
 Open access  Journal Article  DOI:10.3847/0004-637X/823/2/71

Resonant Absorption of Axisymmetric Modes in Twisted Magnetic Flux Tubes
— Source link 

Ioannis Giagkiozis, Marcel Goossens, Gary Verth, Viktor Fedun ...+1 more authors

Published on: 29 Jun 2017 - arXiv: Solar and Stellar Astrophysics

Topics: Magnetic damping, Magnetic flux, Magnetohydrodynamics, Magnetic field and Dispersion relation

Related papers:

 Wave propagation in a magnetic cylinder

 Resonant behaviour of MHD waves on magnetic flux tubes. III : effect of equilibrium flow

 Resonant behaviour of MHD waves on magnetic flux tubes I. Connection formulae at the resonant surfaces

 Resonant MHD Waves in the Solar Atmosphere

 Coronal loop oscillations - An interpretation in terms of resonant absorption of quasi-mode kink oscillations

Share this paper:    

View more about this paper here: https://typeset.io/papers/resonant-absorption-of-axisymmetric-modes-in-twisted-
4yacbmb17z

https://typeset.io/
https://www.doi.org/10.3847/0004-637X/823/2/71
https://typeset.io/papers/resonant-absorption-of-axisymmetric-modes-in-twisted-4yacbmb17z
https://typeset.io/authors/ioannis-giagkiozis-26s69mllvm
https://typeset.io/authors/marcel-goossens-122juikr0h
https://typeset.io/authors/gary-verth-3wpxf2xfap
https://typeset.io/authors/viktor-fedun-4tkocga3n5
https://typeset.io/journals/arxiv-solar-and-stellar-astrophysics-2pbccf5u
https://typeset.io/topics/magnetic-damping-1dvoowq4
https://typeset.io/topics/magnetic-flux-25uxrd91
https://typeset.io/topics/magnetohydrodynamics-35ca9jtt
https://typeset.io/topics/magnetic-field-3a6w4z1t
https://typeset.io/topics/dispersion-relation-16yqjgn2
https://typeset.io/papers/wave-propagation-in-a-magnetic-cylinder-4w2bvx02fx
https://typeset.io/papers/resonant-behaviour-of-mhd-waves-on-magnetic-flux-tubes-iii-5fkui3m5iq
https://typeset.io/papers/resonant-behaviour-of-mhd-waves-on-magnetic-flux-tubes-i-1zpetf24nf
https://typeset.io/papers/resonant-mhd-waves-in-the-solar-atmosphere-1mvmi1f3ej
https://typeset.io/papers/coronal-loop-oscillations-an-interpretation-in-terms-of-1ix32sgzrr
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/resonant-absorption-of-axisymmetric-modes-in-twisted-4yacbmb17z
https://twitter.com/intent/tweet?text=Resonant%20Absorption%20of%20Axisymmetric%20Modes%20in%20Twisted%20Magnetic%20Flux%20Tubes&url=https://typeset.io/papers/resonant-absorption-of-axisymmetric-modes-in-twisted-4yacbmb17z
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/resonant-absorption-of-axisymmetric-modes-in-twisted-4yacbmb17z
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/resonant-absorption-of-axisymmetric-modes-in-twisted-4yacbmb17z
https://typeset.io/papers/resonant-absorption-of-axisymmetric-modes-in-twisted-4yacbmb17z


RESONANT ABSORPTION OF AXISYMMETRIC MODES IN TWISTED MAGNETIC FLUX TUBES

I. Giagkiozis
1
, M. Goossens

2
, G. Verth

1
, V. Fedun

3
, and T. Van Doorsselaere

2
1 Solar Plasma Physics Research Centre, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield, S3 7RH, UK

2 Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven, Belgium
3Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Amy Johnson Building, Sheffield, S1 3JD, UK

Received 2015 November 18; accepted 2016 March 31; published 2016 May 24

ABSTRACT

It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar
atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it
can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed
damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in
weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for
solar atmospheric conditions. This analytical study is based on an idealized configuration of a straight magnetic
flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws
derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis
et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén
continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit.
Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary
continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in
the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an
important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they
have already been observed in the guise of Alfvén waves.

Key words: magnetohydrodynamics (MHD) – Sun: atmosphere – Sun: chromosphere – Sun: magnetic fields –
Sun: photosphere – waves

1. INTRODUCTION

Inhomogeneities, such as a density variation across a
magnetic flux tube, produce a continuous spectrum of
eigenfrequencies. For instance, consider a straight magnetic
flux tube of radius re and constant temperature, where the
density varies smoothly from its center to its boundary, such
that cylindrical surfaces have constant density. This means that
the sound and Alfvén speeds within every cylindrical surface
are also constant. These concentric cylindrical sheaths
comprise the flux tube. Because of the difference in
characteristic speeds, every surface will have its own
eigenfrequency. This results in an infinite set of eigenfrequen-
cies, a continuum. One of the consequences of this continuum
in driven systems is resonant absorption, assuming the driving
frequency is within the continuum.

Given that inhomogeneities are the rule rather than the
exception in the solar atmosphere, resonant absorption is bound
to occur there. This has long been recognized, from the first
suggestion by Ionson (1978) to subsequent studies motivated
by advances in solar observations; see, for example, the
following works: Poedts et al. (1989, 1990), Goossens et al.
(2002, 2009), Ruderman & Roberts (2002), Andries et al.
(2005), Van Doorsselaere et al. (2009), Terradas et al. (2010),
Verth et al. (2010), Antolin et al. (2015), and Okamoto et al.
(2015), to name but a few. In general, resonant absorption in
magnetohydrodynamic (MHD) modes is important for the solar
atmosphere. Some of the many reasons for this are the
following. Resonant damping of Alfvén waves is a natural and
efficient mechanism for energy dissipation of MHD waves in
inhomogeneous plasmas (Ionson 1978, 1985; Hollweg &
Yang 1988). It can also provide an explanation for the observed
loss of power of acoustic modes in sunspots (Hollweg 1988;

Sakurai et al. 1991a, 1991b; Goossens & Poedts 1992;
Keppens et al. 1994), and it has been shown that it is of
importance in transverse oscillations (kink mode); see, for
example, Aschwanden et al. (1999), Nakariakov et al. (1999),
Goossens et al. (2002), and Ruderman & Roberts (2002).
Resonant Alfvén waves can be an energy conduit between
photospheric motions at the footpoints of coronal loops (see,
for example, De Groof & Goossens 2000, 2002; De Groof
et al. 2002), and resonant dissipation plays an important role in
the observed damped oscillations in prominences (see Terradas
et al. 2008; Arregui et al. 2012). For an in-depth review of
resonant absorption in the solar atmosphere, see Goossens
et al. (2011).
Since 1999, when the first postflare, standing mode

transverse oscillations were detected using the Transition
Region and Coronal Explorer (TRACE) (Aschwanden
et al. 1999; Nakariakov et al. 1999), there has been a growth
in studies of resonant absorption for the kink mode. Ruderman
& Roberts (2002) produced relations describing the expected
damping for coronal loops using the long wavelength and
pressureless plasma4 approximations, a result that was
previously obtained by Goossens et al. (1992) using the
connection formulae derived by Sakurai et al. (1991a, 1991b)
for the driven problem and by Tirry & Goossens (1996) for the
eigenvalue problem. Later, Goossens et al. (2002) and
Aschwanden et al. (2003) used these results and calculated
the expected damping times for a sequence of observed
parameters for coronal flux tubes. Goossens et al. (2002)
concluded that, for the parameter sample used, resonant
absorption can explain the observed damping times well,
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4 Also referred to as a cold plasma approximation.
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provided that the density contrast is allowed to vary from loop
to loop. Another important result in this work is that the
observed damping does not require modification of the order-
of-magnitude estimates of the Reynolds number (1014), as
suggested by Nakariakov et al. (1999). Aschwanden et al.
(2003) also arrived at the conclusion that, on average, the
theoretical predictions of the damping rate derived by Goossens
et al. (1992) and Ruderman & Roberts (2002) are consistent
with observations and suggested that damping times of coronal
loops can be used to infer their density contrast with the
surrounding plasma. Coronal flux tubes tend to deform in their
middle section because of buoyancy, effectively resulting in
cross sections that are approximately elliptical. Ruderman
(2003) studied the damping of the kink mode in flux tubes with
an elliptical cross section and found that, for moderate ratios of
the minor to major semiaxis, the difference of the damping rate
for resonant absorption compared with flux tubes with circular
cross section is not very large. Another deviation from the ideal
straight magnetic flux tube is axial curvature. Van Doorsselaere
et al. (2004) studied the effect of this curvature and also found
that the longitudinal curvature of flux tubes does not
significantly alter the damping time of kink modes. The
theoretical models for kink oscillations have become progres-
sively more elaborate; for example, Andries et al. (2005)
considered longitudinal density stratification. Also, methods for
kink wave excitation have been studied; see, for example,
Terradas (2009). The larger body of observations of kink waves
allowed Verwichte et al. (2013) to perform a statistical study to
constrain the free parameters present in theoretical models of
resonant absorption in kink modes.

In contrast to this avalanche of theoretical and observational
advances related to the kink mode, the resonant absorption for
axisymmetric modes has not received much attention. One
reason for this is that it was believed that the sausage mode had
a long wavelength cutoff (e.g., Edwin & Roberts 1983), which
suggested that observation of the sausage mode would be quite
challenging. Furthermore, it was correctly believed that, for a
straight magnetic field, axisymmetric modes could not be
resonantly damped. However, it is apparent, even in early
works in resonant absorption (see, for example, Sakurai
et al. 1991a, 1991b; Goossens et al. 1992), that, for a weakly
twisted magnetic field, axisymmetric modes can and are
resonantly damped. What was not known until recently,
however, was that the long wavelength cutoff for these modes
is also removed in the presence of a weak magnetic twist
(Giagkiozis et al. 2015). Therefore, these modes can freely
propagate for all wavelengths. And so, at least in principle,
these modes should be observable. Additionally, recent works
suggest that magnetic twist and axisymmetric modes are
ubiquitous throughout the solar atmosphere. Therefore, the
study of these modes has become quite relevant and important.
Some examples of magnetic twist in the solar atmosphere are
flux tubes emerging from the convection zone (see, for
example, Hood et al. 2009; Luoni et al. 2011) and sunspot
rotation resulting in twisted magnetic fields (Brown et al. 2003;
Yan & Qu 2007; Kazachenko et al. 2009). Spicules are
observed to have twist (De Pontieu et al. 2012; Sekse
et al. 2013), as well as solar tornadoes (Wedemeyer-Böhm
et al. 2012). Lastly, observations of axisymmetric modes have
been recently reported in Morton et al. (2012) and Grant
et al. (2015).

In this work, we focus on the resonant absorption of
axisymmetric MHD modes in weakly twisted magnetic flux
tubes. Axisymmetric modes correspond to modes with
azimuthal wavenumber =m 0. We accomplish this using the
following sequence. First, we recall recent results for axisym-
metric modes in magnetic flux tubes with weak twist
(Giagkiozis et al. 2015). In that work, the longitudinal
component of the magnetic field and the density were
discontinuous across the flux tube boundary. This choice was
intentional as it avoids the MHD continua and simplifies the
analysis. However, this also left out relevant physics. Then
having as a starting point the setup in Giagkiozis et al. (2015),
we introduce an intermediate layer about the flux tube
boundary. Within this layer, we allow the magnetic field and
density to vary smoothly, resulting in an overall continuous
profile for the longitudinal magnetic field and density. This in
turn allows for the existence of the two MHD continua, the
slow and the Alfvén continuum. Next, we assume that the layer
that connects the internal and external quantities is thin;
specifically we assume that ℓ re where ℓ is the width of the
layer and re is the flux tube radius. Then we use the
conservation laws, and the resulting jump conditions, for the
Alfvén continuum by Sakurai et al. (1991a), and we derive the
resulting complex dispersion relation. We then solve this
dispersion relation numerically. Lastly, to better understand the
predicted damping times, we apply the long wavelength limit
approximation to the resulting complex dispersion relation.
These simpler relations allow us to compare our results with the
expected damping for the kink mode predicted using the results
by Goossens et al. (1992) and Ruderman & Roberts (2002). We
conclude this investigation with a statistical analysis of the
resulting approximations to further understand the necessary
conditions for the observation of resonantly damped axisym-
metric modes. The main contributions of this work can be
summarized as follows:

1. For the first time, we uncover a dispersion relation for
axisymmetric modes in magnetic flux tubes with internal
and external twist, including the resonance with the
Alfvén continuum. We produce simplified expressions
for the frequency and damping time in the long
wavelength limit, for which the axisymmetric modes
are no longer leaky.

2. Given that there are four parameters required for the
evaluation of the aforementioned relation, namely density
contrast, magnetic field contrast, thickness of the
inhomogeneous layer, and magnetic twist, we present a
statistical framework to infer what can be drawn from
observations.

3. We use this statistical framework and show that the
predictions of our theoretical model are in agreement with
observed damping times that are in agreement with the
observed damping times of quasiperiodic pulsations
(QPPs). QPPs are interpreted as axisymmetric modes
(sausage modes) (Kolotkov et al. 2015).

The plan of this paper is as follows. In Section 2 we present
the model and include prior theoretical results required for the
derivation of the dispersion relation leading to resonant
absorption. In Section 3, using the jump relations in Sakurai
et al. (1991a), we derive a dispersion equation. In Section 4 we
use the dispersion relation derived in Section 3 to obtain an
expression for the damping rate in the long wavelength limit,
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and then in Section 5 we elaborate on the significance of the
results in this work for the observation of axisymmetric modes
in the solar atmosphere. Lastly, in Section 6 we summarize and
conclude this work.

2. MODEL

In this work we assume an idealized, cylindrically symmetric
magnetic flux tube in static equilibrium. We employ cylindrical
coordinates jr, , and z, with the z coordinate along the axis of
symmetry of the flux tube. The linearized ideal MHD equations
are

( ( ) ( ))

( )

x
r

m

¶
¶

+  ¢

+ ¢ ´  ´ + ´  ´ ¢ =B B B B

t
p

a

1
0,
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2
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where r p, , and B are the density, plasma kinetic pressure, and
magnetic field, respectively, at equilibrium, x is the Lagrangian
displacement, ¢p and ¢B are the Eulerian variations of the
pressure and magnetic field, γ is the ratio of specific heats
(taken to be 5/3 in this work), and m0 is the permeability of free
space. In what follows, an index, i, indicates quantities inside
the flux tube ( <r ri), while variables indexed by e refer to the
environment outside the flux tube ( >r re). The inhomogeneous
layer has a width equal to = -ℓ r re i, and it is assumed that
ℓ re. Note that in Giagkiozis et al. (2015) ra was used to

denote the tube radius; this is equivalent to re in this work. The
model configuration is illustrated in Figure 1 when µjB r1e .
The quantities r p, , and B are assumed to have only an r

dependence; therefore, the following balance equation must be
satisfied when =ℓ 0:
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( )= =j jB B r SrA e e, we obtain

( )
( )

( )


m

k

m k

=

- +

-
- + >

j

k
j

k k

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

p r

B r

r
p r r

r B

r r
p r r

1 for ,

1

2

1 1
for ,

3

A

e
e e

e A

e
e e

2

0

2

2

2 2

0
2 2

where pe is the pressure at the boundary of the magnetic flux
tube, and the parameter k  1 corresponds to an external twist
proportional to r1 while k  0 to a constant external twist.
Note that although p(r) is continuous, for solar atmospheric
conditions and for weak magnetic twist ( ( ) jB Bsup 1z

2 2 ), its
variation is much smaller than pe and therefore can be assumed
to be constant (Giagkiozis et al. 2015). However, in the model
used by Giagkiozis et al. (2015), the equilibrium density and
the z component of the magnetic field are discontinuous, so the

Alfvén continuum was avoided. Note that in Giagkiozis et al.
(2015) the equivalent to Equation (3) had a typographical error:
( )k-1 2 should read ( )k-1 .

In the present investigation, both the density and the
magnetic field are continuous; see Figure 2, which introduces
the slow and fast continua into our model. Specifically, the
density is assumed to be a piecewise linear function of the

Figure 1. Illustration of the model used in this paper. Straight magnetic
cylinder with variable twist inside ( <r ri) and outside ( >r re) the tube. The
region where < <r r ri e is the inhomogeneous layer, where the Bz component
of the magnetic field and the density are varying continuously across this layer.
The parameters r p,i i, and Ti are respectively the density, kinetic pressure, and
temperature at equilibrium inside the tube, i.e., for <r ri. The corresponding
quantities outside the tube ( >r re) are denoted with a subscript e. Also, rA is
the radius at the resonance. The dark blue surface emanating radially outward
inside the tube represents the influence of µjB r . The yellow surface outside
the tube corresponds to the µjB r1 dependence. The dashed red rectangle
depicts a magnetic surface that would correspond to a magnetic field with only
a longitudinal (z) magnetic field component. The inhomogeneous layer is
bounded between ri and re and is of width ℓ. Note that the radius of the tube
with the inhomogeneous layer is re.

Figure 2. Density profile as a function of r in the inhomogeneous layer of the
magnetic flux tube. Here, ri and re are the radii at which the inhomogeneous
layer begins and ends, respectively; re is the flux tube radius, and rA is the
radius at the resonance.
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following form:
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and a similar form for the variation in the longitudinal
component of the magnetic field is assumed:
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Note that the assumption here is that ℓ re, so pressure
balance is maintained (see Equation (2)). Also note that
allowing both the density and the magnetic field to vary results
in a nonmonotonic variation in the Alfvén frequency across the
inhomogeneous layer, as seen in Figure 3.

The equilibrium quantities depend only on r, and therefore
the perturbed quantities can be Fourier-analyzed with respect to
the j and z coordinates:

( )( )x ¢ µ j w+ -p e, . 6
T

i m k z tz

Here, ω is the angular frequency, m is the azimuthal
wavenumber, kz is the longitudinal wavenumber, and ¢p

T
is

the Eulerian total pressure perturbation, defined as
m¢ + ¢BBp 0. Our focus is on axisymmetric modes (sausage

waves), so the azimuthal wavenumber is taken to be =m 0.
The Lagrangian displacement vector in flux coordinates is
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assuming =B 0r . Using Equation (6), Equation (1) can be
transformed into the following two coupled first-order

differential equations:
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Here, ( )=k m r k0, , z is the wavevector, CA and CS are the
coupling functions, vs is the sound speed, vA is the Alfvén
speed, wc is the cusp angular frequency, and wA is the Alfvén
angular frequency. Equation (8) was initially derived by Hain
& Lust (1958) and later by Goedbloed (1971) and Sakurai et al.
(1991a). The first-order coupled ordinary differential equation
(ODEs) in Equation (8) can be reduced to a single second-order
ODE for xr:
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Figure 3. Example of Alfvén frequency variation across the resonant layer
when ( )=B B rz z and ( )r r= r , for c r r= = 0.1e i , z = =B B 0.35ze zi , and

=ℓ r 0.2e . Here r = 1 is the tube boundary, and wA is the normalized Alfvén
frequency; the normalization is with respect to the internal Alfvén
frequency, wAi.
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The assumption of axisymmetry ( =m 0) leads to
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Note that Equation (12) suggests that the solutions for the
components of the Lagrangian displacement vector are
coupled. Coupled is in the sense that elimination of one
component, such as by setting it to be identical to zero, has
direct implications for the remaining components. To see this,
consider a solution for which x = 0r ; then by Equation (10), ¢p

T

must also be equal to zero. As a consequence of
Equations (12a) and (12b), it follows immediately that x̂ and

x must also be identically equal to zero: setting x = 0r leads to
the trivial solution. Alternatively, let us assume that x =^ 0. In
this case, by Equation (12a) the following relation must hold:

( )
m
x¢ = -p

B

r
2 . 13

T

z
r

2

0

This in turn implies

( )
∣ ∣

( )r w w x
m

x- = -
+

B
ı
k B

r

v

v v
2 , 14c

z z s

s A
r

2 2

0

2

2 2

which in general is nonzero. Now, if we assume x = 0, then

( )
m
x¢ = j

p
B

r
2 , 15

T r

2

0

which leads to

( )
∣ ∣

( )r w w x
m

x- = - j
^

B
ı
k B

r
2 . 16A

z

r
2 2

0

In the case where =jB 0, x̂ decouples from xr and x . At this
point it is instructive to mention the interpretation of the three
components of x in flux coordinates by Goossens et al. (2011).
Goossens et al. (2011) suggest that x̂ is the dominant
component for Alfvén waves, and for low plasma-β the slow
and fast magnetoacoustic waves x and xr are the dominant
components, respectively. A quick check, by setting =jB 0 in
Equation (7), renders x̂ equivalent to xj. This illuminates the
connection of x̂ with torsional Alfvén waves.

Giagkiozis et al. (2015) solved Equation (10) for weak
internal and external magnetic twists, albeit with the density
profile assumed to be piecewise constant. With the help of the
conservation relations for the Alfvén continuum derived by
Sakurai et al. (1991a), these solutions, which are for ideal
MHD, can be used to produce a dispersion relation for MHD
waves that undergo damping in the continuum. The solutions
by Giagkiozis et al. (2015) are as follows:

( ) ( ) ( )x = -s A
s

E
e M a b s a, ; , 17ri i

s
1 2

1 4
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i z

s i z
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( ) ( ) ( )x = nr A K k r a, 18re e re
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( )
( )
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m
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j
n

n-

⎛
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⎟
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D

k
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1 2
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e
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re

0
2 2

0
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1

where (·)M is the Kummer function, and (·)K is the modified
Bessel function of the second kind (Abramowitz & Ste-
gun 2012). The solutions in Equations (17a) and (17b) were
initially derived by Erdélyi & Fedun (2007). The parameters in
Equations (17) and (18) are

( )= + =a
k

k E
b1

4
, 2, 19ri

z

2

2 1 2

( )
( )

( )a a
w

m r w w
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4
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2 2 2 2
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-
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r D k
,

4

1
, 21a
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2 1 2 2

4 2

0
2 4 2 2 2 2
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w w
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- -

+ -

⎛

⎝
⎜

⎞

⎠
⎟k k

n

k
k

k v k v

v v k v
1 , , 22r z

z

r
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2 2 2 2 2 2

2 2 2 2 2
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w
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=
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n k v
v v

v v
, , 23z
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T
A s

A s

2 2
4

2 2 2 2

2
2 2

2 2

( ) ( ) ( )r w w r w w= - = -D D, . 24i i Ai e e Ae
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and ν is

( )

[ ( ( )

( )) ( )( ) ]}
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m
m r w k

k k w
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k
j
k

k
j
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⎪

⎧
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1 1 .
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e A

e

e A e z

e Ae e

z e z

2
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2 2 2
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This function in Giagkiozis et al. (2015) is evaluated for k = 0,
resulting in an exact solution for constant twist outside the flux
tube that is also a zero-order approximation for the external
solution when the magnetic twist is proportional to r1 :

( ) {

[ ( ) ( )]} ( )

n
m

m r w w

= +

+ - - +

j
jr

B

D
B n k

n k n k

0; 1 2 2

3 . 26

A

e

A e z

e Ae e z e z

2

2

0
2 2

2 2 2

0
2 2 2 2 2 2

Using ( )n n= r0; , i.e., a constant external magnetic twist,
results in solutions, namely Equations (18a) and (18b), that
have approximately 5% root-mean-square error when com-
pared with the exact solution corresponding to ( )n n= r1; ,
which corresponds to external magnetic twist ~ r1 . For more
details, see Giagkiozis et al. (2015).
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Imposing continuity for the Lagrangian displacement in the
radial direction and total pressure continuity across the flux tube,

∣ ∣ ( )x x== = a, 27ri r r re r re e
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p
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e e

the following dispersion relation was derived:
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where m r=j jv BA i A i
2 2

0 and w m r=j jk BA i z A i
2 2 2

0 .

2.1. Long Wavelength Limit

The long wavelength limit of Equation (28) is needed for the
approximation of the location of the resonant point used in
subsequent sections and is obtained as follows. From Equation
(13.5.5) in Abramowitz & Stegun (2012) we have
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it becomes apparent that ( )n = +1 2 , where  = r ke z.
Therefore, using Equations (9.6.8) and (9.6.9) in Abramowitz
& Stegun (2012), we obtain that

( )

( )
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K k r
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lim 0. 31

re e

re e0

0

1

Using Equations (29) and (31) in Equation (28) we have
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Expanding the part in square brackets on the right-hand side of
this equation about  = 0 leads to

( ) ( )
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i z
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Using this approximation in Equation (32), the positive
solution of the dispersion relation Equation (28) in the long
wavelength limit to first order is

( )
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For notational convenience, Equation (34) is rewritten as follows:

( )w w= h, 35Ai
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+
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+
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where = jq B Bi A zi and =d v vsi Ai. This ω is used as an
approximation to the resonance frequency, w0, in Section 4.
Lastly, we should note that, given this value for w0, although
the variation of the Alfvén speed across the inhomogeneity in
the flux tube is quadratic (see Figure 3), since w w w< <Ai Ae0 ,
there will only be a single resonance point.

3. ALFVÉN CONTINUUM

For an equilibrium with magnetic twist, such as the model
used in this work, the total pressure perturbation is no longer a
conserved quantity, so Equations (27a) and (27b) require
modification. Sakurai et al. (1991a) derived new conserved
quantities for the Alfvén and slow continua. Specifically, for
the Alfvén continuum the conserved quantity is

( )
x
m

= ¢ - jC g p f B B
r

2 . 37A B T B z
r

0

Using this conserved quantity, they derived jump conditions for xr
and ¢p

T
, namely a prescription on how the radial component of the

Lagrangian displacement and the total pressure perturbation can
vary across the inhomogeneous layer connecting the internal with
the external solutions. This prescription then implies that the
following conditions must be satisfied:

( )∣ ( ) ( )∣ ( ) x x x+ == =r r r 38ri r r r re r ri e

and

( )∣ ( ) ( )∣ ( ) ¢ + ¢ = ¢= =p r p r p r , 39
Ti r r T Te r ri e

where  xr and  ¢p
T

are the jump conditions across the resonant
layer in the inhomogeneous section of the flux tube, in the
radial displacement and total pressure perturbation (Sakurai
et al. 1991a). They are given by

∣ ∣
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where m m= =j jT f B k B BB z z0 0 and

( ( )) ( )w wD = -
d
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r . 42A A

2 2

Taking into account that =m 0 and ¹jB 0 and Equa-
tion (11), the jump conditions, Equations (40) and (41), can be
written as
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Given that ( )=B B rz z and ( )r r= r in the inhomogeneous
layer (see Equations (4), (5), and Figure 2), we have
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Obviously, when Bz is constant across the inhomogeneous layer,
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1
. 46A A

2

Substituting Equations (43)–(45) into Equations (38) and (39),
we obtain the dispersion relation for axisymmetric MHD waves
that undergo resonant absorption in the Alfvén continuum of
frequencies due to the twist in the magnetic field:
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In these equations the following definitions were used:
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where ( )r r= rA A , ( )=v v rAA A A , and ( )=B B rzA z A . To find the
radius at the resonance point, namely the radius where

( ) ( )w= =v r v kA z0 0 ,5 we can express rA as a convex

combination of the radius ri and the width of the inhomoge-
neous layer ℓ since rA must be within the interval ( )r r,i e .
Therefore we can write = +r r wℓA i , where ( )Îw 0, 1 . Now
we have transformed the problem of solving for rA into a
problem where we have to solve for w, the convex combination
parameter. Given this formulation for rA and Equations (4) and
(5), we can write ( ) ( )= = + -B B r B w B BzA z A zi ze zi and

( ) ( )r r r r r= = + -r wA A i e i . Equipped with these defini-
tions, the equation that we need to solve to find w becomes
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Using the definitions c r r= e i and z = B Bze zi, Equation (52)
simplifies to
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This equation is solved for w in the next section.

4. LONG WAVELENGTH LIMIT—ALFVÉN CONTINUUM

Taking the long wavelength limit,  1, of Equations (48)
and (49) and using Equation (29) and Equation (31), then
Equations (48) and (49) reduce to
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These equations can be solved if we allow a complex frequency
w w g= + ır A, and when g wA r we can obtain the damping
rate; then gA in the Alfvén continuum frequencies (Goossens
et al. 1992) to second order is given by
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This equation results in an expression that is difficult to
interpret. For this reason, given that we seek an expression for
the damping rate in the long wavelength limit, we expand it in a
series about e = 0 where e = r ke z. This expansion results in
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Now, in this investigation we assume a weak magnetic twist
( = jq B B 1A zA ), and therefore
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5 For the definition of w0 see Equation (35).
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and Equation (57) can be simplified to
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Here w0 is approximated by Equation (34), i.e., w w» hAi0 , and
the radius at the resonance point, rA, is obtained analogously to
Equation (53) by solving
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There are two cases to be considered. First, when z = 1, that is
=B Bzi ze, and assuming ( )c Î h0, 1 2 , the solution for w is
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When c< <h1 12 in this case, the resonant point is outside
of the continuum, and there is no resonant absorption. In the
limit c  1, the external and internal Alfvén speeds become
equal, and there are no propagating waves either. The second
case is for values of ( )z Î 0, 1 and ( )c zÎ h0, 2 2 , for which
the admissible solution is

When c z> h2 2, similarly to the first case there is no resonant
absorption since the resonance frequency (w0) is outside the
continuum. For z c z< <h2 2 2 there exist undamped propa-
gating waves, but when c z> 2 the external Alfvén speed is
smaller than the internal, and no waves propagate. Lastly note
that in this investigation we assume that B Bzi ze, so r r=i e

has no admissible solution for w when =B Bzi ze.
Now, when Bz is assumed to be constant, i.e.,
= =B B Bzi ze z, using Equation (62), r rA i, B BzA zi, and Z

simplify to
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resulting in gA (Equation (60)):
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To obtain the damping time normalized by the period of the
wave, we use a typical wavelength p=k Lz , where L is the
characteristic length of the tube, and the associated period is
t = L hv2 Ai (see Equation (35)). The damping time ( g1 A) for
modes in the continuum as a multiple of the wave period is
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A contour map of this equation for ( )z Î 0, 1 and
( )c zÎ h0, 2 2 can be seen in Figure 4. When =B Bzi ze, the

damping time becomes

∣ ∣
( )t

c
p

t=
-

j
h

r

ℓ

B

B

1

2
. 67d

e zA

A

2
2

2

2

The long wavelength limit approximation of the damping rate
gA in Equation (57) is accurate to » -10 6 at =k r 1z e when
compared with the numerical solution of the dispersion relation
in Equation (47). This accuracy is better than 10−6 for

<k r 0.1z e and is calculated using the maximum of the root-
mean-square error (RMSE):

ˆ
( )å g g

g
=

-
-

=

⎛

⎝
⎜⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟⎟

N
RMS Error

1

1
. 68

i

N
A A

A1

2 1 2

In this equation, gA is the numerically calculated damping rate,
ĝA is the theoretical approximation in Equation (57), and N is
the number of samples. For this error estimate we used 104

samples in the parameter space (c z jℓ r B B, , ,e z), uniformly
distributed.6

Works investigating resonant absorption in the context of
solar atmospheric conditions tend to consider solely a radial
nonuniformity in either the magnetic field or density. However,
accounting for radial variation in both the magnetic field and
density can lead to significant variation in the estimated

Figure 4. Contour map of the damping time td (see Equation (66)) as a
multiple of the period τ, plotted for density contrast in the interval

( )c zÎ h0, 2 2 , and longitudinal magnetic field contrast in the interval
( )z Î 0, 1 . The remaining parameters in Equation (66) are set as follows:
=ℓ r 0.1e and =jB B 0.15A zA . The red line marks z h2 2, above which the

resonance frequency is outside the continuum. The gray region in this plot
denotes damping times of 30 and above.

( ) ( ( )( ) ( ) ) ( )

( )
( )

z z z c c c
z

=
- + - - + - + -

-
w

h h h2 1 4 1 1 1

2 1
. 63

2 2 1 2 2

2

6 Since the parameter space is not a hypercube (e.g., see Figure 5), we used
rejection sampling for invalid parameter combinations until the desired number
of samples was achieved.
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damping times. The ratio of Equation (66) over Equation (67)
is

( )

( ) ∣ ∣
( )

t c z
t c c

r
r

=
-
Z

h

,

, 1 1

1
, 69

d

d

i

A
2

and in Figure 5 a contour map is shown for ( )z Î 0, 1

and ( )c zÎ h0, 2 2 .
It can be seen from Figure 4 that the behavior of the damping

rate with respect to changes in the density contrast is in some
regions exactly the opposite of that for the kink mode
(Goossens & Poedts 1992, for example). Namely, in a roughly
triangular region in Figure 4, the damping rate is proportional
to c~1 , in contrast to the kink mode, where the damping rate
is proportional to c~ . Similar behavior has been been shown to
exist in the leaky regime for sausage modes (Vasheghani
Farahani et al. 2014). The factor in Equation (66) that
determines this behavior is r rZ i A. We approximate the local
minimum in the χ direction by evaluating the partial derivative
of Z with respect to χ:

( )

( )( ) ( )
( )

c
z c

z z c c

¶
¶

=
- + - +

- - + -

Z h

h h

2 1 2

4 1 1
, 70

2

2 2

which is subsequently equated to zero. From this we obtain a
relation ( )c z= +h b2 2 , and b is identified by noting that at
z = 1 the maximum value for χ is h1 2, so the approximation
is

( )c z= -
h h

2 1
. 71

2 2

Because the remaining terms in Equation (66) do not vary with
χ and ζ (note the ratio jB /Bz is held fixed), this approximation
holds for all valid parameters. This approximation allows us to
estimate in which regime a specific parameter combination
exists. Namely, for parameter combinations that are below the
line described by Equation (71), for increasing density contrast
(c), damping will be slower (t d ). For parameter combina-
tions that result in points above this line, increasing the density

contrast (c) results in decreasing damping time (t d ); thus
waves will decay faster. This is illustrated in Figure 4 as a
yellow line (Equation (71)), and the exact inflection points are
marked with a green line.
Given the form of Equation (66), and especially that of

Equation (67), a comparison with previous results for the kink
mode is in order, particularly the expression for the damping
rate obtained by Goossens et al. (1992) and later by Ruderman
& Roberts (2002). In Ruderman & Roberts (2002), and
Equation (73) in that work, using the notation in this work, the
expression reads as follows:

( )t
p

c
c
t=

-
+

r

ℓ

2 1

1
. 72d

e

The relative magnitude of the damping time shown in
Equations (72) and (67) is

( )
( )

t
t p

c
c

=
-
+ j

h B

B4

1

1
. 73

d

d

zA

A

,Axisymmetric

,Kink

2 2 2

2

It is evident that there exists a region in the parameter space of
( )c jB B, z for which td,Axisymmetric is smaller than td,Kink, but
this comparison is given here just as a reference. Caution
should be exercised in its interpretation since the damping,
td,Kink, in Ruderman & Roberts (2002) was calculated for the
kink mode without a magnetic twist. It is possible that a
magnetic twist amplifies dissipation in the kink mode, and
therefore dissipation for the kink mode may be larger than that
of axisymmetric modes.

4.1. Numerical Solution of Dispersion Relation
in the Alfvén Continuum

We have solved Equation (47) numerically using w0
obtained in Equation (34) as an initial point in the solver.
Additionally, by means of investigating whether another
solution exists, we solved the dispersion relation again with a
random w0 in the range ( )v v,Ai Ae . The solutions and their
associated damping rates can be seen in Figure 6. It is
interesting that there exists another solution in the long
wavelength limit that we could not obtain from our analysis
in Section 4. However, given that for this solution t td , it is
unlikely that this mode will be observed.
Now it has been shown that the singularity about the

resonance point at rA is logarithmic for xr ( (∣ ∣)-r rln A ) and
( )-r r1 A for x̂ , so the dynamics will be governed by x̂ since
x x ^ 0r as r rA, and therefore x x^ re in the neighbor-
hood of the resonant point (Poedts et al. 1989; Sakurai
et al. 1991a). Also, the xr component provides its energy to the
resonant layer (Goossens et al. 2011), so the characteristic
expansion and contraction of axisymmetric modes will be
reduced. These facts, along with the proximity of the solution
corresponding to the long wavelength limit approximation in
Section 4 to the internal Afvén speed, suggest that these waves
would appear in observations to have properties similar to
Alfvén waves. Given that pure Alfvén waves require · x to
be identically zero and a driving mechanism that is solely
torsional, we argue that observed Alfvén waves are much more
likely to be axisymmetric waves because they do not have these
strict requirements. In Figure 6, panels (a) through (d) show
solutions for different values of χ, while in panels (e) through
(h) solutions are shown when q is allowed to vary. The

Figure 5. Contour map of the ratio ( )t c z,d vs. ( )t c, 1d ; see Equation (69).
The density contrast is allowed to vary in the interval ( )c zÎ h0, 2 2 , and
longitudinal magnetic field contrast in the interval ( )z Î 0, 1 . The red line is the
same as in Figure 4, while values within the gray region correspond to ratios
larger than 4.
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damping time for the solution for which we have an analytical
approximation (see panels (c)) and (d)) increases (t d ) for
increasing density contrast (c), while the other solution
exhibits the opposite behavior (see panels (a) and (b)), namely
t d for c. However, the damping time for both solutions
decreases (t d ) for increasing magnetic twist ( q ). The bottom
panel of Figure 6 shows a different view of the damping times
as a function of the magnetic twist (q), shown in panels (f) and
(h) at { }=k r 0.1, 0.15, 0.2, 0.25, 0.3z e . From this view it can
be seen that the solutions in (e) are much more sensitive to

variations in the magnetic twist when compared with the
solutions in panel (g). This sensitivity, in combination with the
fact that for an extremely small twist the sausage cutoff is
reintroduced (Giagkiozis et al. 2015), means that this mode will
be observable for a very small interval of magnetic twist. The
mode shown in panels (c) and (d) does not present this
difficulty, and therefore we expect that observation of this
mode is more likely. In both cases, the solution corresponding
to the analytic approximation remains very close to the internal
Alfvén speed, which is equal to 1 in Figure 6. Since w0 from

Figure 6. Numerical solutions of the dispersion equation Equation (47) for { }c = 0.1, 0.2, 0.3, 0.4, 0.5 , q = 0.15, z = 1, and =ℓ r 0.1e for panels (a)–(d);
(c r r z= = = jB B q B B, ,e i ze zi A zA) and c = 0.2, { }=q 0.1, 0.1375, 0.175, 0.2125, 0.25 , z = 1, and =ℓ r 0.1e for panels (e)–(h). The panels (a), (c), (e), and (g)
depict the normalized phase velocity, and the panels (b), (d), (f), and (h) depict the corresponding normalized damping rates. The bottom panel shows a logarithmic
plot of the damping time vs. magnetic twist for different values of k rz e. All solutions have been obtained numerically by solving Equation (47).
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Equation (35) depends on q, BzA, and the internal sound speed,
these modes will appear to have a strong Alfvén character for
virtually all valid parameter combinations. Lastly, kr can be
likened to the wavenumber in the radial direction, and, since in
the long wavelength limit kr is proportional to kz, as kz
increases, the wavelength in the radial direction decreases and
couples with the thin inhomogeneous layer more closely.
Therefore more energy per wavelength is absorbed, and thus
the damping time is reduced (see Figure 6).

5. CONNECTION TO OBSERVATIONS

Reports of observations of axisymmetric modes (sausage
modes) are increasing in frequency in the recent literature. For
example, QPPs in solar flares are believed to be associated with
the kink and sausage mode (see, for example, Nakariakov &
Zimovets 2011; Van Doorsselaere et al. 2011; De Moortel &
Nakariakov 2012; Nakariakov 2012; Kolotkov et al. 2015).
Even more interestingly, some of these pulsations appear to
have periods in the interval ( )15, 100 s, which could be
consistent with the results in the present investigation if the
length-scale of these pulsations is on the same order as the
length-scale of coronal flux tubes,»100 Mm. Furthermore, the
results by Morton et al. (2012) suggest that axisymmetric
modes are ubiquitous and that they appear to coexist with kink
modes. This coexistence further supports the argument by
Arregui et al. (2015), Arregui & Soler (2015), and Arregui
(2015) that Bayesian analysis is an essential tool for the
identification of the likely wave modes present in observations,
as well as a more systematic method of appropriate model
selection. The uncertainty in determining the parameters for the
kink mode led Verwichte et al. (2013) to perform a statistical
analysis as a way to narrow the range of their values. This
departure from certainty and convergence toward probabilistic
inference models for solar observations is, in our view, long
overdue.

However, despite this increase in interest in axisymmetric
modes, the relation that approximates their expected damping
rate (see Equation (66)) requires knowledge of four parameters:
the density, the magnetic field contrast, the relative magnetic
twist, and the ratio of the thickness of the inhomogeneous layer
versus the tube radius, or ( )c z = jq B B ℓ r, , ,A zA e . In contrast
to the large body of observational evidence for the kink mode,
observations of sausage waves are relatively scarce. This makes
impossible an analysis similar to that of Verwichte et al. (2013)
for these modes. Therefore, we adopt a different approach, a
probabilistic approach that is related to the use of Bayesian
inference suggested by Arregui et al. (2015).

As a first step toward improving this situation, we provide a
way to estimate the probability that an observed sausage wave has
a damping rate within a specified range, given that one or more of
the four parameters in Equation (57) are known. The assumptions
required for the validity of this estimate are the following:

1. The four parameters in Equation (57) are independent;
that is, no parameter is a function of the others.

2. The likelihood of any combination in the parameter space
is the same. That is to say that there exists no preferred
combination of parameters.

These assumptions are difficult to prove, especially given that
there exist no statistical analyses of the properties of sausage
waves or reliable estimates of all four parameters. Since we do not
know if there is, in fact, a set of preferred parameters, these

assumptions are required for an unbiased estimate. Acknowl-
edging these uncertainties, we make a first attempt in identifying
the probability predicted by our model that a wave with the
characteristics described in this investigation is resonantly damped
in the long wavelength limit with a damping rate given by
Equation (66) for a given parameter combination.
The aforementioned probability can be estimated as follows.

First, we identify the parameters for which reasonably good
estimates are available. These parameters we refer to as free
parameters, denoted by f. The remaining parameters we refer to
as integration parameters and are denoted by i. Subsequently, a
domain is defined for the integration parameters. Then the
probability of the damping rate being within the open interval
(a, b) is given by

( )

( ) [·]

( ) [·]
( )

¯ ¯ò
ò

=
t t- - > <

- -

P a b f f

di di w i i I

di di w i i I

, ; ,...,

... ,...,

... ,...,
, 74

n

C
n n a b

C
n n

1

1 4 1 4 ,

1 4 1 4 1

d d

[·] [¯ ( )] ( )¯ ¯ ¯ ¯ t=t t t t> < > < -I I i i f f,..., ; ,..., , 75a b a b d n n, , 1 4 1d d d d

[·] [¯ ( )] ( )t= -I I i i f f,..., ; ,..., , 76d n n1 1 1 4 1

where C is the domain of integration, defined as the set of all
elements in the integration parameter space that are valid
according to the analysis in this work, and t̄ t t=d d . The
function (·)I is an indicator function and { }=n 1, 2, 3 ; that is,
an estimate for at least one parameter is necessary. When the
indicator function is subscripted with 1, it simply returns 1
when the parameter combination is valid. That is, the integral in
the denominator of Equation (74) simply returns the area where
t̄d is defined. The indicator function in the numerator is defined
as follows:

[¯ ( )]

¯
( )

¯ ¯ t

t
=

< <
t t> < -

⎧
⎨
⎩

I i i f f

a b

,..., ; ,...,

1 ,

0 otherwise,
77

a b d n n

d

, 1 4 1d d

so this function returns 1 when the normalized damping rate
(t̄d) is within the open interval (a, b). Therefore the numerator
of Equation (74) returns the area in C for which the normalized
damping rate is within the interval (a, b). The function ( )w i i,1 2

is a weighting function that is nonnegative, and its integral over
C is equal to 1. Because we have assumed that every
combination in the integration parameter space ( )i i,1 2 is
equally likely, this function is simply a constant and simplifies
out from the integrals. The effect of this function is similar to
the prior information in Bayesian inference. Therefore if
relevant information of a specific preference in parameter space
is present in the solar atmosphere, this can be taken into
account by appropriately modifying (·)w .
For the contour maps in Figures 7 and 8, it is assumed that

the free parameters in Equation (74) are ( )z q, and ( )z c, ,
respectively. For this case, Equation (74) becomes

( )
( ) [¯ ( )]

( ) [¯ ( )]
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ò

t

t
=

t t> <
P a b f f

di di w i i I i i f f

di di w i i I i i f f
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.
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C
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Our rationale for selecting the limits for the integration
parameters in Figure 7 is based on the values for the parameters
( )c ℓ r, e and the normalized damping rate reported in
Aschwanden et al. (2003) for the kink mode. These authors
used 11 cases of observed damping kink oscillations, and their
estimates for these parameters are as follows: c » 0.1 and

( )Îℓ r 0.1, 0.5e , and the observed normalized damping rates
were in the interval ( )1, 3 . The q parameter has been selected in
an interval that ensures that the magnetic twist is small. As can
be seen in both Figures 7 and 8, the probability for the
resonantly absorbed axisymmetric modes for a wide range in
parameters is significantly high. Also, as seen in Figure 7,
normalized damping times in the interval ( )1, 3 are possible
even for extremely small magnetic twist (»0.02).

In the case where more information is available, Monte Carlo
simulation can be used to estimate the probability density function
(PDF) of the normalized damping time. We illustrate this with two
examples. First we use the estimates from Morton et al. (2012). In
that work the magnetic field is assumed to be constant inside and
outside the flux tube, but this assumption is unlikely to be
identically satisfied, so we allow a small variation in ζ in the
interval ( )z Î 0.95, 1 . The density contrast is taken to be in the
interval ( )- -10 , 102 1 . Since Morton et al. (2012) do not provide
an estimate for the width of the inhomogenous layer, we allow it
to vary uniformly in ( )0.1, 0.5 , an interval that is in line with
estimates in Goossens et al. (2002) and Aschwanden et al. (2003).
In both examples, we assume the magnetic twist is within the
interval ( )0.1, 0.2 . Using these intervals and assuming a uniform
distribution, we sample Equation (66) 106 times. The estimated
PDF for this set of parameters is the blue curve in Figure 9. The
blue vertical line is the expectation value, which is equal
to [ ]t t =E 7.49d .

In the second example, we use parameter estimates from Van
Doorsselaere et al. (2011). Assuming a H plasma, r = Nmp,
=p Nk TB where N is the number density, mp is the proton

mass, and kB is the Boltzmann constant. With the plasma-β
equal to b m= p B2 0

2 and the assumption that b be i (Van

Doorsselaere et al. 2011), we obtain

( )b
b

z
c

=
T

T
1. 79

i

e

i

e

2

Assuming a lower limit for b b 100i e and a hot flux tube,
=T T 10i e , we can restrict ζ and χ to

( ) c b
b
T

T

1

200
, 80

e

i

i

e

Figure 7. Contour map of the estimated probability (see Equation (74)) that an
axisymmetric mode can be observed to have a normalized damping time t̄d in
the range ( )1, 3 , for a given combination of ( )z q, , i.e., magnetic field contrast
and twist, respectively. The free parameters are ( )z Î 0.35, 1 and

( )= Îjq B B 0, 0.3A zA , and the integration parameters are ( )c Î 0.5, 1 and
( )Îℓ r 0.1, 0.5e . The white region represents zero probability.

Figure 8. Contour map of the estimated probability for an axisymmetric mode
to be observed to have a normalized damping time t̄d in the range ( )1, 3 for a
point in ( )z c, , i.e., magnetic field and density contrast, respectively. The free
parameters are ( )z Î 0, 1 and ( )c Î 0, 1 , and the integration parameters are

( )= Îjq B B 0, 0.3A zA and ( )Îℓ r 0.1, 0.5e . Similar to Figure 7, the white
region in this map represents an estimated probability of zero of observing
resonantly absorbed axisymmetric modes for the particular set of parameter
combinations.

Figure 9. Rescaled probability density functions (PDF) of the normalized
damping time using parameter estimates from Morton et al. (2012) (blue) and
Van Doorsselaere et al. (2011) (red). For illustration purposes, the scaling in
both PDFs is such that their maximum is equal to 1. The support for the blue
PDF is ( )1.79, 19.72 , and the expected value for the damping time is

[ ]t t =E 7.49d . Similarly, the support for the red PDF is ( )0.56, 15.97 , with
an expected value for the damping time [ ]t t =E 5.58d . The intervals used for
the parameters (c r r z= = = jB B q B B, ,e i ze zi A zA) and the associated
assumptions are detailed in Section 5.
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The lower limit for χ is considered as a minimum contrast in
Van Doorsselaere et al. (2011) to avoid the sausage cutoff.
However, in the presence of a very weak magnetic twist, this
cutoff is removed, so we do not need to assume extreme values
for the density contrast. The upper limit for χ and lower limit
for ζ are taken so that Equation (79) is satisfied. The resulting
PDF can be seen in Figure 9. It is interesting that the expected
value for the damping time in this case is 5.58, which is very
close to the observed damping (t t = 6d ) of a mode that is
believed to be a fast sausage mode (Kolotkov et al. 2015). It is
apparent from Figure 9 that the PDFs cannot be approximated
well using a normal distribution, so their use for obtaining
estimates of the damping time from results like Equation (66)
in this work and similar equations (e.g., Goossens et al. 1992;
Ruderman & Roberts 2002) can be misleading. In contrast,
Monte Carlo simulation and nonparametric density estimation
can be quite useful tools for exploring this type of problem.

6. DISCUSSION AND CONCLUSIONS

Theoretically, it has been known for some time that, in the
presence of a weak magnetic twist, axisymmetric modes will be
resonantly damped (see, for example, Goossens et al. 1992). In
this work, we have calculated for the first time a dispersion
relation for resonantly damped axisymmetric modes in the
spectrum of the Alfvén continuum and derived an approxima-
tion of the damping time in the long wavelength limit. We have
shown that the damping time can be comparable to that
observed for the kink mode in the case where there is no
magnetic twist. Furthermore, we solved the resulting equation
(see Equations (47) and (57)) analytically, and (1) we
confirmed the validity of our approximation, and (2) we found
an additional solution that decays much faster in comparison.
The resulting approximation in the long wavelength limit
shows that the damping time is proportional to the magnetic
twist and inversely proportional to the density contrast. It is
interesting to note that Vasheghani Farahani et al. (2014), who
investigated the damping of fast sausage modes in the leaky
regime, found a similar relation between the damping time and
the density contrast. However, in that work a very large density
contrast is required to allow observation of the sausage mode.
This is not the case for one of the results of this work, which for
even modest density contrasts (see Figures 7 and 8) the
damping time is within one to three periods of the wave.

Of the two solutions that we have uncovered, only the one
with a phase velocity close to the internal Alfvén speed has, for
some parameter combinations, damping times that would allow
observation. The other solution is found to be damped on
timescales –» - -10 102 1 of the wave period, as seen in Figure 6,
which means that its observation would be extremely
challenging. However, the predicted damping times for the
solution whose phase speed is close to the Alfvén speed are
large enough to allow observation. Also, the fact that its phase
speed is so close to the internal Alfvén speed, along with the
dominance of the x̂ component in the wave dynamics, means
that the character of this wave will be predominantly Alfvénic
(Goossens et al. 2011). Because of this, we argue that it is
possible that resonantly damped sausage waves have already

been observed, albeit in the guise of Alfvén waves; see, for
example, Jess et al. (2009).
Lastly, we estimated the damping time for the parameters

presented by Morton et al. (2012) and Van Doorsselaere et al.
(2011). Interestingly, the expected damping time is very close
to the observed damping in QPPs by Kolotkov et al. (2015) that
are believed to be fast sausage waves. We find, subject to
certain assumptions, that axisymmetric modes appear to be
quite important conduits for energy transfer in the solar
atmosphere, perhaps even more important than pure Alfvén
waves, given that the excitation mechanism for sausage modes
in weakly twisted magnetic flux tubes appears to be more
readily available than the purely torsional drivers required for
Alfvén waves (Giagkiozis et al. 2015).
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