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We measured the dispersion relation for acoustic longitudinal waves in liquid foams, over a broad
frequency range (60–600 kHz). Strong dispersion was found, with two non-dispersive behaviors,
separated by a negative density regime. A new model, based on the coupled displacements of films,
liquid channels and gas in the foam, rationalizes all the experimental findings.

Liquid foams, dispersions of gas bubbles in a liquid
matrix stabilized by surfactants [1], are present in a wide
range of industrial applications, from food and personal
care to ore flotation and enhanced oil recovery [2]. They
are opaque materials, hence difficult to characterize in
depth, and new ways of probing them are highly desir-
able. Acoustic probes are good candidates, since they are
unexpensive and nonintrusive, and widely used as such
in nondestructive testing [3]. However, surprisingly little
is known about liquid foam acoustics, contrary to other
multiphasic media such as porous media [4], colloidal sus-
pensions, or emulsions [5, 6]. Most of the few existing
experimental studies reported speeds of sound of order
50 m/s [7–9], close to the so-called Wood model [10]. The
latter treats foams as an effective medium, which density
and compressibility are given by the mixture law, i.e. av-
erages of those of the gas and liquid phases, weighted by
their respective volume fractions. However, much higher
speeds of sound, of order 200 m/s, were also measured
[11, 12], and some studies reported a resonant behavior
[13, 14], reminiscent of the low frequency resonance of a
single bubble in an unbounded liquid, the so-called Min-
naert resonance [15], which is the key ingredient of acous-
tic propagation through dilute bubbly liquids [16, 17]. In
this Letter, we use a novel setup [18] to measure speed of
sound and attenuation through liquid foams over a large
range of frequencies f (60–600 kHz) and bubble radii
(15–50 µm). Our results are explained by a new model,
which fully reconciles all aforementioned different view-
points on liquid foam acoustics. In particular, we show
that liquid foams are natural acoustic metamaterials, ex-
hibiting a negative effective density over a large range of
frequencies and bubble sizes.

The general principle of our technique is to measure the
complex transmission of short ultrasonic pulses through
a foam sample of known thickness. From this complex
transmission, we can determine the effective complex
wavevector as a function of frequency: k = ω/v + iα,
with ω = 2πf , and v and α the phase velocity and atten-
uation of sound. In an ageing foam, the bubble median
radius R increases over time by gas diffusion between
bubbles [1]. Hence, making measurements at different
times, we obtain k(ω, R), the complex wavevector as a
function of frequency and median radius. Some aspects

of the ultrasonic technique and the foam production and
characterization are briefly described below; more details
can be found in [18] for the former, and [19] for the latter.

Transmission measurements were performed with two
broadband air transducers. The thickness of the foam
samples was set to 0.5 mm by sandwiching them be-
tween two plastic films, which were as thin as possible
to allow a good transmission of ultrasound. An inver-
sion procedure was used to deduce the effective wavevec-
tor k of sound in the foam from the complex transmis-
sion measured through the three-layer system {film-foam-
film}. This procedure relied on the assumption that ei-
ther the effective density ρeff or the effective compress-
ibility χeff were known. Guided by the model presented
below, we assumed that the effective compressibility of
the liquid foam was given by the usual mixture law:
χeff = Φχℓ + (1 − Φ)χg, where Φ is the liquid volume
fraction and χℓ,g the compressibility of the liquid and
gaseous phase.

Liquid foams with liquid volume fractions ranging from
3% to 22% were obtained by the two-syringe method [19].
As in [19], the foaming liquid was an aqueous solu-
tion containing 10 g/L of sodium dodecyl sulfate to en-
sure good foamability, and 0.5 g/L of xanthane to re-
duce drainage. Given the small thickness of the samples
(0.5 mm), the typical radius of the bubbles (less than
50 µm) and the presence of xanthane, we were able to
neglect the gradient of liquid fraction due to gravity [20].
The gaseous phase was air saturated with vapor of C6F14,
an insoluble gas that slows down ageing. Thus, the typ-
ical time over which the foam was changing (∼ 10 min-
utes) was long enough not only to consider the acoustic
measurements as instantaneous, but also to perform bub-
ble size measurements [19]. To do that, we took a small
sub-sample of the foam from the syringe, and pour it on
a liquid bath to obtain a bubble raft, a two-dimensional
structure easy to image. Assuming that the left-over in
the syringe was ageing the same way as the foam be-
tween the films, we were able to follow the time evolu-
tion of the bubble size distribution. We found lognormal
distributions exp{−[ln(r/R)]2/2ǫ2}/(rǫ

√
2π) with a me-

dian radius R going from 15 to 50 µm in 90 minutes, and
a polydispersity of ǫ ≃ 0.4 without significant time evo-
lution (Fig. 1c).
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FIG. 1: (a) Real part of the wavenumber as a function of
the frequency, measured at three different ageing times in a
liquid foam with Φ = 11%. Lines show dispersion curves
for constant velocities of 32 m/s (dash) and 220 m/s (solid).
(b) Imaginary part of the wavenumber. (c) Median radius
of the bubbles (◦) and polydispersity (•) as functions of the
ageing time. (d) Frequency of the maximum of attenuation
as a function of the median radius; solid line is the Minnaert
frequency fM , dashed line is 1.6fM .

Measurements shown in Fig. 1a clearly indicate that
the propagation of acoustic waves in a liquid foam is dis-
persive. The phase velocity at low frequencies is close
to the value predicted by Wood law: v = [(Φρℓ + (1 −
Φ)ρg)(Φχℓ +(1−Φ)χg)]

−1/2 = 32 m/s for Φ = 11%. But
it significantly deviates from this value as the frequency
increases and the foam ages. At t = 90 min the phase
velocity is of the order of 220 m/s.

The attenuation (Fig. 1b) is also frequency-dependent
and evolves as the foam ages. For the longest times (i.e.
largest bubbles), a peak is clearly visible. One can report
the frequency of the maximum of attenuation fmax as a
function of R (Fig. 1d), and compare it with the Min-
naert frequency fM =

√

3γP0/ρ/(2πR) [15], where P0 is
the pressure of the gas in the bubbles, and γ the ratio of
the specific heat capacities. Taking fmax = 1.6fM gives
a reasonable law (dashed line in Fig. 1d), suggesting an
effective Minnaert resonance, as proposed in previous ex-
periments [13, 14]. However, the Minnaert frequency is
calculated for a single bubble in an infinite volume of liq-
uid of density ρ, and for highly concentrated media such
as foams, it seems unrealistic. Replacing ρ by the ac-
tual density of the surrounding medium Φρ would lead

to 3fM for Φ = 11%, larger than the 1.6 factor we mea-
sured. Moreover, it predicts a resonance frequency that
decreases with Φ, contrary to our experiments (Fig. 2).
Finally, the range of radii over which we measured a max-
imum of attenuation (Fig. 1d) is too small to validate a
scaling law in fmax ∼ 1/R. Instead of limiting our anal-
ysis to the peak of attenuation, we can take advantage of
all the radii by collapsing the data on a master curve: we
plot kRp as a function of fRp, with an exponent p. As
shown in Fig 3, a good collapse is obtained for p = 1.5,
as suggested by the model we present below. This indi-
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FIG. 2: Frequency of the maximum of attenuation as a func-
tion of the liquid fraction, for median radii of 40 µm. Dashed
line is the Minnaert resonance frequency with an effective den-
sity: fM/

√
Φ. Solid line is the prediction of our model.

cates that R is the key parameter that governs the fre-
quency dependence of the acoustic behavior of the foam
(the polydispersity being almost constant with time).
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FIG. 3: Rescaled dispersion relation for a reference median
radius of R0 = 40 µm. Lines are for constant velocities of 32
(dash) and 220 m/s (solid). Inset: the R−1.5 scaling (solid
symbols) is better than the R−1 one (open symbols).

Contrary to usual bubbly media, bubbles in a foam
are in contact through thin films, separated by liquid
channels (also called Plateau borders) and vertices [1].
Usually films contain a very small amount of water,
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hence films and liquid channels have very different iner-
tia, whose influence we shall now model. In first approx-
imation, we neglect polydispersity, and we idealize the
foam as a one-dimensional array of spatial periodicity d
of the following unit cell (Fig. 4a): a flexible, circular
membrane of thickness e and radius a (representing the
soap film), attached to a rigid ring of external radius b
and mass mc (representing the liquid channel), and sur-
rounded by air of density ρa. Experiments show that the
wavelength λ = 2π/Re(k) remains larger than 7R, even
at the highest frequency investigated (Fig. 3). Hence, the
model is based on the hypothesis λ ≫ d.
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30 kHz 150 kHz 800 kHz

position
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FIG. 4: (a) Sketch of the idealized foam structure: a periodic
array of flexible films and rigid rings (representing the liquid
channels), separated by a distance d. (b) Zoom on one unit
cell: the flexible film is attached to a rigid ring sketched as
a square. (c) Profiles of a 20 µm radius film at three differ-
ent frequencies, as predicted by the model for a ∆P = 1Pa
excitation. Note that the deformations are not as high as
suggested by the picture: the maximum of displacement of
the film at 800 kHz for instance is about 1.5 nm, i.e. more
than four orders of magnitude smaller than the diameter of
the film.

To predict the acoustic wavevector, we need to model
the behavior of the unit cell under compression (effective
compressibility χeff), as well as its motion driven by the
average pressure gradient (P3 − P1)/d (effective density
ρeff): k2 = ω2ρeffχeff . Our model geometry resembles
that of Lee et al. [21], who studied sound propagation
through an array of elastic membranes. In particular, in
the limit λ ≫ d, the effective compressibility is the same:
an almost uniform pressure change is applied to the unit
cell, hence its total volume changes as the sum of the
liquid volume change and the gas volume change, which
yields the usual mixture law for the effective compress-
ibility.

The effective density, on the other hand, is more com-
plicated because the flexible film and the rigid ring do
not react the same way when submitted to a given pres-
sure gradient. A portion of the film between r and
r+dr is driven by the pressure force 2πrdr(P1 −P2) (see
Fig. 4a) and by the vertical projection of the tension force
4πσ[(r∂hf/∂r)r+dr − (r∂hf/∂r)r]. In harmonic regime,
hf (r, t) = Re[zf (r)e−iωt], the profile of the film is thus
given by zf (r) = AJ0(qr) + ∆P/(ρeω2), where A is its

amplitude of vibration, ∆P = P2 − P1 the driving pres-
sure, q = ω

√

ρe/2σ the wavenumber of capillary waves
on the film [? ], and J0 the Bessel function of order 0
of the first kind [22]. The unknown constant A is de-
termined by matching the motion of the film edge with
that of the ring: hf (r = a, t) = hc(t). It is interesting
to note that even though the pressure field is uniform
in the lateral direction, it produces oscillations of the
film. This is due to the film being attached to the ring,
which has a different inertia. The ring is driven by the
pressure difference ∆P and by the traction of the film
−4πσa(1− iωτ)(∂zf/∂r)r=a, in which we include a phe-
nomenological damping time τ to account for a friction
force (see SM1 for a full discussion on dissipation). We
finally get the full profile

zf (r) =
∆P

ρeω2

[

1 − mc − mf (b2 − a2)/a2

mc + mf (1 − iωτ)H(qa)

J0(qr)

J0(qa)

]

,(1)

where mf = πa2eρ is the mass of the film and H(qa) =
2J1(qa)/[qaJ0(qa)].

We now consider the motion of air between two con-
secutive films, which is driven by the pressure difference
P2 − P3. As λ ≫ d, we may consider that the whole
air of the unit cell moves as one block with displacement
za given by −maω2za = (P2 − P3)πb2, where ma is the
mass of the air in the cell. Moreover, the air in con-
tact with the film and ring is also entrained by their mo-
tion. By continuity of displacement, we simply assume
that za equals the average displacement of the film and
ring: za = (1 − x)zc + 2x

a2

∫ a

0
rzf (r)dr, where x = a2/b2

is the fraction of the surface covered by the film. We
can then calculate the average displacement za of the
unit cell, and relate it to the effective density ρeff by
ω2ρeffza = (P3 − P1)/d. Finally, we obtain an effective
density of the foam ρeff = (1 − Φ)ρa + Φ′ρ, where the
frequency-dependent effective liquid volume fraction Φ′

is given by

Φ′ =
Φc + Φf (1 − iωτ)H(qa)

1 +
(

x2 Φf +Φc

Φf
− 2x

)

[1 −H(qa)] − iωτxH(qa)
, (2)

with Φc and Φf the volume fraction of liquid contained in
the channels and in the films, respectively: Φc +Φf = Φ.
Eq. (2) predicts two asymptotic non-dispersive behav-
iors. At low frequencies, H(qa) ≃ 1, hence ReΦ′ = Φ:
the mixture law for ρeff is recovered. At high frequen-
cies, H(qa) tends towards 0, leading to Re (1/Φ′) =
(1 − x)2/Φc + x2/Φf . If Φf ≪ Φc[x/(1 − x)]2 (i.e.
films contain a negligible part of water, but with a non-
negligible surface) this last formula reduces to x2/Φf :
the effective liquid density is governed by the films, as in
Kann’s model [12].

The transition between the two asymptotic regimes can
be inspected by noting that 1 − H(qa) ∼0 −(qa)2/8.
Thus, within the approximation Φc ≫ Φf |1 − 2/x|,
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Eq. (2) becomes Φ′ ≃ Φc/[1− (ω/ω0)
2− ixωτ ], similar to

the response function of an harmonic oscillator with a res-
onance frequency ω2

0 = 16σΦf/(ρa2ex2Φ) and a damping
factor xωτ . Interestingly, this resonance frequency de-
pends neither on a nor on e since Φf = nfπa2e, nf being
the number per unit volume of films perpendicular to the
direction of propagation. If we consider that there are N
such films per bubble, we obtain nf = 3N(1−Φ)/(4πR3)
and the resonance frequency becomes

ω2
0 =

12Nσ(1 − Φ)

x2ρΦR3
, (3)

which predicts the experimentally observed R−1.5 scaling
law. The mechanism of this resonance is different from
Minnaert’s one: inertia also comes from water, but here
the restoring force is due to the tension of the film, not
the compressibility of air.

To go beyond and get a quantitative prediction
over the full range of frequencies and sizes, we refine
the model and include polydispersity, as explained in
SM1. Briefly, this amounts to changing H(qa) by I =
∫

H(qa)a2n(a)da/
∫

a2n(a)da in the expression (2) of the
effective liquid fraction, with n(a) the distribution of
film radii. If we assume that this distribution is log-
normal with a median radius a0, a polydispersity ǫf and
a total number of films per unit volume nf , the model
counts a total of nine parameters. Three are known:
σ = 35 mN/m, Φc = 11%, ǫ = 0.4. Four can be es-
timated: x, nf , a0 and ǫf . The surface fraction cov-
ered by films in a liquid foam was studied by Princen
[24]. He found the following empirical dependence on Φ:
x = 1 − 3.20[7.70 + (1 − Φ)/Φ]−1/2, which gives x = 0.2
in our case. Then one can estimate that nf = 1620 films
per mm3 (assuming N = 1), a0 = 15 µm (taking an av-
erage of 6 films per bubble imposes x = 1.5(a0/R)2) and
ǫf = 0.4 (same polydispersity as for bubble radii). The
two remaining parameters were fitted to the experimen-
tal data: τ governs the width of the resonance, e the
high-frequency effective density. With τ = 10 µs and
e = 70 nm, the model agrees well with the experimental
data (Fig. 5). This value of e is compatible with the usual
measurements of film thickness, of a few tens of nanome-
ters [1]. It also justifies the Taylor expansion leading to
Eq. (3), since it leads to (qa)2 ≃ 0.15 at the resonance
frequency (130 kHz). It is less easy to compare τ to any
standard measurement, and the local study of the micro-
scopic dissipation mechanisms at high frequency is left as
a perspective of our work.

The model also captures well the dependence on Φ of
the frequency of the maximum of attenuation, as shown
in Fig. 2. The polydispersity has to be included to obtain
a quantitative comparison (see SM1), but Eq. (3) is suffi-
cient to understand the non-monotonic behavior: for an
increasing liquid fraction, the increase of density (1/

√
Φ

term, as in the modified-Minnaert relation) is dominated
by the shrinkage of the films (1/x term).

A salient feature of our study is the existence of a neg-
ative real part of the density over an extended range of
frequencies (100 to 300 kHz). The mechanism of this neg-
ative effective density is well illustrated by looking at the
displacement of a film and a liquid channel predicted by
(1) (see Fig. 4c). At low frequencies, they move in phase
with the incoming pressure. At high frequencies, only the
film moves. At intermediate frequencies, while the liquid
channel has a small in-phase displacement, the film moves
out of phase with an amplitude large enough to compen-
sate for its small inertia. The net average movement of
the system is then out of phase, which leads to a negative
effective density [? ].
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FIG. 5: Comparison between the measured effective complex
density (◦ real part, • imaginary part) and prediction of the
equivalent of Eq. (2) in the polydisperse model (see SM1).

As a conclusion, we have evidenced two regimes for the
sound propagation in a liquid foam, separated by a reso-
nance. Our study reconciles the seemingly contradictory
results previously reported: a low speed of sound, com-
patible with Wood’s model, at low frequency and small
bubble size; a much higher one, slightly lower than that
in air, at high frequency and large bubble size; and a
resonance in between, with a maximum of attenuation.
This rich variety of behaviors is fully captured by a model
coupling the motion of air, films and liquid channels.

Finally, we have shown for the first time that liquid
foams are naturally acoustic single-negative metamateri-
als, with an effective negative density over an extended
range of frequencies and bubble sizes. Moreover, in con-
trast with most existing metamaterials [25, 26], which are
synthetic, highly ordered materials, this property exists
even though the foam is isotropic and polydisperse. Our
findings could thus bring fresh insight to design metama-
terials for applications such as acoustic insulation.
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