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Standard model gauge bosons propagating in two universal extra dimensions give rise to heavy
spin-1 and spin-0 particles. The lightest of these, carrying Kaluza-Klein numbers (1,0), may be
produced only in pairs at colliders, whereas the (1,1) modes, which are heavier by a factor of

√
2,

may be singly produced. We show that the cascade decays of (1,1) particles generate a series of
closely-spaced narrow resonances in the tt̄ invariant mass distribution. At the Tevatron, s-channel
production of (1,1) gluons and electroweak bosons will be sensitive to tt̄ resonances up to masses
in the 0.5–0.7 TeV range. Searches at the LHC for resonances originating from several higher-level
modes will further test the existence of two universal extra dimensions.

I. INTRODUCTION

If the standard model gauge bosons propagate in ex-
tra dimensions, then for each of the SU(3)C ×SU(2)W ×
U(1)Y gauge fields there is a tower of heavy vector bosons
that could produce signals in collider experiments. These
heavy vector bosons are commonly called Kaluza-Klein
(KK) modes of the gauge bosons [1], and we will refer
to them in what follows as “vector modes”. The proper-
ties of the vector modes depend crucially on the number,
compactification and metric of extra dimensions, as well
as on what other fields propagate in the extra dimensions.

For example, if the metric is flat and no quarks or
leptons propagate in the extra dimensions, then vector-
mode exchange among fermions produces too large cor-
rections to the electroweak observables, unless the com-
pactification scale (which approximately sets the mass of
the lightest vector modes within each tower, called level-
1 states) is higher than roughly 6 TeV [2], pushing the
vector modes beyond the reach of the Large Hadron Col-
lider (LHC) [3]. By contrast, if the extra dimensions are
universal, i.e., all standard model particles propagate in
the extra dimensions, then the limit on the compactifica-
tion scale is close to the electroweak scale [4], so that the
vector modes could be produced not only at the LHC but
also at the Tevatron. In that case, however, a KK par-
ity is conserved implying that level-1 vector modes may
be produced only in pairs, and that their decays involve
soft leptons and jets plus missing energy [5], making their
discovery challenging.

The vector modes that are particularly interesting for
collider searches are level-2 states from universal extra
dimensions. These have individual couplings to the ob-

served fermions, induced by loops within the higher-
dimensional effective theory [6], or by boundary oper-
ators generated at the cut-off scale, Ms, where some new
physics should smooth out the ultraviolet behavior of the
theory [4]. The induced couplings are rather small, be-
ing suppressed by either a loop factor or a volume factor,
so that one need not worry about the constraints from
electroweak precision measurements. At the same time,
the suppression may be not too strong, allowing a poten-
tially sizable s-channel production at high-energy collid-
ers. This possibility in the case of one universal extra
dimension, where the level-2 masses are roughly twice as
large as the level-1 masses, has been noted in Ref. [5] and
analyzed in detail in Ref. [7].

In this paper we point out that level-2 vector modes
in the case of two universal extra dimensions offer better
opportunities for discovery. The reason is that the level-2
vector modes in this case have masses which are larger
than the level-1 masses by a factor of approximately

√
2.

As a result, their production is possible at smaller center-
of-mass energies, and the decays of level-2 states into
pairs of level-1 states, which would lead to only soft lep-
tons and jets in the detector, are kinematically forbidden
(as opposed to the case of one universal extra dimension
where such decays are typically allowed). Then the level-
2 states, characterized by KK numbers (1,1), have large
branching fractions for decays into a pair of standard
model particles giving rise to a high pT signal. Another
distinctive feature of two universal extra dimensions is
that each vector mode is accompanied by a spin-0 par-
ticle in the adjoint representation of the corresponding
gauge group.

In Section II we present the standard model in two uni-
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versal extra dimensions compactified on the chiral square,
which is the simplest compactification consistent with the
chirality of the quarks and leptons. We concentrate es-
pecially on the mass spectrum and KK-number violating
interactions of the KK modes. In Section III we com-
pute in detail the branching fractions of the (1,1) modes,
which is useful for any future phenomenological study of
the standard model in six dimensions. We then turn to
resonant production of the (1,1) modes at the Tevatron,
and estimate the expected reach of Run II in Section IV.
The more complex phenomenology at the LHC is briefly
discussed in Section V, and then our results are summa-
rized in Section VI.

II. SIX-DIMENSIONAL STANDARD MODEL

We consider the standard model in six dimensions,
with two dimensions compactified. Each of the gauge
fields has six components: for example, the six-
dimensional (6D) gluon field Ga

α, where a labels the
eight SU(3)C generators, has a 6D Lorentz index α =
0, 1, . . . , 5. The quark and lepton fields are chiral 6D
fermions, which have four components. The requirements
of 6D anomaly cancellations and fermion mass generation
[8] force the weak-doublet quarks to have opposite 6D chi-
rality than the weak-singlet quarks, so that the quarks
of one generation are given by Q+ = (U+, D+), U−, D−,
where ± labels the 6D chiralities. The chirality assign-
ment in the 6D lepton sector is similar (its implications
for the neutrino masses are analyzed in [9]).

The zero-mode states, which are particles of zero mo-
mentum along the extra dimensions, are identified with
the observed standard model particles. Since the ob-
served quarks and leptons have definite 4D chirality, an
immediate constraint on any 6D extension of the stan-
dard model is that the compactification of the two ex-
tra dimensions must allow chiral zero-mode fermions. A
simple compactification of this type has been studied in
detail in [10, 11]. It consists of a square, 0 ≤ x4, x5 ≤ πR,
where x4, x5 are the coordinates of the extra dimensions
and R is the compactification “radius”. The compactifi-
cation is obtained by imposing the identification of two
pairs of adjacent sides of the square, and we refer to it
as the “chiral square”.

A. KK decomposition

For any 6D field Φ(xµ, x4, x5) that has a zero mode,
the field equations have the following solution:

Φ =
∑

j,k

(

cos
jx4 + kx5

R
+ cos

kx4 − jx5

R

)

Φ(j,k)(xµ)

πR(1 + δj,0)
.

(2.1)
The KK numbers, j and k, are integers with j ≥ 1 and
k ≥ 0, or j = k = 0. The 4D fields Φ(j,k)(xµ) are the KK

modes of the 6D field Φ. They have masses due to the
momentum along x4, x5 given by

Mj,k =
1

R

√

j2 + k2 , (2.2)

so that the mass spectrum, in the limit where other con-
tributions to physical masses are neglected, starts with
M0,0 = 0, M1,0 = 1/R, M1,1 =

√
2/R, M2,0 = 2/R, . . .

For 6D fields that do not have a zero mode, the KK de-
compositions differ from Eq. (2.1), as shown in [10, 11],
but their KK mass spectrum is the same for the massive
states.

The 6D gluon and electroweak gauge bosons decom-
pose each into a tower of 4D spin-1 fields, a tower of 4D
spin-0 fields which are eaten by the heavy spin-1 fields,
and a tower of 4D spin-0 fields which remain in the spec-
trum, all belonging to the adjoint representation of the
corresponding gauge group. We refer to these latter spin-
0 fields as “spinless adjoints”. The zero modes of the
spin-1 fields are the standard model gauge bosons, while
the spin-0 fields do not have zero modes. Therefore, in
the unitary gauge the 6D gluon field includes at each

nonzero KK level a vector mode G
(j,k)a
µ and a real scalar

field G
(j,k)a
H . The 6D weak gauge fields have KK modes

W
(j,k)±
µ , W

(j,k)±
H , W

(j,k)3
µ and W

(j,k)3
H , while the hyper-

charge KK gauge bosons are B
(j,k)
µ , B

(j,k)
H . Electroweak

symmetry breaking due to the 6D VEV of the Higgs

doublet (as discussed in general in [11]), mixes W
(j,k)3
µ

and B
(j,k)
µ , as well as W

(j,k)3
H and B

(j,k)
H . However, for

1/R ∼> 300 GeV, this mixing is small [6], and we will
neglect it in what follows. The 6D Higgs doublet decom-
poses into a tower of 4D weak doublets. The zero-mode
doublet gives the longitudinal degrees of freedom of the
W and Z and a Higgs boson, while at each nonzero KK
level three of the degrees of freedom of the massive Higgs
doublet mix with the longitudinal components of the elec-
troweak vector modes (this mixing is also suppressed by
MZR).

The 6D quark and lepton fields decompose each into
a tower of heavy vector-like 4D fermions and a chiral
zero mode identified with the observed fermion. Ex-
plicitly, the standard model quark doublets are given by

(uL, dL) ≡ Q
(0,0)
+L

, while the standard weak-singlet quarks

are uR ≡ U
(0,0)
−R

and dR ≡ D
(0,0)
−R

, where a generation in-
dex is implicit.

B. Localized Operators

The “chiral square” compactification is a two-
dimensional space having the topology of a sphere. It
is flat everywhere, with the exception of conical singular-
ities at the corners of the square. Altogether there are
three such conical singularities, given that the (0, πR)
and (πR, 0) corners are identified.

Operators localized at the singular points are gener-
ated by loops involving the bulk interactions [12], as in
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the theories studied in Ref. [6, 13]. The space around the
conical singularities is symmetric under rotations in the
(x4, x5) plane, and therefore the localized operators have
an SO(2) symmetry. Furthermore, the bulk interactions
are symmetric under reflections with respect to the cen-
ter of the square. This symmetry is a KK parity, labeled
by ZKK

2 . It implies that the operators generated at (0, 0)
are identical with those at (πR, πR).

Other contributions to the localized operators might be
induced by physics above the cut-off scale. They should
also be SO(2) symmetric. In addition, it is compelling
to assume that these UV-generated localized operators
are ZKK

2 symmetric, so that the stability of the lightest
KK particle, a promising dark matter candidate [14], is
ensured.

The 4D Lagrangian can be written as

∫ πR

0

dx4

∫ πR

0

dx5 {Lbulk + δ(x4)δ(πR − x5)L2

+ [δ(x4)δ(x5) + δ(πR − x4)δ(πR − x5)]L1} . (2.3)

Lbulk includes 6D kinetic terms for the quarks, leptons,
SU(3)C × SU(2)W × U(1)Y gauge fields, and a Higgs
doublet, 6D Yukawa couplings of the quarks and leptons
to the Higgs doublet, and a 6D Higgs potential. The
form of these terms can be derived from the general 6D
Lagrangians discussed in [10, 11]. L1 and L2 contain
all the localized operators. In particular, these include
4D-like kinetic terms for all 6D fields, and the pieces of
6D kinetic terms that describe motion along the extra
dimensions. For example, the localized operators of the
lowest mass dimension that involve the 6D quark field
U− appear in Lp (p = 1, 2) as

CpU

22M2
s

iU−R
ΓµDµU−R

+

(

C′
pU

22M2
s

iU−R
ΓlDlU−L

+ H.c.

)

,

(2.4)
where Γµ with µ = 0, 1, 2, 3 and Γl with l = 4, 5 are anti-
commuting 8 × 8 matrices, Dµ, Dl are covariant deriva-
tives, CpU (C′

pU ) are real (complex) dimensionless pa-
rameters, and Ms is the cut-off scale. For convenience,
we also wrote explicit factors of (1/2)

2
to account for an

enhancement due to the values of the wavefunctions in
Eq. (2.1) at the singular points. The localized operators
of the lowest mass dimension that involve the 6D gluon
field are given by

Lp ⊃ −1

4

CpG

22M2
s

GµνGµν − 1

2

C′
pG

22M2
s

(G45)
2

, (2.5)

where CpG and C′
pG with p = 1, 2 are real dimensionless

parameters.
As mentioned above, the contributions to the localized

operators in Eq. (2.4) and (2.5) arise from two sources:
loops with KK modes, and physics above the cut-off scale.
The bare contribution, from physics at or above the cut-
off scale, to the coefficients of the localized terms can be
estimated by assuming that the localized couplings get
strong at the cut-off scale Ms, where Ms is the scale at

which the QCD interactions become strong in the ultravi-
olet. Using naive dimensional analysis (NDA) in the 6D
theory [15], we estimate the coefficients CpG and C′

pG in

Eq. (2.5), CpU , ReC′
pU , ImC′

pU in Eq. (2.4), and the anal-
ogous coefficients associated with the Q+ and D− fields,
to be all of the order of l6/l4 = 8π, where l6 = 128π3

and l4 = 16π2 are 6D and 4D loop factors, respectively.
This estimate assumes that the localized term receives
contributions from color interactions. If this is not the
case, then there is an associated suppression.

Furthermore, NDA gives (πRMs)
2 ∼ l6/(g2

sNc), where
gs is the 4D QCD gauge coupling and Nc = 3 is the
number of colors. Thus, the bare contribution to the ef-
fective 4D coupling is of the order of (l6/l4)/(πRMs)

2 ∼
g2

sNc/l4. Also, the separation between the compactifica-
tion scale and the cut-off scale is

MsR ∼
(

32

αsNc

)1/2

≈ 10 . (2.6)

The strong coupling constant is evaluated here at the
compactification scale, 1/R: αs ≡ g2

s/(4π) ≈ 0.1.
The localized operators are also renormalized by the

physics below the cutoff scale, Ms. These contributions
were calculated in [12] at one-loop order. For the fermion
kinetic terms in Eq. (2.4) involving 4D derivatives, one
obtains

C1f

(πMsR)2
=

[

−4
∑

A

g2
AC2(f) +

5

8

∑

i

λ2
i

]

1

16π2
ln

M2
s

µ2
,

C2f

(πMsR)
2 =

[

−2
∑

A

g2
AC2(f) +

1

4

∑

i

λ2
i

]

1

16π2
ln

M2
s

µ2
,

(2.7)

where λi are Yukawa couplings of the fermion f to com-

plex scalars having zero modes (the i sum is over the
scalars), gA is the 4D gauge coupling, C2(A) and C2(f)
are the quadratic Casimir eigenvalues of the gauge fields
and fermions, respectively [for an SU(N) gauge group,
C2(A) = N , and if f is in the fundamental representa-
tion, C2(f) = (N2 − 1)/(2N)], and T (f) and T (s) are
the indices of the representations to which the fermion
f and scalar s belong [T (f) = T (s) = 1/2 in the funda-
mental representation]. Notice that these contributions
are scale dependent, and µ should be taken of the order
of the characteristic scale of the process of interest.

For the coefficients of the fermion kinetic terms with
derivatives in the plane of the extra dimensions, one finds
that only the Yukawa couplings contribute:

C′

1f

(πMsR)
2 =

5

8

∑

i

λ2
i

1

16π2
ln

M2
s

µ2
,

C′
2f

(πMsR)
2 =

1

4

∑

i

λ2
i

1

16π2
ln

M2
s

µ2
, (2.8)

where again the sum runs over complex scalars.
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The coefficients of the 4D gauge kinetic terms in
Eq. (2.5) are found to be

C1A

(πMsR)
2 =



−14

3
C2(A) +

2

3

∑

f

T (f) +
5

12

∑

s

T (s)





× g2
A

16π2
ln

M2
s

µ2
,

C2A

(πMsR)
2 =

[

−2 C2(A) +
1

6

∑

s

T (s)

]

g2
A

16π2
ln

M2
s

µ2
,

(2.9)

where A stands for any gauge field. The sum over f
involves all 6D Weyl fermions having a zero mode of any
4D chirality, while the sum over s involves all complex
scalars having a zero mode.

Finally, for the operators involving the spinless ad-
joints A4–A5 one finds

C′
1A

(πMsR)
2 =



8C2(A) − 4
∑

f

T (f) +
13

4

∑

s

T (s)





× g2
A

16π2
ln

M2
s

µ2
,

C′
2A

(πMsR)
2 =

[

2 C2(A) +
1

2

∑

s

T (s)

]

g2
A

16π2
ln

M2
s

µ2
,

(2.10)

where again the sums run over 6D Weyl fermions and
complex scalars having zero modes.

We note that the contribution due to the physics be-
low the cutoff scale is enhanced by a logarithmic fac-
tor compared to the “bare” contributions from physics
at or above Ms. However, in the present class of mod-
els the logarithm is at most a few [see Eq. (2.6)]. Also,
for strongly interacting particles one should worry about
higher loop orders in the contributions to the localized
operators coming from the physics below Ms. For these
strongly interacting particles, the multi-loop effects are
of the same order as the one-loop result. Note, how-
ever, that for particles that do not interact directly with
colored states, such as the leptons, the one-loop compu-
tation should be a good approximation for the coefficient
of the localized operator, modulo the bare contributions
which are not logarithmically enhanced. At any rate, the
above results should be used carefully and we shall take
them as an estimate of the physics due to localized op-
erators. For the most part, we will express our results
in terms of generic localized parameters. However, for
numerical purposes we will use the above one-loop ex-
pressions.

C. Mass spectrum

The localized terms of Eqs. (2.4) and (2.5) shift the
masses of the fermion, gauge field and spinless adjoint
KK modes, leading to mass splittings among the mem-
bers of a given KK level. To lowest order in the localized
terms Cpf , C′

pf , CpA and C′
pA, where f stands for any of

the fermions and A for any of the gauge fields, the mass
shifts are

Mf(j,k) = Mj,k

(

1 − 1

2
δZf(j,k) +

1

2
δZ ′

f(j,k)

)

,

MA(j,k) = Mj,k

(

1 − 1

2
δZA(j,k)

)

, (2.11)

M
A

(j,k)
H

= Mj,k

(

1 +
1

2
δZ

A
(j,k)
H

)

.

For KK-parity even fields, that is (j,k) modes with
(−1)j+k = +1, we find

δZf(j,k) =
1

(πMsR)2
(2C1f + C2f ) ,

δZ ′

f(j,k) =
2

(πMsR)2
Re
(

2C′

1f + C′

2f

)

,

δZA(j,k) =
1

(πMsR)2
(2C1A + C2A) ,

δZ
A

(j,k)
H

=
1

(πMsR)2
(2C′

1A + C′

2A) , (2.12)

while for KK-parity odd fields, i.e., (−1)j+k = −1, the
δZ’s are given by (2.12) with C2f = C′

2f = C2A = C′
2A =

0. The mass shifts depend on the quantum numbers j
and k because the coefficients Cpf , C′

pf , CpA and C′
pA

are running parameters and should be evaluated at the
scale of the corresponding mass Mj,k.

The mass of the gluon vector mode, G
(j,k)
µ , can be

parametrized as

MG(j,k) = Mj,k

(

1 + AG CG
j,k

)

, (2.13)

where

CG
j,k ≡ g2

sNc

16π2
ln

(

M2
s

M2
j,k

)

, (2.14)

Mj,k are the masses due to motion in the extra dimen-
sions, given in Eq. (2.2), and AG is a dimensionless pa-
rameter expected to be of order unity. The SU(2)W -
doublet quark modes have masses

M
Q

(j,k)
+

= Mj,k

(

1 + AQ+CG
j,k +

m2
q

2M2
j,k

)

, (2.15)

where mq is the mass of the zero-mode quark, and
we expanded in m2

q/M
2
j,k ≪ 1. We employ a similar
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parametrization for the SU(2)W -singlet quarks in terms
of dimensionless parameters, AU−

and AD−
(collectively

denoted by AQ−
). The coefficients AQ+ , AU−

and AD−

are also expected to be of order unity.
The masses of the hypercharge and electrically-neutral

SU(2)W vector modes, B
(j,k)
µ and W

(j,k)3
µ , are given by

MW (j,k) = Mj,k

(

1 +
2g2

Ncg2
s

AW CG
j,k +

M2
W

2M2
j,k

)

,

MB(j,k) = Mj,k

(

1 +
g′2

Ncg2
s

AB CG
j,k

)

, (2.16)

where g and g′ are the 4D SU(2)W and U(1)Y gauge
couplings, respectively. In Eqs. (2.16), we have neglected
terms of order (MW /Mj,k)4, where MW is the zero-mode
W mass. Similar parametrizations can be used for the
masses of the spinless adjoints:

M
G

(j,k)
H

= Mj,k

(

1 + AGH
CG

j,k

)

,

M
W

(j,k)
H

= Mj,k

(

1 +
2g2

Ncg2
s

AWH
CG

j,k +
M2

W

2M2
j,k

)

,

M
B

(j,k)
H

= Mj,k

(

1 +
g′2

Ncg2
s

ABH
CG

j,k

)

. (2.17)

The SU(2)W -doublet and -singlet lepton modes, L(j,k)

and E(j,k), have masses

ML(j,k) = Mj,k

(

1 +
2g2

Ncg2
s

AL CG
j,k

)

,

ME(j,k) = Mj,k

(

1 +
g′2

Ncg2
s

AE CG
j,k

)

. (2.18)

The above corrections to the KK masses of leptons and
electroweak bosons are due to the 6D SU(2)W × U(1)Y

interactions. Given that the loop factor CG
j,k is computed

for QCD, we have factored out the electroweak gauge cou-
plings such that the coefficients AW , AB , AWH

, ABH
, AL,

and AE are all expected to be of order unity, barring
enhancement factors due to particle multiplicities.

The KK modes of the Higgs boson, h(j,k), are split
in mass from the KK modes of the other three degrees
of freedom of the Higgs doublet. The latter ones mix

with the W
(j,k)
H KK modes, giving rise to the Nambu-

Goldstone bosons eaten by W
(j,k)
µ , and to the orthogonal

states η̃(j,k)a (a = 1, 2, 3) which form a tower of physical
spin-0 particles. For a detailed discussion of this mecha-
nism, we refer the reader to Section 6 of Ref. [11]. The
masses of these Higgs KK modes may be parametrized
as

Mh(j,k) = Mj,k

(

1 +
2g2

Ncg2
s

AH CG
j,k +

M2
h

2M2
j,k

)

,

Mη̃(j,k) = Mj,k

(

1 +
2g2

Ncg2
s

Aη̃ CG
j,k +

M2
W

2M2
j,k

)

, (2.19)

where we assumed that the Higgs boson mass Mh is small
enough compared to the compactification scale such that
the (Mh/Mj,k)4 corrections may be ignored. In the limit

Mh ≪ 1/R, the KK modes of the Higgs boson, h(j,k),
and of the three eaten Nambu-Goldstone bosons, η̃(j,k)±

and η̃(j,k)3, form a degenerate SU(2)W doublet at each
KK level, which we denote by H(j,k).

In this paper we are interested in the KK-parity even
states, which can be singly produced at colliders, as we
will see in the next section. It will be useful to have the
mass shift formulae (2.11) and (2.12) that follow from the
one-loop results, Eqs. (2.7)–(2.10), applied to the stan-
dard model gauge group and field content. For the gluon
vector modes, and for the SU(2)W -doublet and -singlet
quark modes, Q+ and Q− respectively, we find

AG =
13

3
,

AQ+ =
20

9
+

1

4g2
s

(

λ2
qL

+ 5g2 +
5

27
g′ 2
)

,

AQ−
=

20

9
+

1

g2
s

(

1

2
λ2

qR
+

5

12
y2

qR
g′ 2
)

, (2.20)

where yf are the hypercharges of the quarks and leptons,
normalized such that the quark doublets have y = 1/3.
Here λqL

and λqR
are the Yukawa couplings to the Higgs

doublet (given by λbL
= λtL

= λtR
≡ λt ≃ 1, and neg-

ligible for the other flavors). Note that the top Yukawa
gives a positive contribution so that the third generation
Q3 and U3 KK modes are heavier than those of the first
two generations. The positive contribution to the mass
shifts due to Yukawa couplings is special to six dimen-
sions, and is related to the existence of two 6D chiralities,
both of which must be involved in the Yukawa interaction
(notice that in 5D the Yukawa couplings give a negative
contribution to the mass shifts [6]). Note also that the
KK gluons are heavier than the KK quarks. However, as
we stressed before, for strongly interacting particles the
one-loop results should be taken only as indicative of the
size of the mass shifts. Although a situation where the
KK quarks are heavier than the KK gluons is possible,
we will assume that higher order contributions do not
change the hierarchy of masses found at one-loop.

For the electroweak gauge bosons, we get

AW =
85

24
, AB = −83

12
, (2.21)

while the leptons have

AL =
15

8

(

1 +
g′ 2

3g2

)

,

AE = 5 , (2.22)

so that the SU(2)W gauge boson modes are heavier than
the lepton modes.

For the spinless adjoints the mass shifts arise from the
second term in Eq. (2.5) and the analogous terms in the
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FIG. 1: Mass spectrum of the (1,1) level for 1/R = 500 GeV.
Electroweak symmetry breaking effects are small, and have
not been included.

electroweak sector. As shown in [11], the KK-expansion
of the extra-dimensional field strength, F45, defines gauge
invariant linear combinations of A4 and A5 that are or-
thogonal to the would-be Nambu-Goldstone bosons eaten
by the vector modes at each KK level. Thus, only these
gauge invariant degrees of freedom, that we call spinless
adjoints, get a mass shift from the localized terms, given
in the third equation of (2.11). We obtain the following
values for the parameters defined by Eqs. (2.17):

AGH
= 1 , AWH

= −17

8
, ABH

= −153

4
. (2.23)

Note that the (1, 1) SU(3)C spinless adjoints receive a
positive contribution to their masses, but are typically
lighter than the (1, 1) quarks. Similarly, the electroweak
spinless adjoints are lighter than the (1, 1) leptons. Their
masses are driven down by the contribution due to the
fermions.

Finally, the parameters that control the KK Higgs
masses in Eq. (2.19) are given by

AH ≃ Aη̃ ≃ 33

32
+

λ2
t

2g2
, (2.24)

where we have not included the contributions from Higgs
self-interactions and from U(1)Y interactions.

The mass spectrum of the (1, 1) modes is shown in Fig-
ure 1 for 1/R = 500 GeV. Higher-loop contributions in-
volving colored KK modes may be important (see the end
of Section II B), and may shift the mass spectrum. This
uncertainty is larger than corrections coming from the
running of the coupling constants, or electroweak sym-
metry breaking. We ignored these effects in Figure 1,
and we used some rough estimates for the couplings at
the scale M1,1 =

√
2/R: (g/gs)

2 = 0.34, (g′/gs)
2 = 0.10,

(λt/gs)
2 = 0.8, CG = 0.1. We also assumed that the
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FIG. 2: Mass spectrum of the (1,0) level. The lightest KK

particle is the B
(1,0)
H spinless adjoint.

Higgs boson is much lighter than the compactification
scale.

We also point out here that at the (1, 0) level, the mass
corrections to the electroweak spinless adjoints are also
negative. The mass correction to the (1, 0) SU(3)C spin-
less adjoints happens to vanish at one-loop for the stan-
dard model field content, but one should keep in mind
that multi-loop contributions are expected to be impor-
tant for the strongly interacting particles. The corre-
sponding mass shifts for the spin-1 particles are positive
for the (1, 0) gluons, and negative for the (1, 0) W and B
vector modes. In fact, it is interesting that the lightest
KK particle is predicted to be the spinless hypercharge

mode, B
(1,0)
H . Thus, in contrast to the case of five dimen-

sions, the natural dark matter candidate has spin-0. The
mass spectrum of the (1, 0) modes is shown in Figure 2
for 1/R = 500 GeV.

D. KK-number violating interactions

The ZKK
2 symmetry implies that for any interaction

among KK modes the sum over all j and k numbers
should be even. In particular, interactions involving two
zero modes and a (j, k) mode with j ≥ 1 and j + k even
is allowed. Such an interaction is not generated at tree
level by bulk interactions, but arises due to the localized
operators.

To be concrete, the effective 4D, KK-number violat-
ing couplings between zero-mode quarks and massive KK
gluons are given by

gsC
qG
j,k (qγµT aq)G(j,k)a

µ , (2.25)

where CqG
j,k are real dimensionless parameters, T a are the

SU(3)C generators in the fundamental representation, gs

is the QCD gauge coupling, and q stands for any of the
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standard model quarks. The strength of the couplings
to zero-mode fermions is controlled by the kinetic terms
localized at the fixed points, and contained in L1 and L2

in Eq. (2.3). Their dimensionless coefficients ultimately
determine the strength of the KK-number violating cou-
plings of fermions to gauge bosons. In terms of the co-

efficients defined in Eqs. (2.4) and (2.5), CqG
j,k is given to

lowest order in the localized terms by

CqG
j,k = −1

2
δZG(j,k) +

1

2
δZq(j,k) − 1

2
δZ ′

q(j,k) , (2.26)

where it is understood that G(j,k) is KK-parity even [i.e.
j + k is even], but not the zero-mode, and

δZq(j,k) =
1

(πMsR)2
(

2C1q + (−1)jC2q

)

,

δZ ′

q(j,k) =
2

(πMsR)2
Re
(

2C′

1q + (−1)jC′

2q

)

,

δZG(j,k) =
1

(πMsR)2
(

2C1G + (−1)jC2G

)

. (2.27)

Notice that when both j and k are even we can write
Eq. (2.26) in terms of the mass shifts given in Eq. (2.11)
as

CqG
j,k =

δMG(j,k)

Mj,k
−

δMq(j,k)

Mj,k
, j, k even . (2.28)

However, when both j and k are odd the above rela-
tion does not hold (unless there are no terms induced at
(x4, x5) = (0, πR), i.e. C1q = C′

1q = C1G = 0). In this
case, the above interactions depend on a different combi-
nation of the coefficients in L1 and L2 than the KK mass
shifts and are, effectively, independent parameters.

As mentioned above, the coefficients of the localized
operators receive contributions from physics at the cut-
off Ms, and run logarithmically below Ms due to bulk
loop effects. The contribution to the localized couplings
from physics between the scales Ms and µ < Ms is of
the order of (g2Nc/16π2) ln(M2

s /µ2). This contribution
is enhanced compared to the bare one by a logarithmic
factor. Based on these NDA estimates, Eqs. (2.26) and

(2.27) give the values of the parameters CqG
j,k at the scale

of the KK mode mass Mj,k:

CqG
j,k = ξG

q CG
j,k , (2.29)

where ξG
q is a dimensionless parameter of order unity, and

CG
j,k was defined in Eq. (2.14).
The localized operators at the cut-off scale may be

flavor dependent. Their contributions to the CqG co-
efficients are not shown in Eq. (2.14) because they are
not enhanced by the logarithmic factor. Nevertheless,
Eq. (2.6) implies that the logarithmic factor is at most as
large as ln(MsR)2 ≈ 4.6, and therefore the flavor depen-
dent operators may lead to large flavor-changing neutral
processes. In order to suppress these, the physics above

the cut-off scale must possess some approximate flavor
symmetry.

The KK spinless adjoints interact with the zero-mode
quarks only via dimension-5 or higher operators:

gsC̃
qG
j,k

Mj,k
(qγµT aq) DµG

(j,k)a
H , (2.30)

where Dµ is the gauge covariant derivative, and C̃qG
j,k are

real dimensionless parameters that depend on the flavor
and chirality of the quark q. Note that GH has axial cou-
plings to quarks, proportional to the difference between
the coefficients of the left- and right-handed quark op-
erators. The largest contributions to these coefficients
arise from the quark and spinless adjoint kinetic and
mass mixing effects associated with the localized kinetic
terms of Eqs. (2.4) and (2.5). There is also a subdom-
inant finite direct vertex contribution, suppressed by a
logarithm compared to the mixing effects. According to
NDA, the direct bare contributions from localized opera-
tors to the interaction (2.30) are of order (g2

sNc/16π2)2,
and are therefore negligible compared to the contribu-
tions due to mixing effects. It is important to notice that
the vertex (2.30) is proportional to the quark masses, as
can be seen by integrating by parts and using the fermion
equations of motion. As a result, the spinless adjoints de-
cay almost exclusively into top quarks. This observation
also implies that the coupling for direct production of the
spinless states is negligible, being suppressed by the u or
d-quark masses. However, the spinless adjoints can be
easily produced in the decays of KK quarks or leptons,
as we discuss in the next section.

Dimension-4 operators which couple a single spinless
adjoint to one or two zero-mode gluons are forbidden by
the unbroken gauge invariance associated with the zero-
mode gauge boson. Naively, a spinless adjoint may couple
to zero-mode gluons via the dimension-5 operator

1

Mj,k
Tr
(

GµνGµνG
(j,k)
H

)

(2.31)

or the analogous operator involving a dual field strength.
However, these operators vanish because the trace over
three generators T a, T b, T c in the adjoint representation
is proportional to the antisymmetric structure constant
fabc, and two indices are contracted with identical gluon
field strengths. On the other hand, the operator obtained
by replacing one of the gluon field strengths in (2.31) by
the field strength of a KK gluon need not vanish, and
generates a coupling of a spinless adjoint to a KK gluon
and a gluon zero mode.

Higher-dimension operators coupling the hyper-
charge spinless adjoint to two spin-1 fields, e.g.,

Tr(GµνGµνB
(j,k)
H ) or BµνBµνB

(j,k)
H , could be present.

Interestingly, the one-loop contributions to their coeffi-

cients vanish. This is because B
(j,k)
H couples to fermions

via an axial-scalar coupling so that the relevant trian-
gle diagrams are proportional to the corresponding gauge
anomaly coefficients, which are canceled.
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The W
(j,k)a
µ KK modes couple to zero-mode fermions

through

g CfW
j,k

(

fLγµT a
2 fL

)

W (j,k)a
µ , (2.32)

where T a
2 are the SU(2)W generators, g is the 4D

SU(2)W gauge coupling, and f are the quark and lep-
ton fields of any generation. It is convenient to write the

dimensionless parameters CfW
j,k as follows:

CqW
j,k ≡ ξW

q CG
j,k ,

ClW
j,k ≡ 2g2

g2
sNc

ξW
l CG

j,k . (2.33)

Here, l stands for the SU(2)W -doublet leptons. The ξW
q

and ξW
l parameters are estimated via NDA to be of order

unity.

Similarly, the B
(j,k)
µ KK modes couple to zero-mode

quarks and leptons:

g′
yf

2
CfB

j,k

(

fγµf
)

B(j,k)
µ , (2.34)

where g′ is the 4D U(1)Y gauge coupling, and yf are
the hypercharges of the quarks and leptons, normalized

such that the quark doublets have y = 1/3. The CfB
j,k

parameters may be written in terms of other parameters
(ξB

q , ξB
l , ξB

e ) expected to be of order unity:

CqB
j,k ≡ ξB

q CG
j,k ,

ClB
j,k ≡ 2g2

g2
sNc

ξB
l CG

j,k ,

CeB
j,k ≡ g′2

g2
sNc

ξB
e CG

j,k . (2.35)

So far we have parametrized the (0,0)(0,0)(j,k) cou-
plings, using NDA as a guide to argue that certain
parameters are expected to be of order unity. The
explicit one-loop results, Eqs. (2.7)–(2.10), involve a
( (j + k)/2, (k − j)/2 ) mode in the loop when j ≥ k,
and a ( (j − k)/2, (j + k)/2 ) mode when j < k [10].
For j and k even, there is also a one-loop contribution
with a (j/2, k/2) mode running in the loop. As a result,
the (0, 0)(0, 0)(1, 1) interaction is generated by a (1, 0)
loop, while the (0, 0)(0, 0)(2, 0) interaction is generated
by the sum of a (1, 0) loop and a (1, 1) loop. As we
will see below, these interactions of KK modes beyond
the (1, 0) level with two zero-mode fields, have impor-
tant phenomenological consequences. Also note that the
leading contributions to these one-loop diagrams involve
gluon and quark KK modes, and therefore are flavor inde-
pendent. Electroweak KK modes induce some splitting
between the couplings of the SU(2)W -doublet and sin-
glet quarks as well as between the up- and down-type
quarks. Another effect is due to the Yukawa couplings
to the Higgs doublet, and is notable only for the (tL, bL)
and tR quark fields.

If we use Eqs. (2.7)–(2.10) we find, in the case of 6D
gauge fields Aα interacting with some 6D Weyl fermions
f and 6D complex scalars s which have zero modes, that
the “renormalization” constants (2.27) that determine
the couplings of the (1, 1) vector modes to zero-mode
fermions via Eq. (2.26), are given by

δZf(1,1) =

[

−6
∑

A

C2(f) g2
A +

∑

i

λ2
i

]

× 1

16π2
ln

(

M2
s R2

2

)

,

δZ ′

f(1,1) =
∑

i

λ2
i

1

8π2
ln

(

M2
s R2

2

)

,

δZA(1,1) =



−22

3
C2(A) +

4

3

∑

f

T (f) +
2

3

∑

s

T (s)



 g2
A

× 1

16π2
ln

(

M2
s R2

2

)

. (2.36)

Applying this result to the standard model gauge
group, we find the parameters introduced in Eq. (2.29),

ξG
qL

= 1 − 1

2g2
s

(

1

3
λ2

qL
+

3

2
g2 +

1

18
g′ 2
)

,

ξG
qR

= 1 − 1

g2
s

(

1

3
λ2

qR
+

y2
qR

4
g′ 2

)

. (2.37)

Similarly, the parameters that control the W
(1,1)
µ cou-

plings to zero-mode fermions are given by

ξW
q = −4

3
−

λ2
q

6g2
s

+
1

36g2
s

(

11g2 − g′ 2
)

,

ξW
l =

11

24
− 3g′ 2

8g2
. (2.38)

Note that in the above equations the hypercharge interac-
tion give only small corrections, which for practical pur-
poses may be neglected in what follows. However, in the

case of the B
(1,1)
µ couplings to zero-mode fermions, the

wavefunction renormalization of B
(1,1)
µ (more precisely,

its mixing with B
(0,0)
µ ) is enhanced by the large number

of fields, giving a relatively large contribution from the
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hypercharge interaction:

ξB
qL

= −4

3
− 1

2g2
s

(

1

3
λ2

qL
+

3

2
g2 +

83

18
g′ 2
)

,

ξB
qR

= −4

3
− 1

g2
s

[

1

3
λ2

qR
+

(

41

18
+

y2
qR

4

)

g′ 2

]

,

ξB
l = −9

8
− 91g′2

24g2
,

ξB
e = −59

6
. (2.39)

Note that the couplings of the spin-1 KK modes to the
third generation quarks are somewhat enhanced due to
the loops involving Higgs KK modes.

III. DECAYS OF THE (1,1) MODES

The 6D Standard Model outlined in the previous sec-
tion leads to specific predictions for the properties of the
KK modes. In this section we compute the branching
fractions of the (1,1) modes, which are of special interest
for collider phenomenology. We start by summarizing
the information regarding the parameters that control
the branching fractions, and then we discuss in turn each
of the (1,1) modes.

A. Parameters

The most important parameter is 1/R, which sets the
overall scale of the KK mass spectrum. Lower limits on
1/R are set mainly by electroweak precision constraints
and are likely to be in the 300−500 GeV range, based on
the study from Refs [4, 18], where a different compactifi-
cation of two extra dimensions has been considered. We
emphasize that the limits from electroweak constraints
are sensitive to higher-dimensional operators at the cut-
off scale, and therefore are not nearly as robust as the
limits that will be set by collider searches (see Section
IVB).

The cut-off scale, Ms, is in principle another free pa-
rameter. However, it cannot be too close to 1/R because
the effective field theory loses its validity, and it cannot
be too far above 1/R because the effective field theory
becomes non-perturbative. We use the NDA estimate
given in Eq. (2.6): Ms = 10/R. Given that the physical
observables depend on the cut-off scale only logarithmi-
cally, this choice is not a source of large uncertainties.

The coefficients of the localized kinetic terms are all
parameters beyond those in the standard model. They
control the leading contributions to the mass splittings
among the modes within a given KK level, as well as
the KK-number violating couplings, as discussed in the
previous section. We note that there are two parame-
ters per localized operator: one controls the strength of

the operator at (0, 0) and (πR, πR), while the second one
controls the strength at (0, πR). It is important to notice
that the mass shifts and KK-number violating couplings
depend on different linear combinations of these two pa-
rameters. Since in this paper we are mainly interested
in the phenomenology of the (1, 1) level, we may con-
sider their masses and couplings as independent parame-
ters. However, one should keep in mind that knowledge of
these parameters imply definite relations for the masses
and couplings of other states, such as the (1, 0) modes.

The loop factor that controls the couplings of the (1, 1)
gluons to zero-mode quarks CG is (we drop the j = k = 1
indices)

CG =
αsNc

4π
ln

(

M2
s R2

2

)

≃ 0.1 . (3.1)

where we used the value of the strong coupling constant
at a scale of about 1 TeV, αs = 0.1.

The G
(1,1)
µ , W

(1,1)3
µ and B

(1,1)
µ particles have couplings

to zero-mode fermions proportional to the parameters of
order one ξG

q , ξW
q , ξW

l , ξB
q , ξB

l , and ξB
e , introduced in

Eqs. (2.29), (2.33) and (2.35). We will keep the depen-
dence on the ξ parameters explicit whenever possible, but
for numerical results we use the one-loop values given in
Eqs. (2.37), (2.38) and (2.39). One should emphasize
that the decay widths and production cross sections de-
pend quadratically on the ξ parameters. Therefore, the
estimates for the ξ parameters, which for strongly inter-
acting particles could be off by a factor as large as 2 or so,
is a major source of uncertainty in the predictions of this
model. Barring unexpectedly large bare contributions,
the ξ parameters associated with the weakly interacting
particles are expected to be more reliable. In addition,
one should keep in mind that the flavor independence
of the (1,1) couplings may be only approximate: the lo-
calized operators induced by physics at the cut-off scale
may be flavor dependent (as discussed in Section II, this
is a subdominant effect because the coefficients of these
operators are not enhanced by a logarithmic factor).

Other parameters control the mass splittings among
various (1,1) states. These are also determined by the
coefficients of the localized operators, so that they are
related to CG as shown in Eqs. (2.13)-(2.19). We will
keep the dependence on the coefficients AG, AGH

, AQ+ ,
AQ−

, AW , AWH
, AL, AB, ABH

, AE and AH explicit in
our analytic results, while in the numerical analysis we
will use the values given in Eqs. (2.20)-(2.23).

B. Branching fractions of the Bµ (1,1)-mode

As we discussed in subsection II C, B
(1,1)
µ is the lightest

of the standard model KK excitations at the (1, 1) level.

Only its spinless partner, B
(1,1)
H , is expected to be lighter.

Thus, B
(1,1)
µ can only decay into zero modes or into B

(1,1)
H

plus zero modes. We consider first the decays into zero
modes only. Their widths may be computed in terms of
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the couplings given in Eqs. (2.34). The decay width into
qq̄, with q = u, d, s, c, is given by

Γ
(

B(1,1)
µ → qq

)

= ΓB
0

[

(ξB
qL

)2 + 8(ξB
uR

)2 + 2(ξB
dR

)2
]

,

(3.2)
where we summed over the four qq̄ flavors, and we defined

ΓB
0 ≡ α

18 cos2 θw

(

CG
)2

MB(1,1) . (3.3)

Here θw is the weak mixing angle, and α is the electro-
magnetic coupling constant at a scale of order 1/R. The
decay widths into tt̄ and bb̄ are as follows:

Γ
(

B(1,1)
µ → tt̄

)

= ΓB
0

[

1

4
(ξB

tL
)2 + 4(ξB

tR
)2
]

×
(

1 − m2
t

M2
B(1,1)

)(

1 − 4m2
t

M2
B(1,1)

)1/2

,

Γ
(

B(1,1)
µ → bb̄

)

= ΓB
0

[

1

4
(ξB

tL
)2 + (ξB

dR
)2
]

. (3.4)

Note that we have neglected the QCD corrections and
the b-quark mass.

The leptonic decays of B
(1,1)
µ are induced by the 6D

electroweak interactions:

Γ
(

B(1,1)
µ → ℓ+ℓ−

)

= ΓB
0

α2

3α2
s sin4θw

×
[

(ξB
l )2 + (ξB

e )2 tan4θw

]

,

Γ
(

B(1,1)
µ → νν

)

= ΓB
0

α2

α2
s sin4θw

(ξB
l )2 , (3.5)

where ℓ = e, µ, τ , and there is no sum over the three
charged lepton pairs, while the decay width into νν is
summed over the three neutrino flavors.

There are also 3-body decays, B
(1,1)
µ → B

(1,1)
H ℓ+ℓ−

through an off-shell (1,1) lepton. The decay that pro-
ceeds through off-shell SU(2)W -singlet leptons dominates
because of their larger hypercharge. In the limit that

B
(1,1)
µ and B

(1,1)
H are almost degenerate, MB − MBH

≪
MB, we estimate that each tree-level diagram (ignoring
interference) contributes at most

Γ
(

B(1,1)
µ → B

(1,1)
H ℓ+ℓ−

)

∼<
α2M2

E(1,1)

(

MB(1,1) − M
B

(1,1)
H

)4

π cos4θw MB(1,1)(M2
E(1,1) − M2

B
(1,1)
H

)2

≈ ΓB
0

α3 (AB − ABH
)
4

2πα2
s cos6θw (AE − ABH

)
2 . (3.6)

In the second equality we used the parametrizations of
the masses given in section II C, and expanded to lowest

order in the mass shifts. Although for the 1-loop values
of AB, ABH

and AL given in section II C there is a con-
siderable “resonant” enhancement, it is not enough to
overcome the phase space suppression and we find that
this partial decay width is at least one order of mag-
nitude smaller than the two-body decay into leptons of
Eq. (3.5). Given that the two-body leptonic decay is
much smaller than the two-body decay into qq, we con-

clude that B
(1,1)
µ is almost “leptophobic” (this term was

coined in Ref. [19]).

The decays of B
(1,1)
µ into B

(1,1)
H and a Z boson or a

photon could proceed through higher-dimension opera-
tors similar to those discussed after Eq. (2.31). Such
effects are suppressed compared to the two-body decays
discussed above, and therefore we neglect them. Note,
however, that the decays of the first-level vector mode

B
(1,0)
µ through such higher-dimension operators could be

phenomenologically relevant.

The B
(1,1)
µ total width, in the limit (mtR)2 ≪ 1 and

neglecting (3.6), is given approximately by

ΓB = ΓB
0

{

(ξB
qL

)2 + 8(ξB
uR

)2 + 3(ξB
dR

)2 +
1

2
(ξB

tL
)2

+ 4(ξB
tR

)2 +
α2

α2
s

[

2(ξB
l )2

sin4θw

+
(ξB

e )2

cos4θw

]}

. (3.7)

We compute the ξ parameters from Eqs. (2.39), using
α = 1/127, sin2 θw = 0.23, αs = 0.1, and λt = 1, which
gives (g/gs)

2 = 0.34, (g′/gs)
2 = 0.10, and (λt/gs)

2 = 0.8.
Note that these values for the coupling constants are our
rough estimates of their average values at a scale M1,1 in
the range ∼ 0.4−1 TeV. In order to use more precise val-
ues for the coupling constants one would need to compute
the changes in their running due to all lighter particles,
including the (1,0) modes. However, the masses of the
colored (1,0) modes may get relatively large corrections
from localized operators at the cut-off scale, so that we
cannot include a precise scale dependence of the coupling
constants.

For quarks, the resulting values of the ξ parameters
are of order unity, as expected: ξB

qL
≃ −1.8, ξB

uR
≃ ξB

dR
≃

−1.6, ξB
tL

≃ −2.0, ξB
tR

≃ −1.9. For leptons, the couplings
are somewhat enhanced as discussed in subsection II D:
ξB
l ≃ −2.3, ξB

e ≃ −9.8. The branching fractions com-
puted with these parameters are 59% into dijets (not in-
cluding b jets), 30% into tt̄, 7.1% into bb̄, 0.9% for each of
the e+e−, µ+µ− and τ+τ− pairs, and 1.1% for invisible
decays. The total width is ΓB ≃ 2.4 × 10−4MB(1,1) , so

B
(1,1)
µ is an extremely narrow resonance.

For larger values of mtR, the branching fraction into tt̄
is reduced as in Eq. (3.4), while the other branching frac-
tions are somewhat increased (see the values in Table III
of section III D for 1/R = 500 GeV).
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C. Branching fractions of the W 3
µ (1,1)-mode

The width of the W
(1,1)3
µ decay to quarks depends on

the couplings ξW
q defined in Eq. (2.33):

Γ(W (1,1)3
µ → qq̄) = 4 ΓW

0 (ξW
q )2 , (3.8)

where q = u, d, s, c, we summed over these four qq̄ flavors,
and we ignored QCD corrections. Here we defined

ΓW
0 ≡ α

8 sin2θw

(

CG
)2

MW (1,1) . (3.9)

For tt̄ and bb̄ final states we find

Γ
(

W (1,1)3
µ → tt̄

)

= ΓW
0 (ξW

t )2
(

1 − m2
t

M2
W (1,1)

)

×
(

1 − 4m2
t

M2
W (1,1)

)1/2

,

Γ
(

W (1,1)3
µ → bb̄

)

= ΓW
0 (ξW

t )2 . (3.10)

The leptonic widths of W
(1,1)3
µ are the same for each neu-

trino flavor or left-handed charged lepton:

Γ(W (1,1)3
µ → e+

Le−L) = ΓW
0 (ξW

l )2
4α2

27α2
s sin4θw

. (3.11)

If the W
(1,1)3
µ boson is heavier than the (1,1) leptons,

then it may also decay into a (1,1) lepton and a zero-
mode lepton. In fact this is the case for the values of
the masses given in Section II. Summing over the decay
widths into leptons and anti-lepton doublets of the three
generations, we obtain

Γ
(

W (1,1)3
µ →

∑

L(1,1)l
)

=
αMW (1,1)

2 sin2θw

(

1 −
M2

L(1,1)

M2
W (1,1)

)2

×
(

1 +
M2

L(1,1)

2M2
W (1,1)

)

. (3.12)

To first order in the mass shifts shown in Eqs. (2.16) and
(2.18), we find

Γ
(

W (1,1)3
µ →

∑

L(1,1)l
)

≃ ΓW
0

32α2(AW − AL)2

3α2
s sin4θw

.

(3.13)
Adding these decay modes to the ones into zero modes,

we find the total width of W
(1,1)3
µ in the (mtR)2 ≪ 1

limit:

ΓW = ΓW
0

{

4(ξW
q )2 + (ξW

t )2
(

2 − 3m2
t

M2
W (1,1)

)

+
8α2

9α2
s sin4θw

[

(ξW
l )2 + 12(AW − AL)2

]

}

.(3.14)

Using the ξ parameters from Eq. (2.38), ξW
q ≃ −1.2,

ξW
l ≃ 0.35 and ξW

t ≃ −1.4, and the A parameters from
Eq. (2.22), AW − AL ≃ 1.5, we find the branching frac-
tions into tt,

Br
(

W (1,1)3
µ → tt

)

≃ 15%

(

1 − 2.6 m2
t

M2
W (1,1)

)

, (3.15)

and the decays that preserve KK number,

Br
(

W (1,1)3
µ →

∑

L(1,1)l
)

≃ 22%

(

1 +
0.44 m2

t

M2
W (1,1)

)

,

(3.16)

For m2
t ≪ M2

W (1,1) , the W
(1,1)3
µ has branching fractions

of 48% into dijets (not including the b quark), 15% into
bb̄, 0.02% into each of the e+e−, µ+µ− and τ+τ− pairs,
and 0.06% for invisible decays. Including the next or-
der in the m2

t /M
2
W (1,1) expansion, these branching frac-

tions have the same mt dependence as in Eq. (3.15). The

W
(1,1)3
µ is almost as narrow as B

(1,1)
µ , with a total width

ΓW ≃ 10−3MW (1,1) .

D. Quark and lepton (1,1)-mode branching
fractions

We assume, motivated by the 1-loop mass-shifts given

in subsection II C, that the spinless adjoints, G
(1,1)
H ,

W
(1,1)
H , and B

(1,1)
H , are lighter than the (1, 1)-quarks. In

this case, the KK quarks can decay into both vector and
spinless modes, via the KK-number preserving gauge in-
teractions given in [11].

The SU(2)W -doublet (1,1) quarks can decay into a

zero-mode quark plus a W
(1,1)3
µ or W

(1,1)±
µ gauge boson,

each with a partial decay width given by

Γ
(

Q
(1,1)
+ → W (1,1)i

µ qL

)

=
αM

Q
(1,1)
+

16 sin2θw



1 −
M2

W (1,1)

M2

Q
(1,1)
+





2

×



1 +
M2

Q
(1,1)
+

2M2
W (1,1)



 , (3.17)

where we neglected the final quark mass. When the final

state includes the top quark, as for Q
3(1,1)
L → W

(1,1)i
µ tL

with i = ±, 3, this approximation may not be valid. In
fact, for the 1-loop masses of subsection II C, these decays
are closed for 1/R ∼ 650 GeV, and are phase space sup-
pressed if the compactification scale is not much higher.
We will neglect these decay channels in the following, al-
though they could be important at the LHC, where com-
pactification scales well above this limit can be probed.

Both the SU(2)W -doublet and singlet (1,1) quarks may

decay into B
(1,1)
µ and a zero-mode quark with a decay
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decay modes Q
(1,1)
+ B

(1,1)
+ U

(1,1)
− D

(1,1)
−

G
(1,1)
H q 41 58 61 86

W
(1,1)3
H q 8 11 – –

W
(1,1)±
H q 17 14 – –

B
(1,1)
H q 0.3 0.4 13 5

W
(1,1)3
µ q 11 15 – –

W
(1,1)±
µ q 22 – – –

B
(1,1)
µ q 0.9 1.1 26 9

TABLE I: Branching fractions (in percentage) into vector and
spinless modes for the SU(2)W -doublet quarks of the first two

generations Q
(1,1)
+ , for the (1,1) mode of the bL-quark, B

(1,1)
+ ,

and for the SU(2)W -singlet quarks, U
(1,1)
− and D

(1,1)
− . The

branching fractions of the t quark (1,1) modes are strongly
dependent on mtR, and are not shown here. The phase-

space suppression used for the decay B
(1,1)
+ → W

(1,1)−
H tL cor-

responds to 1/R = 0.5 TeV.

width of

Γ
(

Q(1,1)→ B(1,1)
µ q

)

=
y2

qαMQ(1,1)

16 cos2θw

(

1 −
M2

B(1,1)

M2
Q(1,1)

)2

×
(

1 +
M2

Q(1,1)

2M2
B(1,1)

)

, (3.18)

where yq is the hypercharge of the quark q (normalized
such that yuR

= 4/3).
Given that the quark (1,1) modes appear to be heavier

than the spinless (1,1) gluon, the decay into a G
(1,1)
H and

a jet has a rather large width:

Γ
(

Q(1,1)→ G
(1,1)
H q

)

=
αs

6
MQ(1,1)P

(

M
G

(1,1)
H

MQ(1,1)

,
mq

MQ(1,1)

)

(3.19)
where we defined the function

P (x, y) =
(

1 − x2 + y2
)

[

(

1 − x2 − y2
)2 − 4x2y2

]1/2

.

(3.20)
Note that the final-state quark is left-handed (right-
handed) if the decaying (1,1) quark is an SU(2)W -
doublet (singlet). The SU(2)W -doublet (1,1) quarks may

also decay into a W
(1,1)
H and a jet,

Γ
(

Q
(1,1)
+ → W

(1,1)i
H qL

)

=
α

32 sin2θw

M
Q

(1,1)
+

×P

(

M
W

(1,1)
H

M
Q

(1,1)
+

,
mq

M
Q

(1,1)
+

)

. (3.21)

We included here the dependence on the final-state quark

mass, mq, because the decay of the (1,1) bL-quark, B
(1,1)
+ ,

decay modes: W
(1,1)±
H l W

(1,1)3
H l B

(1,1)
H l B

(1,1)
µ l

L(1,1) 45 22 21 12

E(1,1) — — 79 21

TABLE II: Branching fractions (in percentage) into vector

and spinless modes for the SU(2)W -doublet leptons, L(1,1),

and the SU(2)W -singlet leptons, E(1,1).

is sensitive to mtR. Any of the (1,1) quarks may also
decay into the hypercharge spinless adjoint and a jet with
a width

Γ
(

Q(1,1)→ B
(1,1)
H q

)

=
y2

qα

32 cos2θw
MQ(1,1)

×P

(

M
B

(1,1)
H

MQ(1,1)

,
mq

MQ(1,1)

)

. (3.22)

The decay widths into the electroweak spinless adjoints
are comparable to the weak decays of Eq. (3.17) or (3.18),
while the decay into the spinless (1,1) gluon dominates.
We base our estimates of the (1, 1) quark branching frac-
tions on the 1-loop corrected masses given in subsec-
tion II C, and summarize them in Table I.

The decays into the spinless adjoints, G
(1,1)
H , W

(1,1)3
H

and B
(1,1)
H , are very interesting since these subsequently

decay most of the time into a pair of top quarks, giving
rise to a potentially unique signal for these intrinsically
6D excitations. This is due to the fact that the coupling
of the spinless adjoints to fermions is proportional to the
fermion mass, as explained after Eq. (2.30).

As mentioned in Section II, the strongly interacting
particles receive important contributions from multiloop
effects, and these could in principle make the spinless

gluons, G
(1,1)
H , heavier than the (1, 1) quarks, thus clos-

ing these decay channels. In that case, the SU(2)W -
doublet quarks would decay about 56% of the time into

W
(1,1)
µ qL, 42% into W

(1,1)
H qL, and the rest into B

(1,1)
µ qL

and B
(1,1)
H qL. The SU(2)W -singlet quarks would de-

cay about 67% of the time into B
(1,1)
µ qR and 33% into

B
(1,1)
H qR.
The (1, 1) leptons can decay to the (1,1) modes of the

electroweak gauge bosons or spinless adjoints. The decay
widths are given by Eqs. (3.18), (3.21) and (3.22), with
MQ(1,1) replaced by ML(1,1) , and yq replaced by yl. Using
the one-loop results for the various masses given in sub-
section II C, we find the branching fractions summarized
in Table II.

Combining the W
(1,1)3
µ branching fractions into a (1,1)

lepton and a zero-mode lepton with the L(1,1) branching

fractions, leads to the cascade decays of W
(1,1)3
µ into (1,1)

bosons shown in Table III. Given that W
(1,1)3
H and B

(1,1)
H

decay almost exclusively into tt̄ pairs, about 21% of the

W
(1,1)3
µ decays lead eventually to tt̄ pairs.
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decay modes W
(1,1)3
µ B

(1,1)
µ

tt̄ 13 26

bb̄ 16 8

dijet (no bb̄) 52 62

P

ℓ+ℓ− 0.05 3

νν̄ 0.05 1

W
(1,1)3
H + leptons 4 –

W
(1,1)±
H + leptons 9 –

B
(1,1)
H + leptons 4 –

B
(1,1)
µ + leptons 2 –

TABLE III: Branching fractions of W
(1,1)3
µ and B

(1,1)
µ in per-

centage. The final states involving (1,1) bosons are due to
cascade decays via a (1,1) lepton. The phase-space suppres-
sion of the decays into tt̄ are computed for 1/R = 0.5 TeV.

E. Branching fractions of the gluon (1,1)-mode

The decays of G
(1,1)
µ that preserve KK numbers are

into U
(1,1)
−R

uR, U
(1,1)

−R
uR, U

(1,1)
+L

uL, U
(1,1)

+L
uL, and the anal-

ogous pairs of the other five quark flavors. The partial
widths for these decays are given by

Γ
(

G(1,1)
µ → U

(1,1)
−R

uR

)

≃ αs

12
MG(1,1)



1 −
M2

U
(1,1)
−

M2
G(1,1)





2

×



1 +
M2

U
(1,1)
−

2M2
G(1,1)



 . (3.23)

and analogous expressions for the other (1,1) quarks.
Given the approximate degeneracy of the gluon and
quark KK modes, the above decays are phase-space sup-
pressed, and are in competition with the decay into a
quark-antiquark pair, which is suppressed by the small
KK-number violating couplings:

Γ
(

G(1,1)
µ → qq

)

≃ αs

12

(

CG
)2
[

(

ξG
qL

)2
+
(

ξG
qR

)2
]

MG(1,1)

×
(

1 −
3m2

q

M2
G(1,1)

)

, (3.24)

where there is no flavor sum over the qq pairs. The de-
cay into two gluons is also allowed [12], but even further
suppressed.

Using the parametrization for the (1,1)-mode masses
shown in Eqs. (2.13) and (2.15), assuming for the moment
that all quark (1,1) modes are degenerate, and expanding

decay modes G
(1,1)
µ

G
(1,1)
H + jets 60.5

W
(1,1)3
H + jets 3.2

W
(1,1)±
H + jets 6.1

B
(1,1)
H + jets 4.8

W
(1,1)3
µ + jets 4.3

W
(1,1)±
µ + jets 7.0

B
(1,1)
µ + jets 9.3

tt̄ 0.5

bb̄ 0.8

dijet (no bb̄) 3.3

TABLE IV: Branching fractions of G
(1,1)
µ in percentage. The

final states involving (1,1) bosons are due to cascade decays
via a (1,1) quark. With the exception of the decays into

W
(1,1)±
H,µ and tt̄, whose widths are computed for 1/R = 0.5

TeV, the branching fractions are only mildly dependent on
1/R.

for simplicity in AGCG, we find the total width of G
(1,1)
µ :

ΓG ≈ αs

(

CG
)2

MG(1,1)

{

1

12

[

4
(

ξG
qL

)2
+ 2

(

ξG
uR

)2

+ 3
(

ξG
dR

)2
+ 2

(

ξG
tL

)2
+
(

ξG
tR

)2
]

+ 10 (AG − AQ)
2
}

(3.25)

Here we have taken into account that the G
(1,1)
µ decays

to a t quark and one of its (1,1) modes are kinematically
forbidden for 1/R ∼ 1 TeV. For (AG − AQ) of order

unity, G
(1,1)
µ has a width of the order of a few percent of

its mass. Given that the ξG
q coefficients are also expected

to be of order unity, the decay into a (1,1)-mode quark
and a zero-mode quark dominates. For each flavor of qq
pairs, the branching fractions is approximately given by

Br
(

G(1,1)
µ → qq

)

≈
(

ξG
qL

)2
+
(

ξG
qR

)2

120 (AG − AQ)2
. (3.26)

which typically leads to branching fractions of less than
1%.

The values of the ξ parameters given by Eqs. (2.37)
are indeed of order unity: ξG

qL
= 0.74, ξG

uR
= 0.95, ξG

dR
=

0.99, ξG
tL

= 0.61 and ξG
tR

= 0.69. However, according
to the estimates of section II C, AG has a rather large
value of 13/3, so that for more precision we compute the
branching fractions without expanding in AGCG. Using
the quark (1,1) masses given by Eqs. (2.15) and (2.20),

we find that the G
(1,1)
µ decays approximately 96% of the
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time into a (1, 1) mode quark and the corresponding zero-
mode quark. These decays are split as follows: 35% into
down-type SU(2)W -singlets, 22% into uR and cR modes,
32% into doublets of the first two generations, and 6.3%
into bL modes. The subsequent decay of the (1,1) quark
depends on its transformation properties under SU(2)W ,
as discussed in subsection III D. Using the branching
fractions of the (1, 1) quarks given in Table I, we find

the branching fractions for the G
(1,1)
µ cascade decays and

direct decays listed in Table IV. The total width is ΓG ≃
3.7 × 10−2MG(1,1) .

As mentioned in Section III D, the electrically-neutral

spinless adjoints, G
(1,1)
H , W

(1,1)3
H and B

(1,1)
H , decay most

of the time into tt̄ pairs. The additional possible two-jet
final states coming from two gluons are forbidden due to
the vanishing of the operators similar to the one shown

in Eq. (2.31). Furthermore, about 21% of the W
(1,1)3
µ

decays lead to tt̄ pairs (see section III D), while B
(1,1)
µ has

a branching fractions of about 26% into tt̄. The decays of

W
(1,1)±
µ involving a (1,1) lepton yield some additional tt̄

pairs. We therefore expect a significant fraction, of about
72%, of the vector gluon modes to produce tt̄ events.

IV. SIGNALS AT THE TEVATRON

In the absence of boundary terms, the conservation of
KK number implies that KK modes cannot be singly-
produced. In addition, as pointed out in Ref. [5] for
the 5D case, the nearly degenerate spectrum typically re-
sults in rather soft jets and lepton signals. However, KK-
number violating interactions such as those in Eqs. (2.4)
and (2.5), while still preserving ZKK

2 , allow for the pro-
duction of single (1, 1) states through their interactions
with zero modes. In what follows, we study the s-channel

production of the (1, 1) KK gluon G
(1,1)
µ , as well as of

the electroweak gauge bosons W
(1,1)3
µ and B

(1,1)
µ . Their

subsequent decays give rise to interesting signals at the
Tevatron.

A. s-channel production of the (1,1) modes

Let us first consider the s-channel production of the

gluon vector mode G
(1,1)
µ through the coupling to qq̄ pairs

given in Eq. (2.25). The differential cross section for the

s-channel process qq̄ → G
(1,1)
µ → U

(1,1)
−R

uR is given by

dσ̂G

d(cos θ)
=

πα2
s

36ŝ2

(

CG
)2

(

ŝ − M2
Q(1,1)

)2

(

ŝ − M2
G(1,1)

)2
+ M2

G(1,1)Γ
2
G

×
{[

ŝ (1 − cos θ)2 + M2
Q(1,1) sin2θ

]

(

ξG
qL

)2

+
[

ŝ (1 + cos θ)
2
+ M2

Q(1,1) sin2θ
]

(

ξG
qR

)2
}

.

(4.1)

where θ is the angle between the momenta of U
(1,1)
−R

and
q, and ŝ is the energy of the parton collision, both defined
in the center of mass frame.

In the narrow width approximation, the parton-level
cross section for the production of a (1,1) gluon takes a
simple form:

σ̂
(

qq̄ → G(1,1)
µ

)

=
4π2αs

9MG

(

CG
)2
[

(

ξG
qL

)2
+
(

ξG
qR

)2
]

×δ
(√

ŝ − MG(1,1)

)

. (4.2)

Integrating this partonic cross section over the parton
distribution functions, we find the inclusive cross sec-
tion. At the Tevatron, the total production cross-section
is given by

σ
(

pp̄ → G(1,1)
µ X

)

=
8π2αs

9s

(

CG
)2∑

q

tq
(

M2
G(1,1)/s

)

×
[

(

ξG
qL

)2
+
(

ξG
qR

)2
]

. (4.3)

To leading order in αs,

tq(z) =

∫ 1

z

dx

x

[

q(x) q (z/x) + q(x) q (z/x)
]

. (4.4)

The parton distribution functions (PDF’s) q(x) and q(x)
are evaluated at the scale MG(1,1)/2, and

√
s = 1.96 TeV

in Run II. We use the CTEQ6 leading order PDF’s [16],
and a correction factor of K = 1.3 to approximate the
next-to-leading order (NLO) QCD corrections. This ap-
proximation is often used in the case of Z ′ production
(for a discussion of its accuracy, see Ref. [17]). Note that

W
(1,1)3
µ and B

(1,1)
µ fall into this category, whereas G

(1,1)
µ

production has different color flow, so that a slightly dif-
ferent K factor may be necessary in that case; we will
not study this issue in what follows. The result is the
solid line shown in Figure 3.

We emphasize that this is only a rough estimate of
the vector mode production cross sections. We have not
included several corrections: i) the non-resonant process
induced by a t-channel exchange of a (1,1) gluon which
involves a single KK-number violating interaction; ii) s-
channel production of a (1,1) gluon from gluon fusion,
via dimension-6 operators (note that the qq̄ initial state
dominates at the Tevatron); iii) exact NLO and next-
to-next-to-leading order QCD corrections. However, we
expect our estimate to be correct up to a factor of less
than 2, which is sufficient for the purpose of deciding
whether a search for (1,1) modes at the Tevatron is useful.

The production cross sections for the s-channel pro-

cesses qq̄ → W
(1,1)3
µ , B

(1,1)
µ → q′q̄′ may be computed in a

similar fashion. The differential cross sections for these
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FIG. 3: Production cross sections for (1, 1) vector modes in
the s channel at the Tevatron, as a function of their mass. The

solid line is for G
(1,1)
µ , while the dashed and dotted (lowest)

lines are for W
(1,1)3
µ and B

(1,1)
µ , respectively (accidentally, the

cross sections for these two are close to each other such that
they might not be distinguishable).

two processes are given by

dσ̂W

d(cos θ)
=

πα2
(

CG
)4

128 sin4θw

(

ξW
q ξW

q′

)2
fq′(cos θ)

× ŝ
(

ŝ − M2
W (1,1)

)2
+ M2

W (1,1)Γ
2
W

, (4.5)

dσ̂B

d(cos θ)
=

πα2
(

CG
)4

128 cos4θw

ŝ
(

ŝ − M2
B(1,1)

)2
+ M2

B(1,1)Γ
2
B

×
[

(

aqL
aq′

L
+ aqR

aq′

R

)

fq′(cos θ)

+
(

aqR
aq′

L
+ aqL

aq′

R

)

fq′(− cos θ)
]

(4.6)

where the function that encodes the angular distribution
has the following form:

fq(y) = (1 + y)
2 − 2

(

1 + 4y + 3y2
) m2

q

ŝ
+ O

(

m4
q/ŝ2

)

.

(4.7)
Note that we keep the dependence on the final-state
quark masses, which is useful for the decay into tt. The
parameters aqL

, aq′

L
, aqR

, aq′

R
are products of hyper-

charges and ξ parameters:

aq =
(

ξB
q yq

)2
. (4.8)

The parton-level production cross sections are given in
the narrow width approximation by

σ̂
(

qq̄ → W (1,1)3
µ

)

=
π2α

(

ξW
q CG

)2

12 sin2θw MW (1,1)

δ
(√

ŝ − MW (1,1)

)

(4.9)
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FIG. 4: Production of the vector (1,1) gluon followed by a
cascade decay. The • stands for a KK number-violating cou-
pling. Other diagrams having the same topology exist: the

U
(1,1)
− quark KK mode may be replaced by D

(1,1)
− , Q

(1,1)
+ , or

the corresponding anti-quarks; in addition the spinless gluon

G
(1,1)
H may be replaced by B

(1,1)
µ or B

(1,1)
H , and in the case

where the quark KK mode is an SU(2)W doublet, by W
(1,1)3
µ

or W
(1,1)3
H .

σ̂
(

qq̄ → B(1,1)
µ

)

=
π2α

(

CG
)2

12 cos2θw MB(1,1)

(aqL
+ aqR

)

× δ
(√

ŝ − MB(1,1)

)

. (4.10)

The total production cross-section at the Tevatron are
given by

σ
(

pp̄ → W (1,1)3
µ

)

=
π2α

(

CG
)2

6 sin2θw s

∑

q

(

ξW
q

)2

× tq

(

M2

W
(1,1)
µ

/s
)

σ
(

pp̄ → B(1,1)
µ

)

=
π2α

(

CG
)2

6 cos2θw s

∑

q

(aqL
+ aqR

)

× tq

(

M2

B
(1,1)
µ

/s
)

, (4.11)

and are shown in Figure 3. Note that the B
(1,1)
µ produc-

tion is suppressed compared to W
(1,1)3
µ production by a

tan2θw factor, but it is also enhanced by the larger values
of the ξ parameters, such that the curves representing the
two cross sections are very close to each other.

B. Peaks in the invariant mass distributions

Once produced at the Tevatron, the G
(1,1)
µ , W

(1,1)3
µ ,

and B
(1,1)
µ would decay with the branching fractions

given in Tables IV and III. These vector (1,1) modes

are leptophobic (only B
(1,1)
µ has a potentially interesting

branching fractions of about 1% into each lepton pair),
but have rather large branching fractions into tt̄ pairs, ei-
ther directly or via cascade decays as explained at the end
of Section III E. Altogether there are six resonances that
can be produced in the tt̄ invariant mass distribution:
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FIG. 5: Production of W 3
µ and Bµ (1,1) modes, followed by

representative decays.

the vector and spinless (1,1) modes of the gluon and of
the two electroweak gauge bosons. However, the decay

G
(1,1)
µ → tt̄ has a negligible branching fraction. There-

fore, we will concentrate on the tt̄ peaks at the masses

of G
(1,1)
H , W

(1,1)3
µ , B

(1,1)
µ , W

(1,1)3
H and B

(1,1)
H . These

are given by 1.10M1,1, 1.08M1,1, 0.98M1,1, 0.95M1,1 and

0.86M1,1, where M1,1 =
√

2/R.

The spinless (1,1) gluon, G
(1,1)
H , is produced only in

cascade decays of the vector (1,1) gluon, as shown in
Figure 4, the electroweak spinless adjoints are produced

in the cascade decays of both W
(1,1)3
µ (see Figure 5) and

G
(1,1)
µ , while the electroweak vector modes are produced

both in cascade decays and directly, as shown in Figure 5.
The cross sections for producing tt̄ pairs with an invariant
mass corresponding to the five resonances are given by

σtt̄

(

G
(1,1)
H

)

= σ(Gµ) bG(GH) ,

σtt̄

(

W (1,1)3
µ

)

=
[

σ(Gµ) bG

(

W 3
µ

)

+ σ
(

W 3
µ

)]

bW (tt̄) ,

σtt̄

(

B(1,1)
µ

)

=
[

σ(Gµ) bG(Bµ) + σ
(

W 3
µ

)

bW (Bµ)

+σ(Bµ) ] bB(tt̄) ,

σtt̄

(

W
(1,1)3
H

)

= σ(Gµ) bG

(

W 3
H

)

+ σ
(

W 3
µ

)

bW

(

W 3
H

)

,

σtt̄

(

B
(1,1)
H

)

= σ(Gµ) bG(BH) + σ
(

W 3
µ

)

bW (BH) ,

(4.12)

where we introduced the short-hand notations

σ(Vµ) ≡ σ
(

pp̄ → V (1,1)
µ X

)

, (4.13)
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FIG. 6: Cross section for the production of tt̄ pairs at the

Tevatron from the three distinct mass peaks: G
(1,1)
H +W

(1,1)3
µ

(top, solid line), W
(1,1)3
H +B

(1,1)
µ (middle line) and B

(1,1)
H (bot-

tom line).

for the production cross-sections shown in Figure 3, and

bG(V ) ≡ Br
(

G(1,1)
µ → V (1,1) + jets

)

,

bW(V ) ≡ Br
(

W (1,1)3
µ → V (1,1) + leptons

)

,

bV (tt̄) ≡ Br
(

V (1,1)
µ → tt̄

)

. (4.14)

for the branching fractions given in Tables IV and III.
In Eqn. (4.12) we have used branching fractions of 100%
for electrically-neutral spinless adjoints into tt, which is
a reasonably good approximation.

Additional contributions to the tt peaks at the B
(1,1)
µ ,

W
(1,1)3
H and B

(1,1)
H masses come from s-channel produc-

tion of W
(1,1)±
µ followed by cascade decays similar to the

one in Figure 5. However, the relevant branching frac-

tions for W
(1,1)±
µ are at most a few percent, and for sim-

plicity we ignore them. We have also neglected contri-
butions to Eq. (4.12) coming from the cascade decays of

a (1, 1) KK gluon through a W
(1,1)
µ into B

(1,1)
µ , W

(1,1)3
H

or B
(1,1)
H , because these are suppressed by an additional

branching ratio.
The five resonances described above are very narrow,

but cannot be separately resolved at hadron collider ex-
periments. At CDF and D0, the tt̄ pair mass resolution
is expected to be around 10%, so one could hope for at
most three distinct peaks. The heaviest one corresponds

to the G
(1,1)
H and W

(1,1)3
µ resonances which have masses

2% apart, with an average of 1.09M1,1. Then, there is a

peak at 0.97M1,1, composed of W
(1,1)
H and B

(1,1)
µ , whose

masses separated by 3% cannot be resolved experimen-

tally. The third peak, due to B
(1,1)
H , is at 0.86M1,1.

In Figure 6 we plot the cross sections for tt̄ pairs com-
ing from the three mass peaks. The current preliminary
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limits at the 95% confidence level from D0 [20] and CDF
[21] on the production cross section of a narrow tt̄ reso-
nance, based on 0.37 fb−1 and 0.32 fb−1 of Run II data,
respectively, are around 1 pb for M

(

tt
)

above 600 GeV

or so, and a few times larger than that for M
(

tt
)

in the
350 – 550 GeV range due to some excess events. The

G
(1,1)
H + W

(1,1)3
µ and W

(1,1)3
H + B

(1,1)
µ mass peaks have

cross sections not far below these limits, but at the mo-
ment 1/R is not constrained by s-channel production of
(1,1) modes.

Nevertheless, the much larger integrated luminosity ex-
pected until the end of Run II will make it possible to
probe an interesting range of values for the compactifi-
cation scale. In order to estimate the ultimate reach of
the Tevatron, we plot in Figure 7 the sum of the cross
sections into tt̄ pairs from all peaks versus the uncor-
rected mass of the (1, 1) KK level, i.e., M1,1 =

√
2/R.

One should keep in mind that for any given value of 1/R
the separation between consecutive mass peaks is slightly
above 10%. For instance, for 1/R = 500 GeV, the peaks
are at 770 GeV, 680 GeV, and 610 GeV. For this value of
the compactification scale, the total cross section for tt̄
pairs from (1,1) resonances is approximately 40 fb. The
branching fraction for tt into the lepton plus jets final
state used in [20, 21] is 29%, while the product of accep-
tance times efficiency is expected to be in the 15%-20%
range. Therefore, approximately 5% of the tt pairs can
be selected, so that an integrated luminosity of 5 fb−1

will result in a total of about 10 reconstructed tt̄ events
from the sum of all (1,1) resonances, for 1/R = 500 GeV.

Although the background is small, due especially to
standard model tt and W + 4j productions [20], it is not
negligible at large luminosity for M(tt) below 800 GeV
or so, and therefore the ultimate Tevatron reach is likely
to be below 1/R = 500 GeV.

An estimate of the future sensitivity to tt resonances
[22] shows that with 4 fb−1 the production cross section
will be down to 1.3 pb for a mass of 450 GeV, and 0.7 pb
for a mass of 550 GeV. Comparing these numbers with

the cross section for the G
(1,1)
H +W

(1,1)3
µ mass peak given

in Figure 6, we find that there will be sensitivity to a
peak of mass up to 480 GeV. Given that Run II may
deliver more than 4 fb−1, and that there are additional

tt events from the nearby W
(1,1)3
H +B

(1,1)
µ mass peak, it is

likely that the ultimate Tevatron sensitivity will be for a

G
(1,1)
H +W

(1,1)3
µ mass peak above 500 GeV, corresponding

to a limit of 320 GeV on 1/R.

A cautionary comment needs to be made: the prelim-
inary D0 and CDF limits mentioned above have been
derived based on the assumption that there is a single
tt resonance having a width equal to 1.2% of its mass
[20, 21]. In the model with two universal extra dimen-
sions discussed here, there are several resonances aris-
ing from both direct production and cascade decays, and
therefore one would need to set limits based on these
facts. However, the extra jets and leptons that are pro-
duced in the cascade decays are relatively soft due to the
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FIG. 7: Cross section for the production of tt̄ pairs at the
Tevatron from the sum of all mass peaks at KK level (1,1),
as a function of M1,1 =

√
2/R. The dashed horizontal line

marks 10 selected events with 5fb−1, assuming that 5% of the
tt pairs are selected.

approximate mass degeneracy of the (1,1) modes, and are
not likely to change dramatically the limits. The individ-
ual resonances are very narrow (with widths of at most
0.1% of their mass for the electroweak KK bosons, and

of the order of 1% for G
(1,1)
H ), but the main ones come in

pairs, with separations of 2–3% within the pairs. Given
the expected resolution of 10%, such a pair of resonances
looks like a single resonance, similar to the one used to
set the CDF and D0 limits. The presence of two pairs
(the top two curves in Figure 6) with comparable cross
sections, which may partially overlap, is likely to have a
stronger impact on the limits. Overall though this is not
a concern at the level of accuracy employed here.

So far, we have assumed in this Section that the KK
mass splittings and KK-number violating couplings are
given by the one-loop effects discussed in Section II. We
reiterate that there are uncertainties in the mass split-
tings and couplings to zero modes of the (1,1) modes due
to higher loops involving the SU(3)C interactions (see
Section II B). These could have several effects. For ex-

ample, the mass of G
(1,1)
H could be further apart from the

mass of W
(1,1)3
µ . However, it turns out that the majority

of events in the G
(1,1)
H + W

(1,1)3
µ mass peak are due to

G
(1,1)
H , so that the uncertainty in the mass of G

(1,1)
H does

not result into a changed sensitivity to the highest peak,
but rather into an uncertainty on the limit on 1/R. A
more drastic effect of the higher loops would be to invert

the mass hierarchy between the (1,1) quarks and G
(1,1)
H .

In that case the tt peak at the G
(1,1)
H mass would be

highly suppressed, but a large fraction of the G
(1,1)
µ cas-

cade decays would result in tt events at the mass peaks
due to the (1,1) electroweak bosons (see Section III D).

If the qualitative mass hierarchy of (1,1) modes is the
one given by the one-loop results, then shifts in two pa-
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rameters from higher loops could have a substantial im-
pact on the production cross section of the tt̄ resonances.

First, the mass splitting between G
(1,1)
µ and G

(1,1)
H could

be different. If it is larger (smaller), then the cross sec-

tion for a given G
(1,1)
H mass decreases (increases), as it is

harder (easier) to produce the G
(1,1)
µ boson, which is the

main source of G
(1,1)
H production, via cascade decays.

Second, the average coupling of G
(1,1)
µ to quark zero-

modes, ξG
q [see Eqs. (2.29) and (2.25)], may also be differ-

ent than the one-loop result. Assuming that the change
in ξG

q is at most a factor of 2, the cross section for the tt̄

signal due to G
(1,1)
H decays (approximately given by the

top curve in Figure 6) could still increase by a factor of
4, because the cross section is proportional to (ξG

q )2, as
shown in Eq. (4.3). In that case the CDF and D0 sen-
sitivity from Ref. [22] with 4 fb−1 would increase to a

G
(1,1)
H mass of about 700 GeV. Notice also that a large

decrease in ξG
q would not necessarily dilute completely

the Tevatron reach, since the W
(1,1)
µ and B

(1,1)
µ produc-

tion cross sections depend on parameters other than ξG
q

(those parameters, ξW
q and ξB

q , are affected by higher
loops that change the wave function renormalization of
the quarks, but their shifts may be different than for ξG

q ).
Based on these considerations, we conclude that the ul-
timate Tevatron sensitivity to tt̄ mass peaks from the 6D
Standard Model may be as high as in the 0.5–0.7 TeV
range (corresponding to 1/R as high as 320–450 GeV),
depending on the values of parameters controlled by the
SU(3)C interactions of the KK modes.

For low enough 1/R one may hope for a discovery of
tt̄ resonances at the Tevatron. In that case one should
find ways of discriminating the models with two univer-
sal extra dimensions against other models that predict tt
resonances, such as Topcolor [23] or certain technicolor
models [24]. Fortunately, the extra jets and leptons from
cascade decays may provide useful checks for confirming
that the resonances are due to (1,1) modes. The jets
come from decays of the colored (1,1) states as shown in
Figure 4, and may carry an energy of up to 10 − 15%
of the mass of the decaying particle. The leptons come

from cascade decays of W
(1,1)3
µ (see Figure 5), with rather

small but still relevant branching fractions given in Table
III. Measurements of angular distributions may further
discriminate among various models.

In addition to the decays into tt̄ pairs from the above

mentioned resonances, there will be decays of W
(1,1)
µ ,

B
(1,1)
µ , and (to a lesser extent, see Table IV) of G

(1,1)
µ into

a pair of jets. From Table III, we see that Br(W
(1,1)3
µ →

dijets) = 64% and Br(B
(1,1)
µ → dijets) = 71%, where we

included b jets. Figure 3 shows that dijet resonances at

the W
(1,1)3
µ and B

(1,1)
µ masses are produced with cross

sections of tens of femtobarns, for 1/R ≃ 500 GeV. The
search for dijet resonances is a great challenge due to
large backgrounds [25, 26], but an observation at invari-
ant masses consistent with the tt peaks would provide a

further confirmation of the models with universal extra
dimensions.

Here we have concentrated on single production of
(1,1) modes. The pair production of (1,0) modes is also
interesting, and needs to be analyzed in detail. In the
case of one universal extra dimension, a search in the
leptons plus missing-energy channel in Run I is already
setting a limit of 1/R > 280 GeV at the 95% confidence
level [27]. In order to set limits on two universal extra
dimensions based on pair production of (1,0) modes, one
needs to use the KK-number preserving interactions de-
rived in Ref. [11] and compute the relevant cross sections
and branching fractions. Compared to the case of one
universal extra dimension, the presence of spinless ad-
joints could substantially change both the cross sections
for pair production [28] and the branching fractions [5].
We leave this important study for future work.

V. PROSPECTS FOR THE LHC

By contrast to the Tevatron, where the dominant con-
tribution to the production of (1, 1) modes comes from
qq annihilation, at the LHC there will be competing con-
tributions from parton-level processes involving gluons in
the initial state. The KK-number violating couplings of
gluons arise from higher-dimensional operators generated
at the one-loop level. Although these couplings are not
enhanced by a logarithmic factor, as the qq couplings to
vector modes (see section II D), the presence of the gluon
in the initial state may compensate this effect due to a
larger PDF at moderate energies. The main processes
are s-channel production due to dimension-6 operators

of the G
(1,1)
µ and B

(1,1)
µ vector modes through gluon fu-

sion, and of the (1,1) quark modes through quark-gluon
fusion. It is beyond the scope of this article to compute
the coefficients of these operators which arise from finite
one-loop contributions. In order to have an order of mag-
nitude estimate of (1,1)-mode production at the LHC we
compute the qq annihilation processes which have loga-
rithmic enhancements of the couplings but smaller PDF’s
for q.

The production cross sections at the LHC for G
(1,1)
µ ,

W
(1,1)3
µ , and B

(1,1)
µ due to qq annihilation are given by

the right-hand sides of Eqs. (4.3) and (4.11) with tq(z)
replaced by

∫ 1

z

dx

x

[

q(x) q (z/x) + q(x) q (z/x)
]

, (5.1)

to leading order in αs. In Figure 8 we plot these three
cross sections, using the CTEQ6 PDF’s at leading or-

der with a K factor of 1.3. In the case of G
(1,1)
µ , and

B
(1,1)
µ , these are underestimates of the total production

cross sections because the additional contributions to the
production cross sections from gluon fusion mentioned

above are not included. For W
(1,1)3
µ production, the
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FIG. 8: Production cross sections for (1, 1) vector modes in
the s channel at the LHC due to qq annihilation. The solid,

dashed and dotted (lowest) lines represent the G
(1,1)
µ , W

(1,1)3
µ

and B
(1,1)
µ production cross sections, respectively.

SU(2)W gauge symmetry does not allow gluon fusion
via dimension-6 operators, and therefore the only rel-

evant parton-level process is qq → W
(1,1)3
µ . One should

keep in mind though that additional W
(1,1)3
µ particles are

produced from the cascade decays of G
(1,1)
µ , as explained

in Section III E.

In order to translate these high rates at the LHC into
a mass reach it is necessary to study carefully the back-
grounds, which are huge for values of 1/R in the few hun-
dred GeV, where the Tevatron has a significant discovery
potential. For larger values of the compactification scale,
the backgrounds should be manageable for the tt̄ signal.

Moreover, for large 1/R the decay of G
(1,1)
µ to a top quark

and its (1,1) mode opens up (see Section III E), leading
to additional interesting signals involving t and b quarks.
Thus, the LHC will complement the searches at the Teva-
tron discussed in Section IV, by probing larger values of
1/R.

In Figure 9 we plot the cross sections for tt̄ pairs com-

ing from the G
(1,1)
H +W

(1,1)3
µ , W

(1,1)3
H +B

(1,1)
µ , and B

(1,1)
H

mass peaks, including only the qq initial states. Compar-
ing these cross sections to the discovery potential of the
ATLAS detector for a narrow resonance decaying to tt,
given in [29, 30], we estimate that the production cross
sections for (1,1) modes are large enough to allow dis-
covery of narrow tt resonances of at least 1 TeV with
an integrated luminosity of 30 fb−1. The reach can be
further increased by using the extra leptons produced in

the cascade decays of the W
(1,1)3
µ and W

(1,1)±
µ modes, as

shown in Figure 5.

If a discovery is made, further measurements may be
performed: angular distributions, threshold effects in cas-

cade decays, lepton pairs from B
(1,1)
µ decays (the branch-

ing fraction is 1% for each of the e+e− and µ+µ− pairs).
A thorough study of the capabilities of the LHC, both in
the hadronic and leptonic channels is needed. Particu-
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FIG. 9: Cross section for the production of tt̄ pairs at the LHC

from the G
(1,1)
H + W

(1,1)3
µ (top, solid line), W

(1,1)3
H + B

(1,1)
µ

(middle line), and B
(1,1)
H (bottom line) peaks.

larly exciting would be to identify the spinless adjoints,
since the presence of these states is a distinctive feature
of the 6D scenario.

The most convincing test of the existence of two uni-
versal extra dimensions would be the observation of series
of resonances clustered around the masses of the (j, k)
levels with j + k even. Relative to the first even level,
of mass M1,1 =

√
2/R, the next four even levels have

masses M2,0 =
√

2M1,1, M2,2 = 2M1,1, M3,1 =
√

5M1,1,

M4,0 = 2
√

2M1,1. Within each of these levels, the rela-
tive mass splittings are roughly the same as for the (1,1)
level (see Figure 1). However, the branching fractions
into zero-mode fermions are smaller than for the corre-
sponding (1,1) mode because the higher level KK modes
may also decay into lower level ones.

VI. CONCLUSIONS

The 6D Standard Model compactified on the chiral
square [10, 11] is a well motivated theory, given that it
predicts a long proton lifetime [31], it restricts the num-
ber of fermion generations to a multiple of three [8], and
it accommodates nicely the observed pattern of neutrino
oscillations [9]. We have computed here the spectrum of
KK modes, which is split due to localized operators in-
duced by one-loop effects (see Section II). In particular,
we have shown that the lightest KK particle in this model

is the hypercharge spinless adjoint B
(1,0)
H , whose mass is

roughly 15% below the compactification scale 1/R which
sets the tree-level mass of the (1,0) KK modes. This ap-
pears to be a promising dark matter candidate, but in or-
der to find the range of values for 1/R consistent with the
dark matter abundance one would need to determine the
relic density along the lines of the detailed computations
performed in the case of one universal extra dimension
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[32, 33].
We have also computed the KK-number violating in-

teractions due to loop-induced localized operators which,
although suppressed compared to the tree level interac-
tions presented in Ref. [11], have important phenomeno-
logical consequences. In this way we have laid the
groundwork for studies of the phenomenology of two uni-
versal extra dimensions.

After completing this general study of the KK cou-
plings and masses, we have focused on the (1,1) modes,
which are even under KK-parity, and therefore may be
produced in the s channel at colliders. The (1,1) modes
are the lightest KK modes of this type, with a tree level
mass of only

√
2/R. This low mass for an even KK

level, and the presence of spinless adjoints changes signif-
icantly the phenomenology compared to the case of level-
2 modes from one universal extra dimension discussed in
Refs. [5, 7].

In Section III we have computed the branching frac-
tions of the (1, 1) KK modes. As in the case of one uni-
versal extra dimension, the even vector modes are lepto-
phobic because the loop-induced couplings to zero-mode
leptons are generated by the SU(2)W × U(1)Y inter-
actions, while the loop-induced couplings to zero-mode
quarks are generated by the SU(3)C interactions. Only
the hypercharge (1,1) mode has a non-negligible branch-
ing fractions into lepton pairs: 1% for each of e+e− and
µ+µ−. An interesting result of our computation is that
the branching fractions to tt pairs are enhanced, espe-
cially because the strength of the (1,1) couplings to the
top quark is increased by one-loop corrections involv-
ing the Yukawa interaction to the Higgs fields. Even
more strikingly, the spinless adjoints decay most of the
time into tt pairs, because their couplings to zero-mode
fermions are proportional to the fermion mass. Putting
together the direct decays and cascade decays of vector
(1,1) modes, we have found large branching fractions for
final states involving tt resonances: 72%, 21% and 26%

for G
(1,1)
µ , W

(1,1)3
µ and B

(1,1)
µ , respectively, for 1/R ∼ 500

GeV.
Although leptophobic bosons are usually hard to ob-

serve at hadron colliders, due to large backgrounds,
the sizable branching fractions into tt offer promising
prospects for searches at the Tevatron and the LHC. We
have shown that the Tevatron is likely to set useful limits
on 1/R, through s-channel production of the (1,1) gluon,

B
(1,1)
µ and W

(1,1)3
µ , and their subsequent cascade or direct

decays to a pair of top quarks (see Section IVB). Alto-
gether there are five narrow resonances to be observed in
the invariant tt mass distribution, but they form at most
three mass peaks once we take into account a realistic
tt pair mass resolution. With 4fb−1, the D0 and CDF
experiments may discover resonances in the tt channel,
or else will likely set a lower limit on tt mass peaks in
the 500–700 GeV range, corresponding to a lower limit
on 1/R in the 320–450 GeV range.

If a discovery of one or more tt resonances is made
at the Tevatron, or for larger 1/R at the LHC, there are
various other measurements that can differentiate the 6D
Standard Model from other theories, such as Topcolor
[23], that predict similar resonances. Particularly use-
ful would be measurements of the extra jets and leptons
from cascade decays, angular distributions in the decays
of spinless adjoints, the dijet invariant mass distribution
that may reveal resonances with the same mass as in the
tt channel, and signals involving missing transverse en-
ergy from pair production of (1,0) modes.

Despite the troublesome backgrounds at the LHC, the
large rates for producing tt resonances at high invariant
mass, in the TeV range, would allow accurate measure-
ments. For a precise assessment of the LHC reach in
1/R, more detailed studies are needed. Particularly ex-
citing would be the discovery of resonances associated
with several KK levels. The masses of consecutive even
levels have ratios given by a peculiar factor of

√
2 for the

first three even levels, so that the observation of clus-
ters of resonances fitting this pattern would signal the
existence of two universal extra dimensions.
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