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1. Introduction

In this paper we discuss the periodic vibrations which
result when a column of gas in a Kundt's tube is driven by a
piston oscillating at a near resonant frequency. The basic
experimental observations are well documented, (Saenger and
Hudson (1960)). When the piston frequency is in a band about
a resonant frequency, the amplitude «f the response is markedly
higher than the piston amplitude and shock waves appear in the
flow. These phenomena have been extensively investigated in
the recent literature, (Betchov (1958), Saenger and Hudson (1960),
Chu and Ying (1963), Chester (1964), Mortell (1971a,b), Collins
(1971)). Nevertheless, there are associated phenomena which
need further investigation, and some aspects of the various
anaiyses which need clarification. Two questions which are
resolved concern the range of validity of the usual modifica-
tions of acoustic theory used previously, and the existence of

a critical amount of damping which ensures a shockless motion.

The basis for the analysis given here is the fact that the
motion of the gas can be represented, to first order in the
amplitudes, as the superposition of two noninteracting simple
waves traveling in opposite directions, (see Mortell and Varley
«1970)). This implies that the travel time of a component wave
in the tube is determined by its own amplitude, and then any
distortion of a signal is self-induced. The essence of this
approximation, which is the first term in a regular perturbation

expansion, is that while the ampiitudes remain small, [u| << a_
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the acceleration in the gas, %%’ » is not restricted. This

contrasts with linear acoustic theory where both [u| << a_

ou a§ . .  as .
and 35| << are required for its validity, (Here, u is

the particle veloccity, a, is the equilibrium sound speed and
L 1is a typical length of the medium.) A nonlinear thecry such
as this has been used for many years in gas dynamics when the
disturbance is generated by the passage of a single progressing
wave (sees Whitham (1952)). The noainteracting simple wave
representation can be viewed as a generalization of hitham's

rule (1952) to wave motiens having two components.

We consider the motion of a ges in a tube which is driven
by a piston oscillating at one end. The other end is ‘''partially
open' in iLie ssnse that the system is considered to lose energy
by radiation through this end into the adiacent medium. We scek
the time-periodic response of the gas o these boundary condi-
tions. Using the simple wave representation the problem of
calculating the shape of the signal at a boundary is reduced to
finding sclutions of a nonlinear functional difference equation,
The signal may distort as it travels, but its shape azt any peint

in the body of the gas is determined by the simple wave repre-
au

at

linear functional equation which detzsrmines the signal in the

a
sentation. In the "small rate" limit, << Ep , the non-

periodic state can be reduced to a nornlinear ordinary differen-
tial equation. Further, in this limit, the distorction of a
signal in one travel time is negligible. The final differe-*ial

equation only describes the signal &t a boundary in the pericdic
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state, and cannot describe the cumulative distortion which led
to this state., It is evident that, for a given piston amplitude,
the small rate limit restricts the allowed values of the applied
frequency. In fact, for some experimentally used values of the

piston amplitude the restriction is surprisingly strong.

There are two basic phenomena in the model usec here;
shocks due to nonlinearity and damping which can preveat shocks.
For a purely inviscid model, linear theory predicts ar unltouunded
amplitude in the periodic state for certain discrete (resonant)
frequencies. On the other hand, nonlinear inviscid theory pre-
dicts a bounded signal, which conteins shocks, in a band about
the resonant frequencies. Since shocks act as a dissipative
mechanism they allow a balance of energy. This role of non-
linearity seems to be well-understood. To date, the most com-
prehensive investigation of the effect of damping on resonant
motions is due to Chester (1964). He investigated the effects
of compressive viscosity and boundary layer friction on the
motions. His conclusion was that the effect of the former is,
in most cases, negligible except in the interior of a shock. He
concurred with Betchov (1958) that damping could have a signifi-
cant effect, and was led in his analysis of boundary layer
friction to raise the question of the existence of a finite
critical value of damping which would ensure a continuous motion.
He concluded that it was an open question. We ini.roduce three
different types of damping which can be treated within the same

theoretical framework. These are damping due to radiation of
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energy from one end of the tube, rate dependence of the gas,
and boundary layer friction. We define a lumped damping co-
efficient which incorporates the effects of all three, and
show that these "lower order" damping mechanisms can prevent
the occurrence of shocks in the flow, i.e., for a given piston
motion there is a critical level of damping above which the
gas motion is continuous. B. Sturtevant, at the California
Institute of Technelogy, has carried out experiments in which
a hole is nade in the c losed end of the tube. He found that
for the particular conditions of an experiment there is a criti-
cal ratio of the area of the hole to the area of the tube end
at which shocks disappear. This points to the existence of a

critical amount of damping which ensures a shockless motion.

In seccion 3 there is a complete analysis of the resonant
band for both the inviscid and damped cases. This is achieved
by an examination of the integral curves of the governing dif-
ferential equation, using a condition on the mean of the flow
to fix the shock position. Explicit analytical results are
given for the inviscid case; some qualitative results for the
damped motion are found analytically while quantitative results
are determined numerically. In section 5 there is a comparison
between theory and experiment. The introduction of damping
improves the agreement. It suggests that if one is interested
in such gross features of the flow as the maximum or minimum
pressure, or the shock strength, then the lumped damping pro-

vides an adequate description.
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B 2. Formulation

§§ A column of gas, of length L in some reference (equi-

?? librium) state, is contained in a pipe. One end of the pipe

%% ; is closed while at the other end there is an oscillating piston.
?1 If pressure and density are measured from their values in the

? reference state (p ,p ) with the associated sound speed a, ,

AN

then in terms of the nondimensional variables (aou,poaop,pop)

Lo e
i 05

and (Lx, La;lt) the governing equations in lagrangian form

are

B R )

It
o

[(1+e)™'],, - u, , (2.1)

and

PRTSTCE N

T

U,y + Proy F© 0, (2.2)

where e(=p-1) 1is the condensation, yYp the excess pressure
ratio and u the nondimencional particle velocity. The equation

of state of a polytropic gas in these variables is
yo = fl+e)? - 1 . (2.3)

The end x=0 is considered to be 'near rigid' in the sense that
v we allow for the possibility of radiation of energy through this

end of the tube, but do not consider the case when it is open.

A boundary conditicn of this nature has been discussad by Mortell

and Varley {1270). Across the boundary =2t x=9 ™oth pressure

and velocity are continuous, and so the disturbance must be com-

patible with the homogenesus boundary condition

u’d,t} = - ip(0,t) , (2.4)
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where i/y (>0) 1is the impedance of the interface. Here the
essential assumption is that the disturbance outside the tube

is generated by the passage of a simple wave, Ncte that 1i=0
corresponds to a rigid end and i=- to an open end. We examine
the small amplitude, time-periodic re¢sponse of the gas, governed
by equations (2.1)-y2.3), tc the boundary condition (2.4) at

x=0 and a periodic piston displacement at x=1 of the form
eh(wt) . The amplitude of the displacement is e(<<1) , and

the period of h 1is normalized so that h{y+1l) = h(y) . Then

the piston velocity at x=1 1is
ult. .} = ewh'(wt) = H(ot) . {2.5)
Since h 1. p.riodic, integration of (4) yields
1
[ H(s)ds = 0 . (2.6}
(o}

Equations (2.1)-(2.3) are nonlinear and admit discontinuous
solutions. However, it has been shown by Mortell and Seymour
(i972b) that for time-periodic motions, be they continuous or
discontinuous, the mean pressure and velocity do not vary from
particle to particle. By choosing as the reference pressure,
P, the constant mean of the periodic state, conditions (2.4)
and {2,6) imply that the means of u and p are zero. The

actu=z! value of p, can be determined only from an initial

valu: problem.

2.1 Iyusation for the Periodic Motion

4 rapresentation derived by Mortell and Varley (1970) is
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used to reduce the nonlinear boundary value problem defined by
(2.1)-(2.5) to a nonlinear difference, or functional, equation.
For a more restricted class of problems, this functional equa-
tion may be further reduced to 2 nonlinear crdinary differential

equation which determines the periodic motion of the gas.

It is convenient to reformulate equations (2.1)-(2.3) in
terms of the Riemann invariants and characteristic curves of

the system. Upon defining

€ 1
c(e) = I a(s)(l+s)"l ds = e[l + (7M-1)e + 0{e")]
)
where
ag(e) = (1+e)2 g% = 1 + 2Me + O(ez) R

and M=%(Y+1) , equations (2.1)-(2.3) define the Riemann in-

variants

2£(8) u - p+ 0(ed) (2.7)

1]
=
)
(9]

(]

and

- 2g(a) u+ o+ 0(ed) . (2.8)

it
=
+
(g]
L}

The associated characteristics are given by

%% = a(e) and g% . = -a(e) . (2.9)
a

When only one component of the motion is excited, equations
(2.7)-(2.9) admit two exact solutions, simple waves, which
correspond te fIconstant and gzconstant. When both components

of the motion are exvited there is in general an interactiun



on e A N, i

between a-waves, moving to the right, and B-waves, moving %o
the left. However, it has been shown by Mortell and Varley

(1970) that to first order, in the limit of small amplitudes,

the waves do not interact as they pass through each other in
the body of the gas. By this is meant that to first order the
trajectory of an a-wave is determined only by the signal it
carries and is not influenced by the B-w' ves through which it
passes. Thus the motion of the gas may be represented as the

scperposition of two noninteracting simple waves. Then equations

(2.7) and (2.8) imply that to first order

e =p=- f(B) - g(e) and u= £(8) - g(a) , (2.10)
while (2.9) integrate to give

t - x - Mxg(a) and % st o+ x -1+ Mx-1)£(8) , (2.11)

£l
B

where we have parametrized o and B by o=wt on x=0 and
B=wt on x=1 . Upon using the boundary conditions (2.4) and
(2.5), g 1is eliminated from (2.10) and (2.11) to yield the
nonlinear functional difference equation to determine tnc signal,

f , on the boundary x=1 :

f(n) - kf(s) = H(M) (2.12)

where

n = s + 2w + wM(1+k) f(s) . (2.13)

In (2.12) and (2.13), k = %5% is the reflection coefficient

at x=0 , where g 1is related to f by
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‘ o

ot g(e) = kf(¢) , (2.14)
. F

o

i3 and

Lo

Yoy

‘ 8 = ¢+ w + wMf(9) . (2.15)

Avaga AL v W

The governing differential equations (2.1)-(2.3) and the
boundary conditions (2.4) and (2.5) have been reduced in the
small amplitude 1limit to the functional difference equation
(2.12) and (2.13). We now seek solutions to (2.12) and (2.13)
which, like the piston motion, have unit period. Further, as
a consequence of the representations (2.10) and (2.11), the
boundary conditions (2.4) and (2.5) and the fact that u and p
have zero mean over any period, f and g must satisfy

1 1
I f(s)ds = f g(s)ds = 0 . (2.16)
0 o

Since M 1is the ratio of second order to first order elastic
constants, linear theory is recovered from (2.12) and {2.13)

by formally setting M=0 to yield

f(n) - kf(n-2w) = H(n) . (2.17)

When k=1 there are rno solutions of (2.17) with unit peried;

that is, when

{ . w=w =3, n=1,23,.. . (2.18)

These are the linear resonant frequencies. Ultimately we will

consider the time-periodic response of the system to t)equencies

near to those defined by (2.18) and consequently define

| 0= u (1+8) . (|5|<%) . (2.19)
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Then in terms of
s
F(y) = £(y) +g>» (2.20)
where

b o= M (1+8) (=0(1)) , (2.21)

(2.12) and (2.13) become

F(n) - kF(s) = G(n) , (2.22)
and
n = s +n +nbF(s) , (2.23)
where
Gt) = L+ HM and w=1-k. (2.24)

Definition (2.20) now implies that the zero mean condition,
(2.16) on f 1is replaced by
. §
I F(s)ds = 5 (2.25)
(o}

The approximations used to derive equations (2.22)-(2.24)
are the small amplitude assumption, |[f| , |g] << 1 , and the
fact that the impedance of the interface at x=0 1is near zero,
sc that 0 < k <1 . This latter assumption is required since
whenever 1 + k = 0(e) the next correction to the character-
istics (at order e2 ) is no longer negiigible. For example,
if the end of the tube is open (k=-1) t}~ nonlinear approxima-
tion (2.11) to the characteristics leads to a linear difference

equation which has no bounded periodic solution at a resonant
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frequency. Consequently, for a problem involving an open end
(or "nearly" open) the approximations, (2.11), for o and B
must be improved. In fact, the approximations for a and 8
must contain terms in f2 and g2 so that now the motion in
the tube is determined by the cubic term in the equation of

1
state, with a resulting amplitude at 0(e”®) . Note further

that the difference equation (2.22)-(2.24) together with (2.20)
determine the shape of the signal function, £ , only on x=1 ,
The velocity and pressure, u and p , are subsequently calcu-
lated at any particle x in the tube from the representations

{2.10) and (2.11). This is particularly important when there

is significant distortion of a wave in one c.ravel time.

If we now make the additional small rate assumption

InF'] << 1,

equation (2.23) implies

F(s) = F(n-n) - nbF(n-n)F'(n-n) [1+0(nF')] . (2.26)

Upon using (2.26), and since we seek solutions with unit period,
the difference equation (2.22)-(2.24) can then be approximated

by the nonlinear ordinary differential equation

vF(n)F'(n) + uF(n) = G(nj , 0<nsl, (2.27)
together with
F(n+l) = F(n) , (2.28)

where v = nbk . The small rate condition uand the definition of
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F give the further restriction
[6] << 1/n . (2.29)

Thus equation (2.27) is valid in the small rate limit only for
periodic motions at frequencies in the neighborhood of linear
resonant frequencies. In contrast to this, the difference
equation (2.22)-(2.24) was derived with no restriction on the
applied rates; it is valid for non-periodic phenomena (see
Mortell and Varley (1970), Mortell and Seymour (1972a,b)), and
the applied frequency is not restricted to lie near a linear

resonant frequency.

Since the small amplitude restriction requires that |[f|<<1 ,
the small rate condition implies that the differential equation
(2.27) is a good approximation to the difference equation only
when n is at most 0(1) as |[f|+0 . In addition, the repre-
sentations (2.11) for the characteristics imply that in this
limit there will be no appreciable distortion of the waveform

in one period, since
B = w(t+x-1) + 0(nf)
(Of course there will be a cumulative distortion of the signal

until the periodic motion has been set up. This is not described

by (2.27)). Hence, in the small rate limit, (2.10) and (2.11)

can be replaced by the linear acoustic rzpresentation

-p = f(w[t+x-1]) + g(wlt-x]) and u = flw[t+x-1]) - glw{t-x]) ,
(2.30)
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so that when the periodic motion has evolved, nonlinearity is
of primary importance in determining the shape of the signal
functions, but it is of secondary importance in determining

how the signals propagate.

We point out that the small rate condition |nF'] << 1 ,
which is necessary for the validity of both the differential
equation (2.27) and the representation (2.30), is quite re-
strictive for usual experimental values of the parameters. The
results of section 3 show that for e = .0147 , used by Stur-
tevant (1972), this restriction implies n<<2 ; for ¢ = .0018 ,
used by Saenger and Hudson (1960), the restriction yields n<<6 .
In a sequel to this paper we shall examine periodic motions with
no restrictions on the rates when some of the ideas introduced
here are used to analyze the functional difference equation,

(2.12) and (2.13), directly.

It may be of interest to note that equation (2.27) arises
in other physical situations. It is a generalization of the
equation which describes the motion of a viscously damped pendu-
lum under a constant external moment, and also occurs in the

. study of the pull-out torque of a synchronous motor, see Stoker

(1950) or Minorsky (1962). In Appendix I we show how equatinn

ét' (2.27) may be derived from the governing equationrs (2.1)-(2.6)
f%ﬁ by a regular perturbation procedure, and point out an extra
{%ﬁr limitation on u imposed by that procedure. The analysis of
gé; equation (2.27), under the restriction (2.25), and the physical

interpretation of the results constitute the remainder of this

paper.
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3. Determination of the Periodic Signal

Here we analyze the integral curves of the differential
equation (2.27) for various ranges of the parameters u and §
and then use these to construct the signal, F , of the per-
iodic motion. When we have constructed F over one period,
possibly by a composition of integral curves, it is continued
periodically by (2.28). The signal function, F , may then

have discontinuities representing a time periodic motion in the

pipe containing shocks. The discontinuities in F arise in
satisfying the mean condition (2.25). Acoustic theory allows
discontinuities of either compression or rarefaction with no
restriction on , their strengths. However, to be physically
acceptable a jump in a gas must be compressive. Here we con-
sider only piston velocities which have three zeroes over one
period, and then discontinuous solutions of (2.27), which sat-
isfy the mean condition (2.25), additionally satisfy the appro-
priate weak shock relations. This is not strictly necessary

within the acoustic approximation.

If S(x) 1is the arrival time at x of a weak shock
traveling in the negative x direction and Bt(x) are the
wavelets immediately ahead of and behind the shock, then the

weak shock relations imply that

$ = -1 - FEEY ¢ £ (3.1)

A similar relation gives the speed of shocks moving to the

right. However, since in the periodic state there is negligible
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distortion, Bt are independent of x and (3.1) can be in-
tegrated to give the travel time of a shock from x=1 to x=0 .
The boundary condition (2.14) then implies that the total travel

time for the shock to return to x=1 is

T = 2+ MO [£(81) + £(87)] - (3.2)
Since the periodicity requirement is that T = % , (3.2) implies
that
+ - - 28
£(8%) + £(87) = - £ . (3.3)

On using (2.20), the definition of F , (3.3) becomes
F(8™) + F(B") = 0 . (3.4)

The condition that only compressive shocks are allowed then

requires that F(B*) > 0 .
On the other hand, integration of (2.27) over one period,
assuming a discontinuity at n=8 yields

1 1
%V[F2(8+) - FQ(B‘)] + | f F(s)ds = f G(s)ds . (3.5)

(o} o

Conditions (2.6), (2.24) and (2.25) then imply that (3.4) must
hold at the discontinuity. Thus a solution of (2.27), contain-
ing a discontinuity, which satisfies the mean condition (2.25)
and the restriction F(B8%) > 0 will necessarily satisfr the
weak shock relations. Thus a shock is fitted into the solution
by satisfying the mean condition. This analysis is for one
shock per period of the piston, which gives n shocks in the

tube at any time.
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3.1 Special case of no damping, w=y

When the boundary at =x=0 is rigid and there is no radia-
tion of energy through it, i=u=0 and equation (2.27) is greatly
simplified. It can then be integrated completely and the signal .
function, the width of the resomant band and the shock sirength
for these frequencies can be determined annlytically in terms
of the parameters of the problem. Further, the transitioen from
a discontinucus motion inside the band to a continuous one out-

side is exhibited explicitly.

We wish to distinguish between the integral curves of equa-
tion (2.27) and the signal ¥ which must additionally satisfy
the mean condition (2.25). An integral curve is denoted by Z(n) .
Notice that while F is defincd only for 0<n<l and is then con-
tinued periodically, if ¥ is continuous it must c¢oincide with an
integral curve Z which is both continuous and periodic for -o<n<e |
Conversely, a continuous, periodic integral curve 7 with unit
period which satisfies the mean condition (2.25) is the required
signal function F . When such an integral curve exists it is
unique. When, for a particular frequency, no such curve exists,

F is discontinuous and is composed of distinct integral curves.

For the case u=0 , the appropriate diffsrential equation is
nbZ(n)2'(n) = H(n) . (3.6)

There is no loss of generality in choosing the origin so that
H(0) = H(”l) = H(1) = 0 , where O<nl<1 , with H'(0) = H'(1) > 0
and H'(nl) < 0 . Then in the (n,2} plane the points

Ao = (0,0) , A2 = (1,0) and Bl = (n1,03 are isolated singular
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points., AO and A2 are saddle points, while B, is a center.

The two separatices through A° are given bty

3 X
¥ +
18 HONCEN Y O (3.7
f‘é while the zero mean condition (5) implies that Zt(l)
éj { Thus the separatices connect the two saddie points A, A,
% & The other integral curves which are defined for all n are
%ﬁ given by
By s M %
i = o+
| 1 = <[l [ees - (3.8)
By 2
3 3 where C=2°(0) . These solutions are periodic, with unit
E | period, for all n
k. b .
2? 1 Since Z*(n) > 0 for 0<n<l , any solution Z(n) with
§§ Z2(0) > 0 1is periodic in n with Z(n) > Zz*(n) and therefore
"i Z satisfies
3 1 1
g f Z(s)ds > f Z¥(s)ds . (3.9)
g 0 o o
V é
g - Consequently the mean condition (2.25) implies that for an
£ fh applied frequency w = %(1+6) such that
L &> f z¥(s)ds (3.10)
(o]

there exists a unique, continuous, periodic solution
Y
g = [ [awa v e@]” <A ca

The positive constant C{§) is choosen so that Zs(n) satisfies

the mean condition (2.25). A similar analysis shows there are
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also continuous periodic solutions,
8 1l
Za(n) = - A(n) for g < [ Z-(s}ds <0 . (3.12)
o

Thus for the range of frequencies defined by (3.10) and (3.12)

the signal function F is given by

F(n) = 2,(n) (3.13)

and is continuous and periodic.

For frequencies such that
1 8 1
f 2-(s)ds < £ < j 2* (s) ds (3.14)
(o] (o]

no single integral curve will satisfy the mean condition (2.25)

and the signal function will necessarily he discontinuous. The

shock condition together with the fact that only compressive
shocks are allowed then implies that the signal functiom F can
only be constructed from the separatices Zi(n) with »ust one
shock per period. The position of the shock at n=ng 15 chosen
to satisfy the mean condition. The signal function F 1is then

given by

z*(n) 0<avn,

n

F(n) (3.15)

z2=(n) ng<nsl

and
F(ntl) = F(n) ,

"t
where condition (2.5) implies that di(n) = t[&{h(n)-h(O)}! .

(3.16)
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The range of frequencies, defined by (3.14), for which the

signal is discontinuous, is called the resonant band. If (3.14)

is solved for & the resonant band is given explicitly by

§- < § < ¢&*
where
;5-
6t = 2(eM)h (3.17)
1+(eNM) *h

and h = fl[h(s‘.)-h(O)]}i ds . Notice that the amplitude of the
response o% the gas to an applied sigr:al of O(e) is O(e%)
and that the width of the resonant band

2(eM) *h

1-eMh®
%

is also O(e

The above results are particularly simple for the important

special forcing function

h(n) = - cos2mn . (3.18)
Then
Zt 2¢ ¢ .
() = ¢ 5] sinmn (3.19)

and h = 2v/Z/n . In addition the shock strengch can be found

explicitly in terms of 6§ ;

Shock strength = Z+(ns) - 27(n,)
(3.20)
- o(FE) et ont

where

o(8) = -8 and cos (mn)) = ¢(8) . (3.21)

2(1+8) (2eM) ™
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Thus for a given 6 within the resonant band, the shock strength
is given by (3.20) and the position of the shock by the second
of (3.21). On using (3.17), it follows that

¢(8%) = - ¢(87) = -1,

and so, by (3.20), the shock strength tends to zero as §+8%

Further, as 6+67 , N

g1 , while as 6287 , ns+0 . The limiting

solutions, when §=6* , are given by F(n) = Zi(n) , 0<n<l .

Then the sigrnal F 1is continuous but has a discontinuous slope

at n=0 and n=1 . The resonant band is not symmetrically
situated about the linear resonant frequencies w=w, since
|6*] > |67] , by (3.17). Necte, further, that F'(n,)=0 and
thus for the case h = -cos2wn and WEO o, N = on, = % , L.e.,
the maximum pressure equals the pressure immedi.tely ahead of
the shock, and the pressure immediately behino the shock is the

minimum ‘pressure.

The main point of the analysis give:n above “or the undamped
case is that all the results are obtained from the simple equa-
tion (3.6) together with the mean coudition (2.25). By this we
mean that for any frequency w such that Iw-wnl << 1 (either
inside or outside the resonant band) the signal function, F ,
is determined by (3.6) and (2.25). This is a consequence of the
translation (2.20). The advantage of this approach is that it
does not rely on having an integral of the governing equations
to construct the resonant band, and hence can be generalized to
the dissipative case, u3$0 . The resonant band for the case

u=0 , h = -cos2mn has been treated previously by Chester (1964).
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His analysis of the band involves finding, by an ad hoc pro-
cedure, an equation which is uniformly valid in the frequency

parameter,

3.2 uc<p<l

When up 1is nonzero the positions of the singular points
in the (n,Z) plane now depend on both u and & and Bl is
no longer a center, We consider the variations in (u,8) in
twvo parts, Here we show that for a given forcing function !(n)
there is a critical amount cf damping, HEH, such that for
B> the signal function is continucus for all frequencies.

In section 3.3 we fix u<uc and consider variations in & which

will define the resonant band.
If we assume that the zeroes of H(n) satisfy tne conditions
described in 3.1, the singular points of the equation
vZ(n)Z'(n) + wZ(n) = G(n) , (3.22)
where

(3.23)

oo

G(n) = H(n) + u

are the poiats (ei,O) , i=0,1,2, such that G(ei)=0 . (The
periodicity of H ensures that 62 =8 +1 .) We label them
Ao(u,d) , Ae(u,é) and Bl(u,é) where Ao(u,O) = (0,0) ,
Ae(u,O) = (1,0) and Bl(u,O) = (nl,C) . Labeling them in this
way 1s consistent with the notatica of the previous sectiu1 and
ensures that A0 and A, Aar: again saddle points. The se¢ ur-

[

atices through Ai (which w2 denote by Zi(n) ) have slopes
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A(e, = '{ut[u2+4vﬂ'(6i)]%k/év , (3.24)

where A*(ei) >0 > A(8;) , since H'(8,) > 0 , for i=0,2 .
The slopes at B, are also given by (3.24), where H'(el) <0 .

When I(el) >0 , where
I() = w2 + 4vH'(n) , (3.25)

B1 is a node, while if I(el) <0 Bl is a focal point. Thus

for a given forcing function H (which is O0(e) ) B; will be

a node if there is sufficient damping in the system. It may then

be possible to construct a continuous solution passing through

Ao R Bl and A2 for any value of & . Obviously the nodal

condition I(el) > 0 is necessary for the existence of such a

solution, however it may not be sufficient. Since the distortion

of the signal, and possible shock formation, depends on the

amplitude of H'(n) , one can expect the condition ensuring the

existencs, of a continuous solution to depend on a global property

of H'(n) . In fact

uc o> ui = max [-4vH'(n)] > 0 (3.26)
n

is a sufficient condition for the existence of a continucus,

periodic solution at all frequencies. The proof of tais result

is givern in Appendix 2. Thus for lg R
F(n) = 23(n) ,  0sn<l, (3.27)

which is continuous and, by 73.5), satisfies the mean condition

(2..5), (see figure [4]).
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3.3 0 <pucx uc

In this case there is not enough damping to produce a

shockless solution for all frequencies. Thus for §&=0

+ -
zo(el) >0, 22(61) <0
while
+ = - =
Zr(n,) = Z5(n,) = 0

where 0<n,<8,<n_<1 (see figure [1]) . Hence the separatices
do not connect the saddle points Ao and A2 . As ¢ is in-
1l
creased through the resonant band, so that I G(s)ds > 0 , there
(o]

exists a unique frequency, given by &=6* , such that
+ R
Z2.(n) =2;(n) , 8 <n<o,

That is, for &6=8% , the positive separatrix connects the saddle
points Ao and A2 , (see figure {2]). Further, for §>687
there exists a unique, continuous periodic solution Z=26(n)>0 ,
(see figure [3]). Similarly there exists 6=6"<0 for which
Z;EZ; and such that when §<§~ there is a unique, continuous
periodic solution Z=26(n)<0 . These results can be inferred
from the results of Amerio (1949,1950). Whereas for the case

u=0 explicit values have been given for 6t (see equation
(3.17)), when 0<u<uc this is not possible. However, for a
particular forcing function, 8¥ c¢an easily be found numerically
by varying 6 until a solution is found such that 23(62)=0 or

z;(eo)=o . Since these limiting solutions are continuous they

satisfy the mean condition (2.25) and hence we can give the im-
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plicit conditions for the edge of the band as
) )
5~

2 4 + 2 _ 2
fe Zo(s,ﬁ )ds = — and [6 22(5,6 Jds = beey

0 o]
There have been several attempts to obtain analytical bounds on
st . Hayes (1953) and Bohm (1953) found bounds for h=-cos2mn
while Lillo and Seifert (1955) used similar techniques to find
bounds for a general forcing function. Further reference can be

found in Sansone and Conti (1964)

By equation (3.5) the unique continuous solutions Zs(n)
automatically satisfy the mean ccndition (2.25) and hence for

§>¢%t or 6<6”
F(n) = Z;() 8, <n<o, . (3.28)

We contrast the case of no damping, wu=0 , when the continuous
periodic solutions Za(n) were not unique, but the mean condition

uniquely determined the signal functien F .

When &7<§<6% there are no continuous periodic solutions
of (3.22). Again, like the case p=0 , we construct the signal
function F by a composition of integral curves, (see figure
[1]). The discontinuous signal function F must satisfy both
the mean condition (2.25) and the weak shock condition (3.4).
However it has been shown that if the mean condition is satisfied
the shock condition is automatically satisfied. The condition

that a shock is compressive then implies that we choose
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+
Z,(n) 6 <n<ng

F(n) = (3.29)
Z;(n) ng <ngo,

where n=n_ is the position of the shock. It is shown in
Appendix 2 that it is always possible to choose an ng, to com-
bine 2l(n) and 2;(n) so that the mean condition (2.25) is
satisfied. Hence F , as given by (3.29), is the required
signal function. By equation (3.22), F'=0 at n=n .« » Npin
where F=G/u . Then, in general, when w=w_ the maximum pres-
sure exceeds the pressure immediately ahead of the shock and
the pressure immediately behind the shock exceeds the minimum

pressure.

It is clear from the structure of the integral curves for
the inviscid case that if the piston frequency is an even multiple

of the fundamental, then a possible continuous solution 1is

= 7+ 3\
F(n) = 2.} , 6 _<n<e,
with

F(n+l) = -¥(n) ,

which is a '"subharmonic'" solution. From the preceeding analysis,
this solution is unstable to perturbations in both damping and
frequency.

Finally we note that when k=0 (u=1) the impedances at x=0
are 'matched'. Then there is no reflected wave, so that by
(2.14) g=0 . The differential equation (2.27), together with
(2.20) and (2.24) then yields that on x=1 ,

f(n) = H(n) for all n
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4. Lumped Damping; Critical Acceleration Level

In the preceding we have analyzed resonant oscillations
when the only damping in the system is due to radiation of
energy away from one end of the pipe. Here we discuss two other
forms of damping which fit into the same theoretical framework.
These are damping due to internal dissipation and to wall fric-
tion. It is shown how to define a lumped damping coefficient,

k , which allows one to incorporate the effect of the three
damping mechanisms mentioned into an equation of the form (2.27).
The coefficient is referred to as '"lumped'" since on the basis

of experiments it can be used as a measure of the effective
damping in the system without being able to assess the effect

of the individual contributions.

It has been shown by Mortell and Seymour (1972a) that the
representation (2.10) and (2.11) can be extended, in the high
frequency 1limit, to include the effect of internal dissipation
of the transmitting media (specifically, there, for a viscoelastic
rod). For a gas such dissipation would result from the excita-
tion of any of the internal degrees of freedom, e.g. vibrational
excitation or molecular dissociation. If it is assumed that only
one rate dependent process is of significance and that this can
be represented by the relaxation variable o(X,t) , then the

rate of adjustment of o may be described by

Q

5= v(p.e,0) . (4.1)

¢ will then define a rate parameter or relaxation time <1(>0)
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proportional to w,o(po,eo,oo) . A pericdic disturbance is
considered of high frequency, or 1is near-frozen, if its period
is small compared with T , so that L(aom)'1 << 1 (note that
in our variables L(aow)“l represents the dimensional piston
frequency). For such disturbances 'ao' should now be inter-
preted as the frozen rather than equilibrium sound speed (more
details of nonlinear wave propagation in a relaxing gas are
given by Blythe (1969)). In this limit a disturbance in the
gas can be represented as two noninteracting, modulated simple
waves traveling in opposite directions (see Mortell and Seymour
(1972a)) (modulated simple waves in rate-dependent media are
discussed in detail by Seymour and Varley (1970)). The appro-
priate representation corresponding to equations (2.10) and

(2.11) is then

e =p=-£(8) e ga) e, w = g(p) 2X) L gra) o7

(4.2)
& =t - x - Mg(w) a~t(1-e"%%) (4.3)
and
B a g v x -1+ MEe) a7y, (4.4)
where
d = L/aor << W . (4.5)

On eliminating g from (4.2) and (4.3) through the boundary
conditions (2.4) and (2.5), the functional difference equation
(2.12) and (2.13) is recovered with the parameters k and b

replaced by k and b where
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k= ke and B = M) (1+ke™d (1-e"Hat . (4.6)

In the small rate limit, when w=0(1) , the condition (4.5)
implies d<<1 . Under these circumstances the procedure of
section 2 then leads to the nonlinear ordinary differential
equation (2.27) with the parameters u and v replaced by

p and v where
p=1-%k and v = nbk . (4.7)

The rate independent case is recovered in the limit 1+~ when
d+0 . The parameter k in (4.6) consists of two factors; the
first, k , is the attenuation of the signal at the interface
x=0 due to transmission of energy into the neighboring medium;
the second, e“ed , 1s the attenuation of the signal over one
cycle due to internal damping. The latter acts continuously
throughout the gas, whereas the former only acts at the inter-

face. The role of both in preventing shock formation is the

same.

In the high frequency limit, internal dissipation is a lower

order damping in the sense that the appropriate linearized equa-

tion satisfied by u is

U, - w ¥ 24 u = 0 . (4.8)

In contrast, a higher order damping, introduced for instance by

compressive viscosity, in represented in the linear case by
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Higher order damping will only structure a shock in a resonant
oscillation (see Chester (1964)), while lower order damping can
prevent shock formation even for d<<l . A form of damping which
is always present to some degree in a tube is that due to the
viscous effects of the boundary layer at the tube wall. Its
effect can be modeled as in Chester (1964), as a weighted in-
tegral of F 1in the equivalent of (2.27), or, equivalently by
adding a body force term in the momentum equation. The latter
procedure was used by Rayleigh (1945) for periodic oscillations
in a circular pipe and yields a lower order damping of the form
given by equation (4.8) with the parameter 'd' replaced by

(k)

ar

where « is the kinematic viscosity of the gas and r is the
radius of the tube. The effect is to produce a damping coeffi-

cient

Thus the lumped damping coefficient to account for these three

damping mechanisms takes the form ke 2(2*F)

The damping
coefficient, k , in (2.22), and the corresponding u in (2.27)
can always be interpreted in this broader sense. The effect of
k<1 1is to decrease the shock strength in a resonant oscillation.
Then, the effective damping in the system can be measured by
adjusting k to ensure agreement between the theoretical and

experimental shock strengths. A purely inviscid model predicts

the shock strength with an error of about 30% at the fundamental
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linear resonant frequency.

Since Ap(t) = wH'(wt) represents the acceleration of the
piston, we can interpret condition (2.26) as follows: for a
given amount of damping, k , there is a critical acceleration
level of the piston such that for applied accelerations below
this the motion of the gas is shockless at all frequencies. By
(3.26), for a known u the gas motion is shockless provided

the piston acceleration, satisfies

-2 -2
A (1)) <22 = B (4.9)
P 4v 4Mk (1+k)

on using (2.18), (2.19) and (2.21). In the limit as the damping
tends to zero, k*1 and p>0 which implies IAp(t)l*O for a
shockless motion. Thus when there is no damping present chere

is always a shock at resonance.

When i<<1 , a<<l , then (4.9) reduces to
1l.. 2
lMAp(t)l < 7(1+a) (4.10)

as the condition for a shockless solution for a resonant forced
motion. In contrast, for a transient or '"standing wave" motion
in the same system the condition for a shockless motion is (see

Mortell and Seymour (1972a))
IMA(t) ] < (i+a) , (4.11)
where A(t) here is the acceleration level defined by the

initial conditions. The formation of a shock is determined by

the induced acceleration level in the gas flow. For the shockless
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transient motion the applied and induced accelerations have the
same order of magnitude. However, for the resonant forced
motion, the induced acceleration has the same order cof magnitude

as the square root of the applied acceleration. With this

observation the results (4.10) and (4.11) are in harmony. 1In
a study of a radiating gas, Eniiiger (1971) found numerically a
critical damping which prevents shocks at resonance. For his
analysis damping enters as a weigihted integral ¢f F in the

equivalent of (2.27).

When the resonant motion is shockless, linear theory is a
uniformly good approximation to the nonlinear theory provided
the piston acceleration is sufficiently small, (see figure [4 ]).

By setting v=0 in (2.27), the linear solution is given by

F, (n) = G(n)/u (4.12)
and hence, by (2.27),
F.(n)
L ~ NV '
o R LA UL (4.13)

By differentiating (2.27) and setting F"(n)=0 we find that
[F'(n)| < A"(n) where A'(n) 1is given by (3.24). If now the

applied acceleration is small, in the sense that

4vH' (n)

U2

<1, (4.14)

then
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F (n)
L = ! ' .\.).. r
-F—m--ll derm| < arm)
%
= ll (1 + iiﬂf) -1
3 12 I
2
= I!éﬂ' + o(ﬁzﬁt)
H H

<< 1, by (4.14).

The inequality (4.9) defines a critical acceleration level
which provides a sufficient condition on the applied rate to
ensure a response of the gas which is continuous. Numerical
integration of the equations shows that shockless solutions
exist for piston accelerations greater than the critical one,

so that inequality (4.9) is conservative, as may be expected.
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5. Comparison with Experiments

The theoretical predictions of the analysis presented are
compared with some experimental measurements made by Sturtevant
(1972). His set up consists of a tube of length 132.5 inches
with an inside diameter of 3.0 inches which contains air (y=1.4).
At one end of the tube is a piston which is displaced sinusoidally
with an amplitude, normalized against the length of the tube, of
.0147 . The experiments we are concerned with here have the

two configurations

i} the far end of the tube is closed;
ii) the far end of the tube has a hole in it whose area

is small compared to the rea of the end.

For case i) we are concerned with measurements of the following
quantities, at the closed end, for values of the piston fre-

quency around the fundamental:

a) the absolute maximum and minimum of a normalized
pressure waveform,
b) the pressure immediately before and after the shock
jump.
As a consequence of these readings the values of the frequency
corresponding to the lower and upper ends of the resonant band

are available.

Figure [ 5] shows the comparicon between inviscid theory
(i=0) and experimental ''response curve" of Sturtevant. In this
case, our theory is equivalent to that in section 4 of Chester

(1%04). In computing the theoretical curves in Figure [6 ] a
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value of i = 1K (i=.08) is chosen so that the shock strength

1+k
exactly at resonance (6=0) is equal to the observed strength.

The theory predicts that, for &6=0 , the pressure immediately
before the shock is the negative of the pressure immediately
afterwards, which is not the experimental result. Thus the
theoretical and experimental curves do not coincide at 6=0 ,
even with our choice of k . We should aiso bear in mind that
for the conditions of the experiment the small rate condition
is only marginally satisfied (see the comment at the end of
section 2). The experiments show that at resonance the maximum
pressure exceeds the pressure ahead of the shock and the pres-
sure behind the shock exceeds the minimum pressure. This is
not predicted by iaviscid theory, but is a property of the
solution of the equation with duamping. Another point to note
is that the absolute maximum of the pressure occurs about 10%
to the right of the resonant frequency while the absolute min-
imum occurs about 5% to the left. For the experimental conditions
here boundary layer damping has little effect. Nevertheless,
if the other damping mecha~isms were absent, boundary layer
damping could prevent a s...k if the radius of the tube and the

amplitude of the piston were appropriately adjusted.

An interesting point is that the amount of damping required
to get the shock strength correct for §6=0 has a negligible
effec: on the width of the resonant band. This might seem sur-
prising since damping decreases the shock strength which in turn

determines the resonant band. The result can be understood,
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qualitatively, by cousidering equation (2.27) and bearing in
mind the definition of G(n) given by (2.24). When there is
damping, u$0 , the system defined by (2.27) is being driven
by the forcing functior G whose mean is non-zero for §%0
The increased damping is then countceracted by the increased

amplitude of the effective driver G .

for case ii) it is cobserved thzt for particular experimental

conditions there is a critical area ratio at which the shock in
the tube disappears for all frequencies. If we interpret the
presence of a small hole in the end of the tube as a means of
introducing damping into the system then the prediction of the
theory agrees qualitatively with experiment. It cannot be ex-
pected that the impedance condition (2.4), as introduced in the
theory, will account for the detailed motion of the gas near

the orifice. Nevertheless, it seems to be useful in predicting

the gross features of the motion.

Curves of shock strength, S(i) . versus impedance, 1 ,
were plotted for various values of the pistor amplitude, ¢ ,
Figure [ 7] shows there is a linear relation between S(0)-S(i)
and i , which is independent of € for 0<i<.2 when .01<e<.(C2 .
A corresponding plot of shock strength versus area ratio would
give a measure of the effective impedance (or effective damping).
The linear relationship indicates that shock strength is a good

imeasure of damping.

This resurt can be understood from a rough analysis of the

energy balance. When 1i<<1 , the results of section 3 indicate
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that if the amplitude of the piston is € , the amplitude of
the response is O(e%) , while the shock strength S is O(e%)
The balance between the input of energy due to the piston and

the loss due to the shock and radiation from the end is

%

Ae? = S3(i) + iBe , (5.1)

where A, B are constants. Since S = O(e%) » (5.1) can be

interpreted, dividing through by ¢ , as
S(i) - S(0) = iB'

where S(0) = A'e:;5 , and A', B' are constants. The linear
relationship is lost when shock dissipation is no longer a
major e¢ffect. As the piston amplitude (e) decreases, the
point at which the curves bifurcate moves towards the origin,
so that the linear relation holds for a smaller range of the

impedance.
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Appendix 1.

We sketch a regular perturbation procedure for the deriva-
tion of equation (2.27) directly from the governing equations
(2.1)-(2.3). The procedure is a generalization of that used by

Mortell (1971bh). We assume an expansion of the form

u(t,x;e) = e:,s ul(t,x) + ¢ ua(t,x) +

e(t,x;e) = ek e1(t,x) v € ea(t,x) + ..
w = w(e) = w_*+ e:;i w! * ew, +

o 1 2 s
i = i(e) = s:)i i, +¢ei, + .., ,

1 2

where the perturbation parameter is the amplitude of the response.
On noting that under the above expansion the problem at O(e%)

is homogeneous, we find

u; = f(ntw x) - f(n-w x) ; -

1 = f(n+w x) + f(n-w x)

€

where

nEwt, wye=an, n=1,23...,
Zmo
and f(n) 1is an arbitrary function »ith period -—" .

to the expansion, W, is 0(1) , 30 that e*n << 1 , which is

According

the small rate condition.

The problem at O(e) is ncn-homogeneous, but it can be

integ~ .ted to give
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2u,(t,x) = gy + £5 + 20lx(£1+£!) + 22X (£2-£8)

+ -
n+w x nwox

} 1o, [ ° 1
+ v+ Ju x(E_£14E, £1) + E1 | £ds - 21 f £ as]
X (£ £ .

2e2(t,x) = g; - f; + 2uix(f!-£]) + (S-Y)[%(fi+ff) + f+f’]

tw_x -W X
nwo no

.ot (Y+1)wox(f_fl+f+fi) + 1%l[f: f fds + 1, f f ds]

where the subscripts +, - indicate the argument of the function

is n+tw x , n-w.x
(o] [}

respectively, prime denotes differentiation

: with respect to the argument, and g, and £, are arbitrary
% functions associated with the general solution of the homo-

3

A geneous wave equation. The boundary conditions at this order
B are

; ue(t,O) = -ilel(t,O) and ua(t,l) = woh'(n)

% 2w

4 Upon using the conditions that f and g,

have period E—° ,

and that f has zero mean over this period, these boundary

conditions imply that f satisfies

IR

w (Y+1)E()£'(n) + 201£'(n) + 2i;£(n) = w h'(n-uw)

If we now note that

and define

the equation for F is
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. 2,0

nMF(n)F'(n) + 211F(n) = -t nh'(n-wo) . (A1.1)
This agrees with equation (2.27) except for the phase of h .
This is accounted for by noting that the parametrization of the
B-wave is chosen differently here (for convenience in the in-
tegration) than in the body of the text. The perturbation
scheme is predicated on the assumption that the amplitude of
the response is O(E%) . There is then an implicit assumption
on the amount of damping present, and hence the restriction
i=0(e%) . The derivation of (2.27) avoids this limitation on
its range of applicability. There is no prior assumption on
the final amplitude and hence none on the impedance, i . Con-
sequently, from (2.27) it is seen that if i=0 , nonlinearity
dominates and the resulting amplitudes are O(ek) , while if
i=0(1) , i.e., damping dominates, then the amplitude of the
response is O(e) . 1In this sense equation [2,27) is uniformly

valid in the damping parameter, whereas (Al.l) is not.
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Appendix 2.

Here we prove two results used in section 3:
(i) A sufficient condition for the existence of a continuous,

periodic solution of equation (3.22), for all & , is that

w2 > max [-4vH'(m)] . (A2.1)

n

(i) Given we(0,u), §e(67,8") and F defined by (3.29), there
exists an nse(ng,no) such that

92 ;
F ds = . A2.2
[ Fores = (A2.2)

(o}

Proof of (i)

Using the notation of section 3 we must show that when
"(AZ.1) holds the separatices Z; and 25 pass through the node
B, , i.e. 23(8,) = 2;(8,) = 0 . We will prove the result for

Zg ; the argument for 27 is similar.

Firstly, since the curve G(n)/u is the isocline Z'(n)=0
and Z(n)+0% yields the isocline Z'(n)++= , for 8,<n<6, ,
the separatrix Z; is continuous and differentiable in (60,61)
and satisfies

0 < zl(n) < max [gﬁﬂl]
n

In particular z;(el) >0 . We show that z;(el) = 0 by bound-
ing Z;(n) above by a function Y(n) which has the properties

Y(n) > 0 for 90<n<81 and Y(0,) = 0 . Such a curve bounds
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Z+
z? above if Hﬁp < ?'(n) , for all nel6_,6,] , whenever zt=y ,
The curve Y(n) = Z%Lﬂl has these properties whenever (A2.1)

holds. For when Z; =Y,

~=-u ZH'n =

7 - 5% - FoEO -y
whick holds whenever condition (A2.1) does. Hence since
Y(8,) =0, Z7(8,) =0 .

Proof of (ii)

Defining
6 n 8?

2 s+ 2
y(n,) = Ie F(s)ds = Ie 2.(s)ds + I Z;(s)ds

o o] r]S

we wish to show that, for a given § , there is a value of

_ 6 .
nse(nz,no) such that y(ns) =5 where 6°<n2<el<no<e2 , and
Z;(no) = Z5(n,) = 0 . We first note that, for a given & , vy
is a continuous function of ng . Since Z; is continuous in

(eo,no) , integration of (3.22) yields

n no
[ °7*(syas = 1L f G(s)ds .
Je [o] U 0 )
[o] (o]
no 2
Then consider y(n ) = J Z;(s)ds + [ 2;(s)ds
e n
(o] (o]
G 6
= l—! 2G(s)ds + [ 2(Z’(s) - §_(_S_)_) ds .
H 2 M
e0 nO

Thus, since Z;(n) > Eéﬂl for 8,<n<o, ,

)
2

1 8

y(n,) 2 4 fe G(s)ds = ¢ .

(o]
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Similarly y(n,) < g . Therefore by the cbntinuity of y,
there is an nse(na,no) such that

92 s
yng) = [ Rees = §

o]
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