
expanded as just discussed. Note for the exchange of isovec-
cNNLO tor bosons such as or thep, the given expressions have to
3s, be multiplied by a factot; - 7, leading to a factor of- 3 for

the T=0 potential considered here.
ga(16(—7+4m(10c, —11cz+4c,))+81g3)M .

- 1024m fi ' 1. Scalar meson exchange
_ The Lagrangian for cpupling of an scalar-isoscalar meson
Lo 95\(8+ 32mc,— 79/%) M. a2 with massM g and coupling constargs reads
- 64\2mf, ’ Ls=gspibe, (82)

Lo gi( — 368+ 64m(10c, — 11c5— 12c,) + 3059§)M _ whereys denotes Fhe relativistic nl_JcIeon field agdthe sca-
= , lar mesonfor an isovector, one simply replacésby 7 ¢,

Py 153@mf; with 7 (k=1,2,3) the usual Pauli isospin matri¢es the
nonrelativistic expansion, the momentum space expression
o Ja(176+192m(10c, — 1lcs—8c,) +691g3)M ,, for the corresponding exchange potential with a form factor
C = , (if applicable characterized by the cutoffi s reads up to

C

4
*Po 4608mf; terms of order Ih?
NnLo  UA(464+192m(10c; — 11cs+2¢,) — 5455 M . . 92 k2 g2
C3 = 4 ! Vs(qvk):_ ) 2 - 2+ 2
Py 4608nf q°+Mg 2m®  8m
CNNLO [ 9
P2 55 (@xK) | F&), (B3)

2 2
112+192m(—10c, + 11c5+2¢,) + 28 M . X s s
=— 9l ( ! 43 9 9% ., WwhereS=(o,+0,)/2 is the total spin of the two-nucleon
4608nf system. The fully relativistic form of this exchange can be
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found, e.g., in Ref[37]. This gives the following contribu- tivistic expansion, the momentum space expression for the

tions to the spectroscopic LECs: corresponding exchange potential with a form fadibap-
plicable characterized by the cutoff reads up to terms of
BS _BS = 4779%“% order 1m?
sy 3s M2 > > >
' s Vo= 95 (01-9)(02: Q) F2(c2) &7
4gia,(—2M2ar+ a A2 (@)= am? g2+ M? PRA)-
cS ¢S = Tgsa1 s T a1Ag P
S %S MgAE Again, the fully relativistic form of this exchange can be
S found, e.g., in Ref[37]. This gives the following contribu-
Cc.=0, tions to the spectroscopic LECs:
=P _ =P
27g2a [ (—4+MEYm?) as+8MZa,A2 Cc =C =0,
Cls _ gS 1[( 3S/'\/|4 1 stt2 S], (B4) lSO 331
Py S
cf = —302’ =Tp,
S
s _ 2m92a,[8M2M2a,— (4m2—3M2) ay A2 % 1 ©8)
3P, 3m?MEA2 ' 3 3

s _ Angiaq[(—2+MEYm?) g+ 4M3a,A ]

P
3P, 3mé Cp 0
2
s 8#9%&1(2'\/'%0(2_0’1/\%) with
3P, 3M 4SA§ Wg%a’%
2. Pseudoscalar meson exchange m=Mp

The Lagrangian for the coupling of a scalar-pseudoscalar
. - 3. Vector meson exchange
meson with mas#!, and coupling constargy reads
. The Lagrangian for coupling of a vector meson with mass
Lp=—0gphi vy, (B5) My and coupling constantg, (vector coupling andfy, (ten-
_ sor coupling reads
where 7 denotes the pseudoscalar mesfor an isovector,

one simply replacesr by 7 #7). This is the so-called pseu- _ — fv—
doscalar coupling. Equivalently, one can also use a  £v=~Ov¥Y¥d,— 7 b (0,d,=d,4,),
derivative-type(pseudovectgrcoupling (B10)

o P— 5 , B6 where¢,, denotes the isoscalar-vector mestor an isovec-
P M_P‘W Yo, (B6) tor, one simply replaces,, by - ¢,). In the nonrelativistic
expansion, the momentum space expression for the corre-
At tree level, these couplings are equivalent providedsponding exchange potential with a form fact@r appli-
gp/m="fp/Mp. Of course, chiral symmetry enforces the de-cable characterized by the cutoff,, reads up to terms of
rivative coupling for the Goldstone bosons. In the nonrela-order 1m?

3k2 g 3i. . . . .9 1 . . . .
+ S'(qu)—Ul‘UzmﬂLm(Ul‘Q)(Uz'Q)

- 1
V(K ==——107 1+ ——
w4k q2+M2[gv 2m?  8m? 2m?

of @4 @1 R ]
"‘W _H"‘ms'(qu)_Ul'Uzm*’a(ffl‘Q)(O’z'Q) +m[_01'02q + (o1 (o2-9) ] Fy(a9).

(B11)

Again, the fully relativistic form of this exchange can be found, e.g., in . This gives the following contributions to the
spectroscopic LECs:
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