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Laboratoire de Génie Électrique de Paris LGEP–Supélec
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Abstract. Numerical analysis of reflection properties of double-periodic two-element thin
strip arrays is carried out. This analysis indicated extremely high quality band stop and
band pass resonances appeared due to the excitation of non-symmetric current mode.

1. Introduction

Controlling the reflection and/or the transmission frequency properties of
surfaces is an important problem of applied electromagnetics. For vari-
ous microwave applications, there is a need to use active material lay-
ers with thicknesses extremely small in comparison to the wavelength.
These frequency selective surfaces (FSS) are boundary surfaces consisting
of some metal or dielectric bodies or the surfaces separated volumes in
which there is a need to obtain electromagnetic fields possessing radical
different characteristics.

There are several well known periodic arrays of different shapes (rect-
angular, circular) metal patches (e.g. [3], [4]) and the self-resonant grids
such as grids of Jerusalem conducting crosses [1] which are used as FSS.
Practically, the first low frequency resonance of such structure appears for
a wavelength a bit greater than the array period. As a consequence of this,
the transversal size of the whole FSS must be larger in comparison to the
wavelength. The quality factor of such structures resonances is not high.

However, the situation is different with the arrays of complex shape
resonating particles in that the array resonance is practically the same as
the resonance of an individual particle. Conducting particles with resonant
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size of the order λ/10 are well known. So the total size of the array may
be approximately the same as a wavelength. Recently, great attention has
been paid to the study of frequency selective properties of complex shaped
particles arrays, such as for example a bianisotropic Ω-shaped planar con-
ducting particle [7], [12], a plano-chiral S-shaped particle [8] and C-shaped
particle [10]. The properties of arrays of Ω, S, C-shaped particles and
some other ones are well known now. In short, they have simple resonance
characteristics and low quality factors.

If we want to design very thin structures having resonant band reflecting
or transmitting characteristics with a high quality factor, the next step is
to focus on the way of the structure complexity. Multi-particle arrays have
these desired properties.

The problems of producing artificial dielectric possessing higher values
of effective permittivity and photonic band gap structures are very close to
the FSS problem mentioned above.

Commonly, complex materials are fabricated by randomly embedding
most often simple metal inclusions like disks, spheres, ellipsoids or nee-
dles into a dielectric matrix. These particles have small sizes compared to
the wavelength in the host medium and are located so that the distance
between them is also small with respect to λ. Such materials possess an
effective permittivity of a small value of the order of few units within a
wide frequency band. In some applications, however, one needs very high
values of effective permittivity at least within a narrow frequency band [2].
The introduction of high quality factor resonating particles in the layer is
only one of the ways allowing to solve the problem.

Besides, the required curing process of the host materials and the fixed
shape, size, and concentration of the samples are disadvantages. To avoid
these difficulties, one can use layered materials with planar periodic arrays
of conducting particles on the surface of each layer produced by inexpensive
lithography process. Thus, the main purpose of this work is the study of
resonance properties of multi-particle arrays which can possess band pass
or band stop frequency characteristics with high quality factors.

2. Resonances of Closed Modes

Generally speaking, the resonance high quality factor and the layer small
thickness are contradictory requirements. Actually, very thin open struc-
ture usually cannot have inner resonating volumes and on the other hand,
resonating inclusions are strongly coupled with free space. Consequently,
their resonance quality factor is low.

Nevertheless, there are ways to produce thin structures showing high
quality frequency resonances thanks to the use of both the field excitation
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Figure 1. A grating of narrow inclined strips.

in large resonance volume and extremely reducing the coupling between
resonating inclusions and free space. This has been achieved by a resonance
regime of a so-called closed modes.

2.1. FULL REFLECTION FROM THIN STRIP GRATING DUE TO LARGE
RESONANCE VOLUME

As an example of a very thin structure with large resonance volume, let
us consider one-periodic planar grating of very thin narrow infinitely long
metal strips (see Figure 1). Let us firstly consider the case of strips placed
in grating so that their planes are orthogonal to the grating plane. If a
normally incident plane wave polarized orthogonally impinges on the strips,
the reflection coefficient of such a knife grating is equal to zero for any
frequency.

Let us now incline the strip planes with regard to their plane in the
knife grating. The strip width is much smaller than the wavelength. There
is now weak interaction between the incident wave and the grating. If the
wavelength value is close to the grating period but the shade is larger than
it λ � d, a sharp resonance of full reflection occurs. The reason behind the
resonance reflection is an indication of a standing wave along the grating
plane. The nodes of standing waves are placed in the strip positions. The
field of the standing wave occupies a large volume and it is weakly coupled
to the field of the incident wave. If the strip width or the strip plane
inclination angle decrease, the resonance quality factor of rises.

This full reflection effect was analyzed in [11]. Normal incidence is a
requirement for full reflection. Resonance reflection takes place in the case
of inclined incidence also but the value of the reflection coefficient is less
than one in this case. If we increase the angle of incidence, the first spatial
partial wave appears and the resonance reflection vanishes.

The disadvantage for a practical use of this effect is the nearness of
resonance frequency of the full reflection to the frequency of the grating
first partial waves producing side lobes.
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2.2. EIGEN MODES OF TWO-ELEMENT PARTICLES

Resonance regime of closed modes in double periodic arrays of multi-element
plane particles is more convenient for microwave applications.

There is a well known the work which analyzed resonance properties of
two-element bi-helix particle [6]. Let us mention also the work [5] which is
very close to this subject and which studied two-slot waveguide diaphragms.

A two-element particle may be considered as a reciprocal two-port
network. The properties of particle consisting of coupled elements are de-
termined by a matrix of complex impedances

Z =
(

Z1 Zc

Zc Z2

)
(1)

where Z1 and Z2 are proper impedances of first and second element respec-
tively, Zc is a mutual coupling impedance. These impedances are frequency
dependent values. Eigenfrequencies of two element particles can be found
by solving the following equation,

det(Z) = 0. (2)

If the elements of particle are different and have different values of proper
impedances

Z2 = Z1 + ζ (3)

The solution of equation (2) can be found in the form

Z1 = −ζ/2 ±
√

(ζ/2)2 + Z2
c . (4)

Thus, two element particle has two lower eigenfrequencies as follows from
(4).

Eigen currents in elements of particle are satisfying the set of equations

Z1I1 + ZcI2 = 0 (5)
ZcI1 + Z2I2 = 0. (6)

Two eigenmodes have currents

I2 = −I1

(√
1 + η2 − η

)
(7)

I2 = I1

(√
1 + η2 + η

)
(8)

corresponding to upper and lower sign in expression (4). Here η = ζ/(2Zc).
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If elements of particle are identical, an exact solution of equation (2)
can be obtained

Z1 = ±Zc. (9)

Eigenmodes have currents I2 = −I1 and I2 = I1 respectively.
In the case ζ has a small value, the particle has eigenfrequencies and

eigenmodes close to those of particle of identical elements. The difference
between the resonant frequencies of particles consisting of two identical
elements and the resonant frequency of the same single element resides
in the fact that the latter one corresponds to the greatest value of the
mutual coupling impedance. If the coupling of identical elements is small,
the resonant frequency as for the symmetric current distribution so as for
the non-symmetric one (closed mode resonance) is approximately the same
as the resonant frequency of the single element of particle.

3. Two-Element Arrays of Complex Shaped Particles

Very sharp resonances of reflection from infinitely thin double-periodic
multi-element FSS can appear due to resonant properties of strip particles
of periodic cell. Multi-particle structure of array cell is essential to existence
of higher quality resonance of closed mode. For the sake of simplicity we
restrict ourselves only to the case of array of two-element particles.

The method of moments is used to solve the problem of electromagnetic
scattering by arrays of thin narrow curvilinear strips.

3.1. TWO-ELEMENT ARRAY WITH IDENTICAL ELEMENTS

For example let us consider first a double-periodic two-element array. Each
cell of this array contains two identical strip elements opposite one to an-
other. The left split between the strips is a little different from the right
split, so that the unit cell is dissymmetric with regards to Oy axis (see
Figure 2). The frequency dependence of the reflection coefficients magni-
tudes are shown in Figure 2. In the same figure the reflection coefficients
magnitudes corresponding to an array of one-element C-shaped particles
are shown for comparison.

If a normal incident wave is polarized in y direction, a sharp reflection
resonance occurs (see curve 4). This resonance corresponds to a closed mode
(non-symmetric current mode in two-element particle) because equal and
opposite directed currents in the two elements complex particle radiate a
little in free space. If the incident is x-polarized wave, a symmetric current
mode is exited only. The corresponding resonance has low quality factor.
The mutual coupling between the particle elements is not large so closed
mode resonance and resonance of symmetric current distribution exited by
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Figure 2. Absolute values of the reflection coefficients of arrays without substrate :
dx = dy = 3 mm, a = 1.25 mm, φ1 = 10◦, 2w = 0.1 mm, rxx (curve 1) and ryy (curve
2) of an array of C-shaped particles (φ2 = 0◦); rxx (curve 3) and ryy (curve 4) of a
two-element particles array: the elements of the unit particle are identical, (φ2 = 15◦ :
the unit cell is dissymmetric with regards to Oy axis).

x-polarized incident wave have approximately equal frequencies. However,
the quality factors of these resonances are essentially different. Current
distributions and maximum conventional values of current are shown above
in Figure 2. They are concerned with resonance frequencies in the case
of incident wave polarized along Oy axis. The current maximum value
corresponding to the closed mode resonant frequency largely exceeds the
current values at usual resonances.

If non-symmetry encreases, the quality factor of the closed mode reso-
nance decreases (see Figure 3).

Reflection characteristics of an array placed on a substrate are similar.
Resonant frequencies are shifted to low values. In general the level of reflec-
tion is higher in comparison to the one corresponding to an array without
substrate (see Figure 4).

3.2. TWO-ELEMENT ARRAY WITH DIFFERENT ELEMENTS

Let us now consider reflection by an array of two different length ele-
ments in each cell. They are placed symmetrically to Oy axis as shown
in Figure 5. The properties of an array with symmetrically placed different
length elements are qualitativly quite different from the array with identical
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Figure 3. Absolute values of the reflection coefficients of an array without substrate:
the elements of the unit particle are identical, dx = dy = 3 mm, a = 1.25 mm, 2w = 0.1
mm, φ1 = 10◦, φ2 = 30◦ (the unit cell is dissymmetric with regards to Oy axis).
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Figure 4. Absolute values of the reflection coefficients of arrays on substrate:
dx = dy = 3 mm, a = 1.25 mm, φ1 = 10◦, 2w = 0.1 mm, ε = 3, h = 0.25 mm, rxx

(curve 1) and ryy (curve 2) of an array of C-shaped particles (φ2 = 0◦); rxx (curve 3)
and ryy (curve 4) of a two-element particles array: the elements of the unit particle are
identical, (φ2 = 2.5◦: the unit cell is dissymmetric with regards to Oy axis).

elements. In these arrays non-symmetric high quality current mode can
appear against the excitation of the usual symmetric mode.

There are two closely located reflection maxima and a very sharp res-
onance of full transmittance between frequencies of full reflection. Each
reflection resonance appears, roughly speaking, due to the excitation of
one of the elements of complex particle. A full transmittance resonance
appears due to non-symmetric current mode in the two-element particle.
It is a high quality closed mode resonance. Current amplitudes in the case
of non-symmetric current mode are approximately equal in each part of
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Figure 5. Absolute values of the reflection coefficients of an array without substrate:
the elements of the unit particle have different lengths, dx = dy = 3 mm, a = 1.25 mm,
2w = 0.1 mm, φ1 = 160◦, φ2 = 148◦, (the unit cell is symmetric with regards to Oy
axis).

the two-element particle. In Figure 5, resonant and non-resonant current
distributions are shown respectively by solid and dashed lines.

So one can obtain thin narrow-band filter of full transmittance. The
narrow-band transparent properties of the array of different-element parti-
cles are quite similar to the rejection properties of a two-aperture iris in a
rectangular waveguide studied in [5].

3.3. CLOSED MODES OF THE GRATING OF WAVY STRIPS

The next example of structures showing closed mode resonance is a grating
of wavy strips (see Figure 6). The scattering of electromagnetic waves by
gratings of wavy strips was analyzed in [9].

Let us note that the grating of narrow straight strips is approximately
fully transparent for incident wave orthogonally polarized with respect to
strips. In the case of gratings of wavy strips and the same y-polarization of
incident wave, the currents on the two halves of the strip in the boundaries
of the grating cell are equal in values but oppositely directed along the Ox
axis (see Figure 7) owing to the symmetry of the grating. We can consider
the grating of wavy strips as a two-element array. Actually, a current on
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Figure 7. Absolute values of the reflection coefficients: grating of wavy strips without
substrate, dx = dy, 2w/dy = 0.05, ∆/dy = 0.05 (curve 1), 0.1 (curve 2), 0.15 (curve 3),
0.2 (curve 4), 0.25 (curve 5).

the strip has zero values for such excitation in the points where a tangent
to the strip is parallel to Ox axis. We can imagine strips cut in these points.
Now the grating may be considered as a two-element array of curvilinear
dipoles. Thus, such a two-element array consists of identical elements but
placed at different locations and its reflection properties are similar to the
properties of the array considered in Section 3.1.

If half of length of stretched strip placed in the period cell of the grating
is approximately equal to half of wavelength L = λ/2 a resonance reflection
appears. The set of dependencies magnitude of reflection coefficient ryy

versus normalized frequency is shown in Figure 7 for different values of
amplitude of wavy strip ∆/dy. If the amplitude of the wavy strip decreases
the quality factor of reflection resonance increases.

4. Conclusions

Thus, two-element arrays of strip particles are very thin structures which
can possess extremely high quality reflection or transmission resonances
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due to the excitation of non-symmetric current mode. Because such cur-
rent mode weakly couples with free space, these resonances are similar
to resonances of closed modes in finite widening extension of single-mode
waveguide. If elements of stretched lengths placed in one array cell are
different from each other, very sharp transmission resonances can appear
in the rejection frequency band.

One can expect to obtain more complex resonance frequency character-
istics due to use of multi-element arrays.

Electron devices such as photo diodes and p-i-n diodes may be used
for the array properties control. Due to switching diodes one can modify a
geometry of array particle from one-element to two-element by connecting
or disconnecting elements in complex particles of array.
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