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Abstract

We study the effect of resonant absorption of surface sausage and surface kink modes under photospheric conditions
where the slow surface sausage modes undergo resonant damping in the slow continuum and the surface kink modes
in the slow and Alfvén continua at the transitional layers. We use recently derived analytical formulas to obtain the
damping rate (time). By considering linear density and linear pressure profiles for the transitional layers, we show that
resonant absorption in the slow continuum could be an efficient mechanism for the wave damping of the slow surface
sausage and slow surface kink modes while the damping rate of the slow surface kink mode in the Alfvén continuum
is weak. It is also found that the resonant damping of the fast surface kink mode is much stronger than that of the slow
surface kink mode, showing a similar efficiency as under coronal conditions. It is worth noting that the slow body
sausage and kink modes can also resonantly damp in the slow continuum for those linear profiles.
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1. Introduction

The observed magnetohydrodynamic (MHD) waves in the
solar atmosphere are considered to be crucial ingredients for the
coronal heating problem(e.g., Ionson 1978; Heyvaerts &
Priest 1983; Hollweg 1988; Poedts et al. 1989, 1990; Ofman &
Davila 1995; Roberts 2000; Goossens et al. 2011; Okamoto
et al. 2015; Antolin et al. 2017; Cally 2017). The oscillation and
rapid damping of MHD waves have made it possible to infer the
physical parameters of the environment, as seismological tools.
Resonant absorption has been treated as a most plausible
mechanism for the rapid damping of the MHD wave oscillations
and used as coronal seismology (e.g., Goossens et al. 2002;
Arregui et al. 2007; Goossens et al. 2008; McEwan et al. 2008;
Wang et al. 2009; Wang 2011; Goossens et al. 2012; Moreels &
Van Doorsselaere 2013; Soler et al. 2014; Moreels et al. 2015a,
2015b; Wang 2016; Raes et al. 2017).

Since the energy source of the high temperature of the
corona is believed to be from the convection zone below
the surface of the Sun, the dynamics of MHD waves in the
photosphere or chromosphere is of significant interest(see,
e.g., Jess et al. 2015; Jess & Verth 2016), where sausage, kink,
and torsional Alfvén waves have mainly been investigated.

Whereas resonant absorption under coronal conditions has been
extensively studied (e.g., Ionson 1978; Poedts et al. 1989; Ofman
& Davila 1995; Goossens et al. 2002; Ruderman & Roberts 2002;
Aschwanden et al. 2003; Terradas et al. 2006a, 2006b; Ruderman
and Erdélyi 2009; Pascoe et al. 2010; Goossens et al. 2011; Soler
et al. 2013; Okamoto et al. 2015; Yu & Van Doorsselaere 2016;
Karampelas et al. 2017; Scherrer & McKenzie 2017), its role
in the lower solar atmosphere is not well understood yet
(Hollweg 1988; Lou 1990; Rosenthal 1990, 1992; Stenuit
et al. 1993; Keppens et al. 1994; Bogdan et al. 1996; Keppens
1996; Ruderman 2009; Giagkiozis et al. 2016).

In the lower atmosphere, alongside the Alfvén resonance, the
slow (cusp) resonance can also be an important mechanism for
wave energy conversion and transport. It has generally been
anticipated that the effect of resonant absorption in the slow (cusp)

continuum is feeble compared to that of resonant absorption in the
Alfvén continuum(see, e.g., Soler et al. 2009), which, as we
recently showed in Yu et al. (2017), is not true for the
photospheric (magnetic pore) environment. The resonant absorp-
tion mechanism may cause efficient damping of sausage modes in
the photosphere, in addition to other damping effects like thermal
conduction, compressive viscosity, area divergence, optically thin
radiation, and so on(e.g., De Moortel & Hood 2003, 2004;
Khodachenko et al. 2004; Mandal et al. 2016).
Although we showed that the role of resonant absorption of

the slow surface sausage (sss) mode in the slow continuum is
important for the wave damping, the model for the transitional
layers was a linear cusp speed profile, which is a simple one. In
this paper, we put the model for the transitional layer in a more
general case: linear density and linear pressure (or squared
magnetic field) profiles and study resonant absorption of both
the surface sausage and surface kink waves under magnetic
pore conditions motivated by the recent observation of the slow
sausage (m= 0) and kink (m= 1) modes simultaneously
excited in a sunspot by Jess et al. (2017). We concentrate on
the damping rate and damping time in this paper.
We organize the paper as follows. In Section 2, we obtain the

dispersion relation of surface sausage and surface kink modes
under magnetic pore conditions for a plasma, which is
homogeneous inside and outside the pore. In Section 3, we
derive the damping rate for the slow surface waves by
considering a thin transitional layer between inner and outer
regions of the pore by using the connection formulae. In
Section 4, we introduce the model configuration for the
transitional layer. The results are shown in Section 5. We
conclude the paper in Section 6.

2. Dispersion Relation

2.1. Dispersion Relation

In our previous paper(Yu et al. 2017), we showed the
dispersion relation for the fast and slow sausage modes under
magnetic pore conditions by considering a uniform
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axisymmetric cylinder. In this paper, we also consider the
surface kink modes. We assume that the inside magnetic field
Bi and the outside magnetic field Be are parallel to the axis (ẑ )
and that no steady flow is present. Then the pressures inside
and outside the flux tube satisfy the pressure balance equation

m m
+ = + ( )p

B
p

B

2 2
, 1e

e
i

i
2

0

2

0

where m0 is the magnetic permeability and p is the plasma

pressure. The subscript i(e) denotes the inner (outer) region of

the flux tube.
We start from linearized ideal MHD equations by assuming

f w+ -( ( ))i k m texp zz dependence, where kz is the long-
itudinal wavenumber, m is the azimuthal wavenumber, and ω is
the angular frequency of the wave. Here we consider no
transitional layer and different physical values for the inside
and outside of the flux tube boundary at r=R. The density ρ is
assumed to be ri inside and re outside of the boundary and the
same is applied for B and p. The dispersion relation is then
obtained by the condition of continuity at the boundary (r= R)

(e.g., Edwin & Roberts 1983; Sakurai et al. 1991; Goossens
et al. 1992; Yu et al. 2017):
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where P is the total pressure perturbation and xr is the radial

component of the Lagrangian displacement.
For the inner and outer homogeneous regions of the flux

tube, the equations for P and xr are satisfied by Bessel functions
where the argument is the radial component.

For the surface wave modes, Equations (2) and (3) are
combined to yield(e.g., Edwin & Roberts 1983; Yu
et al. 2017)
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where the prime denotes the derivative with respect to the

entire argument, Im and Km are modified Bessel functions of

first and second kinds, respectively, Ai e, is the matching

coefficient, and ki and ke are given by
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where w = k vC z C is the cusp frequency, =vC

+( )v v v vs A s A
2 2 2 2 is the cusp speed, w = k vs z s, g r=v ps

is the sound speed, m r=v BA 0 is the Alfvén speed, γ is the

adiabatic index, and ρ is the density.
From the continuity of total pressure ( =A I A Ki m e m), we

obtain the dispersion relation Dm=0 for azimuthal wavenum-
ber m:
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We are concerned with the sausage and kink modes (m=0, 1)
in this paper. Equation (7) can be rewritten as

w
r w r w

r r
=

-

-
=

( )
( )

( ) ( )
Q

Q
mfor 0, 1 . 9

i Ai e Ae
k

k
m

i e
k

k
m

2

2 2 i

e

i

e

The rhs of Equation (9) also includes ω in ki, ke, and Qm;

therefore, this equation needs to be numerically solved(see,
e.g., Edwin & Roberts 1983; Yu et al. 2017).
We use the same parameter values as in Yu et al. (2017)

for the magnetic pore conditions(see also Grant et al. 2015).
We plot surface wave eigenmodes for m=0,1 in Figure 1: fast
surface sausage mode (fss), fast surface kink mode (fsk), slow
surface kink mode (ssk), and sss mode where = -v 0 km sAe

1,
= -v 12 km sAi

1, = -v 11.5 km sse
1, = -v 7 km ssi

1, =vCe
-0 km s 1, and » »- ( )v v6.05 km s 0.86Ci si

1 . We distinguish
between fast and slow modes by their phase speed: the

Figure 1. Phase speed w w=( )v vsi r si as a function of kzR for a fast surface
sausage mode (fss), a fast surface kink mode (fsk), a slow surface kink mode
(ssk), and a slow surface sausage mode (sss) under the magnetic pore condition

when = -v 0 km sAe
1, = -v 12 km sAi

1, = -v 11.5 km sse
1, = -v 7 km ssi

1,

= -v 0 km sCe
1, » »- ( )v v6.05 km s 0.86Ci si

1 , b g= »( )( )v v2 0.41i si Ai
2 ,

and b g= = ¥( )( )v v2e se Ae
2 . The two slow surface modes are indistinguish-

able in the figure. All quantities are normalized by vsi.

2
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fast mode lies above the kink speed =vk

r r r r+ +( ) ( )v vi Ai e Ae i e
2 2 and the slow mode lies below vCi.

Another characteristic is the behavior of the ratio of the
longitudinal to the transverse components of the Lagrangian
displacement x x x= ^

˜ such that for the fast modes x̃ 1 and

for the slow modes x >˜ 1 (see, e.g., Moreels & Van
Doorsselaere 2013). For the slow modes, the longitudinal
motion is dominant.

It follows from the figure that the slow surface sausage
and kink modes are in the cusp frequency range
( <v v vCe Cisss,ssk ), while both fast and surface kink modes
are in the range of < <v v vAe Aifsk,ssk . This implies that when
the discontinuity is replaced by continuous variation in the
transitional layers, the slow surface sausage mode and slow
surface kink mode lie in the slow (cusp) continuum and as
a result damp resonantly in the resonant layer. The same
phenomenon occurs for the surface kink modes (fsk, ssk) in the
Alfvén continuum. There also exist multiple body modes for
sausage and kink waves in the range of < <v v vCi si, which are
not shown in the figure. Since our concern is on the resonant
absorption of the surface waves, we do not consider resonant
absorption of the body modes here.

2.2. Approximate Dispersion Relation for the Slow Surface
Kink Mode at w w» Ci

For k R 1z and w w» Ci, we can assume w w a= -Ci
2 2 ,

then the condition =D 01 (Equation (7)) leads with the aid of
Equation (67) (dropping all higher order terms of kiR and keR) to
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In this limit, we obtain

a
w w w w

w w

a
w
w w

»
- -

+

=

( )( )

( )

( )

k
k

k
, 11

i
z Ci si Ci Ai

si Ai

z Ci

si Ai

2
2 2 2 2 2

2 2

2 6

2 2

where we have used the relations w w-( )Ci si
2 2

= w w w-( )si Ci Ai
2 2 2

and w w-( )Ci Ai
2 2

= w w w-( )Ai Ci si
2 2 2 .

Using Equations (10) and(11), we obtain an expression for
α as
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2 2 2 2 .

In Figure 2, we compare this formula, Equation (12), with
the numerical result under magnetic pore conditions. As shown
in the figure, Equation (12) is accurate for k R 1z .

The formula for ki
2 then reduces to
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For ke, we have
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We use these formulas when we derive an analytical damping

rate in the long wavelength limit.

3. Resonant Absorption Due to the Transitional Layers

Considering transitional layers, which have a continuous
variation from the inside to the outside of the flux tube, we
need to solve, for example, a second-order ordinary differential
equation for xr (e.g., Sakurai et al. 1991; Goossens et al. 1992;
Giagkiozis et al. 2016; Yu et al. 2017):

x
r w w x+ - =
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⎤
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( ) ( )
d

dr

D

rC

d r
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where

r w w w w= - - +( )( )( ) ( )D v v , 16A C s A
2 2 2 2 2 2
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⎝
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⎞
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⎟( )( ) ( )C v v

m

r
k . 17s A C z

4 2 2 2 2
2

2

This differential equation has singularities at w w= ( )rC and

w w= ( )rA where resonant absorption can occur, resulting in

damping of the wave amplitude. Due to the presence of the

transitional layer, the value of w ( )vC C changes continuously

from w ( )vCi Ci to w ( )vCe Ce and that of w ( )vA A from w ( )vAi Ai to

w ( )vAe Ae . These regimes are called slow (cusp) and Alfvén

continua, respectively. For the magnetic pore conditions, we

obtain the relation = = < < < <v v v v v v0 Ce Ae Ci si se Ai

(see Figures 1 and 3) and no modes exist for >v vse. The

slow surface sausage mode lies in the range of

= < <v v v0 Ce Cisss , so it can undergo resonant absorption in

the slow continuum. This also applies to the slow surface kink

mode since it is in the same range of the slow resonance. For

the Alfvén resonance, both the fast and slow surface kink

modes lie in the range of = < <v v v0 Ae Aifsk,ssk , so two

surface kink modes can undergo resonant absorption in the

Figure 2. Dispersion curve as a function of kzR under magnetic pore conditions

when = -v 0 km sAe
1, = -v 12 km sAi

1, = -v 11.5 km sse
1, = -v 7 km ssi

1,

= -v 0 km sCe
1, and » -v 6.05 km sCi

1. We compare the numerical result,
Equation (9), with the analytical formula, Equation (12).
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Alfvén continuum. There is no resonant absorption of sausage

modes in the Alfvén continuum when the magnetic field is

along the flux tube. The resonant absorption of the sausage

mode in the Alfvén continuum was studied by Giagkiozis et al.

(2016) by considering weakly twisted magnetic flux tubes.
We are interested in the damping rate for thin transitional

layers. Therefore, instead of numerically solving Equation (15),
we use a connection formula(e.g., Sakurai et al. 1991;
Goossens et al. 1992; Soler et al. 2009; Giagkiozis et al.
2016; Yu et al. 2017), which is demonstrated in the following
sections.

We start with a general derivation with ¹v 0Ae and later
focus on the magnetic pore conditions with =v 0Ae .

3.1. Connection Formula

As shown in Section 2, the eigenfrequency of the slow
surface sausage mode is in the slow resonance range of
w w<( ) ( )v vr Ci Cisss and that of kink modes in the Alfvén
resonance range of w w w< <( ) ( ) ( )v v vAe Ae r Ai Aifsk,ssk . There-
fore, these modes will undergo resonant damping in the
transitional layers. When there is resonant absorption (damp-
ing), an imaginary term is included in the original dispersion
relation as follows(e.g., Sakurai et al. 1991; Goossens
et al. 1992).

Instead of the discontinuity at r=R, we assume a
continuous variation of ρ from ri to re in a nonuniform
(transitional) layer - +[ ]R l R l2, 2 and similarly for p and
B. The thickness of the nonuniform layer is set to l. A fully
nonuniform flux tube corresponds to =l R2 . By using the thin
boundary approximation, we can use the analytic solutions for
P and xr in the intervals -[ ]R l0, 2 and + ¥[ [R l 2, ,
avoiding numerical integration of Equation (15). The connec-
tion formula for P is, without reference to the kind of

resonance, given as

=[ ] ( )P 0, 18

which is the same as for no resonance (Equation (2)). While the

connection formula for xr is given for the slow resonance as
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3.2. Analytical Solution for the Damping Rate of the Slow
Surface Modes of Sausage and Kink Waves

in the Slow Continuum

In our previous paper(Yu et al. 2017), we have developed
an analytical formula for the damping rate of the slow mode in
the slow continuum. Here we introduce again the procedure for
obtaining the damping rate. For the surface mode,
Equation (21) can be reduced to



r w w r w w
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2

where we have used the continuity of P ( = =P P Pi e c) and

Ai e c, , is the matching coefficient.
As before, for the discontinuous case, we can eliminate the

coefficients Ai, Ae to arrive at the dispersion relation. The
dispersion function Dm has a real and an imaginary part:
= +D D iDm mr mi. Eliminating the matching coefficients by

using the continuity of the total pressure, we have the
dispersion relation for Dm=0


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Figure 3. Profiles for vs, vA, and vC as a function of δ in the nonuniform

(transitional) layer under magnetic pore conditions when = -v 0 km sAe
1,

= -v 12 km sAi
1, = -v 11.5 km sse

1, = -v 7 km ssi
1, = -v 0 km sCe

1, and

» -v 6.05 km sCi
1. When < <v v vCi Cm the slow body sausage modes can

resonantly damp in the slow continuum where vCm is the maximum value of vC.
When <v vCi the slow surface sausage mode can resonantly damp in the slow
continuum. The slow surface kink mode may resonantly damp both in the slow
continuum and in the Alfvén continuum while the fast surface kink mode
undergoes resonant absorption in the Alfvén continuum. There is no resonant
absorption for the sausage modes in the Alfvén continuum when the external
magnetic field is along the tube axis (no azimuthal component) as considered in
this paper.
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which is the same as Equation (7).
Due to resonant damping, the wave frequency has a real and

an imaginary part: w w g= + ir m. The imaginary part gm can be
obtained by g w= - ¶ ¶ w w=( )∣D Dm mi mr r

(e.g., Krall &
Trivelpiece 1973; Goossens et al. 1992) by assum-
ing g w∣ ∣m r.

The analytical formula for gm (see Appendix B) in the slow
(cusp) continuum is given as
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For the sausage (m= 0) and kink (m= 1) modes in the slow
continuum, we obtain
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A nonzero value of vAe has opposite effects on γ, since it

decreases the value of w w-Ci Ae
2 2 in the numerator and

decreases the value of D∣ ∣c in the denominator, which may

increase or decrease the damping rate depending on the

variation of the two factors. This equally applies to the

damping in the Alfvén resonance.

3.3. Long Wavelength Limit =( )m 0, 1

We derived previously an analytical expression for the
damping rate of the slow surface sausage mode in the slow
continuum in the long wavelength limit(Yu et al. 2017). Here
we describe the result briefly. In the limit ( )k R k R 1i e , we
obtain
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When w w» ( )k R 1r Ci z Equation (34) becomes
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where we have used »( ) ( )k R k Rln lne z .
Under photospheric (magnetic pore) conditions, where

w w ( ) 0Ae Ce , Equation (36) can be reduced to
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Likewise, using the approximations for G1, Q1, and T1 used in

Section 3.5, we find for Equation (33) under magnetic pore

conditions
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For comparison of Equations (37) and (38), see Equation (50).

3.4. Analytical Solution for the Damping Rate of the Surface
Kink Mode in the Alfvén Continuum

Considering the Alfvén resonance, we have a dispersion
relation from Equation (22)


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and the analytical formula for gm is given as
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where only the numerator is slightly changed when compared

with Equation (28). From Equation (39), it is inferred that no

resonant absorption in the Alfvén continuum occurs for the

sausage waves since the imaginary part becomes zero

when m=0.
For the surface kink mode (m= 1) in the Alfvén continuum,

we obtain
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3.5. Long Wavelength Limit =( )m 1

In the limit ( )k R k R 1i e , gA1 reduces to (see Appendix B),
by using the asymptotic expansion of Q1, G1, P1, and S1
(Equations (67)–(70)),
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For k R 1z and w w»r Ci (using Equations (12)–(14)),

Equation (42) is reduced to
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where we have left the most dominant term (see Appendix B).

Due to the factor ( )k R1 z
2 in the denominator of Equation (45),

we may further reduce Equation (44) into
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where we have used »r Ri . For the photospheric (magnetic

pore) conditions (w w , 0Ae Ce ), we obtain
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For two slow surface modes in the long wavelength limit,
comparison of the above three resonant absorption effects leads
to the conclusion that the wave damping due to the Alfvén

resonance is stronger than that due to the slow resonance:




g
g c

w
w w w cw

= -
-

∣ ∣

∣ ∣ ( ) ( )

( )

k R k R

3

16

1

ln
,

48

A

c

c

A

Ai

si Ci Ai si z z

1

0

10

2 4 2 2 2 2 2 3




g
g

w
w

=
∣ ∣

∣ ∣
( )

k R
, 49

A

c

c

A

Ai

Ci z

1

1

4

4 2 2

g
g

c w w cw
w

= -
-( ) ( )

( )
k R16

3

ln
. 50

c

c

si Ai si z

Ai

0

1

2 2 2 2 3

6

These formulas provide a relative strength among three

different resonant absorptions for the surface sausage and kink

modes in the long wavelength limit such that at »k R 0z the

damping due to the Alfvén resonance is much stronger than due

to the slow resonance and, for the slow resonance, the resonant

absorption for the slow surface sausage mode is stronger than

for the slow surface kink mode. These features are proven in

Figure 11. In the figure, it is also shown that there is a crossover

between two curves for slow resonance and the curve for

Alfvén resonance, after which the resonant damping of the

slow resonance dominates over that of the Alfvén resonance.
Caution is needed for using these formulae in the long

wavelength limit, given their limited validity range, as we
showed in Figure 5 in Yu et al. (2017).

4. Linear Profiles for the Density and Pressure

In this paper, we consider a linear profile for the density and
pressure (or equivalently squared magnetic field) in the
nonuniform layer. For the linear density profile, we define
r r r r= + - - -( )( ) ( )r r r ri e i i e i . The position of resonance
where resonant absorption occurs depends on the wave
frequency in the slow or Alfvén continuum ( =v vC A, ):
= ( )r r v . We introduce a new variable δ such that =r
d+ -( )r r ri e i in the transitional layers, where  d0 1. That

is d = - -( ) ( )r r r ri e i . This makes it more convenient to
derive the formula for the position of resonance in terms of
resonance (cusp or Alfvén) frequency. Then we can represent
the density ρ as a function of δ such that r r d r r= + -( )i e i .
Assuming also a linear variation of pressure p, we may set

d= + -( )p p p pi e i as like ρ, then it is straightforward to

show that B2 also has a similar relation = +B Bi
2 2

d -( )B Be i
2 2 . In this way, the variables vs, vA, and vC can be

represented as (see Appendix C)
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where =v v vsei se si
2 2 2 and =v v vAei Ae Ai

2 2 2 .
In Figure 3, we plot vs, vA, and vC under the magnetic

pore condition, where = -v 0 km sAe
1, = -v 12 km sAi

1,
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= -v 11.5 km sse
1, and = -v 7 km ssi

1. The parameters inside
the magnetic pore are taken from Grant et al. (2015) and those
outside the magnetic pore are typical values of the photosphere.
Note that the cusp speed vC covers some range of slow body
and slow surface modes, so resonant absorption can occur for
both slow surface and slow body sausage modes in the slow
continuum and for slow body kink modes in the Alfvén
continuum.

Since the value of δ is not obtainable from observations with
the current resolution of the instruments, we need to find the
expression for δ in terms of vC or vA(see, e.g., Soler
et al. 2009). From Equation (53), we derive the quadratic
formula for d d=( )c with respect to vC
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which yields two solutions (see the curve vC in Figure 3):
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where dm is the value of δ when v has a maximum value vCm
(here d » 0.26m , »v v0.93Cm si for the magnetic pore condi-

tion). When d d d< = <( )0 c m1 vC is from vCi to vCm. When

d d d< = <( ) 1m c2 , vC is from vCm to vCe.
As a result, !c is given as (see Appendix C)
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where w w d d= =( )C C c and d d d= ,c c c1 2

For the slow surface sausage mode to resonantly damp,
w=( )v kr z should be below vCi, which means that only dc2

satisfies this condition. For the slow body sausage modes to
undergo resonant damping, both solutions are needed because
for < <v v vCi Cm resonant absorption occurs at two resonance
positions dc1 and dc2.

From Equation (52), we derive a formula for d d=( )a with
respect to vA

d
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Then A becomes (see Appendix C)
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where w w d d= =( )A A a . The resonant position rA can be

written in terms of da as d= + -( )r R l 0.5A a , which we use in

the calculation of Equations (41) and (44).

5. Results

We have considered the linear density and linear pressure
(squared magnetic field) profiles for the transitional layer given
in Section 4. We first deal with resonant absorption in the slow
continuum. In Figure 4, by using an analytical formula,
Equation (32), we plot the damping rate g w- c r0 for the slow
surface sausage mode as a function of (a) kzR and (b) v vsi
when =l R 0.1. The parameters for each phase speed are
described in the caption. The damping rate g w- c r0 increases
as kzR increases and as v vsi decreases. If we take kzR=5,
g w- » 0.023c r0 , then the ratio of damping time to the period
t TD is g p w p g w= »( ∣ ∣) ( ) ( ∣ ∣ )1 2 1 2 6.825c r c r0 0 , which is
a bit larger than the typical value for the resonant damping of
the kink mode (2–4). This result could mean, contrary to
previous interpretation, that the slow continuum may play a key
role in the decay of the slow sausage mode and heating the
lower chromosphere in certain situations. Although
Equation (32) is valid for a small damping ( g w∣ ∣m r), it is
necessary to check its validity range by comparing with the
numerical solution of Equation (24).
We compare the above analytical result with the numerical

result. To obtain the analytical solution (Equation (32)), we
previously put w ( )vr equal to the eigenfrequency of the
undamped situation (i.e., =l R 0). But, in practice, the
inclusion of the transitional layer (resonant layer) modifies
both the real part wr and the imaginary part gc0 of the wave
frequency. In Figure 5(a), we show the l/R-dependent behavior
of wr as a function of kzR. As l/R increases, wr shifts upward
into a higher frequency, crossing over the frequency corresp-
onding to w ( )vCi Ci at some value of kzR. By crossing over it, it
gets into the regime of the body modes and Equation (24) is no
longer valid. We need to solve the connection formula for the
body modes here. For the body mode, multiple eigenmodes
and, as a result, multiple different damping rates for each kzR
are obtainable. We plot one solution curve for each l/R in the
frequency regime of the body mode (above the line vCi) in the
figure, by connecting the surface mode.
In Figure 5(b), we plot the damping rate g w- c r0 for
=l R 0.1, 0.2, 0.3, 0.4. For each value of l, the numerical

solution has a local peak at a certain value of kzR, while the
analytical solution looks like a quadratic function of kzR. A
similar behavior of having a local maximum was found for the
kink mode considering a linear density profile (Soler
et al. 2013). As the value of l/R becomes smaller, the peak
position moves to higher values of kzR along with the
increment of the maximum value of the damping rate. When

=l R 0.1, the maximum value of the damping rate is
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g w- » 0.01r0 , which results in t »T 14.11D . Although this
ratio is large compared to the typical values (2–4) observed for the
kink modes and the corresponding value of the analytical solution,
it is not ignorable as previously expected and could be effective
for wave damping. When the curve of phase speed crosses over
the line vCi, the curve and the relevant damping rate correspond
to body modes. As we have explained in Figure 5(a), in the
body mode range of < <v v vCi si, multiple damping rates are
obtainable. In the figure, we plot only one solution curve of
the body modes, which connects the surface sausage mode below
the line vCi. We apply the same procedure to slow body kink
modes.

In Figure 5(c), we plot the ratio of the damping time to the
period t p g w= -( ( ( )))T 1 2D c r0 for =l R 0.1, 0.2, 0.3, 0.4.
It has an inverse relation with the damping rate by its definition.
It has a dip where the damping is most strong, which moves to
the left as l/R increases. As l/R decreases, the minimum value
(value at the dip) of t TD gradually approaches about 10.5.

From the seismological point of view, the thickness of the
transitional layer can be inferred from the damping time of the
excited wave modes. So, the relation between the damping rate
(time) and the thickness is of interest. In Figure 6, we see the
l/R dependence of (a) the phase speed (eigenfrequency) v vsi,
(b) damping rate g w- c r0 , and (c) the ratio of the damping time
to the period t TD by using Equation (24). When kzR is small,
the frequency monotonically increases, but for >k R 1z it

Figure 4. Analytical formula for the damping rate g w- c r0 , Equation (32), vs.

(a) kzR and (b) w w=( )v vsi si for the slow sausage surface mode (sss),

where =l R 0.1, = -v 0 km sAe
1, = -v 12 km sAi

1, = -v 11.5 km sse
1,

= -v 7 km ssi
1, b g= =( )( )v v2 0.4083i si Ai

2 , and b g= =( )( )v v2e se Ae
2

¥. The linear profiles for the density and pressure considered in Section 4
are used.

Figure 5. (a) The phase speed of the slow surface sausage (sss)
mode v vsi vs. kzR. We compare the solution of Equation (9) (solid
line) without an inhomogeneous (transitional) layer with the solutions
(dashed, dotted, dashed–dotted, and short-dashed lines) of Equation
(24) with the transitional layer introduced in Section 4 when

=l R 0.1, 0.2, 0.3, 0.4. The other parameters are the same as in previous
figures. Each solution curve above the dotted line (vCi) corresponds to that of
body modes. (b) The damping rate g w- c r0 vs. kzR corresponding to curves

in (a). The analytical approximations (dotted lines), Equation (32), are
compared to the numerical solutions (solid lines), Equation (24), for m=0.
As l/R increases, the curve of the numerical solution shifts to the left while
decreasing. The analytical and numerical solutions for each l/R converge
when the value of kzR approaches zero. (c) The ratio of the damping time to
the period t TD (logarithmic scale) vs. kzR. The position of the dip shifts to
the right as l/R decreases and its value tends to approximately
approach 10.5.
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reaches a local peak and then decreases. For large kzR, the wave
frequency approaches w ( )vCi Ci as l/R increases. The damping
rate is in proportion to l/R when kzR is small. As kzR increases,
the curve tends to have a local peak. The curve becomes
sharper with an increment as kzR increases and the position of
the peak shifts to smaller values of kzR. This represents that the
damping is efficient when kzR is large and l/R is small. The
ratio of damping time to the period reveals the opposite
behavior to the damping rate as inferred from its definition.
From the figure, it is anticipated that t TD could reach around
10 when the magnetic flux tube is very thin. From the behavior
of the l/R-dependent damping rate, resonant absorption and the
relevant damping of the slow surface sausage mode in the slow
continuum would become significant for thinner transitional
layers and for waves with small longitudinal wavelength.

We point out that for phase speeds larger than vCi, which
corresponds to the slow body sausage mode, one solution curve
connected to the slow surface sausage mode is plotted for each
kzR, where one resonance point (d d= c2) is considered as in the
previous figure. We postpone a detailed study on resonant
absorption of slow body modes to the future.

Together with the slow surface sausage mode, the slow surface
kink mode can undergo resonant absorption in the slow
continuum. In Figure 7, we plot the kzR dependence of the (a)
phase speed, (b) damping rate, and (c) ratio of the damping time to
the period for =l R 0.1, 0.2, 0.3, 0.4. The deviation of the
phase speed and damping rate from the =l R 0 case appears
very similar to the case of the slow surface sausage mode. As l/R
increases, the phase speed shifts upward crossing the line vCi
entering into the body mode range. The curve of the damping rate
decreases as l/R increases and the peak position moves to smaller
kzR values. Soler et al. (2009) obtained a similar curve for the kink
modes in solar filaments/prominence. They showed that for

=l R 0.2, t »T 1000D as a minimum value, while our result
gives that it is about 19. The effect of the slow resonance on the
wave damping is significant under photospheric conditions.

In Figure 8, we plot the l/R dependence of the (a) phase
speed, (b) damping rate, and (c) ratio of the damping time
to the period for the slow surface kink mode when

=k R 0.5, 1, 2, 4, 8z . All the features explained for Figure 6
can apply here. The difference of resonant absorption in the
slow continuum between the slow surface mode with m=0
and one with m=1 is small (see Figure 11). Such as in the
previous two figures for the slow surface sausage modes, in
Figures 7 and 8, the damping rate (time) for one of the slow
body kink modes is plotted by connecting the slow surface kink
mode when the phase speed is above vCi.

While the slow surface sausage mode has no resonant
absorption in the Alfvén continuum since there is no azimuthal
magnetic field in the equilibrium, we have two resonant
absorptions for slow and fast surface kink modes in the Alfvén
continuum. In Figure 9, we show the (a) phase speed v vsi, (b)
damping rate g w- c r1 , and (c) ratio of the damping time to the

period t TD for the slow surface kink mode as a function of
kzR when =l R 0.1, 0.2, 0.3, 0.4. We use Equation (39) for
numerical results and Equation (41) for analytical results. The
wave frequency has little dependence on the l/R, slightly
shifting upward as l/R increases. When =l R 0.1, it is hard to
distinguish from the original dispersion curve. The damping
rate shows an increasing and then decreasing behavior having a
local maximum (peak) at »k R 2z , similar to the behavior of
the slow surface sausage mode. As l/R increases, the damping

rate increases in the whole range of kzR and the peak position
shifts gradually to the right in the figure. It is worth noting that
the analytic results are very close to the numerical result, which
means that the analytic formula, Equation (41), is a valid
approximation for the resonant damping of the slow surface
kink mode in the Alfvén continuum in the whole range of kzR.
The deviation of the numerical result from the analytical one
becomes larger as l/R increases. To compare with the slow
surface sausage mode, the effect of the resonant damping on
the slow surface kink mode looks much weaker than that of the

Figure 6. (a) v vsi vs. l/R for the slow surface sausage (sss) mode when
=k R 0.5, 1, 2, 4, 8z . The other parameters are the same as in previous figures.

Each solution curve above the dotted line (vCi) corresponds to that of body
modes. For larger kzR, as l/R increases the wave frequency approaches

w ( )vCi Ci . (b) The damping rate g w- c r0 vs. l/R. Each curve has a local peak

whose position shifts to a smaller l/R as kzR increases, resulting in a higher
damping rate. (c) t TD (logarithmic scale) vs. l/R. For a sufficiently large
value of kzR, it has a local dip, which moves to smaller l/R as kzR increases.
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slow surface sausage mode for small l/R (see Figure 11 for

more detail). The damping time over the period also appears to

have a dip that goes down as l/R increases, which is opposite to

the two cases for the slow resonance. On the contrary, its

behavior for the prominence reported by Soler et al. (2009) is

very different, where for =l R 0.2 the damping time over the

period was shown to not change from about 5 until kzR

increases up to 0.1, after which it increases rapidly as kzR

increases. When =l R 0.2, we have t »T 100D as a

minimum value. It was shown by Soler et al. (2009) that in

Figure 7. (a) The phase speed of the slow surface kink (ssk) mode v vsi vs. kzR.
We compare the solution of Equation (9) (solid line) without an inhomogeneous
(transitional) layer with the solutions (dashed, dotted, dashed–dotted, and short-
dashed lines) of Equation (24) with the transitional layer introduced in Section 4
when =l R 0.1, 0.2, 0.3, 0.4. The other parameters are the same as in previous
figures. The solution curve above the dotted line (vCi) corresponds to that of slow
body kink modes. (b) The damping rate g w- c r1 vs. kzR. The analytical

approximations (dotted lines), Equation (33), are compared to the numerical
solutions (solid lines), Equation (24), for m=1. As l/R increases, the curve of the
numerical solution shifts to the left while decreasing. The analytical and numerical
solutions for each l/R converge when the value of kzR approaches zero. (c) The
ratio of damping time to period t TD (logarithmic scale) vs. kzR. The features in
(a)–(c) are very similar to those of the slow surface sausage mode (Figure 5).

Figure 8. (a) The phase speed of the slow surface kink (ssk) mode v vsi vs. l/R.
We show the l/r-dependent variation of the wave frequency when

=k R 0.5, 1, 2, 4, 8z . The solution curve above the dotted line (vCi)

corresponds to that of slow body kink modes. For larger kzR, as l/R increases
the wave frequency approaches w ( )vCi Ci . (b) The damping rate g w- c r1 vs. l/R.
Each curve has a local peak whose position shifts to a smaller l/R as kzR

increases, resulting in a higher damping rate. (c) The ratio of damping time to
the period t TD (logarithmic scale) vs. l/R. For a sufficiently large value of
kzR, it has a local dip that moves to smaller l/R as kzR increases. The features in
(a)–(c) are very similar to those of the slow surface sausage mode (Figure 6).
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the solar filaments/prominences, the wave damping due to

Alfvén resonance is stronger than due to the slow resonance,

which is reversed in the photospheric environment.

In Figure 10, we show the l/R-dependent behavior of the slow
surface kink mode by numerical calculation (Equation (39) for
m=1) when =k R 0.5, 1, 2, 3, 4, 6, 8, 10z . It is found that
(a) the phase speed has a small monotonic increment for each
kzR, similar to kzR dependence. In (b) the damping rate is shown
to increase as a function of l/R. The damping rate first increases
as kzR increases up to about 3 and then decreases again, in the
whole range of l/R. It has a maximum value at »k R 3z . As a
result, (c) the ratio of the damping time to the period t TD has a
minimum at »k R 3z . For the slow surface kink mode, it is
expected that resonant absorption is strongest when »k R 3z and
l/R is large. The value of t TD reaches about 21.6 when
kzR=3 and =l R 2.
In our model configuration, the slow and Alfvén continua do

not overlap in the transitional layer. Hence when a wave is
damped, it is either in the slow continuum or Alfvén continuum.
There is no combination of the two resonant damping effects. If
the two resonances overlap in the transitional layer, a combined
effect could change the results for the slow surface kink mode,
requiring further investigations.
We can think of the situation that two slow surface modes are

excited simultaneously with the same amplitude since two modes
are in the same frequency range. In Figure 11, we compare
the three resonance effects: slow resonance on the slow surface
sausage and slow surface kink modes and Alfvén resonance on
the slow surface kink mode when =l R 0.1. The two slow
surface modes undergo a similar damping process in the slow
resonance, while the effect of resonant damping for slow surface
kink mode in the Alfvén continuum is quite small. As predicted
from Equations (48) and (49), when k R 1z , the damping effect
in the Alfvén continuum is bigger than the damping effect in the
slow continuum. As kzR increases, the role of the two resonant
effects is reversed and the difference increases until the damping
rate in the slow continuum reaches a maximum. There is a
crossover at »k R 0.6z and »k R 0.78z . This feature maintains
regardless of the value of l/R. If two slow modes are excited
concurrently with a small longitudinal wavelength ( >k R 1z ), the
slow surface kink mode would survive much longer than the slow
surface sausage mode when ignoring other dissipation effects. As
inferred from Equation (50), it is also shown in the figure that the
slow surface sausage mode is more easily damped than the slow
surface kink mode in the slow continuum in the long wavelength
limit.
Considering resonant absorption of the fast surface kink mode in

the Alfvén continuum, we find that the absorption behavior is
different from that of the slow surface kink mode. It is shown in
Figure 12(a) that the phase speed shifts downward as l/R increases,
where =l R 0.1, 0.2, 0.3, 0.4, which is opposite to the case of
the slow surface kink mode. The value of the shift is small, but
increases gradually as l/R increases. In Figure 12(b), the damping
rate approaches its maximum as kzR goes to zero and monotonically
decreases as kzR becomes large from zero. This feature can be
inferred from the fact that the denominator of Equation (41) is

proportional to k Rz
2 2 when kzR is small. The resonance effect for

the fast surface kink mode is much bigger in comparison with the
slow surface kink mode, leading to a strong wave damping such as
under coronal conditions. The difference between analytical and
numerical results grows proportionally to l/R, similar to the case of
the slow surface kink mode. In Figure 12(c), the ratio of the
damping time to the period is shown to increase as kzR increases
and as l/R increases. The damping effect due to resonant absorption
is most strong when »k R 0z and l/R is large.

Figure 9. (a) The phase speed v vsi of the slow surface kink (ssk) mode vs. kzR.
We compare the solution of Equation (9) (solid black line) without an
inhomogeneous (transitional) layer with the solutions (dashed, dotted, dashed–
dotted, short-dashed lines) of Equation (39) with the transitional layer introduced in
Section 4 where =l R 0.1, 0.2, 0.3, 0.4. The other parameters are the same as in
previous figures. The wave frequency shifts upwards with few changes as l/R
increases, which is different from the sausage mode. (b) The damping rate g w- A r1

of the slow surface kink mode in the Alfvén continuum vs. kzR. The analytical
approximations (Equation (41), dashed lines) are compared to the numerical
solutions (Equation (39), solid lines) for m=1. As l/R increases, the damping rate
increases over the whole range of kzR and the peak position moves to the right. The
analytical solutions are consistent with the numerical solutions where the deviation,
which is still small, increases as l/R increases. (c) The ratio of the damping time to
the period t TD (logarithmic scale) vs. l/R: numerical calculations, Equation (39).
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In Figure 13, we present the l/R dependence of the (a) phase
speed, (b) damping rate, and (c) ratio of the damping time to
the period when =k R 0.5, 1, 2, 4, 6, 8, 10z . The phase speed
decreases as l/R increases where the degree of change is big
when kzR is small and becomes small as kzR increases. It also
shows small deviations when l/R is small, which means that

the phase speed (or wave frequency) does not vary much for
thin transitional layers. The behavior of the damping rate has a
similar dependence on l/R with the slow surface kink mode.
There is no nonmonotonic behavior with respect to kzR, which
appears for the ssk mode. It is remarkable that the ratio of the
damping time to the period can reach below 1 when kzR is
small and l/R is sufficiently large, which means that resonant
absorption of the fast surface kink mode is very strong even
under photospheric conditions, although the result is based on
the restricted assumption of thin transitional layers. The change
of resonant absorption becomes small when >l R 1.

6. Conclusion

In a recent paper, we derived a general analytical formula
(Equation (28)) for the damping rate of the slow surface
sausage mode in the slow continuum by considering the thin
boundary (TB) approximation(Yu et al. 2017). In this paper,
we have focused on resonant absorption both in the slow and
Alfvén continua under photospheric conditions, considering
linear density and pressure (or squared magnetic field) profiles
in the transitional layers. In order to study resonant absorption
in the Alfvén continuum, we have applied the same procedure
to obtain Equation (28) and derived another analytical formula,
Equation (40).
In Yu et al. (2017), we have applied Equation (28) to the

observational rapid damping of the slow surface sausage mode
in Grant et al. (2015). For the conventional magnetic pore
» –R 0.5 3 Mm and p l p= =k 2 2 4400 kmz z , which yields
» –k R 0.7 4.3z . For kzR=4.3 and =l R 0.5, our previous

study based on the assumption of a linear cusp speed yields
g w- = 0.0089c r0 and t »T 17.9D . This value is reduced by

a factor of about 10 by using the linear density and linear
pressure profiles in the transitional layer considered in this
paper. This result implies that resonant absorption in the slow

Figure 10. Numerical calculations of resonant absorption for the slow surface
kink (ssk) mode in the Alfvén continuum: Equation (39). (a) v vsi vs. l/R when

=k R 0.5, 1, 2, 3, 4, 6, 8, 10z . As l/R increases the frequency shifts gradually
upward. The l/R-dependent frequency shift is small, as for the kzR dependence.
(b) g w- A r1 vs. l/R when =k R 0.5, 1, 3, 6, 8, 10z (numerical calculation,
Equation (39)). Each curve increases monotonically as l/R increases. For

<k R 3z , the damping rate increases gradually in the whole range of l/R and
after »k R 3z it decreases. (c) t TD (logarithmic scale) vs. l/R. The damping
effect becomes significant as l/R increases, while being most strong
at »k R 3z .

Figure 11. Comparison of the damping rate g w- c r0 , g w- c r1 , and g w- A r1

as a function of kzR when =l R 0.1. Solid black lines represent numerical
results while dotted red lines represent analytical results. For a small kzR, both
analytical approximation and numerical result show that the resonant damping
of the slow surface kink (ssk) mode in the Alfvén continuum is stronger than
that of the slow surface sausage (sss) and kink (ssk) modes in the slow
resonance. There is a crossover between the damping rate due to the Alfvén
resonance and one due to slow resonance at certain values of kzR. This feature
is valid regardless of the value of l/R. The analytical calculations of slow
surface sausage and kink modes undergoing the slow resonance converge to the
numerical results when kzR goes to zero. On the contrary, the analytical
solution of the slow surface kink mode undergoing the Alfvén resonance is
almost the same as the numerical result.
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continuum could be efficient as a wave damping mechanism in

the lower solar atmosphere. Another important point to

mention is that resonant absorption is sensitive to the profiles

of the physical quantities in the nonuniform layers. These

Figure 12. Numerical calculations of resonant absorption for the fast surface
kink (fsk) mode in the Alfvén continuum: Equation (39). (a) The phase
speed v vsi of the fast surface kink (fsk) mode vs. kzR. We compare the
solution of Equation (9) (fsk, solid black line) without an inhomogeneous
(transitional) layer with the solutions (dashed, dotted, dashed–dotted, short-
dahsed lines) of Equation (39) with the transitional layer introduced in
Section 4, where =l R 0.1, 0.2, 0.3, 0.4. The wave frequency shifts
downwards with small changes as l/R increases. The amount of shift
becomes larger as kzR approaches zero. These curves are convergent when
kzR goes to infinity. (b) The damping rate g w- A r1 of the fast surface kink
mode in the Alfvén continuum vs. kzR. As l/R increases the damping rate
increases over the whole range of kzR. Solid lines are obtained from
Equation (39) and dotted lines from Equation (41). (c) The ratio of the
damping time to the period t TD vs. l/R: numerical calculations,
Equation (39).

Figure 13. Numerical calculations for the fast surface kink (fsk) mode:
Equation (39). (a) v vsi vs. l/R. We show the l/r-dependent variation of the
wave frequency when =k R 0.5, 1, 2, 4, 6, 8, 10z . The other parameters are
the same as in previous figures. As l/R increases, the frequency shifts gradually
downward. The l/R-dependent frequency shift is big for small kzR and decreases
as kzR increases. (b) g w- A r1 vs. l/R when =k R 0.5, 1, 2, 4, 6, 10z . Each
curve increases monotonically as l/R increases reaching a plateau for large l/R.
(c) t TD (logarithmic scale) vs. l/R. The damping effect becomes significant for
smaller kzR and larger l/R.
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analytical approximations predict that the damping rate
increases as l/R and kzR increase, but the numerical
calculations show that it has a maximum value depending on
both l/R and kzR. The peak position shifts toward smaller
kzR values, while decreasing its strength as l/R increases.
For example, when =l R 0.1, g w- = 0.01128c r0 , then

t »T 14.11D . Although this value seems quite big in
comparison with the strong (rapid) damping, t -T 2 4D ,
of the fast kink modes in the Alfvén continuum under coronal
conditions, the resonant damping due to slow resonance could
still be an efficient wave damping mechanism. Although we
found that resonant absorption in the slow continuum is an
efficient mechanism, this effect is too weak to explain the
extremely rapid damping of the slow surface sausage mode
observed by Grant et al. (2015). Other damping mechanisms,
like, e.g., thermal conduction, are needed.

The slow surface kink mode can resonantly damp both in the
slow and Alfvén continua. Its behavior in the slow continuum
is very similar to the above features of the slow surface sausage
mode. Therefore, a similar wave damping due to resonant
absorption in the slow continuum is expected for these two
slow surface modes (m=0, 1).

For resonant absorption in the Alfvén continuum, it is found
that the resonant damping manifests in a different way for each
slow and fast surface kink mode. For the slow surface kink mode,
the damping rate draws a curve as a function of kzR, having a local
maximum (peak) at a certain kzR and is proportional to l/R
regardless of the value of kzR. The l/R dependence of the
damping time looks like following a power law when l/R is small.
The damping effect is most strong when »k R 3z and =l R 2.
When kzR=3 and =l R 2, g w- » 0.0735A r1 , which gives

t »T 21.6D . For the fast surface kink mode, the damping rate is
a monotonically decreasing function of kzR and a monotonically
increasing function of l/R. It becomes stronger as kzR goes to zero
and l/R increases. It is shown that the damping of the fast surface
kink mode due to the resonance in the Alfvén continuum could
be very rapid in the photosphere as much as in the corona. For
these kink modes, contrary to the slow surface sausage mode, the
analytical approximations agree well with the numerical
calculations.

Comparing resonant absorption of two slow surface modes,
we could say that the strength of resonant absorption in the
slow resonance is higher than that in the Alfvén resonance
except when kzR is very small. This relation is reversed as kzR
increases. For a small value of kzR (long wavelength limit), we
have derived analytical approximate formulas for three kinds of
resonant absorption and compared their relative strengths
(Equations (48)–(50)), which are well consistent with the
numerical results.

Our study has dealt with only linear profiles for the density
and pressure leaving a possibility of a higher damping rate for
other certain profiles, for example, as shown by Soler et al.
(2013) that linear, parabolic, and sinusoidal density profiles
induce different behavior of damping rate for the kink mode
under coronal conditions.

There is indeed a warning of using the obtained results for the
thick transitional layers, as, e.g., Van Doorsselaere et al. (2004)
pointed out that the thin tube thin boundary approximation
induces significant deviation from exact numerical solutions up
to 25% for the coronal loop oscillations. Because we considered
only an inhomogeneity in the radial direction, the stratification
in the longitudinal direction(e.g., Andries et al. 2005; Arregui

et al. 2005; Dymova & Ruderman 2006) or azimuthal direction
may as well affect the resonant absorption behavior. Since the
magnetic fluxes in the lower solar atmosphere are highly
structured, the extension of the existing analytic approach of
one-dimensional resonant absorption to two or three dimensions
is critical. Another subject we would mention is the resonant
behavior of the body modes for m=0, 1, which we leave as a
future study.
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(FWO-Vlaanderen), IAP P7/08 CHARM (Belspo), GOA-
2015-014 (KULeuven), and European Research Council
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and innovation programme (grant agreement No. 724326).

Appendix A
Surface Mode

For the surface mode with m=1, we have
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where ge is the Euler’s constant and, for S1, g= +( )f k Rln 2e e

is used.
For the m=0 case, see Appendix A in Yu et al. (2017).

Appendix B
Damping Rate for the Surface Mode

Here we briefly summarize the procedure to obtain the
damping rate g w- m r (see Yu et al. 2017). In order to calculate
gm, we need to derive the expression for w¶ ¶Dmr , where ω
should be in the slow (cusp) or Alfvén continuum. We have
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For wdk di and wdk de , we obtain

w
w w w

w w
= -

+
-
-

( )

( )
( )

dk

d v v k

2
, 72

i

si Ai

Ci

Ci i

3

2 2

2 2

2 2 2

w
w w w

w w
= -

+
-
-

( )

( )
( )

dk

d v v k

2
. 73

e

se Ae

Ce

Ce e

3

2 2

2 2

2 2 2
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where the prime means the derivative with respect to the entire

argument.
By means of Equations (72) and (73), Equation (74)

becomes
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Using Equations (72), (73), and (75), we have for
w w¶ ¶ =( )D dD dmr mr

w
r w wr

r w w w

w w
w w w w w w

r w w w

w w
w w w w w w

= -

- -

´
- +

- - -

+ -

´
- -

- - -

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

( )

( )[ ]

( )( )( )

( )

( )[ ]

( )( )( )
( )

dD

d

k

k
Q

k

k

Q k RP

k

k

Q k RS

2 2

2

2
. 78

mr
i e

i

e

m

e Ae
i

e

Ci m i m

si Ai Ci

e Ae
i

e

Ce m e m

se Ae Ce

3 2 2

2 2

2 2 2 2 2 2

3 2 2

2 2

2 2 2 2 2 2

Then the imaginary term gm for the surface wave in the slow
(cusp) continuum is
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Likewise, for the surface wave in the Alfvén continuum, we
obtain
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In the limit ( )k R k R 1i e , T1 becomes with the help of
Equations (67)–(70)
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For the slow surface kink mode with k R 1z (w w»r Ci), by
the aid of Equations (12)–(14), Equation (82) reduces to
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Appendix C
Linear Profiles for the Density, Squared Magnetic Field,

and Pressure

For the linear profiles considered in Section 4, the variables
vs, vA, and vC in the cusp resonance regime become
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where r r r=ci c i, =p p pci c i, and =B B Bci c i. The subscript

c represents the value at the resonant position. Assuming a

linear variation of the squared magnetic field B2, we can set
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2 2 2 2 as for rc, then pc also has a similar
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From Equation (86), we derive the formula for d d=( )c with

respect to vC:

d d+ + = ( )A B C 0, 902

where

c c

c

= + - + - +

- -

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟

( ) ( )

( )

A
v

v

v

v
v v

v

v
v v

1 1

, 91

C

Ci

C

Ci

sei Aei

C

Ci

sei Aei

2

2

2

2

2 2

2
2

2

2 2

c= - - +
+
+

- +

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

( )] ( )

B
v

v

v

v

v v

v v

v v

2 1 1

, 92

C

Ci

C

Ci

se Ae

si Ai

sei Aei

2

2

2

2

2 2

2 2

2 2

= - ( )C
v

v
1 , 93C

Ci

2

2

16

The Astrophysical Journal, 850:44 (17pp), 2017 November 20 Yu, Van Doorsselaere, & Goossens



which leads to two solutions:
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where the prime denotes the derivative with respect to r and the

subscript c means =r rc.
In the same way, we can derive d d=( )a in case of the Alfvén

resonance. From Equation (88), we derive the formula for δ
with respect to vA
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where the subscript a means d d= =( )r rA a .
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