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Resonant bending mode of Terfenol-D/steel/Pb„Zr,Ti…O3 magnetoelectric
laminate composites
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Resonant bending-mode Tb1−xDyxFe2−y / elastic-steel/Pb�Zr,Ti�O3 magnetoelectric �ME� laminate
composites have been investigated. An elastic-steel layer with a relatively high Qm significantly
increases the resonant enhancement of the ME coefficient due to an increased effective Qm of the
laminate. The three-phase ME laminates have a low first-order bending frequency of �5 kHz, with
a resonance-enhanced ME coefficient of �40 V/cm Oe. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2353819�
The magnetoelectric �ME� effect is characterized by an
induced electric polarization in response to an applied mag-
netic field �H�, or by an induced magnetization in response to
an applied electric field �E�.1 Materials with a ME effect
have been reported in single phase materials, composites,
and thin films.2–7 ME effects in two-phase magnetostrictive/
piezoelectric composites are known to be much higher than
those in single phases, offering promise for magnetic mo-
ment sensing and other applications.8–10 Due to a strong
elastic coupling between magnetostrictive and piezoelectric
layers, laminated composites �constructed by epoxing the
two layers together� have recently been the focus of
investigations.5,6,8–17 In this case, when an ac magnetic field
is applied to the laminated composite, the magnetostrictive
layer�s� will elastically force the piezoelectric layer�s� to
strain, generating a piezoelectric charge.

To date, investigations have focused on two phase lami-
nates: consisting of piezoelectric Pb�Zr,Ti�O3 �PZT� or
PbMg1/3Nb2/3O3–PbTiO3 layer�s� epoxied to magnetostric-
tive Tb0.3Dy0.7Fe2 �Terfenol-D�, Fe–Ga, or Co/Zn-ferrite
ones.5,6,8,18 Various laminate configurations have been stud-
ied including longitudinal-longitudinal �LL�, transverse-
longitudinal �TL�, LT, TT, push-pull, bimorph, and
multilayer.11–17,19,20 A resonance enhancement ��100 times�
of the ME voltage coefficient �VME� has been reported at the
first longitudinal mode �f0�.21–23 Such enhancement is poten-
tially very important; however, it is limited to a relatively
high frequency: for example, consider a 15 mm long
Terfenol-D/PZT LT mode laminate, VME�18.5 V/cm Oe at
f0�80 kHz.11 For ME laminates having a Terfenol-D lay-
er�s�, a high resonant frequency of �10 kHz will result in
significant eddy current losses due to the conductive nature
of the Terfenol-D layer, which in turn will dramatically lower
the efficiency of energy conversion. The longitudinal reso-
nance frequency could be lowered by increasing the length
of the Terfenol-D/PZT laminate; however, this goes against
the need for miniaturization of devices. Another alternative
method to overcome eddy current losses might be to cut
Terfenol-D into thin pieces, and then bond these pieces into
stacked layers with high resistant epoxy. Unfortunately,
Terfenol-D is very brittle,24 making it very difficult to cut
into thin layer of �0.5 mm. A unimorph type of ME
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Terfenol-D particulate-epoxy composite/piezoelectric lami-
nate operating in bending mode19 also has relative lower
resonance frequency. However, compared with longitudinal
�LL or LT� modes, the ME coupling in a unimorph bending
mode is relative lower: �15 V/cm Oe in the first bending
resonance mode.19 We believe that this low efficiency is due
to the low effective mechanical quality factor Qm,eff in bend-
ing resonance modes.25–28

In this letter, we will show by incorporating a relatively
high-Qm elastic steel �third phase� layer in magnetostrictive/
piezoelectric laminates that �i� the resonance frequency can
be notably decreased without increasing the size of
Terfenol-D, while �ii� the resonance enhancement of the ME
effect is significantly increased. Our concept for a Terfenol-
D/elastic-steel/PZT ME laminate is illustrated in Fig. 1�a�.
For comparisons, part �b� of this figure illustrates a Terfenol-
D/PZT unimorph-type construction. The sizes of the
Terfenol-D, PZT �APC-850�, and steel layers in Fig. 1�a� are
14�6�1.1, 15�6�0.5, and 32�6�0.09 mm3, respec-
tively. These layers were bonded together using an epoxy.
The magnetization �M� of the magnetostrictive Terfenol-D
layer was oriented along the longitudinal �or X axis� direc-
tion and that of the polarization �P� of the piezoelectric PZT
ones were along the thickness �or Z axis� direction. Because
the Terfenol-D layer was asymmetrically bonded to one side
of the elastic-steel layer �see Fig. 1�a��, a low-frequency
bending moment was produced in response to an applied
magnetic field H that was �X.

We suppose that the ME laminate is a free bar. Its first
bending-mode resonance frequency is much lower than that

FIG. 1. �Color online� Illustration of ME laminate configurations �a�
Terfenol-D/steel/PZT three-phase bending-mode unimorph and �b� Terfenol-

D/PZT unimorph.
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of the fundamental longitudinal mode. Precise solutions to
first bending-mode resonance frequency of this ME laminate
are quite complicated, because of its irregular shape. How-
ever, we noted that the first bending-mode of ME laminate is
mainly determined by high-stiffness elastic steel layer’s
length l and the laminate’s thickness d. By introducing a
mean mass density �̄ and the equivalent elastic compliance
s11 of the laminate, we suppose that the first bending-mode
resonant frequency of the laminate is19,29

f l =
�d

4�3l2
� 1

�̄s11

�1
2, �1�

where �1�3/2 is the first mode order, and the average den-
sity �̄ and equivalent elastic compliance s̄11 of our three-
phase bending-mode laminate are then

�̄ = �m�m + �s�s + �p�p, �2a�

S11 =
S11

m S11
P S11

S

�mS11
P S11

S + �mS11
m S11

S + �SS11
m S11

P , �2b�

where �m, �s, and �p are the volume fractions of Terfenol-D,
elastic-steel, and PZT-850 layers, respectively, �m, �s, and �p
the respective densities of the layers, S11

m , S11
S , and S11

P the
respective elastic compliances of the layers, and �m, �S, and
�P the respective cross-sectional area fractions. Using typical
material parameters for the respective layers of the laminate
given in Table I, Eqs. �1� and �2�, and the laminate geom-
etries given above, we can predict the resonance frequency
of the first bending mode �n=1� of the three-phase laminates
to be �5.1 kHz. This predicted value is very close to the
measured one �as will be shown below in Fig. 3�.

We next calculated the vibrations of the first bending
mode of our three-phase ME laminate using finite element
analysis �FEA�, assuming free-free boundary conditions, as
shown in Fig. 2. Both nodes were located near the two ends
of the Terfenol-D layers. Since the middle part of the lami-
nate has higher effective stiffness and mass than those at the
two ends, the vibration amplitudes at the ends are much
larger than that at the center. Furthermore, the elastic-steel
�high Qm� layer will increase the effective mechanical factor
Qm,eff of the laminate, which will in turn increase the reso-

TABLE I. Typical material parameters for the laminate layers.

Qm

Density
�g/cm�

Elastic compliance
�m2/N�

Volume
fraction

Area
fraction

Terfenol-D �10 9.2 1.67�10−11 0.463 0.651
Steel �200 7.7 5.12�10−12 0.0865 0.053
PZT-850 �80 7.7 1.59�10−11 0.225 0.296

FIG. 2. Illustration of the first bending-mode vibrations, calculated usingticle is copyrighted as indicated in the article. Reuse of AIP content is 

FEA method.
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nance enhancement of VME, in a manner that is directly pro-
portional to the Qm,eff of the laminate,30 given as

dVME/dH 	
Qm,eff
m
p

Z0
, �3�

where 
m and 
p are magnetoelastic and elastoelectric cou-
pling factors in the bending mode and Z0 the characteristic
mechanical impedance of the laminate.

Experimental investigations of the ME properties were
then carried out by placing the laminates in a Helmholtz coil
�holding the sample at the two nodes� and applying a small
ac magnetic field �Hac� along the longitudinal direction of the
laminate. A dc magnetic bias �Hdc� was superimposed to Hac

along that same direction. The voltages induced across the
PZT layer�s� were then measured for various Hdc and Hac
over a wide frequency range of 10–50 kHz using a lock-in
amplifier method.

Figure 3�a� shows VME �in V/cm Oe� for both our three-
phase bending-mode laminate �Fig. 1�a�� and for compari-
sons a corresponding unimorph �Fig. 1�b��. Data are shown
as a function of Hdc at a measurement frequency of f
=100 Hz. A maximum value of VME can be seen for both
laminates at Hdc�300 Oe: this maximum occurs when the
magnetic layer has a maximum effective piezomagnetic co-

FIG. 3. �Color online� Magnetoelectric voltage coefficient �VME� for both
our Terfenol-D/steel/PZT and Terfenol-D/PZT laminates: �a� as a function of
dc magnetic bias taken at a measurement frequency of f =100 Hz and �b� as
a function of frequency taken under a dc magnetic bias of Hdc=300 Oe.
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ME laminate has a notably higher value of VME than our
three-phase one. From these data, it can be concluded that a
colaminated elastic-steel layer in ME laminates does not fa-
cilitate ME coupling at low frequencies.

However, under resonance drive, we will next show that
colamination with an elastic-steel layer increases the reso-
nance enhancement of VME. Figure 3�b� shows VME of both
the bending-mode and unimorph laminates as a function of
the drive frequency. In this figure, our three-phase bending-
mode laminate can be seen to have a sharp resonance fre-
quency at �5 kHz, in agreement with that predicted by Eq.
�3�, with a resonance-enhanced ME coefficient of VME
=40 V/cm Oe, whereas, the unimorph of similar Terfenol-D
and PZT layer geometries had a first bending-mode reso-
nance frequency of 19.2 kHz and a resonance-enhanced VME
of 22 V/cm Oe.

The effective mechanical quality factor can be deter-
mined from the resonance peak as Qm,eff= fr /�f , where �f is
the 3 dB bandwidth. For our three-phase laminate Qm,eff
�78, whereas that of the unimorph was �30: a ratio of
�2:1, similar to that experimentally observed in VME �see
Fig. 3�b��, and consistent with predictions of Eq. �3�. These
data demonstrate that a relatively high Qm elastic phase will
increase the value of laminate’s Qm,eff, which result in in-
creased resonance enhancement in VME. The results provide
insights into how enhanced ME interactions over desired fre-
quency ranges can be developed by designing laminate con-
figurations: such flexibility could be important to electro-
magnetic energy conversion, sensors, filters, and resonators
based on ME laminates.

In summary, a resonant bending-mode has been investi-
gated in Terfenol-D/elastic-steel/PZT ME laminates. We
have found that said three-phase laminates have larger reso-
nance enhancements in the ME voltage coefficient �i.e., high
Qm,eff due to a high Qm colaminate elastic-steel layer�, while
operated at significantly lower resonance frequencies �i.e.,
length extensional bending-mode vibration�. Our three-phase
bending-mode laminates had ME voltage coefficients of
�40 V/cm Oe at resonance frequencies of �5 kHz.
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