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1. Introduction

In this paper we discuss the periodic vibrations which

result when a column of gas in a Kundt's tube is driven by a

piston oscillating at a near resonant frequency. The basic

experimental observations are well documented, (Saenger and

Hudson (1960)). When the piston frequency is in a band about

a resonant frequency, the amplitude cGf the response is markedly

higher than the piston amplitude and shock waves appear in the

flow. These phenomena have been extensively investigated in

the recent literature, (Betchov (1958), Saenger and Hudson (1960),

Chu and Ying (1963), Chester (1964), Mortell (1971a,b), Collins

(1971)). Nevertheless, there are associated phenomena dhich

need further investigation, and some aspects of the various

analyses which need clarification. Two questions which are

resolved concern the range of validity of the usual modifica-

tions of acoustic theory used previously, and the existence of

a critical amount of damping which ensures a shockless motion.

The basis for the analysis given here is the fact that the

motion of the gas can be represented, to first order in the

amplitudes, as the superposition of two noninteracting simple

waves traveling in opposite directions, (see Mortell and Varley

k1970)). This implies that the travel time of a component wave

in the tube is determined by its own amplitude, and then any

distortion of a signal is self-induced. The essence of this

approximation, which is the first term in a regular perturbation

expansion, is that while the ampiitudes remain small, jul ,.< a0
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"the acceleration in the gas, , is not restricted. This

contrasts with linear acoustic theory where both Jul << a

and are required for its validity, (Here, u is

the particle velocity, a is the equilibrium sound speed and

L is a typical length of the medium.) A nonlinear theory such

as this has been used for many years in gas dynamics when the

disturbance is generated by the passage of a single progressing

wave (see Whitham (1952)). The noninteracting simple wave

representation can be viewed as a generalization o" :'hithain's

rule (1952) to wave motions having two components.

We consider the motion of a gas in a tube which is driven

by a piston oscillating at one end. The other end is "partially

open" in tue sense that the system is considered to lose energy

by radiation thrsugh this end into the adjacent medium. We seek

the time-periodic response of the gas to these boundary cord',-

tions. Using the simple wave representation the problem of

calculating the shape of the signal at a boundary is reduced to

finding solutions of a nonlinear functional difference equation.

The signal may distort as it travels, but its shape at any point

in the body of the gas is determined by the simple wave repre-

sentation. In the "small rate" limit, << the non-

linear functional equation which determines the signal in the

periodic state can be reduced to a nonlinear ordinary difteron-

tial equation. Further, in this limit, the distortion of a

signal in one travel time is negligible. The final diffe:=•÷ial

equation only describes the signal at a boundary ir. the periodic



state, and cannot describe the cumulative distortion which led

to this state. It is evident that, for a given piston amplitude,

the small rate limit restricts the allowed values of the applied

frequency. In fact, for some experimentally used values of the

piston amplitude the restriction is surprisingly strong.

There are two basic phenomena in the model used here;

shocks due to nonlinearity and damping which can prevent shocks.

For a purely inviscid model, linear theory predicts ar. un•Luunded

amplitude in the periodic state for certain discrete (resonant)

frequencies. On the other hand, nonlinear inviscid theory pre-

dicts a bounded signal, which contns shocks, in a band about

the resonant frequencies. Since shocks act as a dissipative

mechanism they allow a balance of energy. This role of non-

linearity seems to be well-understood. To date, the most com-

prehensive investigation of the effect of damping on resonant

motions is due to Chester (1964). He investigated the effects

of compressive viscosity and boundary layer friction on the

"motions. His conclusion was that the effect of the former is,

in most cases, negligible except in the interior of a shock. He

concurred with Betchov (1958) that damping could have a signifi-

cant effect, and was led in his analysis of boundary layer

friction to raise the question of the existence of a finite

critical value of damping which would ensure a continuous motion.

He concluded that it was an open question. We inuroduce three

different types of damping which can be treated within the same

theoretical framework. These are damping due to radiation of
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energy from one end of the tube, rate dependence of the gas,

and boundary layer friction. We define a lumped damping co-

efficient which incorporates the effects of all three, and

show that these "lower order" damping mechanisms can prevent

the occurrence of shocks in the flow, i.e., for a given piston

motion there is a critical level of damping above which the

gas motion is continuous. B. Sturtevant, at the California

Institute of Technology, has carried out experiments in which

a hole is miade in the Jlosed end of the tube. He found that

for the particular conditions of an experiment there is a criti-

cal ratio of the area of the hole to the area of the tube end

at which shocks disappear. This points to the existence of a

critical amount of damping which ensures a shockless motion.

In section 3 there is a complete analysis of the resonant

band for both the inviscid and damped cases. This is achieved

by an examination of the integral curves of the governing dif-

ferential equation, using a condition on the mean of the flow

to fix the shock position. Explicit analytical results are

given for the inviscid case; some qualitative results for the

damped motion are found analytically while quantitative results

are determined numerically. In section 5 there is a comparison

between theory and experiment. Tho introduction of damping

improves the agreement. It suggests that if one is interested

in such gross features of the flow as the maximum or minimum

pressure, or the shock strength, then the lumped damping pro-

vides an adequate description.



2. Formulation

A column of gas, of length L in some reference (equi-

librium) state, is contained in a pipe. One end of the pipe

is closed while at the other end there is an oscillating piston.

If pressure and density are measured from their values in the

reference state (p0oro) with the associated sound speed a.

then in terms of the nondimensional variables (aou,poaop,P0 p)

and (Lx, La t) the governing equations in Lagrangian form
0

are

[(l+e) ux 0 , (2.1)

and

u't + PX 0 , (2.2)

where e(=p-1) is tIe condensation, yp the excess pressure

ratio and u the nondimensional particle velocity. The equation

of state of a polytropic gas in these variables is

yp (l+e)y - . (2.3)

The end x=0 is considered to be 'near rigid' in the sense thaL

we allow for the possibility of radiation of energy through this

end of the tube, but do not consider the case when it is open.

A boundary condition of this nature has been disc:usod by Mortell
and Variyyl�(1170). Across the boundary -t x=O both pressure

and velocity are contiiuous, and so the disturbance must be cm-

patible with the homogeneous boundary condition

1 'O't, ip(O,-L) , i2. )
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where i/y (>0) is the impedance of the interface. Here the

essential assumption is that the disturbance outside the tube

is generated by the passage of a simple wave. Note that i-0

corresponds to a rigid end and i=,- to an opent end. We examine

the small amplitude, time-periodic response of the gas, governed

by equations (2.1)-(2.3), to the boundary condition (2.4) at

x=0 and a periodic piston displacement at x=l of ýhe form

eh(wt) . The amplitude of the displacemcnt is e(<<l) , and

the period of h is normalized so that h(y+l) = h(y) . Then

the piston velocity at x=l is

!. ) - cwh'(wt) H(wt) . (2.5)

Since h :, p, riodic, iategration of (4) yields

IHCs)ds 0. (2.6)00

Equations (2.1)-(2.3) are nonlinear and admit discontinuous

solutions. However, it has been shown by Mortell and Seymour

(1972b) that for time-periodic motions, be they continuous or

discontinuous, the mean pressure and velocity do not vary from

particle to particle. By choosing as the reference pressure,

PO , the constant mean of the periodic state, conditions (2.4)

and (2.6) imply that the means of u and p are zero. The

actuvý. value of p0  can be determined only from an initial

vahi., problem.

2.1 7:ýjation for the Periodic Motion

A representation derived by Mortell and Varley (1970) is
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used to reduce the nonlinear boundary value problem defined by

(2.1)-(2.5) to a nonlinear difference, or functional, equation.

For a more restricted class of problems, thx! functional equa-

tion may be further reduced to P. nonlinear crdinary differential

equation which determines the periodic motion of the gas.

It is convenifent to reformulate equations (2.1)-(2.3) in

terms of the Riemann invariants ance characteristic curves of

the system. Upon defining

4e

c(e) = a(s)(l+s)-1 ds = e[l + (IM-l)e 4 O(e )]

where

a 2 (l+e) 2  = 1 + 2Me + O(e)2,

and M=-(y+l) , equations (2.1)-(2.3) define the Riemann in-
2

variants

2f($) u - c u - p + O(e ) (2.7)

and

- 2g(a) u + c - u + + O(e ) . (2.8)

The associated characteristics are given by

dx a(e) and d = -a(e) . (2.9)

When only one component of the motioxi is excited, equations

(2.7)-(2.9) admit two exact solutions, simple waves, which

correspond to f-constant and g-constant. When both components

of the motion are excited there is in general an interaction
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between a-waves, moving to the right, and 0-waves, moving to

the left. However, it has been shown by Mortell and Varley

(1970) that to first order, in the limit of small amplitudes,

the waves do not interact as they pass through each other in

the body of the gas. By this is meant that to first order the

trajectory of an a-wave is determined only by the signal it

carries and is not influenced by the O-w, .es through which it

passes. Thus the motion of the gas may be represented as the

s',rrposition of two noninteracting simple waves. Then equations

(2.7) and (2.8) imply that to first order

e = p = - f(s) - g(a) and u = f(8) - g(a) , (2.10)

while (2.9) integrate to give

St - x - Mxg(a) and t + x 1 + M(x-l)f(8) , (2.11)

where we have parametrized a and 0 by a=wt on x-0 and

$=wt on x=l . Upon using the boundary conditions (2.4) and

(2.5), g is eliminated from (2.10) and (2.11) to yield the

nonlinear functional difference equation to determine tiiJ signal,

f , on the boundary x=l

f(n) - kf(s) = H(ri) (2.1.2)

where

s + 2w + wM(l+k)f(s) . (2.13)

In (2.12) and (2.13), k = +• is the reflection coefficient

at x=O , where g is related to f by
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g(O) (2.14)

and

,8 = + w + Mf(¢) . (2.15)

The governing differential equations (2.1)-(2.3) and the

boundary conditions (2.4) and (2.5) have been reduced in the

small amplitude limit to the functional difference equation

(2.12) and (2.13). We now seek solutions to (2.12) and (2.13)

which, like the piston motion, have unit period. Further, as

a consequence bf the representations (2.10) and (2.11), the

boundary conditions (2.4) and (2.5) and the fact that u and p

have zero mean over any period, f and g must satisfy

ff(s)ds = g(s)ds = 0 . (2.16)£f 0 0

Since M is the ratio of second order to first order elastic

constants, linear theory is recovered from (2.12) and (2.13)
by formally setting M=O to yield

f(n) - kf(n-2w) = H(n) . (2.17)

When k=1 there are no solutions of (2.17) with unit period;

that is, when

• (o = =-n , n , 1,,. (2.18)

These are the linear resonant frequencies. Ultimately we will

consider the time-periodic response of the system to t)?quencies

near to those defined by (2.18) and consequently define

W = W (1+6) (161<i) . (2.19)
n
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Then in terms of

6
F(y) = f(y) + (2.20)

where

b = 7•4M(l+k)(1+S) (=0(1)) , (2.21)

(2.12) and (2.13) become

F(n) - kF(s) G(n) , (2.22)

and

= s + n + nbF(s) , (2.23)

where

p6
G(n) = + H(n) and p = 1 k . (2.24)

Definition (2.20) now implies that the zero mean condition,

(2.16) on f is replaced bf

f 1 6
F(s)ds =5 . (2,25)

The approximations used to derive equations (2.22)-(2.24)

are the small amplitude assumption, Ifi , Igj << 1 , and the

fact that the impedance of the interface at x=0 is near zero,

sc that 0 < k < 1 . This latter assumption is required since

whenever 1 + k =0(e) the next correction to the character-

istics (at order e 2 ) is no longer negligible. For example,

if the end of the tube is open (k=-l) tf- nonlinear approxima-

tion (2.11) to the characteristics leads to a linear difference

equation which has no bounded periodic solution at a resonant



frequency. Consequently, for a problem involving an open end

(or "nearly" open) the approximations, (2.11), for a and 0

must be improved. In fact, the approximations for a and 0

must contain terms in f2 and g2 so that now the motion in

the tube is determined by the cubic term in the equation of
1/

state, with a resulting amplitude at O(e3 ) . Note further

that the difference equation (2.22)-(2.24) together with (2.20)

determine the shape of the signal function, f , only on x=l

The velocity and pressure, u and p , are subsequently calcu-

lated at any particle x in the tube from the representations

(2.10) and (2.11). This is particularly important when there

is significant distortion of a wave in one Lravel time.

If we now make the additional small rate assumption

InF'I 1<

equation (2.23) implies

F(s) = F(n-n) nbF(n-n)F'(n-n)[l+0(nF')] . (2.26)

Upon using (2.26), and since we seek solutions with unit period,

the differ-ence equation (2.22)-(2.24) can then be approximated

by the nonlinear ordinary differential equation

vP(n)F'(n) + 1iF(n) G(n) , O<n<l , (2.27)

together with

F(n+w) T F(n) ni(2.28)

where ,v = nbk .The small rate condition and the definition of
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F give the further restriction

161 << 1/n . (2.29)

Thus equation (2.27) is valid in the small rate limit only for

periodic motions at frequencies in the neighborhood of linear

resonant frequencies. In contrast to this, the difference

equation (2.22)-(2.24) was derived with no restriction on the

applied rates; it is valid for non-periodic phenomena (see

Mortell and Varley (1970), Mortell and Seymour (1972a,b)), and

the applied frequency is not restricted to iie near a linear

resonant frequency.

Since the small amplitude restriction requires that IfI<l ,

the small rate condition implies that the differential equation

(2.27) is a good approximation to the difference equation only

when n is at most 0(l) as Ifli0 . In addition, the repre-

sentations (2.11) for the characteristics imply that in this

limit there will be no appreciable distortion of the waveform

in one period, since

w(t+x-1) + 0(nf)

(Of course there will be a cumulative distortion of the signal

until the periodic motion has been set up. This is not described

by (2.27)). Hence, in the small rate limit, (2.10) and (2.11)

can be replaced by the linear acoustic representation

-p . f(w[t+x-l]) + g(w[t-x]) and u - f(wft+x-l]) - g(w[t-x))

(2.30)
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so that when the periodic motion has evolved, nonlinearity is

of primary importance in determining the shape of the signal

functions, but it is of secondary importance in determining

how the signals propagate.

We point out that the small rate condition InF'I << 1

which is necessary for the validity of both the differential

equation (2.27) and the representation (2.30), is quite re-

strictive for usual experimental values of the parameters. The

results of section 3 show thai: for e = .0147 , used by Stur-

tevant (1972), this restriction implies n<<2 ; for c = .0018

used by Saenger and Hudson (1960), the restriction yields n<<6

In a sequel to this paper we shall examine periodic motions with

no restrictions on the rates when some of the ideas introduced

here are used to analyze the functional difference equation,

(2.12) and (2.13), directly.

It may be of interest to note that equation (2.27) arises

in other physical situations. It is a generalization of the

equation which describes the motion of a viscously damped pendu-

lum under a constant external moment, and also occurs in the

study of the pull-out torque of a synchronous motor, see Stoker

(1950) or Minorsky (1962). In Appendix I we show how equation

(2.27) may be derived from the governing equitions (2.1)-(2.6)

by a regular perturbation procedure, and point out an extra

limitation on p imposed by that procedure. The analysis of

equation (2.27), under the restriction (2.25), and the physical

interpretation of the results constitute the remainder of this

paper.
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3. Determination of the Periodic Signal

Here we analyze the integral curves of the differential

equation (2.27) for various ranges of the parameters V and 6

and then use these to construct the signal, F , of the per-

iodic motion. When we have constructed F over one period,

possibly by a composition of integral curves, it is continued

periodically by (2.28). The signal function, F , may then

have discontinuities representing a time periodic motion in the

pipe containing shocks. The discontinuities in F arise in

satisfying the mean condition (2.25). Acoustic theory allows

discontinuities of either compression or rarefaction with no

restriction ontheir strengths. However, to be physically

acceptable a jump in a gas must be compressive. Here we con-

sider only piston velocities which have three zeroes over one

period, and then discontinuous solutions of (2.27), which sat-

isfy the mean condition (2.25), additionally satisfy the appro-

priate weak shock relations. This is not strictly necessary

within the acoustic approximation.

If S(x) is the arrival time at x of a weak shock

traveling in the negative x direction and 0t-(x) are the

wavelets immediately ahead of and behind the shock, then the

weak shock relations imply that

dS - 1 - T4[f(04) + f(-)8 (3.1)

A similar relation gives the speed of shocks moving to the

right. However, since in the periodic state there is negligible
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distortion, 0 are independent of x and (3.1) can be in-

tegrated to give the travel time of a shock from x=l to x=0

The boundary condition (2.14) then implies that the total travel

time for the shock to return to x=l is

T 2 + ½M(l+k)[f($+) + f(-)] • (3.2)

Since the periodicity requirement is that T = n (3.2) implies

that
26

f(8+) + f(-) = 2 6 " (3.3)

On using (2.20), the definition of F , (3.3) becomes

F($+) + F(O-) 0 . (3.4)

The condition that only compressive shocks are allowed then

requires that F(a+) > 0

On the other hand, integration of (2.27) over one period,

assuming a discontinuity at n=0 yields

lvF2()- F2(8)] + F(s)ds G(s)ds . (3.5)
0 0

2 o fo

Conditions (2.6), (2.24) and (2.25) then imply that (3.4) must

hold at the discontinuity. Thus a solution of (2.27), contain-

ing a discontinuity, which satisfies the mean condition (2.25)

and the restriction F(O+) > 0 will necessarily satisfy the

weak shock relations. Thus a shock is fitted into the solution

by satisfying the mean condition. This analygis is for one

shock per period of the piston, which gives n shocks in the

tube at any time.
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341 Special case of no Lampnpa )1-0

When the boundary at x=O is rigid and there is no radia-

tion of energy through it, i=p=O and equation (2.27) is greatly

simplified. It can then be integrated completely and the signal

function, the width of the resonant band and the shock strength

for these frequencies can be determined analytically in terms

of the parameters of the problem. Further, the transition from

a discontinuous motion inside the band to a continuous one out-

side is exhibited explicitly.

We wish to distinguish between the integral curves of equa-

tion (2.27) and the signal F which must additionally satisfy

the mean condition (2.25). An integral curve is denoted by Z(n)

Notice that while F is definod only for 0<_ql and is then con-

tinued periodically, if F is continuous it must coincide with an

integral curve Z which is both continuous and periodic for -- <n<.

Conversely, a continuous, periodic integral curve Z with unit

period which satisfies the mean condition (2.25) is che. required

signal function F . When such an integral curve exists it is

unique. When, for a particular frequency, no such curve exists,

F is discontinuous and is composed of distinct integral curves.

For the case u=0 , the appropriate differential equation is

nbZ(n)Z'(P.) = H(n) . (3.6)

There is no loss of generality in choosing the origin so that

H(O) - H(ni) = H(l) = 0 , where O<n 1 <l , with H'(0) = H'(l) > 0

and H'(n .) < 0 . Then in the (n,Z) plane the points

A0 (0,0) A2 (1,0) and B1 = O1 are isolated singular
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point.•. A and A2  are saddle points, while B1  is a center.

The two separatices through A are given ty
0

[- f.H(s)ds] (3.7)

while the zero mean condition (5) implies that Z-(1) 0

Thus the separatices connect the two saddle points A 0 A2 .

"The other integral curves which are defined for all n are

given by

2) [ H(s)ds + C] (3.8)

where C=Z 2 (0) . These solutions are periodic, with unit

period, for all r

Since Z+(n) > 0 for 0<n<l , any solution Z(n) with

Z(0) > 0 is periodic in il with Z(n) > Z4 (n) and therefore

s(s)ds > Z+(s)ds . (3.9)

Consequently the mean condition (2.25) implies that for an

applied frequency w E-(1+6) such that

SF7> Z (s)d, (3.10)
"fO

there exists a unique, continuous, periodic solution

[2. JH(s)ds + C(M)] A(n) . (3.11)
0

The positive constant C(6) is choosen so that Z6 (n) satisfies

the mean condition (2.25). A similar analysis shows there are
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also continuous periodic solutions,

Sa) A(-) for < fZ-(s)ds < 0 . (3.121
0

Thus for the range of frequencies defined by (3.10) and (3.12)

the signal function F is given by

F(n) = Z6(n) (3.13)

and is continuous and periodic.

For frequencies such that

Z-(s)ds < < Z÷(s)ds (3.14)
0 O

no single integral curve will satisfy the mean condition (2.25)

and the signal function will necessarily be discontinuous. The

shock condition together with the fact that only comp.,essive

shocks are allowed then implies that the signal functrio F can

only be constructed from the separatices Z±((n) with ,ust one

shock per period. The position of the shock at n=ns i.s chosen

to satisfy the mean condition. The signal function F is then

given by

Sz+(n) 0 <.-,IS

F(n) = (3.15)

Z-(n) ?IS<n<l ,

and
F(n+l) - F(n),

where condition (2.5) implies that -(n) = ±[- h(n)-h(O) .

(3.. 16)
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The range of frequencies, defined by (3.14), for which the

signal is discontinuous, is called the resonant band. If (3.14)

is solved for 6 the resonant band is given e':plicitly by

6 <6 <

where

+ ±(Mh

h _- (3.17)
1;(CM) h

an d f[h(s)-h(0)]½ ds .Notice that the amplitude of the
0 

2response of the gas to an applied sig.,.a1 of O(c) is Q(C2

and that the width of the resonant band

2(eM) h~~

is a].-o O(c½

The above results are particularly simple for the important

special forcing function

h(n) =-cos2vrn (3.18)

Then

+ (2)c
Zr) s siniTn (3.19)

and hi 2/2Yir In addition the shock strerigeh can be found

4 explicitly in terms of 6

Shock strength Z+(ri3) Z-(S

= 2(.)½(~42())½(3. 20)

where

-'rr

.IT

4G5a) = [ -h(0)]½------, and cos (tht ) o( th(3.21)
2(1+6) (2M)h

r!.
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Thus for a given 6 within the resonant band, the shock strength

is given by (3.20) and the position of the shock by the second

of (3.21). On using (3.17), it follows that

OW6+) = - W(6-) = -1 ,

and so, by (3.20), the shock strength tends to zero as 6÷6

Further, as 6-6 + , ns-l , while as 6-6- , ns*0O . The limiting

solutions, when 6=6 , are given by F(n) = *±-(n) , 0<n<l .

Then the signal F is continuous but has a discontinuous sloope

at n=0 and n=l . The resonant band is not symmetrically

situated about the linear resonant frequencies w=wn since

16+I > 16-1 , by (3.17). Ncte, further, that F'(pl)=O and

thus for the case h -- -cos2nn and w=w n = s = , i.e.,

the maximum pressure equals the pressure immediately ahead of

the shock, and the pressure immediately behind the shock is the

minimum -pressure.

The main point of the analysis give;i above ",;r the undamped

case is that all the results are obtai:ed from the simple equa-

tion (3.6) together with the mean co'idition (2.25). By this we

mean that for any frequency (w such that IW-Wn[ << I (either

inside or outside the resonant band) the signal function, F

is determined by (3.6) and (2.25). This is a consequence of the

translation (2.20). The advantage of this approach is that it

does not rely on having an in'tegral of the governing equations

to construct the resonant band, and hence can be generalized to

the dissipative case, ptO . The resonant band for the case

p=0 , h = -cos2wn has been treated previously by Chester (1964).
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His analysis of the band involves finding, by an ad hoc pro--

cedure, an equation which is uniformly valid in the frequency

parameter.

S3.2 <• <

When j is nonzero the positions of the singular points

in the (n,Z) plane now depend on both ii and 6 and B1 is

no longer a center. We consider the variations in (p,6) in

two parts. Here we show that for a given forcing function 11(n)

there is a critical amount of damping, v==p , such that for

P>PC the signal function is continucus for all frequencies.

In section 3.3 we fix p<pe and consider variations in 6 which

will define the resonant band.

If we assume that the zeroes of H(n) satisfy tne conditions

described in 3.1, the singular points of the equation

vZ(n)Z'(n) + pZ(n) = G(n) , (3.22)

whe re

G(n) H(n) + p r (3.23)
tD

are the points (Oi,0) , i=0,1,2, so-h that G(0i)=0 . (The

periodicity of H ensures that e, = 0 + 1 .) We label them
0

A (1j,6) A2 (p,6) and B (p,6) where A (M,0) = (0,0)
A=(p,0) (1,0) and B (,C) Labeling them in this

way is consistent with the notaticoi of the previous sectii' and

"ensures that A and A2 atr again saddle points. The sc,'ir-

atice., through AI (which w, denote by Z (n) ) have slopes

28
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(a = i±[ +4vH'(6j)]h}f2v , (3.24)

where X+(6.) > 0 > X-(O.) , since H'(0i) > 0 , for i=0,2

The slopes at B are also given by (3.24), where H'(6 1 ) < 0

When 1(01) > 0 , where

I(N) = 2 + 4vHl(n) , (3.25)

B is a node, while if 1(0l) < 0 B1 is a focal point. Thus

for a given forcing function H (which is O(€) ) B1 will be

a node if there is sufficient damping in the system. It may then

be possible to construct a continuous solution passing through

A , B1 and A2 for any value of S . Obviously the nodal

condition i(01) > 0 is necessary for the existence of such a

solution, however it may not be sufficient. Since the distortion

of the signal, and possible shock formation, depends on the

amplitude of H''(n) , one can expect the condition ensuring the

existence, of a continuous solution to depend on a global property

of H'(n) • In fact

2 2=
•2> PC max [-4vH'(n)] > 0 (3.26)

n

is a sufficient condition for the existence of a continueus,

periodic solution at all frequencies. The proof of this resLlt

is given in Appendix 2. Thus for P>c 'P

F() = Z+(n) , 0<n<l , (3.27)

which is continuous and, by (3.5), satisfies the mean condition

(2.25) , (see figure [ 4 ]).
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3.3 0<P < c

In this case there is not enough damping to produce a

shockless solution for all frequencies. Thus for 6=0

Z+ (e) > 0 , Z_(6 ) < 0

while

Z+(no) Z•(n 2 ) = 0
0 0 22

where 0<n 2 <01 <n0 <l (see figure [ 1 1) • Hence the separatices

do not connect the saddle points A and A As 6 is in-

creased through the resonant band, so that JiG(s)ds > 0 , there

exists a unique frequency, given by 6=6+ , such that

o*(n) =_ Z (n) , <n<_

That is, for 6=6+ , the positive separatrix connects the saddle

points A and A2 , (see figure [2 ]). Further, for 6>6+

there exists a unique, continuous periodic solution Z=Z 6 (n)>O

V (see figure ( 3 ]) Similarly there exists 6=6-<0 for which

Z-=Z- and such that when 6<6- there is a unique, continuous
o 2

periodic solution Z=Z 6 (n)<0 . These results can be inferred

from the results of Amerio (1949,1950). Whereas for the case

t=0 explicit values have been given for 6- (see equation

(3.17)), when 0<p<pe this is not possible. However, for a

particular forcing function, 6± Can easily be found numerically

by varying 6 until a solution is found such that Z+(O )=0 or

202
satsf)=y t Since these limiting solutions are continuous they

,,.• satisfy the mean condition (2.25) and hence we can give tL~e im-
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plicit conditions for the edge of the band as

S+2+(s 6+)ds - and Z2(s,6.)ds 6-

0 0 ' b(6,) 0 b(S-)
0 0

There have been several attempts to obtain analytical bounds on

6 Hayes (1953) and Bihm (1953) found bounds for h=-cos27rn

while Lillo and Seifert (1955) used similar techniques to find

bounds for a general forcing function. Further reference can be

found in Sansone and Conti (1964)

By equation (3.5) the unique contlnuous solutions Z6 (r)

automatically satisfy the mean condition (2.25) and hence for

SW•+ or 6<6-

F(n) = Z6(n) , o<n<e 2 . (3.28)

We contrast the case of no damping, =O , when the continuous

periodic solutions Z6 (r) were not unique, but the mean condition

uniquely determined the signal functirna F .

When 6-<6<6+ there are no continuous periodic solutions

of (3.22). Again, like the case p=O , we construct the signal

function F by a composition of integral curves, (see figure

[ 1 ]). The discontinuous signal function F must satisfy both

the mean condition (2.25) and the weak shock condition (3.4).

However it has been shown that if the mean condition is satisfied

the shock condition is automatically satisfied. The condition

that a shock is compressive then implies that we choose
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Z+(n) 0o<n<n

0 0- -- S

F(n) = (3.29)
Z- (n) ns<n<eD

where ri-=s is the position of the shock. It is shown in

Appendix 2 that it is always possible to choose an n. to com-

bine Z+[t) and Z-(t) so that the mean condition (2.25) is

satisfied. Hence F , as given by (3.29), is the required

signal function. By equation (3.22), F'0 at nlrmax

where F=G/p . Then, in general, when w=w the maximum pres-

sure exceeds the pressure immediately ahead of the shock and

the pressure immediately behind the shock exceeds the minimum

pressure.

It is clear from the structure of the integral curves for

ths inviscid case that if the piston frequency is an even multiple

of the fundamental, then a possible continuous solution is

F(n) =Z+(n) , <n<6

with

F(n+l) = -.Y~n)

which is a "subharmonic" solution. From the preceeding analysis,

this solution is unstable to perturbations in both damping and

frequency.

Finally we note that when k=O (-=l) the impedances at x=O

are 'matched. Then there is no reflected wave, so that by

(2,14) g-O . The differential equation (2.27), together with

(2.20) and (2.24) then yields that on x=l

f(n) = H(n) for all n
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4. Lumped Damping; Critical Acceleration Level

In the preceding we have analyzed resonant oscillations

when the only damping in the system is due to radiation of

energy auay from one end of the pipe. Here we discuss two other

forms of damping which fit into the same theoretical framework.

These are damping due to internal dissipation and to wall fric-

tion. It is shown how to define a lumped damping coefficient,

k , which allows one to incorporate the effect of the three

damping mechanisms mentioned into an equation of the form (2.27).

The coefficient is referred to as "lumped" since on the basis

of experiments it can be used as a measure of the effective

damping in the system without being able to assess the effect

of the individual contributions.

It has been shown by Mortell and Seymour (1972a) that the

representation (2.10) and (2.11) can be extended, in the high

frequency limit, to include the effect of internal dissipation

of the transmitting media (specifically, there, for a viscoelastic

rod). For a gas such dissipation would result from the excita-

tion of any of the internal degrees of freedom, e.g. vibrational

excitation or molecular dissociation. If it is assumed that only

one rate dependent process is of significance and that this can

be represented by the relaxation variable a(X,t) , then the

rate of adjustment of a may be described by

Do• = ý(p,e,,) . (4.1)

Swill then define a rate parameter or relaxation time x(>O)
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proportional to ,(po ,e0 9,Co) . A periodic disturbance is

considered of high frequency, or is near-frozen, if its period

is small compared with T , so that L(a 0W)-I << T (note that

in our variables L(a0 W)- represents the dimensional piston

frequency). For such disturbances 'a should now be inter-

preted as the frozen rather than equilibrium sound speed (more

details of nonlinear wave propagation in a relaxing gas are

given by Blythe (1969)). In this limit a disturbance in the

gas can be represented as two noninteracting, modulated simple

waves traveling in opposite directions (see Mortell and Seymour

(1972a)) (modulated simple waves in rate-dependent media are

discussed in detail by Seymour and Varley (1970)). The appro-

priate representation corresponding to equations (2.10) and

(2.11) is then

e = p ed(x-1) -g(a) e- dx u e d(x-1) _ g(a) e-dx

(4.2)

- t - x - Mg(a) d- (l-e- dx) (4.3)

and

- t + x - 1 + Mf(o) d- 1 (ed(x-l) 1) (4.4)

where

d = L/a 0 << W (4.5)

On eliminating g from (4.2) and (4.3) through the boundary

conditions (2.4) and (2.5), the functional difference equation

(2.12) and (2.13) is recovered with the parameters k and b

replaced by k and 6 where
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ke- 2d and 1 (1+e)(l+ke- d M-e- d )d-1 (4.6)?I

In the small rate limit, when w=0(1) , the condition (4.5)

implies d<<l . Under these circumstances the procedure of

section 2 then leads to the nonlinear ordinary differential

equation (2.27) with the parameters p and v replaced by

V and v where

I - k and V = n6k (4.7)

The rate independent case is recovered in the limit T-1-- when

d-)-O . The parameter i in (4.6) consists of two factors; the

first, k , is the attenuation of the signal at the interface

x=O due to transmission of energy into the neighboring medium;

the second, e- 2d , is the attenuation of the signal over one

cycle due to internal damping. The latter acts continuously

throughout the gas, whereas the former only acts at the inter-

face. The role of both in preventing shock formation is the

same.

.In the high frequency limit, internal dissipation is a lower

order damping in the sense that the appropriate linearized equa-

tion satisfied by u is

u tt - U xx + 2d ut 0 (4.8)

In contrast, a higher order damping, introduced for instance by

compressive viscosity, in represented in the linear case by

u tt U xx V 0 u xxt 0
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Higher order damping will only structure a shock in a resonant

oscillation (see Chester (1964)), while lower order damping can

prevent shock formation even for d<<l . A form of damping which

is always present to some degree in a tube is that due to the

viscous effects of the boundary layer at the tube wall. Its

effect can be modeled as in Chester (1964), as a weighted in-

tegral of F in the equivalent of (2.27), or, equivalently by

adding a body force term in the momentum equation. The latter

procedure was used by Rayleigh (1945) for periodic oscillations

in a circular pipe and yields a lower order damping of the form

given by equation (4.8) with the parameter 'd' replaced by

R K=
(a r2

0

where K is the kinematic viscosity of the gas and r is the

radius of the tube. The effect is to produce a damping coeffi-

cient

-2Rk R -- e

Thus the lumped damping coefficient to account for these three

damping mechanisms takes the form ke-2(a+R) . The damping

coefficient, k , in (2.22), and the corresponding p in (2.27)

can always be interpreted in this broader sense. The effect of

k<l is to decrease the shock strength in a resonant oscillation.

Then, the effective damping in the system can be measured by

adjusting k to ensure agreement between the theoretical and

experimental shock strengths. A purely inviscid model predicts

the shock strength with an error of about 30% at the fundamental
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linear resonant frequency.

Since A p(t) = wH'(wt) represents the acceleration of the

piston, we can interpret condition (2.26) as follows: for a

given amount of damping, k , there is a critical acceleration

level of the piston such that for applied accelerations below

this the motion of the gas is shockless at all frequencies. By

(3.26), for a known v the gas motion is shockless provided

the piston acceleration, satisfies

-2 -2[A P t) I < W"-- = (4.9)

4V 4Mk(l+k)

on using (2.18), (2.19) and (2.21). In the limit as the damping

tends to zero, k~l and p÷O which implies JA p(t) W 0 for a

shockless motion. Thus when there is no damping present chere

is always a shock at resonance.

When i<<l , a<<l , then (4.9) reduces to

IMA (t)l < 1(i+a)2 (4.10)

as the condition for a shockless solution for a resonant forced

motion. In contrast, for a transient or "standing wave" motion

in the same system the condition for a shockless motion is (see

Mortell and Seymour (1972a))

IMA(t)j < (i+a) , (4.11)

where A(t) here is the acceleration level defined by the

initial conditions. The formation of a shock is determined by

the induced acceleration level in the gas flow. For the shockless
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transient motion the applied and induced accelerations have the

same order of magnitude. However, for the resonant forced

motion, the induced acceleration has the same order of magnitude

as the square root of the applied acceleration. With this

observation the results (4.10) and (4.11) are in harmony. In

a study of a radiating gas, Eniiger (1971) found numerically a

critical damping which prevents shocks at resonance. For his

analysis damping enters as a weigited integral of F in the

equivalent of (2.27).

When the resonant motion is shockless, linear theory is a

uniformly good approximation to the nonlinear theory provided

the piston acceleration is sufficiently small, (see figure [4 ]).

By setting v=0 in (2.27), the linear solution is given by

FL(n) : G(n)/p (4.12)

and hence, by (2.27),

FLN - 1 = (n) (4.13)

By differentiating (2.27) and setting F"r(n)=0 we find that

IF'(n)l < X+(n) where Xi(n) is given by (3.24). If now the

applied acceleration is small, in the sense that

4 WH'(n) << 1 (4.14)
P 2

then
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= 1 (1 + 4vH)½ 11
= + "( 1HI)

Y 2I + 0 V2HI

<< 1 , by (4.14).

The inequality (4.9) defines a critical acceleration level

which provides a sufficient condition on the applied rate to

ensure a response of the gas which is continuous. Numerical

integration of the equations shows that shockless solutions

exist for piston accelerations greater than the critical one,

so that inequality (4.9) is conservative, as may be expected.
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S. Comparison with Experiments

The theoretic3l predictions of the analysis presented are

compared with some experimental measurements made by Sturtevant

(1972). His set up consists of a tube of length 132.5 inches

with an inside diameter of 3.0 inches which contains air (y=1.4).

At one end of the tube is a piston which is displaced sinusoidally

with an amplitude, normalized against the length of the tube, of

.0147 . The experiments we are concerned with here have the

two configurations

i) the far end of the tube is closed;

ii) the far end of the tube has a hole in it whose area

is small compared to the rea of the end.

For case i) we are concerned with measurements of the following

quantities, at the closed end, for values of the piston fre-

quency around the fundamental:

a) the absolute maximum and minimum of a normalized

pressure waveform,

b) the pressure immediately before and after the shock

j ump.

As a consequence of these readings the values of the frequency

corresponding to the lower and upper ends of the resonant band

are available.

Figure ( 5 ] shows the comparizon between inviscid theory

(i=O) and experimental "response curve" of Sturtevant. In this

case, our theory is equivalent to that in section 4 of Chester

(19o4). In computing the theoretical curves in Figure [6 ] a
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value of i = 1- (i=.08) is chosen so that the shock strength
l+k

exactly at resonance (6=0) is equal to the observed strength.

The theory predicts that, for 6=0 , the pressure immediately

before the shock is the negative of the pressure immediately

afterwards, which is not the experimental result. Thus the

theoretical and experimental curves do not coincide at 6=0

even with our choice of k . We should also bear in mind that

for the conditions of the experiment the small rate condition

is only marginally satisfied (see the co.mment at the end of

section 2). The experiments show that at resonance the maximum

pressure exceeds the pressure ahead of the shock and the pres-

sure behind the shock exceeds the minimum pressure. This is

not predicted by inviscid theory, but is a property of the

solution of the equation with damping. Another point to note

is that the absolute maximum of the pressure occurs about 10%

to the right of the resonant frequency while the absolute min-

imum occurs about 5% to the left. For the experimental conditions

here boundary layer damping has little effect. Nevertheless,

if the other damping mechs"-sms were absent, boundary layer

damping could prevent a si.-K if the radius of the tube and the

amplitude of the piston were appropriately adjusted.

An interesting point is that the amount of damping required

to get the shock strength correct for 6=0 has a negligible

effect on the width of the resonant band. This might seem sur-

prising since damping decreases the shock strength which in turn

determines the resonant band. The result can be understood,
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qualitatively, by coinsidering equation (2.27) and bearing in

mind the definition of G(n) given by (2.24). When there is

damping, p4O , the system defined by (2.27) is being driven

by the forcing functior G whose mean is non-zero for 60.

The increased damping is then counteracted by the increased

amplitude of the effective driver G

For case ii) it is observed thac for particular experimental

conditions there is a critical area ratio at which the shock in

the tube disappears for all frequencies. If we interpret the

presence of a small hole in the end of the tube as a means of

introducing damping into the system then the prediction of the

theory agrees qualitatively with experiment. It cannot be ex-

pected that the impedance condition (2.4), as introduced in the

theory, will account for the detailed motion of "Lhe gas near

the orifice. Nevertheless, it seems to be useful in predicting

the gross features of the motion.

Curves of shock strength, S(i) .. versus impedance, i ,

were plotted for various values of the pistor: amplitude, e ,

Figure [7 j shows there is a linear relation between S(O)-S(i)

and i , which is independent of e for O<i<.2 when .01<s<.C2

A corresponding plot of shock strength versus area ratio would

give a measure of the effective impedance (or effective damping).

The linear relationship indicates that shock strength is a good

measure of damping.

This resuit can be understood from a rough analysis of the

energy balance. lVh.n i<.:l , the results of section 3 indicate
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that if the amplitude of the piston is e , the amplitude of

the response is O(e½) , while the shock strength S is O( ).

The balance between the input of energy due to the piston and

the loss due to the shock and radiation from the end is

Ae S3 (i) + iBe , (5.1)

where A, B are constants. Since S = O(eh) , (5.1) can be

interpreted, dividing through by e , as

S(i) - S(0) = iB'

where S(O) = A½ , and A', B' are constants. The linear

relationship is lost when shock dissipation is no longer a

major affect. As the piston amplitude (c) decreases, the

point at which the curves bifurcate moves towards the origin,

so that the linear relation holds for a smaller range of the

impedance.
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Appendix 1.

We sketch a regular perturbation procedure for the deriva-

tion of equation (2.27) directly from the governing equations

(2.1)-(2.5). The procedure is a generalization of that used by

Mortell (1971b). We assume an expansion of the form

u(t,x;e) = Ch u1 (tx) + e u2 (tx) +

e(t,x;e) = ch e 1 (t,x) + e e2 (tx) +

W== + Ch ,W + •W += (e) = o0 1 2

i = i(C) -Ch i + Ci2 + .. 9

where tixe perturbation parameter is the amplitude of the response.

On noting that under the above expansion the problem at O(e½)

is homogeneous, we find

u1= f(n+wx) - f(n-Wox) ; - e1 = f(n+wox) + f(n-woX)

where

,• ~n = Wt , o In I n=1,,..,

2w
and f(n) is an arbitrary function •ith period -- According

to the expansion, wo is Ol) , so that << 1 , which is

the small rate condition.

The problem at O(e) is non-homogeneous, but it can be

V- integ-.ted to give
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2u2(~) g + +f + 2uwtx(f.1+f1) + 3-Y (f2-f2)22(t,x) -- g2 +2 - -

1l+Wox n-wox

+ +y+i)f' oX~ff,_f+f.)+ 1f_ f ds +f2 f fds]

2e2 (tx) g- f+ + 2W•x(f'-fl) + (3-y)f3.(f.+f2) + f+f_]

n+W x n-W x÷ [r f 0 f 01
+ (y+l)w x(f f'+f +"dft fdt

where the subscripts +, - indicate the argument of the function

is f+( x n-U x respectively, prime denotes differentiation0 0

with respect to the argument, and g2  and f 2  are arbitrary

functions associated with the general solution of the homo-

geneous wave equation. The boundary conditions at this order

are

u 2 (t,O) = -i 1e 1 (t,O) and u2 (t,l) = oh'(r) .

2w

Upon using the conditions that f and have period _

and that f has zero mean over this period, these boundary

conditions imply that f satisfies

wo(y+l)f(n)f'(n) + 2wf'() + 2if(n) = oh'(n-)

01

If we now note that

WO n l M

and define

Wi = WoW and F f + /M

the equation for F is
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2ilw

nMF(n)F (n) + 2iIF(•) - + nh' (n-w) . (AI.I)

This agrees with equation (2.27) except for the phase of h .

This is accounted for by noting that the parametrization of the

$-wave is chosen differently here (for convenience in the in-

tegration) than in the body of the text. The perturbation

scheme is predicated on the assumption that the amplitude of

the response is 0(e½) . There is then an implicit assumption

on the amount of damping present, and hence the restriction

i=O(e½) . The derivation of (2.27) avoids this limitation on

its range of applicability. There is no prior assumption on

the final amplitude and hence none on the impedance, i . Con-

sequently, from (2.27) it is seen that if i=O , nonlinearity

dominates and the resulting amplitudes are 0(c½) , while if

i=0(1) , i.e., damping dominates, then the amplitude of the

response is O(e) . In this sense equation (2.27) is uniformly

valid in the damping parameter, whereas (Al.l) is not.
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Appendix 2.

Here we prove two results used in section 3:

(i) A sufficient condition for the existence of a continuous,

periodic solution of equation (3.22), for all 6 , is that

2 > max [-4vH'(n)] . (A2.1)

n

(ii) Given iie(0,e), 6(6-,6 +) and F defined by (3.29), there

exists an n s(n2"'o) such that

0 2

f . (A2.2)

0

Proof of (i)

Using the notation of section 3 we must show that when

(A2.1) holds the separatices Z+ and Z- pass through the node
0 2

B1 , i.e. Z+(01 ) = Z-(e 1 ) = 0 . We will prove the result for

Z+ the argument for Z- is similar.
02

Firstly, since the curve G(n)/p is the isocline Z'(n)=0

and Z(n)+O+ yields the isocline Z'(n)-+- , for 80<n<61

the separatrix Z+ is continuous and differentiable in (0 '0 1)
001

and satisfies

0 < Zo(n) <_ max [G(f].
n

In particular Z+(1)o > 0 . We show that Z+(I)o = 0 by bound-

0 1 0 o

ing Z+(n) above by a function Y(n) which has the properties

Y(n) > 0 for 0o<n<8 1 and Y(O) = 0 . Such a curve bounds
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dZ ++

Z+ above if d-ff < Y' (n) , for all ne[8o,0 ] , whenever Z +=Y
0 U 01

The curve Y(n) = has these properties whenever (A2.1)

holds. For when Z+ = Y,
0

dZ +
o G-vY -p< 2H'(n) =Un- = -Y 7V =P- . =y

which holds whenever condition (A2.1) does. Hence since

Y(O1 ) =0(0 ) = 0

Proof of (ii)

Defining

= = f Fs~sZ+(s)ds + JZ-(s)ds

0060 0 fn,

we wish to show that, for a given 6 , there is a value of

6
nse(n2,To) such that y(n.) = u , where 00<o < <no<62  and

Z+(n = Z-(n 2 ) = 0 . We first note that, for a given 6 , y

is a continuous function of n . Since Z+ is continuous in
S 0

(Ono) , integration of (3.22) yields

o Z(s)ds n s)ds
J9 0 oeGsd

0 n o 0 0 2

Then consider y(n) Z+

00 0 n

f2 G~s)d + f0 2(Z-(S) -G(s)) ds

0 no

Thus, since Z2 (n}) G(n)) for 0 <n<6

2 16

f~ ds =d E

0
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Similarly y(n 2 ) < . Therefore by the continuity of y

there is an n 2 (n2,) such that

0 2

y(ns) f F(s)ds =E

0
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