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ABSTRACT

Aims. We investigate the transfer of energy between a fundamental standing kink mode and azimuthal Alfvén waves within an
expanding coronal magnetic flux tube. We consider the process of resonant absorption in a loop with a non-uniform Alfvén frequency
profile but in the absence of a radial density gradient.
Methods. Using the three dimensional magnetohydrodynamic (MHD) code, Lare3d, we modelled a transversely oscillating magnetic
flux tube that expands radially with height. An initially straight loop structure with a magnetic field enhancement was allowed to relax
numerically towards a force-free state before a standing kink mode was introduced. The subsequent dynamics, rate of wave damping
and formation of small length scales are considered.
Results. We demonstrate that the transverse gradient in Alfvén frequency required for the existence of resonant field lines can be
associated with the expansion of a high field-strength flux tube from concentrated flux patches in the lower solar atmosphere. This
allows for the conversion of energy between wave modes even in the absence of the transverse density profile typically assumed in
wave heating models. As with standing modes in straight flux tubes, small scales are dominated by the vorticity at the loop apex and
by currents close to the loop foot points. The azimuthal Alfvén wave exhibits the structure of the expanded flux tube and is therefore
associated with smaller length scales close to the foot points of the flux tube than at the loop apex.
Conclusions. Resonant absorption can proceed throughout the coronal volume, even in the absence of visible, dense, loop structures.
The flux tube and MHD waves considered are difficult to observe and our model highlights how estimating hidden wave power within
the Sun’s atmosphere can be problematic. We highlight that, for standing modes, the global properties of field lines are important for
resonant absorption and coronal conditions at a single altitude will not fully determine the nature of MHD resonances. In addition,
we provide a new model in partial response to the criticism that wave heating models cannot self-consistently generate or sustain the
density profile upon which they typically rely.
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1. Introduction

In the years since the launch of the Transition Region and Coro-
nal Explorer (TRACE) mission in 1998, high spatial and tempo-
ral resolution imaging has enabled the detection of a multitude of
oscillations within the solar atmosphere (e.g. Aschwanden et al.
1999; Okamoto et al. 2007; Banerjee et al. 2009; Marsh et al.
2011; Freij et al. 2014). Indeed, more recent studies using, for
example, the Coronal Multi-channel Polarimeter (CoMP) coron-
agraph have highlighted the apparent abundance of wave power
throughout the coronal volume (Tomczyk et al. 2007; Morton
et al. 2016, 2019). Whilst estimates of the energy associated with
these waves are not typically well constrained (in part due to
the difficulty of detecting incompressible and small scale wave
modes), some authors suggest that it is sufficient to heat the (qui-
escent) corona (McIntosh et al. 2011; Morton et al. 2012) and
accelerate the fast solar wind (De Pontieu et al. 2007).

Despite the expected rate of wave energy dissipation being
very low within the corona, many observations of transverse loop
oscillations exhibit rapid damping, over the course of a few wave
periods (e.g. Nakariakov et al. 1999; Schrijver & Brown 2000).
This is now widely understood to be caused by the well-studied
process of resonant absorption (Ionson 1978; Goossens et al.

2002), by which energy is transferred from the easily observed
kink mode to localised, azimuthal, Alfvén waves that are
much more difficult to detect (Pascoe et al. 2010; De Moortel
& Pascoe 2012). Since this is an ideal process, no wave energy
is dissipated during the conversion of wave modes. However, the
resultant Alfvén waves are associated with much smaller length

scales and may experience enhanced dissipation as a result of
phase mixing (Heyvaerts & Priest 1983; Parker 1991; Pagano &
De Moortel 2017).

Since these Alfvén modes are only weakly compressible
(fully incompressible for the m = 0 mode), they remain diffi-

cult to detect within the solar corona. However, in recent years,
several authors have interpreted torsional oscillatory motions as

evidence for the presence of Alfvén waves in the solar atmo-
sphere (e.g. Tomczyk et al. 2007; Jess et al. 2009; Srivastava
et al. 2017). Furthermore, synthetic observations derived by for-
ward modelling the results of numerical simulations, have high-
lighted the signatures of resonant absorption (Goossens et al.

2014; Karampelas et al. 2019), phase mixing and the associ-
ated growth of the Kelvin–Helmholtz instability (Terradas et al.

2008a; Antolin et al. 2014) that could be detected given current

instrumental constraints (Antolin et al. 2017).
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Within an oscillating coronal loop, the transfer of energy
from the kink mode to the azimuthal Alfvén mode relies on the
existence of a set of magnetic field lines with natural Alfvén fre-
quencies that coincide with the frequency of the kink wave (e.g.
Sakurai et al. 1991). The kink speed for a thin magnetic flux
tube is given by a density-weighted mean of the internal and
external Alfvén speeds (see, for example, Priest 2014). Hence,
if the Alfvén speed varies smoothly across the loop, a resonance
will occur somewhere within the loop’s radius. As mentioned
above, the enhanced energy dissipation rate associated with the
excited wave modes are of interest in the context of coronal
heating. However, Cargill et al. (2016) argued that even if sig-
nificant wave heating occurs, energy will only be dissipated in
narrow regions in the boundary of a coronal loop and thus, will
not be able to sustain (or create) the typically-assumed density
profile. Despite this, recent numerical studies have highlighted
the possibility that non-linear effects can cause heating through-
out the cross-section of a dense flux tube (e.g. Karampelas &
Van Doorsselaere 2018).

Typically, in coronal wave models, the radial variation in
the Alfvén speed is associated with a non-uniform transverse
density profile. However, a radial gradient in the magnetic
field strength can also provide the non-constant Alfvén speed
profile that is required for a resonant layer to exist. To this
end, many studies have demonstrated the mode conversion of
magnetohydrodynamic (MHD) waves in the presence of a non-
uniform magnetic field (see, for example, Ruderman & Erdélyi
2009; Antolin et al. 2015; Giagkiozis et al. 2016; Yu et al. 2017;
Howson et al. 2017a). However, in the majority of previous stud-
ies, the magnetic field is simply a function of radial position and
does not vary along the length of the magnetic structure. In the
current study, the magnetic flux tube expands with height in the
corona and, thus, the background field strength is no longer con-
stant along field lines. Importantly, the ratio between the internal
and external Alfvén speeds (and hence the kink speed) is not
constant along the length of the loop.

In the context of magnetospheric waves, previous studies
have demonstrated the existence of resonances associated with
varying magnetic field strength. An analytic treatment of reso-
nances forming in fields with an invariant direction can be found
in Wright & Thompson (1994) and more recent studies (Wright
& Elsden 2016; Elsden & Wright 2017) have explored the exis-
tence of resonant regions in fully three dimensional (no invariant
direction) magnetic fields.

Within the Earth’s approximately dipolar magnetosphere, the
field strength falls with height, modifying the natural frequency
of magnetic field lines from those in a uniform field regime.
An analogy may be drawn with the solar atmosphere in which
flux tubes might be expected to expand rapidly with height in
the transition region and corona from dense flux patches in the
photosphere and chromosphere. A similar regime is explored in
Khomenko et al. (2008) in which the authors explore the dynam-
ics of propagating magnetoacoustic waves in small, expanding
photospheric flux tubes.

In other related studies, many authors have demonstrated that
resonant absorption will occur in a wide array of coronal loop-like
structures. In particular, the process will still progress in multi-
stranded (Terradas et al. 2008b), curved (Van Doorsselaere et al.
2004; Terradas et al. 2006a), elliptical (Ruderman 2003) and lon-
gitudinally stratified loops (Andries et al. 2005; Arregui et al.
2005).

Within this paper, we aim to establish the possibility of res-
onant absorption occuring in magnetic loop-like structures that
are bereft of any density enhancement. We introduce the model

in Sect. 2, describe our results in Sect. 3 and provide a discussion
and conclusions in Sect. 4.

2. Numerical method

For the numerical simulations presented within this paper, we
have used the Lagrangian-remap code, Lare3D (Arber et al.
2001). We advanced the full, 3D, ideal MHD equations in nor-
malised form given by

Dρ

Dt
= −ρ∇ · u, (1)

ρ
Du

Dt
= j × B − ∇P, (2)

ρ
Dǫ

Dt
= −P(∇ · u), (3)

DB

Dt
= (B · ∇) u − (∇ · u) B. (4)

Here, ρ is the plasma density, u is the velocity field, j is the
current density, B is the magnetic field, P is the gas pressure and
ǫ is the specific internal energy density. This normalisation is
constructed using a typical length scale, magnetic field strength
and density and details of the code are described in Arber et al.
(2001). The results presented hereafter are calculated using S.I.
(not dimensionless) units unless otherwise stated. Although we
display the ideal MHD equations here, we note that there is a
small viscosity included in the code to ensure numerical stabil-
ity. This is included as a small, dissipative force on the right-hand
side of the equation of motion (2) and an associated heating term
is added to the right-hand side of the energy Eq. (3). Although
the dissipative effects are weak here, even small transport coeffi-
cients can prevent the growth of the Kelvin–Helmholtz instabil-
ity that may develop as a result of the radial velocity shear that
forms during the simulation (Howson et al. 2017b).

We consider an azimuthally-invariant cylindrical structure
with uniform density and an internal enhancement of the mag-
netic field. This will be associated with a radial magnetic pres-
sure force and in order to find an initial equilibrium, we consider
solutions to Eq. (2), with u = 0. Hence,

∇P = j × B = (B · ∇) B

︸    ︷︷    ︸

Magnetic Tension

− ∇

(

B2

2

)

.

︸   ︷︷   ︸

Magnetic Pressure

(5)

We explore three cases for satisfying Eq. (5).
1. External gas pressure enhancement – Requires β > 1 in the

external medium which is not suitable for a coronal inves-
tigation. However, this may represent a flux tube located
within the lower layers of the solar atmosphere (see, for
example, Yu et al. 2017).

2. Twisted field – The radially outwards magnetic pressure
force can be balanced by an inwards magnetic tension force
associated with twisted field. The presence of twist within
the magnetic field can complicate the wave dynamics (see
e.g. Karami & Barin 2009; Howson et al. 2017a) and so is
not suitable for an initial study.

3. Field expansion – An initially straight flux tube can be
allowed to relax numerically to a state with j × B = 0. The
magnetic field strength will inevitably decrease within the
flux tube as it expands, however, it can be constrained to a
limited degree by tension in the field lines.

For the remainder of this article, we will restrict our considera-
tion to the third case.
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Fig. 1. Initial magnetic field strength profile through the cross-section
of the loop. The solid line shows the pre-relaxation field profile and the
post-relaxation field profile at both of the z boundaries. The dashed line
shows the field profile at the loop apex following the relaxation. In both
cases we have normalised by the initial external field strength and note
that the entire radial extent of the domain is not included within this
figure.

The initial conditions consisted of a straight, vertically and
azimuthally invariant magnetic flux tube with a field parallel to
the loop axis. We imposed an enhanced field strength within the
loop (relative to its exterior) of the form B = (0, 0, Bz) where z is
the loop-aligned coordinate and

Bz(R) = Be +
(Bi − Be)

2

(

1 − tanh

{

R − ra

rb

})

. (6)

Here, Be = 5 G and Bi = 15 G are the initial exterior and
interior field strengths, respectively. The parameters, ra and rb

were set to produce a loop radius of approximately 2 Mm and a
smooth transition from the exterior field to the interior field of
approximately 0.8 Mm in width. The radial profile of this field
is shown (solid line) in Fig. 1. The loop length was 20 Mm. We
note that this is relatively short for a coronal flux tube and discuss
the significance of this length below (see Sect. 4).

We used a numerical domain of 512 × 512 × 200 grid cells
and in order to minimise boundary effects, we adopted a non-
uniform resolution profile in the x and y directions. These profiles
have a region of uniform resolution in the centre of the domain
in which the important wave dynamics (e.g. resonant absorption)
occur (see Howson et al. 2017b, for more details). The use of the
non-uniform grid allowed a fine spatial resolution (0.04 Mm) to be
obtained within a central region whilst ensuring the x and y edges
are both 32 Mm in length. The large distance of the x and y bound-
aries from the centre of the flux tube ensured that during relaxation
(see below), the magnetic field was not artificially constrained by
the boundaries of the domain. Meanwhile, the z direction used
a uniform spatial resolution of 100 km. Unlike in simulations of
straight flux tubes, the expansion of the magnetic structure dis-
cussed within this article (see below) presents some numerical
difficulties. In particular, a significantly finer spatial resolution
is required close to the loop foot points in order to resolve the
gradients associated with the rapid expansion of the flux tube.

Whilst maintaining a density of 1.67 × 10−12 kg m−3 and a
temperature of 1.8 MK throughout the computational domain,
we allowed the magnetic field to relax towards a numerical equi-
librium. A high value of viscosity was implemented to damp

Fig. 2. Magnetic field lines traced from R = 2 Mm on the lower z bound-
ary after the numerical relaxation. The displayed box does not show the
entirety of the computational domain but, instead, has dimensions of
8 Mm× 8 Mm× 20 Mm.

the amplitude of the oscillations that form, however, the asso-
ciated heating was removed by overwriting the temperature at
each time step. During the numerical relaxation, we maintained
the initial magnetic field profile on the upper and lower z bound-
aries. Following this process, the magnetic field (numerically)
satisfied j × B = 0 with the exception of a narrow layer close to
the top and bottom of the domain where the boundary conditions
were associated with non-parallel currents.

The magnetic field lines (after relaxation) in the flux tube
are displayed in Fig. 2. Here, we have traced field lines from
R = 2 Mm on the lower z boundary of the computational box.
We note that the displayed figure does not represent the entirety
of the numerical domain and, as mentioned above, the flux tube
expansion is not significantly restricted by boundary effects.
Although the field expansion seems limited, we highlight that
Fig. 1 (dashed line) shows that the field strength does decrease
significantly at the loop apex.

In Sect. 3, we will often refer to the boundary of the
expanded magnetic flux tube. However, we note that this is not
well-defined following the numerical relaxation. Therefore, we
will define the boundary of the flux tube to be the volume con-
taining magnetic field lines that map to the (well-defined) bound-
ary of the flux tube on the upper and lower z boundaries of the
domain.

In Fig. 3 we consider the change in magnetic field strength
along the loop axis that is caused by the expansion of the flux
tube with height. Further, in Fig. 4, we display a contour of the
Alfvén speed in a cut along the longitudinal axis of the loop. We
note that since the density is initially uniform, the Alfvén speed
is simply proportional to the magnitude of the field. In both
figures, we observe that the majority of the expansion occurs
close to both foot points and the central portion (along the z axis)
of the loop is almost uniform. We highlight that at the loop apex,
the field strength within the loop is close to that of the initial
external field. Furthermore, the numerical relaxation conserves
the azimuthal invariance of the flux tube.

In Fig. 5, we show the natural Aflvén frequencies of field
lines across the cross-section of the loop at the apex (dashed
black line). In order to generate this plot, we solve Eq. (7) in
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Fig. 3. Field strength variation along the flux tube axis (central field
line) after the period of numerical relaxation. Here, we have normalised
by the initial external field strength.

Fig. 4. Alfvén speed in a vertical cut (x = 0 plane) through the loop axis
following the numerical relaxation.

Wright & Thompson (1994) for the frequency of the fundamen-
tal standing Alfvén wave along each field line in the y = 0
plane. This equation accounts for the variation in Alfvén speed
and the length of field lines. Additionally, the geometry of the
flux tube is accounted for by a series of scale factors which
may be interpreted physically in terms of the elemental sepa-
ration of neighouring field lines. The scale factors are functions
of position, and for an analytically defined equilibrium may have
explicit expressions. Since our equilibrium is not analytical, we

Fig. 5. Dashed black line: natural Alfvén frequencies of field lines at
the loop apex. Solid red line: kink frequency generated in the simula-
tion. Green lines: Theoretical estimates of the frequency of the funda-
mental kink mode using the kink speed, vk, at the loop apex (dashed
line) and tracking vk as a function of position along the loop axis (solid
line). The estimate calculated using the kink speed at the loop foot
points is significantly larger and is thus omitted from the figure. Dashed
red line: additional estimate of the kink frequency calculated by solv-
ing an eigenvalue problem. Blue line: square of the azimuthal velocity,
vφ, integrated in time over a wave period once significant energy has
been transferred through resonant absorption (t ≈ 1500 s). This is nor-
malised to the maximum value observed. Solid black line: location of
peak power for the azimuthal Alfvén wave.

estimated the scale factors numerically by tracing magnetic field
lines. The remaining curves in Fig. 5 are discussed in the follow-
ing section.

Following the numerical relaxation, we imposed a transverse
velocity of the form u = (vx, 0, 0) where

vx = v0e−
(

R
rw

)2

cos

(
πz

2L

)

. (7)

Here, v0 ≈ 13 km s−1 is the maximum amplitude of the ini-
tial perturbation, rw is a parameter that ensures the width of the
velocity profile is approximately the radius of the apex of the
expanded flux tube (see Fig. 2) and L = 20 Mm is the length
of the loop. The cosine term generates a fundamental standing
mode with the velocity set to zero at the footpoints and maximal
at the loop apex.

In Fig. 6, we show the initial velocity profile in vertical (left
panel) and horizontal (upper right panel) cuts and along the cen-
tral axis (lower right panel). Since the flux tube does not have
a constant radius, this profile does not coincide with the width
of the magnetic structure along the entire height of the flux
tube. In particular, both the internal and external plasma is dis-
turbed by this velocity perturbation. In this case, energy from
both the internal and external plasma is readily transferred to
Alfvén wave energy associated with resonant field lines. The
main effect of the velocity profile not following the exact form
of the magnetic flux tube is that additional harmonics (including
radial wave modes) are excited.

Despite this, throughout the simulations, we ensured that a
node is located on both the upper and lower z boundaries by
enforcing zero velocities in these locations. Meanwhile, all other
variables have zero gradients at the loop foot points. The x and
y boundaries are periodic, however, in practice, flows are very
small across these boundaries as a damping region is imple-
mented at large |x| and |y| in order to minimise domain boundary
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Fig. 6. Initial velocity profile. Cuts in a vertical plane through the loop
axis (left), a horizontal plane throught the loop apex (top right) and a
plot of vx as a function of height along the loop axis (bottom right).

effects on the oscillation. Throughout the duration of the simula-
tion, the damping layers are well removed from the wave dynam-
ics that are discussed hereafter.

3. Results

Following the imposition of the initial velocity profile, a stand-
ing kink wave is generated. Magnetic tension, and to a much
lesser extent magnetic (and gas) pressure gradients, act as the
restoring forces. The observed period of the wave is approxi-
mately 106 s and thus, we find that the observed kink frequency
is ωk = 0.0593. This corresponds to the solid red line in Fig. 5.

In a straight and slender flux tube with loop-aligned invari-
ance, the kink speed, vk can be expressed as (e.g. Nakariakov &
Verwichte 2005)

vk =

√

ρiv
2
A,i
+ ρev

2
A,e

ρi + ρe

, (8)

where a subscript i denotes a variable within the flux tube and
a subscript e denotes a variable within the external plasma.
Although the current model violates the assumptions used to
derive the above expression, we should be able to bound the
expected period, τk, using

2

∫

dz

max vk
≤ τk ≤ 2

∫

dz

min vk
· (9)

Here, we have used a simple WKB approximation for the period
of a standing wave mode with speed, vk. The factor of 2 is
included as the length of the loop is only half of the longitudinal
wavelength for a fundamental mode. The integrals are calculated
between the two nodes located at the upper and lower z bound-
aries. Furthermore, we can estimate the expected period as

τk =

∫

dz

vk(z)
· (10)

The three integrals in the preceeding equations provide an esti-
mate and upper and lower bounds of the kink frequency. The

Fig. 7. Velocity at the centre of the flux tube cross-section indicating
the damping rate of the kink mode. Two damping profiles are also dis-
played. Upper: Gaussian (blue) profile. Lower: exponential (red) pro-
file.

upper bound is shown in Fig. 5 as the solid green line. The
dashed green line corresponds to the estimate calculated using
Eq. (10). The lower bound was found to be a frequency of 0.121
and for clarity is not included in Fig. 5. The solid red line cor-
responds to the actual frequency observed within the simulation
(ω = 0.0593).

We can provide an alternative estimate by solving the wave
equation

∂2u

∂t2
= v2k(z)

∂2u

∂z2
, (11)

where u is the perturbed component of the velocity, and by
assuming a solution of the form

u = f (z)eiωt. (12)

In order to solve the resulting eigenvalue problem, we shoot for
the frequency that satisfies the boundary conditions and find an
improved estimate of the kink frequency of 0.0588. This is dis-
played as the dashed red line in Fig. 5.

3.1. Resonant absorption

Even in ideal conditions, the kink wave experiences damping at
a significantly higher rate than can be accounted for by the small
amount of (numerical) dissipation inherent to the simulation. In
Fig. 7, we plot the velocity in the centre of the flux tube at the
loop apex (x = y = z = 0) as a function of time. We note that
the initial amplitude of 13 km s−1 decays very quickly (within 1
wave period) to approximately 5 km s−1. For clarity, this is not
shown in Fig. 7 and is associated with a short-lived leaky mode
(e.g. Terradas et al. 2006b) that transfers energy into the sur-
rounding plasma until the kink mode is established.

We observe the subsequent damping of the kink mode over
many wave periods and have included two decay profiles; the
more typical exponential decay (red) and a Gaussian curve
(blue). We note that the Gaussian fit is more suitable until around
t = 1200 s, at which time the exponential becomes more appro-
priate. This is in agreement with Pascoe et al. (2013) in which
the authors demonstrate that resonant absorption is associated
with an initial phase of Gaussian damping before exponential
damping dominates at a later time.

As discussed above, the process of resonant absorption trans-
fers energy from the kink mode into energy associated with
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Fig. 8. Velocity vectors in the horizontal plane at the loop apex. Three
times are shown: upper – initial velocity profile, middle – dipole
flow has formed, lower – kink mode energy has been transferred into
azimuthal Alfvén wave.

azimuthal Alfvén waves. This is readily observed in the veloc-
ity field displayed in Fig. 8. In the first panel we show the ini-
tial velocity profile (corresponds to Fig. 6). This demonstrates
that the majority of the initial kinetic energy is contained within
the central region of the flux tube. As this plasma moves, it is
replaced by external plasma and thus a dipole flow forms imme-
diately. This persists over many wave periods (second panel) as
the kink mode decays. Throughout the simulation, resonant field
lines are excited by the kink mode and begin to oscillate as part

Fig. 9. Azimuthal kinetic energy in the line x = z = 0 as a function of
time.

of an azimuthally polarised Alfvén wave which can be observed
in the third panel.

This mode conversion transfers wave energy from the central
region of the flux tube, to the boundary between the internal and
external plasma. This boundary is well-defined close to the loop
foot points, however, due to the expansion of the flux tube, it is
much less apparent close to the loop apex. Indeed, comparing
the solid and dashed line in Fig. 1, demonstrates the change of
the boundary region between the loop foot points and the loop
apex. We highlight the result that resonant absorption can still
occur even if there is very little gradient in Alfvén speed along
large sections of a magnetic flux tube.

In Fig. 9, we show how the location of kinetic energy along
the line x = z = 0 (a vertical line when viewed in the panels in
Fig. 8) changes throughout the course of the simulation. Initially,
it is predominantly located within the core of the loop (kink
wave), however, as time progresses, it is transferred to two nar-
row layers within the boundary region of the flux tube (Alfvén
wave). The y locations of the peak power (for both wings of
the Alfvén wave) beyond a time of approximately 6 wave peri-
ods, indicate the radial position of the resonant field lines. The
azimuthal wave power then begins to decrease once the major-
ity of the kink mode energy has been exhausted and as the weak
viscosity (user-imposed and, to a lesser extent, due to numerical
effects) dissipate the wave energy.

In Fig. 5, we include the location of Alfvén wave power (blue
line) as a function of distance from the centre of the loop. We
show the magnitude of v2 (this is approximately proportional to
the kinetic energy as the density is largely constant) integrated
in time over the duration of a wave period. We select a time
once significant mode conversion has occurred (t ≈ 1500 s). At
this time, it is clear that the wave power peaks in the bound-
ary of the magnetic structure. In Fig. 5, the vertical black lines
indicate where the kink frequency observed within the simula-
tion matches the theoretically predicted Alfven frequency. The
fact that this location coincides with the peaks of v2 confirms our
interpretation in terms of resonantly excited Alfven waves driven
by the kink mode.

3.2. Alfvén wave structure

On account of the expansion of the flux tube with height, a nar-
row resonant layer of field lines at the loop foot point, maps to a
much wider layer close to the loop apex. Accordingly, the width
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Fig. 10. Vertical cuts through the loop
axis showing the vertical structure of the
Alfvén wave. Upper two panels: kinetic
(left) and magnetic (right) wave energy,
integrated in time over a full period.
Lower left panel: sum of the two com-
ponents of wave energy and lower right
panel: analogous plot using data from
straight field (no magnetic field expan-
sion) experiments. In each case, we have
normalised using the total Alfvén wave
energy present in the respective simula-
tion.

of the resonant layer varies with position along the flux tube. In
particular, it exists over a much smaller horizontal extent close
to the upper and lower z boundaries than at the loop apex.

In Fig. 10, we display the spatial profile of Alfvén wave
power once significant energy has been transferred from the kink
wave (t ≈ 1500 s). The upper panels correspond to the kinetic
(left) and magnetic (right) wave energy, integrated over a wave
period. The lower left panel is simply a sum of the two upper
panels. The lower right panel, on the other hand, corresponds to
the simulations presented in Howson et al. (2017b) in which a
straight (no magnetic field expansion) flux tube is considered
and the resonant absorption is associated with a non-uniform
density profile. As with the lower left panel, it shows the sum
of the magnetic and kinetic wave energy integrated over a wave
period. We note that the flux tube is significantly longer than in
the case presented within this article. For comparison, in each
panel, we have normalised the total Alfvén wave energy in the
corresponding simulation.

In the top left panel of Fig. 10, we observe that the mag-
nitude of the kinetic energy is largest at the loop apex which
coincides with the location of the velocity antinode in the funda-
mental mode. Meanwhile, the magnetic component (upper right
panel) of the wave energy is largest at the loop foot points as
this is where the perturbation of the magnetic field is greatest.
Since we generate a standing wave, the velocity and magnetic
field perturbations are out of phase, however, integrating over
a wave period means we might expect the wave energy to be
approximately constant along a field line.

This is indeed the case in the straight flux tube case (lower
right panel) as the width of the resonant layer does not change
along the length of the loop axis. At a radius of R ≈ 1 Mm,
we see that the time-integrated Alfvén wave energy is approxi-
mately constant with height. However, this is not the case in the
boundary of the flux tube in the expanding field simulation, even
when the shape of the field lines is accounted for. The density
of field lines increases near the loop foot points and this has the

A105, page 7 of 11

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936146&pdf_id=10


A&A 631, A105 (2019)

Fig. 11. Width of the Alfvén wave as a function of height along the flux
tube.

effect of concentrating wave energy close to the upper and lower
z boundaries (see lower left panel).

At this stage, we note that the straight field cases can become
unstable to the Kelvin–Helmholtz instability (KHI). This is due
to the radial shear in the velocity that is associated with the
excited azimuthal Alfvén waves. The lower right panel of Fig. 10
corresponds to a time prior to the formation of the instability.
The development of the KHI leads to a deformation and expan-
sion of the loop’s cross-section, particularly at the loop apex (e.g.
Terradas et al. 2008a; Antolin et al. 2014; Magyar et al. 2015).
This expansion will increase the width of the flux tube bound-
ary and thus, can induce similar effects to the expanding field
case. The KHI does not form in the expanding field case as the
radial velocity shear that develops is much smaller than in the
straight field simulation. This is because the width of the reso-
nant layer is much larger and because resonant absorption pro-
ceeds at a reduced rate in this case (see Fig. 12 and associated
discussion).

Whilst the straight field profile is able to sustain a narrow
shell of resonant field lines along the entire length of the flux
tube (prior to the development of the KHI), the field expansion
considered here results in the resonant layer being much wider in
comparison to the loop length. The width of this resonant layer
as a function of height is shown in Fig. 11 for the expanding field
case. Here, the width is calculated using the full width at half
maximum of the azimuthal velocity profile for one wing of the
Alfvén wave at each height within the domain. We observe that
since most of the expansion of the flux tube occurs close to the
foot points (see Figs. 3 and 4), the greatest change in width of the
resonant layer occurs closest to the upper and lower boundaries
of the domain.

The smaller (in relation to the kink mode) length scales of
the Alfvén wave are important in the context of wave energy
dissipation, and hence coronal heating. In both simulations, the
gradients in the velocity and magnetic fields are larger for the
localised wave mode than for the global (kink) mode. As such,
the effects of viscosity (on the velocity field) and resistivity (on
the magnetic field) are more significant for the Alfvén wave than
for the initial kink mode. However, since the set-up discussed
within this article is associated with a much wider resonant layer
(due to the field expansion), the gradients in the magnetic and
velocity fields are smaller than in the straight field simulation.

In general, due to the field expansion, the length scales
remain larger in the current model than in the classical straight

Fig. 12. Transfer of wave energy during resonant absorption for the
expanding magnetic field case (upper panel) and the uniform magnetic
field case (lower panel). We show the square of the azimuthal velocity,
v2φ, along a diameter through the loop apex and as a function of time. In
each case, we have normalised by the maximum value observed during
the simulation.

field case. As a result, in a comparable straight field simulation,
we expect more efficient wave heating due to phase mixing and
the development of dynamic instabilities such as the Kelvin–
Helmholtz instability (e.g. Terradas et al. 2008a; Karampelas &
Van Doorsselaere 2018). However, a rigorous consideration of
the system in a non-ideal regime is beyond the scope of this pub-
lication and will instead be considered in subsequent work.

In Fig. 12, we show how the location of kinetic energy along
the line x = z = 0 changes throughout the course of the sim-
ulation. We show the results for the expanding field simulation
described within this article (upper panel) and, for comparison,
the straight field simulation outlined in Howson et al. (2017b).
The upper panel can be easily compared to Fig. 9. Since the
observed kink frequency is different in both experiments, we
display the energy transfer as a function of the number of wave
periods.

A105, page 8 of 11

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936146&pdf_id=11
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936146&pdf_id=12


T. A. Howson et al.: Resonant absorption in expanding coronal magnetic flux tubes with uniform density

Fig. 13. Magnitude of the current density, | j|, and vorticity, |ω| associated with the azimuthal Alfvén wave in the y = 0 plane at t ≈ 1500 s.

In both simulations, we see that energy is transferred from
the core region to the boundary of the loop as time progresses.
It is clear that resonant absorption occurs much more quickly
(in terms of wave periods) in the straight field simulation. This
is intuitive given that the radial Alfvén speed gradient (a criti-
cal requirement for resonant absorption to proceed) is significant
along the entire length of the flux tube in the straight field case,
but not in the expanding field structure. Indeed, in the simula-
tion described within this article, the Alfvén speed is almost con-
stant throughout the cross-section at the loop apex (see Fig. 4).
Importantly, there is a larger contrast between the natural Alfvén
frequencies of field lines inside and outside of the flux tube
in the straight field case than in the expanding magnetic field
simulation.

Another important difference between the two simulations
is highlighted by considering the relative internal and external
Alfvén frequencies. In the density-defined loops, the internal fre-
quency is lower than the external frequency. However, this is
reversed in the case of flux tubes defined by a magnetic field
enhancement. This can be observed by considering the orienta-
tion (direction) of the wave fronts in the two panels of Fig. 12.
In the upper panel, an Alfvén wave front appears to propa-
gate away from the centre of the loop, whereas in the lower
panel, this behaviour is reversed. In the flux tube with the den-
sity enhancement (lower panel), the Alfvén speed (and thus the
natural frequency) within the loop is lower than in the exterior
plasma. Hence, a standing Alfvén wave will be first observed on

field lines at the edge of the boundary region. The lower fre-
quency field lines closer to the loop centre will oscillate at a
slightly later time, and hence the wave front appears to propagate
towards the centre of the loop. In the simulation corresponding
to the upper panel, the natural Alfvén frequencies of field lines
within the flux tube are higher than in the external plasma and
thus, the opposite effect is observed. This inversion (with respect
to the typically modelled case) might be expected in chromo-
spheric flux tubes (if the internal frequency is higher than the
external frequency) but is unusual for a simulation concerning
coronal structures.

3.3. Current and vorticity

The small scales associated with the Alfvén wave manifest in the
form of currents (for the magnetic field) and vorticities (for the
velocity field). The radial non-uniformity in natural Alfvén fre-
quency will induce out-of-phase wave behaviour on neighbour-
ing field lines, leading to an enhanced rate of dissipation through
phase mixing Heyvaerts & Priest (1983).

In Fig. 13, we display the currents (left-hand panel) and vor-
ticities (right-hand panel) associated with the azimuthal Alfvén
waves. To generate these plots, we consider a time after a signifi-
cant amount of energy has been transferred from the global wave
to the localised modes (t ≈ 1500 s). The shape of the expanded
flux tube remains apparent in these plots and corresponds to the
Alfvén wave structure (see Fig. 10).
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As discussed previously, over the course of a wave period,
the energy in a standing Alfvén wave is partitioned into kinetic
energy (located close to the antinode) and magnetic energy
(located close to the nodes). This ensures that the largest cur-
rents form close to the foot points of the magnetic flux tube
and the largest vorticities form close to the loop apex. This phe-
nomenon is independent of the form of the flux tube and the sig-
nificance for the spatial distribution of wave heating is discussed
in Karampelas et al. (2017). In this case, it can be observed by
comparing the location of the largest currents and vorticities in
Fig. 13a and b, respectively.

The large-scale, strand-like structures that appear in both
contour plots are indicative of phase mixing. The radial non-
uniformity in Alfvén frequency (see Fig. 5) ensures that Alfvén
waves on neighbouring radial shells gradually become out of
phase. This, in turn, generates small scales across the resonant
layer and, in a non-ideal regime, wave energy would be dissi-
pated across this region of the flux tube.

In addition to the longitudinal out-of-phase behaviour
between the currents and vorticities (described above), in
Fig. 13, we observe that the phase-mixing strands are also out-
of-phase radially. This is simply due to the magnetic and kinetic
energy being out-of-phase in a standing Alfvén wave. On field
lines with large currents, most of the wave energy is magnetic in
nature and, on the other hand, for field lines with large vortici-
ties, most of the wave energy is kinetic.

As resonant absorption transfers energy from the global
mode to localised waves, the magnitude of currents and vor-
ticities within the numerical simulation will increase. This can
be observed in Fig. 14 for j (upper panel) and ω (lower panel),
respectively. In each case we integrate the magnitude of the vec-
tors over the loop cross-section at each height and display this
quantity as a function of time. We have normalised both quanti-
ties by the maximum of the total current and thus we see that the
current attains larger values than the viscosity.

In both cases, the formation of small scales as resonant
absorption progresses can be observed and once again we note
that vorticity dominates at the loop apex and currents dominate
at the loop foot points. The small peak in vorticity at the begin-
ning of the simulation corresponds to velocity gradients asso-
ciated with the initial kink mode. Since the magnetic energy is
concentrated over a smaller region than the kinetic energy (see
Fig. 10), we anticipate that for comparable values of resistivity
and viscosity, Ohmic heating will be the more significant dissi-
pation mechanism.

4. Discussion and conclusions

Within this paper, we have presented a model of an expanded
magnetic flux tube excited with a standing, transverse, kink
oscillation. In agreement with existing models, the presence of
a non-uniform, transverse profile in the Alfvén frequency, per-
mits resonant absorption to augment the decay of the fundamen-
tal kink mode as energy is transferred to localised, azimuthal
Alfvén waves.

Previously, many models have considered the effects of a
density enhancement within the coronal loop. However, we have
presented a departure from the typical model in the sense that the
flux tube we have studied is defined by a magnetic field strength
enhancement and the density is initially uniform throughout the
numerical domain. In this instance, the transverse profile in the
natural frequency is associated with both the difference between
internal and external magnetic field strengths and the variation
in the length of field lines. Additionally, in contrast to many pre-

Fig. 14. Total current (upper) and vorticity (lower) across loop cross-
section as a function of distance along the loop and time. In both cases,
we have normalised by the maximum value of the total current.

vious studies, the ratio between the internal and external Alfvén
speeds is not constant along the length of the flux tube. Con-
sequently, the applicability of previous analytic studies to this
model is limited.

As with straight flux tube simulations, the azimuthal waves
that are excited during resonant absorption exist over much
smaller spatial scales than the global mode and are thus asso-
ciated with larger gradients in the magnetic and velocity fields.
These gradients correspond to currents and vorticities that
increase in magnitude as the resonant absorption and phase mix-
ing progresses. However, since the resonant layer is much wider
than in typical straight flux tube studies (prior to the formation
of the Kelvin–Helmholtz instability), the transverse length scale
of the Alfvén wave remains much larger in the current model.
Since we see that both resonant absorption and phase mixing
progress at slower rates in the expanding field model, in a non-
ideal regime, we expect wave heating to be less efficient in this
case. Due to the nature of the standing Alfvén wave, the largest
currents form at the loop foot points and the largest vorticities
at the loop apex. The expansion of the flux tube ensures that
the width of the resonant layer is much smaller close to the foot
points than at the loop apex. Hence, given comparable resistivity
and vorticity coefficients, in a non-ideal regime we can expect
Ohmic heating to be the dominant cause of wave energy dissipa-
tion (Van Doorsselaere et al. 2007) for this model.

In this article, we have studied a standing kink mode in a rel-
atively short (for the solar atmosphere) magnetic flux tube. As
such, it may be more representative of transition region loops
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which have been observed by Hansteen et al. (2014), for exam-
ple. Indeed, this model may be particularly applicable to short
loops which exhibit large expansion at low altitudes. Since the
radial Alfvén frequency gradient, depends on the amount of
flux tube expansion, we expect that longer, coronal loops will
exhibit a slower rate of resonant absorption and phase mixing
than observed in this model.

The absence of any density enhancement implies that the
waves described within this publication would be very difficult to
identify even with the increased detection power provided by con-
temporary observational instruments. Indeed, the initial flux tube
is invisible to all but sensitive magnetic field measurements which
are not currently possible within the coronal volume. Despite
this, the next generation of solar telescopes such as DKIST, will
hopefully provide insight into the nature of such magnetic struc-
tures within the Sun’s atmosphere. Detecting the wave itself may
be possible using Doppler velocities, however, favourable condi-
tions are required as flows within dense structures along the line
of sight will likely dominate any observed signal.

Despite these observational difficulties, it may be expected
that such flux tube structures exist throughout the corona.
Magnetic field within the outer solar atmosphere is typi-
cally connected to small scale flux patches in the photo-
sphere/chromosphere and as the field enters a low plasma-β
regime, in order to maintain an equilibrium, it must become
approximately force free. Thus, if we assume low levels of mag-
netic twist, it is reasonable to expect the field to expand signifi-
cantly with height. As we have shown, in order to fully explain
the damping behaviour of fundamental standing waves at high
altitude, the expansion of the magnetic field closer to the solar
surface should be considered. In particular, the global frequency
of the field line is critically important and cannot simply be
inferred from the local frequency at the loop apex. It is not pos-
sible to accurately predict the decay of a standing kink mode
unless the internal and external Alfvén speeds are well con-
strained along the entire length of the flux tube.

A major criticism of previous wave heating models (see e.g.
Cargill et al. 2016), is that the density profile typically assumed
for resonant absorption/mode coupling and phase mixing mod-
els cannot be generated, or sustained, by the dissipation of MHD
waves alone. Despite this, other authors have argued that wave
heating models will dissipate energy across the cross-section
of a coronal loop (e.g. Ofman et al. 1998; Karampelas & Van
Doorsselaere 2018). The model presented within this paper pro-
vides a proof of principle suggesting that the density profile
is not essential for wave heating to occur. Furthermore, any
substantial wave heating in such a flux tube could lead to the
evaporation of chromospheric plasma into the corona and the
generation of a new density structure which would complicate
the wave dynamics and may be observed as a new coronal loop.
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