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Abstract

A horizontal axis wind turbine blade in steady rotation endures cyclic transverse
loading due to wind shear, tower shadowing and gravity, and a cyclic gravitational
axial loading at the same fundamental frequency. These direct and parametric excita-
tions motivate the consideration of a forced Mathieu equation with cubic nonlinearity
to model its dynamic behavior. This equation is analyzed for resonances by using the
method of multiple scales. Superharmonic and subharmonic resonances occur. The
effect of various parameters on the response of the system is demonstrated using the
amplitude-frequency curve. Order-two superharmonic resonance persists for the linear
system. While the order-two subharmonic response level is dependent on the ratio of
parametric excitation and damping, nonlinearity is essential for the order-two subhar-
monic resonance. Order-three resonances are present in the system as well and they
are similar to those of the Duffing equation.

1 Introduction

The blades of a horizontal axis wind turbine rotate through the field of gravity and undergo

aerodynamic loads. Under steady operation and wind conditions, in which the blade rotates

at a constant rate Ω, a blade takes on cyclic transverse loading due to both gravity and

aerodynamic forces with effects of wind shear and tower passing. The blade also endures

gravitational axial compression (softening) when pointing up, and axial tensioning (stiffen-

ing) when pointing down. Considering these effects on a single-degree-of-freedom description

of transverse deflection motivates us to study a forced Mathieu equation of the form

q̈ + εµq̇ + (ω2 + εγ cos Ωt)q + εαq3 = F sin Ωt, (1)
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where ω plays the role of the undamped natural frequency based on the mean stiffness-to-

mass ratio, εγ is the magnitude of the parametric excitation corresponding to the cyclic

variation in stiffness, F is the magnitude of direct cyclic forcing due to transverse gravita-

tional and aerodynamic loading, Ω is the fundamental frequency of cyclic loadings, based on

the rotation rate of the rotor, and εµ represents linear viscous damping. Parameter α is the

coefficient of cubic nonlinearity expected due to large deformation effects, and ε is a small

bookkeeping parameter.

There have been extensive studies on systems with parametric excitation that fit in into

a minor variation of the Mathieu equation. Rhoads and Shaw [1] have studied MEMS struc-

tures with parametric amplification, in which direct excitation occurs at half the frequency

of excitation as the parametric excitation. Parametric amplification was also demonstrated

in experiments [2]. Other work has examined nonlinear variations of the Mathieu equation,

including van der Pol, Rayleigh oscillators and the Duffing nonlinear terms. Rand et al. [3–6]

analyzed the dynamics and bifucations of a forced Mathieu equation and properties of su-

perharmonic 2:1 and 4:1 resonances. Belhaq [7] studied quasi-periodicity in systems with

parametric and external excitation. Veerman [8] analyzed the dynamic response of the van

der-Pol Mathieu equation. Arrowsmith [9] and Marathe [10] studied at the stability regions

for the Mathieu equation. Reference [11] is an extensive compilation of the various fields of

study in which the characteristics of the Mathieu equation are found and employed.

In studying equation (1), we omit effects of other terms specific to the rotating beam

model, as our attention is drawn to this more fundamental equation in dynamical systems.

Indeed, full partial differential equations (PDEs) of the rotating beam can be developed

and modally reduced. This development is underway for transverse deflections and higher

dimensional deflections as well. The transverse deflections give rise to a single assumed-

mode ordinary differential equation (ODE) with elements of equation (1) [12]. Numerous

studies have also been done on developing differential equations of motion that represent

blade motion. These traditionally include work on helicopter blades [13–16], and more

recent literature is available on wind turbine blades with aerodynamic loadings and also

accommodating gravity and pitching effects [17–22].
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2 Resonances of the Forced Nonlinear Mathieu Equa-

tion

We seek approximate solutions to equation (1) by using the method of multiple scales (MMS)

[23, 24]. The analysis reveals the existence of various sub-harmonic and super-harmonic

resonances. We unfold these resonance cases and identify the critical ones for wind turbines

during normal operation.

When the forcing in equation (1) is of order ε, the analysis will indicate a primary

resonance. But, this resonance is the same as in the Duffing equation, and is not treated

here. The forcing in the above expression is of order one — also known as hard forcing. This

will help us unfold secondary resonances. Using MMS, we incorporate fast and slow time

scales (T0, T1) and also variations in amplitude. This allows for a dominant solution q0 and

a variation of that solution q1, i.e. such that

q = q0(T0, T1) + εq1(T0, T1)

where Ti = εiT0. Then d
dt

= D0 + εD1 and Di = d
dTi
.

We substitute this formulation into equation (1) and then simplify and extract co-

efficients of ε0, ε1. The expression for co-efficient of ε0 is

D0
2q0 + ω2q0 = F sin ΩT0.

The solution for this is

q0 = AeiωT0 + Λe−iΩT0 + c.c. (2)

where Λ =
F

2(Ω2 − ω2)
, and A =

1

2
aeiβ.

The expression for the co-efficient of ε1 is

D0
2q1 + ω2q1 = −µD0q0 − 2D0D1q0 − γq0 cos Ωt− αq0

3 (3)

Substituting the solution for q0 from equation (2), we expand the terms on the right

hand side. We need to eliminate co-efficients of eiωT0 that constitute the secular terms and

would make the solutions unbounded. The solvability condition is thus set by equating the

co-efficients of eiωT0 terms to zero.
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2.1 Non-Resonant Case

If there is no specific relation between Ω and the natural frequency (ω) of the system, then

an analysis of the solvability condition leads to the conclusion that a → 0 at steady-state

solution. Hence there is no effect of the nonlinear terms in the non-resonant case.

2.2 Superharmonic Resonances

2.2.1 2Ω ≈ ω

If 2Ω ≈ ω, then the εα cos Ωt term and the nonlinearity from equation (3) contribute to the

secular terms. We detune the frequency of excitation such that 2Ω = ω + εσ2. In this case

the solvability condition can be written as

−2A′iω − µAiω − α(3A2Ā+ 6Λ2A)− γΛ

2
exp iσ2T1 = 0 (4)

Letting A = 1
2
aeiβ and φ = σT1 − β, the real and imaginary parts of eqn. (7) lead to

Re : aφ′ω − σωa+ 3αa(Λ2 +
a2

8
) +

γΛ

2
cosφ = 0

Im : a′ω +
µaω

2
+
γΛ

2
sinφ = 0

At steady-state the relationship between the response amplitude and the detuning pa-

rameter σ2 is

σ2 = 3αΛ2 +
3

8
αa2 ± (

γ2Λ2

4a2
− µ2)

1/2

(5)

The peak amplitude would be

ap =
γΛ

2µ
. (6)

The corresponding value of σ2 is

σ2p = 3αΛ2(1 +
γ2

32µ2
)

Hence we can conclude the following:

• the peak value is independent of α,

• α,Λ and γ/µ affect the peak location and as they increase, |σ2p| increases,

• the sign of α determines the sign of σp.
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Figure 1: Simulated response of equation (1) showing superharmonic resonances at orders
1/2 and 1/3; ε = 0.1, µ = 0.5,Ω = 0.5, α = 3, F = 0.05, γ = 3. The frequency ratio sweeps
up.

Vertical tangencies in the curve of equation (5) can be found and shown to coincide with

stability transitions, such that the unstable branch lies between the vertical tangencies.

A sample response of equation (1) is numerically simulated. The response curve shown

in Figure 1 has the primary frequency and two superharmonics shown at 1/3 and 1/2 the

natural frequency. Superharmonic response at this order is also noticed for a linear system

(see Figure 2). This agrees with our calculation of peak amplitude (see equation (6)). When

nonlinearity α = 0, this superharmonic resonance peak still persists.

Wind turbine blades are generally designed such that the natural frequency of the ro-

tating blade in lead-lag (in-plane) motion is below the rotational frequency. This analysis

implies potential existence of superharmonic resonances which would also provide additional

critical frequencies where the response of the blade would be dominant. Such responses

would increase loading on the gearbox and other components and increased bending on the

blades.

2.2.2 3Ω ≈ ω

If 3Ω ≈ ω, the cubic nonlinearity contributes to the secular terms. We detune the frequency

of excitation such that 3Ω = ω + εσ.

The solvability condition will have additional terms that have 3ΩT0 as an exponential
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Figure 2: Simulated response of the linear case of equation (1) showing superharmonic
resonances at orders 1/2 and 1/3; ε = 0.1, µ = 0.1,Ω = 0.5, α = 0, F = 0.5, γ = 3.

argument in equation (3), and it takes the form

−2A′iω − µAiω − α(3A2Ā+ 6Λ2A)− αΛ3eiσT1 = 0 (7)

Following the analysis done in the previous section for the 2Ω superharmonic resonance,

we substitute for A and separate the equation into real and imaginary parts. Using φ =

σT1 − β, we arrive at a homogenous set of equations

Re : aφ′ω − σωa+ 3αa(Λ2 +
a2

8
) + αΛ3 cosφ = 0

Im : a′ω +
µaω

2
+ αΛ3 sinφ = 0

in φ and a.

These expressions are the same as the ones we would get in the synthesis of a standard

Duffing equation with hard excitation [23]. For steady state solutions a′ = φ′ = 0, which is

satisfied if[
µ

2

2

+ (σ − 3αΛ2 − 3

8
αa2)

2
]
a2 =

α2Λ6

ω2

This is a quadratic expression in the detuning parameter σ. Solving for σ we get,
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σ = 3αΛ2 +
3

8
αa2 ± (

α2Λ6

ω2a2
− µ2)

2

1/2

(8)

The peak amplitude and corresponding value of σ are

ap =
αΛ3

µω
, (9)

and

σp =
3αΛ2

ω
(1 +

α2Λ4

8ω2µ2
)

Therefore, the peak amplitude and frequency of this resonance are affected by the non-

linearity via α and by the amplitude of excitation via Λ. The parametric excitation term

does not contribute to this resonance at first order. The value of peak amplitude at this

resonance is directly proportional to α (from equation (9)). However, numerical simulations

for a linear version of our system show the persistence of this superharmonic peak (see Fig-

ure 2). Higher order perturbation analysis (not shown here) reveals the existence of this

resonant condition in the absence of nonlinearity.

2.3 Subharmonic Resonances

2.3.1 Ω ≈ 2ω

If Ω ≈ 2ω then the terms with i(Ω − ω)T0 as the exponent add to the secular terms. The

linear parametric excitation term and the nonlinearity contribute to this resonance. The

solvability condition with these added terms is

−2A′iω − µAiω − α(3A2Ā+ 6Λ2A)− γĀ

2
exp iσT1 = 0 (10)

We substitute the exponential form for A, separate the real and imaginary parts, and

let φ = σT1 − 2β, to get

Re : −aωφ′ − σωa+ 3αa(Λ2 +
a2

8
) +

γa

4
cos(φ) = 0

Im : a′ω +
µaω

2
+
γa

4
sin(σT1 − 2β) = 0

Seeking steady state, we let φ′ = a′ = 0, which yields
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−µa
2ω

=
γa

4ω
sinφ

σa

2
− α

ω
(
3a3

8
+ 3Λ2a) =

γa

4ω
cosφ

(11)

where φ = σT1 − 2β. We eliminate φ dependence to get the frequency response equation as

γ2a2

16ω2
= (σa− αa

ω
(
3a2

8
+ 3Λ2))2 +

µ2a2

4ω2
(12)

For this equation we have the trivial solution a = 0 and another set of solutions of the

form a2 = p1 ± (p2
1 − q1)1/2, where

p1 =
3σα

4ω
− 9Λ2α2

2ω2
and q1 =

9α2

16ω2

(
(σ − 6αΛ2

ω
)2 +

4µ2 − γ2

4ω2

)
These are similar in form to the standard Duffing subharmonic (presented in section 2.3.2),

but the dependence on parameters differs. The nontrivial solutions for a are real only when

p1 > 0 and p1 ≥ q. These conditions imply that solutions will exist if

Λ2 <
σω

6α
and µ2 ≤ γ2

4ω2
(13)

These are two distinct conditions on the parameters of our problem. The parametric

excitation term must be sufficiently large, or the damping sufficiently small. Also, the

product of the co-efficients of the nonlinear cubic term and Λ2 must be sufficiently small

or detuning must be sufficiently large. However, the presence of the cubic nonlinearity is

essential for this subharmonic to occur.

2.3.2 Ω ≈ 3ω

If Ω ≈ 3ω, the cubic nonlinearity contributes to the secular terms. We detune the frequency

of excitation such that Ω = 3ω + εσ. Then ΩT0 = (3ω + εσ)T0 = 3ωT0 + σT1.

The solvability condition takes the form

−2A′iω − µAiω − α(3A2Ā+ 6Λ2A)− α3Ā2ΛeiσT1 = 0 (14)

which is the same as that of the standard Duffing equation. We substitute the exponential

form for A, separate the real and imaginary parts, and let φ = σT1 − 3β to transform this

into an autonomous system. Seeking steady state, we let φ′ = a′ = 0. Eliminating φ leads

to the nonlinear frequency response equation
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[
9µ2

4
+

(
σ − 9αΛ2

ω
− 9α

8ω
a2

)2
]
a2 =

81α2Λ2

16ω2
a4 (15)

We recognize these as the terms that appear in the subharmonic resonance case of a

Duffing equation. The solutions of equation (15) are either a = 0 or a2 = p ± (p2 − q)1/2,

where

p =
8ωσ

9α
− 6Λ2 and q =

64ω2

81α2

[
9µ2

4

2

+ (σ − 9αΛ2

ω
)2

]

Since q is always positive, we need p > 0 and p2 ≥ q. This requires that

Λ2 <
4ω0σ

27α
and

αΛ2

ω

(
σ − 63αΛ2

8ω

)
− 2µ2 ≥ 0

which can be compared to the order-two conditions (13). Then
63αΛ2

2ωµ
=

2σ

µ
± (

4σ2

µ2
−63)1/2

defines the boundary of the region in the Λσ plane where non-trivial solutions can exist.

3 Discussion

We have shown the details of a first-order analysis of super- and subharmonic resonances for

the system of interest.

At first order, the superharmonic resonance of order 1/3 is the same phenomenon as

in the Duffing equation. The nonlinear parameter, α, scales the peak response, while both

the nonlinear parameter and the direct excitation level affect the frequency value of the

peak response. The superharmonic response of order 1/2 involves interaction between the

parametric excitation and both the nonlinear parameter and the direct excitation. In fact, if

the nonlinearity is not present, i.e. if α = 0, this resonance persists. As such, a linear system

excited both parametrically and directly at the same frequency can exhibit a superharmonic

resonance. This complements linear primary resonance phenomena and linear subharmonic

resonances exploited in parametric amplification [1, 2].

There also exists a primary resonance which is the same at first order as that of the

Duffing equation. The parametric excitation, when at the same frequency as the direct

excitation, does not affect primary resonance amplitude at first order.

Subharmonic resonances exist to first order at orders two and three. Order-two subhar-

monics involve interactions with the parametric excitation term, while order-three subhar-

9



0 0.5 1 1.5
0

5

10

15

Frequency Ratio (Ω/ω)

R
es

p
o
n
se

A
m

p
li
tu

d
e

(|q
|)

Increasing
Parametric
Excitation
(γ )

Figure 3: Simulated response of equation (1) showing the effect of the parametric forcing
amplitude; ε = 0.1, µ = 0.1,Ω = 0.5, α = 0, F = 0.5. Different curves depict γ = 0.5, 1 and
3.

monic resonance is the same as that of the Duffing equation to first order. The subharmonic

resonance may not be critical to wind turbines, which motivate the study, as they operate

below the natural frequency of the rotating blade.

The variation in system responses for changes in some parameters have been observed

in simulations. Their behavior has been summarized below.

1. Effect of parametric forcing term: The system resonances increase with increased para-

metric forcing (Figure 3). This amplification occurs at resonances, but not between

them. Beyond a certain value of γ the system goes unstable at primary resonance.

When approaching this instability, the primary resonance increases abruptly, which is

not captured in the first order analysis. Ongoing work aims at unfolding this with a

higher order perturbation analysis.

2. Effect of direct forcing term: As expected, an increase in the direct forcing term F

increases the overall magnitude of response evenly over the entire spectrum (Figure 4).

3. Effect of damping term: Increase in the damping decreases the overall magnitude of

response over the entire spectrum, particularly at resonances. The superharmonic and

primary resonance peaks scale as 1/µ.

10



0 0.5 1 1.5
0

10

20

30

40

50

60

Frequency Ratio (Ω/ω)

R
es

p
o
n
se

A
m

p
li
tu

d
e

(|q
|)

 

 

Increasing
Direct
Forcing
(F )

Figure 4: Simulated response of equation (1) showing the effect of the direct forcing am-
plitude; ε = 0.1, µ = 0.1,Ω = 0.5, α = 0, γ = 3. Different curves depict F = 0.5, 1 and
2.

4. Effect of nonlinearity: An increase in nonlinearity (α) causes the response curve to

bend over more significantly. This bending can induce jump instabilities as the fre-

quency slowly varies. Also, in the presence of strong enough nonlinearity, the response

amplitude of the superharmonic of order two is of a similar order of magnitude as the

primary resonance, as seen in Figure 5.

4 Conclusion

We have studied the forced Mathieu equation, in which the direct and parametric excita-

tions occur at the same frequency, out of phase by 90 degrees, and which includes a cubic

nonlinearity. Perturbation analysis of equation (1) revealed the presence of multiple super-

and sub-harmonic resonances. The superharmonic resonance of order 1/2 persists for the

linear Mathieu equation with direct forcing.

This brief note has focused on resonances, and not stability. The Mathieu equation is well

known to have instabilities in the space of stiffness and parametric excitation parameters.

We have observed instabilities at primary resonance in simulations. A higher-order analysis

is underway to describe stability transitions, as well as higher-order effects on resonances.

The presence of superharmonic resonances may be significant for wind turbines, which
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Figure 5: Simulated sweep-up response of equation (1) showing the effect of the nonlinear
term; ε = 0.1, µ = 0.1,Ω = 0.5, F = 0.5, γ = 3. Different curves depict α = 0.1, 0.5 and 1.

are designed to operate below the lowest natural frequency. Further study is also underway

to bring a more complete picture for the interpretation of wind turbine blade dynamics.

This ongoing work includes the development of the nonlinear in-plane partial differential

equation, and its assumed-mode projection, as well as an out-of-plane model, with high

fidelity aerodynamic loading conditions. These models will have additional nonlinear terms,

and may have restrictions on the use of the small parameter.
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