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ABSTRACT

This paper considers the dynamic response and order-tuning

of vibration absorbers fitted to a rotating flexible structure under

traveling wave (TW) engine order excitation. Of specific interest

is the extension of previous results on the so-called no-resonance

zone, that is, a region in linear tuning parameter space in which

the coupled structure/absorber system does not experience res-

onance over all rotation speeds. The no-resonance feature was

shown to exist for cyclic rotating structures with one structural

and one absorber degree-of-freedom (DOF) per sector. This

work uses a higher-fidelity structural model to investigate the

effects of higher modes on the cyclically-coupled system. It is

shown that the no-resonance zone is replaced by a resonance-

suppression zone in which one structural mode is suppressed,

but higher-order resonances still exist with the addition of the

absorbers. The results are general, in the sense that one vibra-

tion mode can be eliminated using a set of identically-tuned ab-

sorbers on a rotating structure with arbitrarily many DOFs per

sector.

∗Address all correspondence to this author.

1 INTRODUCTION

Many rotating flexible structures consist of an array of inter-

connected constituent parts whose geometry and structural prop-

erties are rotationally periodic (i.e., cyclically symmetric). In a

bladed disk assembly, for example, the fundamental substruc-

ture is one blade plus the corresponding segment of the disk,

which is collectively referred to as a sector. During steady op-

eration these systems rotate at a constant speed and are subjected

to TW dynamic loading, or engine order (e.o.) excitation, which

is characterized by excitation frequencies that are proportional to

the mean rotational speed of the rotor. Such excitations result

in component vibrations that can lead to high cycle fatigue fail-

ure, noise, reduced performance, and other undesirable effects.

Order-tuned vibration absorbers exploit the centrifugal field from

rotation of the primary system and are thus ideally-suited to ad-

dress component vibration in rotating flexible structures. They

essentially consist of masses that ride along designer-specified

paths relative to the primary system. When properly tuned, these

absorbers effectively counteract fluctuating loads applied to the

primary system over all rotation speeds [1].

The dynamic performance, characteristics and features of
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order-tuned absorbers are well-understood in typical situations,

and there are numerous examples of their implementation. They

have been investigated by Shaw et al. [2–6] and others for tor-

sional vibration reduction in rotating systems. Applications

include light aircraft engines [7], helicopter rotors [8], diesel

camshafts [9], and advanced technology automotive engines

[10].

In previous works Olson et al. [11–15] investigated the per-

formance of order-tuned vibration absorbers applied to lumped-

parameter models of a cyclically-coupled bladed disk assembly

under engine order excitation. In these models, the sector dy-

namics are captured by two DOFs: one for the blade and one for

the absorber. A key finding from the linearized coupled system

is the existence of the so-called “no-resonance zone” in linear

tuning parameter space. It was shown that there exists a range

of absorber tuning values, close to the ideal tuning that exactly

matches the excitation order, for which there are no resonances

over the entire range of rotation speeds. This result was first re-

ported by Shaw et al. [16] for a model consisting of a single,

isolated sector (i.e., one blade and one absorber attached to a

rotating disk). Olson et al. showed that the no-resonance zone

persists in the (coupled) multi-sector linear system [11–13] and

that it qualitatively persists when weak nonlinearities are taken

into account via the absorber paths [12, 14, 15]. Existence of the

no-resonance zone allows for the possibility of robustly-tuned

absorbers that can function effectively in the presence of model

and parameter uncertainties.

This paper investigates if and how the no-resonance zone

persists when higher-fidelity models are used to describe the

bladed disk system. It will suffice to employ a 3-DOF sector

model that consists of two DOFs for each blade/disk and one for

the attendant absorber. The no-resonance zone is shown to per-

sist in a restricted sense: one structural mode can be eliminated,

but higher mode resonances still exist at some rotor speed for any

absorber tuning. These results generically hold for models with

many blade/disk DOFs because of the nature of dynamic cou-

pling between the absorber and blade dynamics, which results

in characteristic eigenvalue veering as the rotor speed is varied

[17, 18]. Suppression of multiple resonances may be achieved,

for example, by implementing multiple sets of absorbers. This is

left for future work.

The paper is organized as follows. A higher-fidelity model

of a rotating bladed disk assembly under engine order excita-

tion is developed in Section 2, where each blade is fitted with

an order-tuned vibration absorber. Section 3 introduces a tuning

strategy in which the absorber tuning order is set relative to the

order of the TW excitation. Features of the forced response are

discussed in Section 4, which contains the main results of this

work. The paper closes in Section 5 with a discussion and sug-

gestions for future work.
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Figure 1. Lumped-Parameter Model.

2 SYSTEM MODEL

A lumped-parameter model of the rotating bladed disk as-

sembly is shown in Fig. 1a. It consists of a cyclic array of N iden-

tical, identically-coupled sectors (Fig. 1b), each with one blade

and one absorber plus a corresponding segment of the disk. The

disk component of each sector is composed of a rigid part of ra-

dius H, which rotates at a constant speed Ω about a fixed axis

through O. This component is referred to as the rotor. A sec-

ond flexible portion vibrates about a point Q at the periphery of

the rigid rotor, which is modeled by a pendulum of length d and

mass Md and is referred to as the disk. The blade dynamics are

captured by a second pendulum of length L and mass Mb that

is attached to the disk pendulum at the vertex A. There are N

such double pendulum systems, which are uniformly distributed

2



along the circumference of the rotor. The sector model shown

in Fig. 1b could also represent a 2-DOF blade model attached to

a rigid disk/rotor. The key feature is multiple DOFs per sector,

in this case two, which is sufficient to capture the effects order-

tuned absorbers when there are arbitrarily many disk/blade DOFs

per sector.

The flexural stiffness associated with the ith blade and disk

is modeled using linear torsional springs of stiffness Kb and Kd ,

respectively. Adjacent blades (resp. disk portions) are coupled

via translational springs with stiffness kb (resp. kd) at a distance

b (resp. h) relative to their attachment points to the disk (resp.

rotor). It is assumed that the springs are unstressed when the

disks and blades are in a purely radial configuration, that is, when

ϕi = θi = 0 for each i ∈ N = {1,2, . . . ,N}.1 Each stiffness ele-

ment is paired with a corresponding linear viscous damper (not

shown in Fig. 1a) to capture the effects of dissipation. The disk

and inter-disk (resp. blade and inter-blade) damping is modeled

by linear torsional and translational dampers with constants Cd

and cd (resp. Cb and cb). It is convenient to model the absorber

damping with an effective torsional damper with constant Ca that

acts at point B (attachment point of absorber pendulum).

The blades are fitted with identical vibration absorbers,

which generally consist of particle masses Ma that ride on user-

specified paths. Each absorber path is described by a vector of

length Ri(Si) = Ri(−Si) relative to the outermost blade pendu-

lums, where Si is the path arc length relative to its vertex V .

Polchi [19] derived the governing EOM for the system shown

in Fig. 1a fitted with the general-path absorbers using the path

formulation described by Olson et al. [12, 14, 15]. However, for

the small-amplitude linearized model to be developed, the ab-

sorbers can be regarded as simple pendulums with length r and

mass Ma that are attached a distance αL along the outermost

blade pendulum relative to point A. Their linearized dynamics

are described by the relative angular coordinates ψi = Si/r. Thus,

each sector consists of a double-pendulum disk/blade model and

a simple-pendulum (circular path) absorber attached to the outer-

most double-pendulim link.

The ith disk/blade double pendulums are harmonically

forced in the transverse sense by e.o. excitation of order n such

that the cyclic system is circumferentially-forced by a TW. The

e.o. excitation is modeled by [12, 20]

Fi(t) = F0e jφi e jnΩt , (1)

where φi = 2π n
N
(i− 1) is the inter-sector phase angle, F0 is the

excitation strength, and j =
√
−1. The e.o. is restricted such that

n ∈ N , which includes all practically relevant situations [12].

The equations of motion (EOM) are formulated using La-

grange’s method, linearized for small disk/blade and absorber

1Throughout the remainder of this work it is understood that variables and

equations with subscripts i are defined for each i ∈ N .

Table 1. Selected list of dimensionless parameters.

Parameters Description

δ = H/d Radius of the rigid rotor disk

ρ = L/d Length of blade pendulum

α Distance between points A and B

γ = r/d Length of absorber pendulum

µa = Ma/Md Absorber mass

µb = Mb/Md Blade mass

fϕ = F0(L+d)/Kd Strength of e.o. excitation (ϕi-dynamics)

fθ = F0L/Kd Strength of e.o. excitation (θ-dynamics)

λ =
√

Kb
Kd

Square of the blade torsional stiffness

νa =
√

(kd h2+kbd2)
Kd

Stiffness coupling between sectors

νb =
√

kbdb
Kd

Stiffness coupling between sectors

νc =
√

kbb2

Kd
Stiffness coupling between sectors

ξac = 1
d2

cd h2+cbd2√
Kd Md/d2

Damping coupling between sectors

ξbc = 1
d2

cbdb√
Kd Md/d2

Damping coupling between sectors

ξcc = 1
d2

cbb2√
Kd Md/d2

Damping coupling between sectors

ξa = 1
d2

Ca√
Kd Md/d2

Absorber torsional damping constant

ξb = 1
d2

Cb√
Kd Md/d2

Blade torsional damping constant

ξd = 1
d2

Cd√
Kd Md/d2

Disk torsional damping constant

σ = Ω/ω0 Angular speed of the rotor

motions, and made dimensionless according to the nondimen-

sional parameters defined in Table 1. Time is rescaled by τ = ω0t,

where ω0 =
√

Kd/Mdd2 is the undamped natural frequency of a

single isolated disk DOF. In matrix-vector form the sector EOM

are given by

Mz′′i +Cz′i +Kzi +Cc(−z′i−1 +2z′i − z′i+1)

+Kc(−zi−1 +2zi − zi+1) = fe jφie jnστ,
(2)

where the elements of the 3×3 sector mass, damping, and stiff-

ness matrices (M,C,K) are defined in Table 2, the vector zi =
(ϕi,θi,ψi)

T captures the sector dynamics, and ( ·)′ = d( ·)/dτ
denotes differentiation with respect to dimensionless time. Inter-

sector coupling is captured by the matrices

Cc =





ξac ξbc 0

ξbc ξcc 0

0 0 0



 , Kc =





ν2
a ν2

b 0

ν2
b ν2

c 0

0 0 0



 , (3)
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Table 2. Elements of the sector mass, damping, and stiffness matrices.

M11 = µb(ρ
2 +1)+µa(α+ γ+1)2 +1 C11 = ξd K11 = δ(µb(ρ+1)+µa(α+ γ+1)+1)σ2 +1

M12 = µbρ(ρ+1)+µa(α+ γ)(α+ γ+1) C12 = −ξb K12 = δ(µbρ+µa(α+ γ))σ2

M13 = µaγ(α+ γ+1) C13 = −ξa K13 = µaγδσ2

M21 = M12 C21 = 0 K21 = K12

M22 = µbρ2 +µa(α+ γ)2 C22 = ξb K22 = (δ+1)(µbρ+µa(α+ γ))σ2 +λ2

M23 = µaγ(α+ γ) C23 = −ξa K23 = µaγ(δ+1)σ2

M31 = M13 C31 = 0 K31 = K13

M32 = M23 C32 = 0 K32 = K23

M33 = µaγ2 C33 = ξa K33 = µaγ(α+δ+1)σ2

and the sector forcing vector is given by f = ( fϕ, fθ,0)T , where

the dimensionless entries are defined in Table 1. The 3N lin-

earized EOM defined by Eq. (2) serve as the basis for the analysis

that follows.

3 ABSORBER TUNING

The linear absorber tuning order follows from the special

case when the disks and blades are locked in their zero posi-

tions relative to the spinning rotor [11, 12]. This leads to a

system of identical, dynamically isolated and unforced single-

DOF absorbers that oscillate freely under the influence of cen-

trifugal effects. Their dynamics follow from Eq. (2) by setting

ϕi = ϕ′
i = ϕ′′

i = 0 and θi = θ′i = θ′′i = 0. Then

µaγ2ψ′′
i +ξaψ′

i +µaγ(α+δ+1)σ2ψi = 0, (4)

where the undamped natural frequencies are given by

ω̄33 ≡
ω33

ω0
=

√

α+δ+1

γ
σ. (5)

Physically, each absorber acts like a centrifugally-driven pendu-

lum of length γ whose pivot point is located a distance α+δ+1

from the rotor axis O. The base accelerates towards the center or

rotation at a constant rate (α + δ + 1)σ2, which is the effective

gravity of the pendulum. This results in a centrifugal restoring

force that scales with σ2 and an undamped natural frequency that

scales with σ according to the constant

ñ =

√

α+δ+1

γ
, (6)

which is defined to be the absorber tuning order. Because the

isolated absorber eigenfrequencies ω̄33 and the e.o. excitation

frequency scale directly with the rotor speed, the absorbers are

tuned to a given order of the excitation as opposed to a particular

frequency [21].

Absorber tuning refers to a choice of absorber geometric pa-

rameters, which are selected to attenuate the blade responses over

a range of operating speeds, particularly near resonance. This is

done by choosing a value for ñ and then selecting the dimension-

less parameters α, δ, and γ to satisfy Eq. (6). It is shown that

there exists an ideal absorber tuning that results in suppression

of one of the blade resonances, where the attendant absorber am-

plitudes depend primarily on their mass and placement along the

blade lengths and the level of the applied loads. Ideal tuning is

defined by

ñ = n, (7)

in which case the isolated absorber natural frequency ω̄33 iden-

tically matches that of the excitation. Exact tuning is effective

for all rotation speeds, but it is susceptible to uncertainties of the

model or absorber parameters due to in-service wear, environ-

mental effects, or the effects of tolerances. To account for such

effects, and to allow for intentionally detuned designs, we let

ñ = n(1+β), (8)

where β is a detuning parameter. Ideal linear tuning corresponds

to β = 0 while undertuning (resp. overtuning) corresponds to

β < 0 (resp. β > 0). One of the main goals of absorber design

is to select β to achieve robust vibration reduction of the primary

system.

4 FEATURES OF THE FORCED RESPONSE

This section reports the main results of the paper. The lin-

earized EOM are analyzed to determine the effects of absorber

tuning on the steady-state TW response to TW e.o. excitation.
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The special case for which the absorbers are locked at their ver-

tices is analyzed in Section 4.1. These results, which are typical

for a cyclic system with two DOF per sector, are used as a base-

line against which the absorber performance is assessed. The

full model, in which all three sector DOF are free to move, is

considered in Section 4.2. Of particular interest are the effects of

varying the absorber tuning and whether or not the no-resonance

zone reported by Olson et al. [11–13] exists for this higher fi-

delity model.

The forced response can be obtained by assembling the sec-

tor models defined by Eq. (2) into a single matrix EOM and

proceeding in the usual way [22]. For large N, however, it

is desirable to simplify the analysis by exploiting the system

(cyclic) symmetry, as it is done by Olson et al. [11–13] and oth-

ers [23]. If P is the number of DOF in each sector (P = 3 for

the model shown in Fig. 1), the PN ×PN system mass, damp-

ing, and stiffness matrices are block circulant with P×P blocks.

The PN-DOF model can be block decoupled to a set of N, P-

DOF modal systems via a unitary transformation involving the

complex Fourier matrix [24–26]. The PN natural frequencies are

preserved under the transformation and can be obtained in sets of

P from the N decoupled modal EOM. The forced response fol-

lows accordingly, and allows for the full system response to be

determined by considering a set of uncoupled three DOF models.

4.1 Response with the Absorbers Locked

If the absorbers are locked relative to the rotating blades,

then ψi = ψ′
i = ψ′′

i = 0 and each sector model has two DOFs.

Figure 2a shows the 2N natural frequency loci in a Campbell di-

agram and the corresponding disk/blade amplitude frequency re-

sponse (|ϕi|, |θi|) for a representative model with N = 10 sectors,

order n = 3 excitation, α = 1.4, δ = 1.117, ρ = 1.67, λ = 0.1,

γ = (α+δ+1)/ñ2, µa = 0.01, µb = 0.1, νa = 0.5, νb = νc = 0.1,

fφ = 0.0016, and fθ = 0.001. There are two groups of N natu-

ral frequencies whose spread depends primarily on the strength

of the inter-sector coupling. For nonzero coupling they gener-

ally appear in repeated pairs, except for mode p = 1 and mode

p = (N +2)/2 if N is even. For zero coupling they collapse onto

a single pair of values [11, 12]. The bottom-most group corre-

sponds to in-phase motions of the two DOF in each sector and the

top-most curves represent out-of-phase motions of the disk/blade

DOFs. The natural frequencies increase slightly with increasing

rotor speed due to centrifugal stiffening.

It is well-known that e.o. excitation excites only one mode

in each eigenfrequency group due to special modal orthogonality

properties of cyclic systems [11, 12]. The resonant rotor speeds

can be identified in Fig. 2a by the intersections of the natural

frequency loci corresponding to mode p = n + 1 with the e.o.

line defined by nσ.2 The corresponding resonances are shown

in the frequency response diagrams of Fig. 2b. Of course, mis-

2The excited mode is p = n modN +1 when considering n ∈ Z+ [12].
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Figure 2. Campbell Diagram and Frequency Response.

tuning that arises due to imperfections among the sectors results

in resonance with some degree of intensity at all of the intersec-

tions [27, 28].

4.2 Response with the Absorbers Free

When the absorbers are free to move there are three nat-

ural frequencies corresponding to each index p ∈ N . The three

groups of N frequency loci ω̄
(p)

1,2,3 are plotted in Fig. 3 for increas-

ing inter-sector coupling and increasing absorber mass while

holding all other parameters fixed. Each natural frequency cor-

responds to a system mode, which, together with fixed inter-

sector phase relationships, form a forward TW, backward TW,

or standing wave response among the sectors, depending on the

value of n relative to N [11, 12, 23]. The natural frequencies

are tightly-spaced for weak inter-sector coupling (Fig. 3a) and

they spread out as the coupling is increased (Fig. 3c). Each

group exhibits the eigenvalue veering phenomenon, or mutual

repulsion of the eigenfrequencies, which results from small dy-

namic coupling between the disks and blades and between the

blades and absorbers [17, 18, 29]. The ratio of absorber mass

to the disk and blade masses is essential for the curve veering

phenomenon. When the mass ratio is very small (Fig. 3d), the

natural frequency curves are close to each other in the veering

regions. (In Figs. 3d- f only one frequency locus ω̄
(1)

1,2,3 is shown

in each group, which corresponds to zero inter-sector coupling.)

A larger difference between the groups of frequency loci can be

obtained by increasing the mass ratio (Fig. 3 f ), although in most

applications this mass ratio is small.
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Possible resonances can be identified by the intersections of

ω̄
(p)

1,2,3(σ) with the e.o. line nσ. However, there is a system reso-

nance in the perfectly symmetric case only when

nσ = ω̄
(n+1)

1,2,3(σ) (9)

is satisfied because only mode n + 1 is excited in the steady-

state [11, 12]. The principle objectives of this work are to de-

termine if any resonances persist for near-ideal absorber tuning

(i.e., for β close to zero); whether or not any new resonances are

introduced for multi-DOF disk/blade models; and, if so, whether

the absorbers can be tuned to avoid these resonances over a range

of rotor speeds.

The results are summarized in Fig. 4, which shows the

eigenfrequency loci in Campbell diagrams and the correspond-

ing disk, blade, and absorber amplitude frequency responses

(|ϕi|, |θi|, |ψi|) for a model with N = 10 sectors, order n = 3 ex-

citation, various absorber tuning values that range from under-

tuning (β < 0) to overtuning (β > 0), and for the same parameter

values used in Fig. 2. Inter-sector coupling is assumed to be quite

strong to more clearly show the effects of detuning on the excited

modes; this does not affect the approach nor the conclusions. In

many situations the eigenfrequency loci ω̄
(p)

1,2,3 cross the e.o. line

twice. For absorber overtuning (Fig. 4a) or sufficiently large un-

dertuning (Fig. 4b) there are two system resonances, which are

indicated by circles in the Campbell diagrams. Insets 1 and 2

show close-up views of the veering regions in Fig. 4a, including

the resonances corresponding to ω̄
(n+1)

1,2 . Figure 4c shows that the

fundamental resonance disappears for ideal tuning (β = 0), but

the resonance corresponding to ω̄
(n+1)

2 persists. In this case, there

is only one system resonance over the full range of possible rotor

speeds.

One of the main findings of Olson et al. is the existence

of a no-resonance zone in the 2-DOF sector model dynamics,

that is, a range of absorber tuning values which results in com-

plete resonance suppression over the full range of possible rotor
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speeds [11, 12]. The no-resonance gap corresponds to a finite

range of absorber undertuning values, where the critical lower

bound βcr < 0 depends on system and absorber parameters and

the upper bound corresponds to ideal tuning with β = 0. Ro-

bust absorber design involves intentional undertuning within this

(generally small) range, which allows for small variations of the

model or parameter values without introducing resonance. For

the 3-DOF sector model shown in Fig. 1b the no-resonance zone

is replaced by a resonance suppression zone defined by

βcr < β ≤ 0, (10)

where one of two resonances is avoided but the other resonance

persists. It is clear from the eigenfrequency structures shown in

Fig. 4 that there will be P−1 excited modes for the general case

of P ≥ 2 disk/blade DOFs per sector.

The resonance suppression zone can be clearly identified in

Fig. 5, which is a plot of the resonant rotor speed σres (defined

implicitly by Eq. (9)) in terms of the detuning parameter β for the

same parameter values used in Fig. 2. For the case of P = 2 DOFs

per sector considered by Olson et al. [11–16] there exists a range

of undertuning values for which there are no system resonances

(i.e., the no-resonance zone). Figure 5 shows that no such range

exists for P = 3 DOFs per sector, and it is clear that the same can

be said for the general case of P ≥ 3. Instead, there is a finite

range defined by Eq. (10) for which one resonance is robustly

avoided and one resonance persists. For the parameter values

used in Fig. 4 the critical undertuning value is βcr = −0.0554.

Fig. 4d shows example disk, blade, and absorber frequency re-

sponse plots and the corresponding Campbell diagram for tuning

within the resonance suppression zone.

5 CONCLUSIONS AND DIRECTIONS FOR FUTURE

WORK

The performance of centrifugally-driven, order-tuned vi-

bration absorbers has been investigated using a higher-fidelity

lumped-parameter model of a bladed disk assembly under e.o.

excitation. The model consists of a cyclic array of N identical,

identically-coupled sectors, each with three DOFs that capture

the effects of the disk, blades, and absorbers. The principle find-

ing of this work is the existence of an absorber undertuning re-

gion in which one resonance is robustly avoided. The range is

bounded from above by ideal tuning and from below by a critical

linear undertuning, which forms a resonance-suppression zone.

Thus, while the absolute no-resonance zone reported by Olson et

al. [11–13] does not extend completely to higher-fidelity sector

models, the absorbers do provide a range of speeds over which

one resonance can be suppressed.

It is important to note that adding more DOFs per sector

does not qualitatively alter this picture. That is, groups of higher-

order modes will still experience resonance, albeit at higher ro-

tor speeds. This is due to the structure of the natural frequency

curves shown in Fig. 4, which veer only once and then flatten

out (asymptotically approach the absorbers-locked frequencies

[11, 12]) as the rotor speed is increased. Therefore, the e.o. line

generically crosses all but one natural frequency group. Adding

more DOFs per sector simply adds more such curves at higher

frequencies, thereby introducing more resonances at higher rotor

speeds. The main conclusion is that an identical set of order-

tuned absorbers can suppress only one resonance.

There remains much work to be done on this class of prob-

lems, which can be divided into four general categories. First,

very few systematic experiments have been performed. The work

by Duffy and co-workers on self-tuned impact dampers makes

use of an impacting mode of motion for order-tuned absorbers,

and demonstrates that they are effective in attenuating vibrations

in a rotating plate [30, 31].

The second group of problems address nonlinear effects.

Shaw and Pierre [16] have investigated a single-sector model

with an order-tuned absorber that undergoes impacts when it

reaches a certain amplitude. Olson and Shaw [12, 14, 15] an-

alyzed the response of a two-DOF-per-sector model in which

absorber path nonlinearity is taken into account, and they make

some recommendations about nonlinear absorber tuning. Specif-

ically, the absorber path, which is generalized to be non-circular,

should be slightly softening for large amplitudes. Polchi [19]

has some preliminary results along the same lines for the three-

DOF-per-sector model considered here, which show that the lin-

ear resonance structure essentially persists for weakly nonlinear

absorber motions. However, a detailed analysis with recommen-

dations for path design remains to be completed.

The third category deals with systems of multiple absorbers,

for which there are many possible studies. For example, is it

necessary to have an absorber in every sector? The answer to
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this question likely depends on the level of intersector coupling.

Also, can one use sets of absorbers to address multiple reso-

nances? An affirmative answer to this question is given for the

case of a single sector by Wang et. al [32], but the multi-sector

case has yet to be considered. The question of whether or not

sets of absorbers can be arranged so that not every sector has ab-

sorbers tuned to every targeted order should also be considered.

The final, and probably most practical, line of work should

consider the effects of mistuning and intentional detuning of the

primary system and absorbers. It is well known that slight mis-

tuning of cyclic systems leads to localization of vibration modes

and of the forced steady-state response [33–36]. All of the is-

sues introduced by mistuning exist, and indeed are compounded,

by the presence of absorbers, which raises a number questions.

If the absorbers and/or sectors have mistuning, what is the de-

gree of localization in the overall response? Of course, localized

absorber motions are highly undesirable because the absorbers

have only limited rattle space in which to operate. So, can one

intentionally detune the system (sectors and/or absorbers) to mit-

igate the localization? Will such detuning be random, or just of

some order of symmetry less than that of the ideal cyclic system?

These questions, and no doubt others, should be addressed to

more fully understand the effectiveness of order-tuned absorbers

in practical systems.
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