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Abstract
In this paper we propose a special type of colocated feedback controller for
smart structures. The controller is a parallel combination of high-Q resonant
circuits. Each of the resonant circuits is tuned to a pole (or the resonant
frequency) of the smart structure. It is proven that the parallel combination
of resonant controllers is stable with an infinite gain margin. Only one set of
actuator–sensor can damp multiple resonant modes with the resonant
controllers. Experimental results are presented to show the robustness of the
proposed controller in damping multimode resonances.

1. Introduction

The advancement in materials technology has enabled
multi-layered structures where actuators, sensors and the
main structure form one whole component [1]. These compo-
site structures are called intelligent or smart structures. Smart
structures have found wide applications in areas such as
acoustic noise control [2, 3] and vibration control of washing
machines [4]. In this paper we propose a controller which is
robust and can be programmed to damp only a few or several
resonant modes at a time [5]. These controllers have also found
application in active noise control of acoustic ducts [6]. The
motivation behind this controller is that, in many situations,
it may be desirable to embed many discrete actuators in a
structure [7] rather than spread out film-type actuators [2]. A
necessary requirement for multiple discrete sensor–actuator
pairs is that they provide a robust control. The closed-loop
robust stability of the controllers suggested in this paper is
proven and experimentally demonstrated.

In order to achieve a given task with minimum energy
requirements or where large structures are necessary, for
example, space structures [7], large telescopes [8] or large
antennae, smart structures have an in-built flexibility. The
flexibility in the structures is characterized by several resonant
modes seen in figure 1 for a cantilever beam. The frequency
response in figure 1 is characteristic of most flexible structures;
it is the colocated response of a typical flexible structure shown
in figure 2.

Due to the resonant modes of flexible structures, a
disturbance (f (d, t) in figure 2) results in a response
which is highly underdamped and if uncontrolled takes a
long time to settle. This undamped response makes the
use of an uncontrolled flexible structure unacceptable in most
applications. The modelling and control of flexible structures
has been a subject of active research for some time now [9–11].
There are several methods to control flexible structures. Under
most conditions the disturbance control problem for flexible
structures is a linear control problem. It is generally known
that colocated velocity feedback results in a robust system
with guaranteed closed-loop stability [12, 13]. The stability
guarantee is not valid for dynamic actuators. Another equally
simple control scheme, known as positive position feedback,
has been proposed [14, 15] which retains the guaranteed
stability margins. The positive position feedback consists of
second-order filters (with no zeros) and the control design
consists in suitably choosing the poles and the damping of the
filters. The selection of the poles and damping is a non-trivial
task and new methods are being proposed [16] to improve the
design process. The controllers proposed in this paper are
also second-order filters but with two zeros: one zero is at
the origin and the other is an LHP real zero. Moreover, the
real zero and the complex poles are parameterized by three
common parameters which leads to a guaranteed infinite gain
stability margin. In addition to these practically attractive
qualities, this method can damp multiple modes with only one
sensor–actuator pair.
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Figure 1. Analytical frequency response.

Figure 2. A flexible structure.

Figure 3. Feedback control RLC network.

Advanced linear control system ideas have also been
applied to flexible structures and often with good results. The
standard LQG [17], the H∞ control [18, 19] and minimax
LQG [20] have also been successfully used to control flexible
structures. The effect of these controllers is to ‘push’ the
resonant peak down, i.e. to increase the system damping.
Independent modal control (pp 161–3 in [9]) is another method
to damp flexible structures. For effective modal control one
actuator per resonant mode is needed. The controller proposed
in this paper uses only one actuator to damp several of the
resonant modes. In this paper ‘sensors’ and ‘actuators’ both
refer to piezoelectric materials but the proposed method will
work for any pair of appropriate sensors and actuators. In
short this paper proposes a direct method to ‘push’ down the
resonant peaks using high-Q resonant circuits as shown in
figure 3. The results of the experimental validation of this
method are presented in this paper.

Figure 4. Flexible structure with feedback controller.

Figure 5. Feedback control block diagram.

This paper is organized as follows. Section 2 discusses
the resonant controllers. Section 3 develops the mathematical
model of the system. Section 4 proves the closed-loop stability
with colocated resonant controllers. Experimental results are
presented in section 5 followed by the conclusions.

2. Controller selection and design

The structure of the closed-loop system is shown in figure 4.
The disturbance signal is F(d, s), the output sensor voltage
is Vs(s), the actuator voltage is Va(s) and Y (r, s) is the
displacement of the structure at location r .

The actuator voltage Va(s) is given by

Va(s) = −A(s)Vs(s) + Vi(s) (1)

where A(s) =
N∑
i=1

Ai(s) and Ai(s) are of the form

Ai(s) = −kai
Cis(Ri + Lis)

LiCis2 + RiCis + 1
(2)

with ω2
i = 1

LiCi
; ωi is the ith resonant frequency of the

flexible structure. The resistance Ri is chosen to maximize
the damping of the closed-loop system.

This configuration is motivated by the passive RL network
controllers in [21, 22]. In cases where the gain kai = 1, the
controller Ai(s) can be completely implemented using a series
RLC network shown in figure 3.

Let the block transfer functions in figure 4 be defined as
follows for an open-loop situation (A(s) = 0):

Gfv(s)
�= Vs(s)

F (d, s)

∣∣∣∣
Vi(s)=0

Gvv(s)
�= Vs(s)

Va(s)

∣∣∣∣
F(d,s)=0

Gfy(r, s)
�= Y (r, s)

F (d, s)

∣∣∣∣
Vi(s)=0

Gvy(r, s)
�= Y (r, s)

Va(s)

∣∣∣∣
F(d,s)=0

.
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Figure 6. Experimental frequency response for different resistors.

With the above definitions the sensor voltage is given by

Vs(s) = Gfv(s)F (d, s) + Gvv(s)Va(s).

After substituting equation (1) into the above expression

Vs(s) = Gfv(s)F (d, s) − Gvv(s)A(s)Vs(s) + Gvv(s)Vi(s)

on rearranging the terms the closed-loop transfer function is

Vs(s) = Gfv(s)F (d, s)

1 + A(s)Gvv(s)
+

Gvv(s)Vi(s)

1 + A(s)Gvv(s)
. (3)

Equation (3) can also be used to get displacement at a
given location r in the flexible structure

Y (r, s) = Gfy(r, s)F (d, s)

1 + A(s)Gvv(s)
+

Gvy(r, s)Vi(s)

1 + A(s)Gvv(s)
. (4)

From the transfer functions in equations (3) and (4) it can
be seen that the feedback is effective only for the frequency
range where |A(ω)Gvv(ω)| is large. In the present approach
A(s) is a parallel connection of high-Q resonant circuits. Each
circuit is tuned to a resonant mode of the flexible structure,
making the feedback effective only at resonant frequencies.

2.1. Selection of R

For each resonant controller of equation (2), the values of
the inductor and the capacitor are chosen such that the circuit
resonant frequency is the same as one of the flexible structure
resonant frequencies. The selection of a suitable value of the
resistance is the key to obtaining a good closed-loop response.
If the damping resistor in the resonant filter of equation (2)
is selected to be too low, there is a notch at the resonant
frequency and there is an undesirable shift in closed-loop
poles. For high values of the resistance there is hardly any
damping in the structure. These two effects are shown for
an experimental cantilever beam in figure 6. In this study R

was chosen from numerical simulations and then experimental
observations. The experimental results show the success of
this method. Work is under progress to develop a suitable
optimality criterion to choose R which is solvable by standard
optimization methods.

2.2. Multiple resonant mode controllers

The resonant mode circuit idea can be easily extended to damp
multiple resonant modes. Instead of one feedback circuitA(s),
several of these circuits can be applied in parallel to give the
closed-loop transfer function given below:

Y (r, s) = Gfy(r, s)F (d, s)

1 +
∑N

i=1
Ai(s)Gvv(s)

+
Gvy(r, s)Vi(s)

1 +
∑N

i=1
Ai(s)Gvv(s)

(5)

where the resonant mode filters Ai(s) are of the form given
in equation (2). Each resonant filter is tuned to a resonant
frequency of the structure. The damping resistor for each
of the resonant filters can be chosen independently because
the action of the resonant filters is mostly uncoupled. In the
next section a cantilever beam is selected to demonstrate these
concepts.

3. Model of the laminate beam

We consider the piezoelectric laminate cantilevered beam of
figure 7. The beam is fixed at one end and free at the other.
The two piezoelectric patches in figure 7 are used as actuators
and/or sensors. There are several different approaches to
obtain the system model from the solution of the Euler–
Bernoulli partial differential equation, with the associated
boundary conditions, see for example [23, 24]. However, to
find a solution which suits our controller design methodology,
we adopt the assumed modes approach of [11].

Let y(r, t) denote the elastic deformation of the beam as
measured from the rest position. The elastic deflection y(r, t)

is governed by the classical Bernoulli–Euler beam equation

∂2

∂r2

[
EI

∂2y(r, t)

∂r2

]
+ ρA

∂2y(r, t)

∂t2
= Ca

∂2va(x, t)

∂r2
(6)

where E, I , A, w(r, t) and ρ represent Young’s modulus,
the moment of inertia, the cross-section area, the external
force per unit length and the linear mass density of the beam,
respectively. The cantilever beam boundary conditions are

y(0, t) = 0 EI
∂y(0, t)

∂r
= 0

EI
∂2y(l, t)

∂r2
= 0 EI

∂3y(l, t)

∂r3
= 0.

(7)

The main idea of the assumed modes approach is to expand
the function y(r, t) as an infinite series in the form [11, 25]

y(r, t) =
∞∑
i=1

qi(t)φi(r) (8)

where φi(r) are the eigenfunctions satisfying the ordinary
differential equations, resulting from the substitution of
equation (8) into equations (6) and (7). The general form of the
mode shapes φi(r) chosen for the beam-type of problem is

φi(r) = Ai sinλir + Bi cos λir + Ci sinhλir + Di cosh λir.

There is a considerable latitude in choosing the constants Ai ,
Bi ,Ci andDi . To fix these constants the mode shapes φi(r) are

3
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Figure 7. Piezoelectric laminate beam.

constrained to satisfy the following orthogonality property:∫ L

0
φi(r)φj (r)ρA dr = ρAL3δij (9)

∫ L

0
φ′′
i (r)φ

′′
j (r)ρA dr = ρAL3ω2

i δij (10)

where δij is the Kronecker delta function. With this ortho-
gonality and the boundary conditions, the mode shape is given
by

φi(r) = L

(
cosh λir − cos λir − cos λiL + coshλiL

sinλiL + sinhλiL

× (sinh λir − sinλir)

)

where λi are the roots of the following equation:

1 + cos λiL cosh λiL = 0.

Multiplying the Bernoulli–Euler equation (6) by φj(r) and
integrating over [0, L] we have

EI
∫ L

0

∞∑
i=0

qi(t)φ
′′′′
i (r)φj (r) dr +ρA

∫ L

0

∞∑
i=0

q̈i (t)φi(r)φj (r) dr

=
∫ L

0
Ca

∂2va(x, t)

∂r2
φj (r) dr. (11)

The voltage va(x, t) is constant in the range [x1, x2], and the
right-hand side of equation (11) can be written as∫ L

0
Ca

∂2va(x, t)

∂r2
φj (r) dr

=
∫ L

0
Ca[δ′(x1) − δ′(x2)]va(t)φj (r) dr

= Ca[φ′
j (x1) − φ′

j (x2)]va(t). (12)

Noting that φ′′′′
i (r) = λ4φi , the ith mode equation can be

written as

ρAL3
(
q̈i (t) + ω2qi(t)

) = Ca[φ′
i (x1) − φ′

i (x2)]va(t)

i = 1, . . . ,∞. (13)

The above modal equations (13) can be put together to give
the following transfer function between the voltage applied to
the piezoelectric patch, Va(r, t), and the displacement y(r, t)
[26, 23, 24]:

Gvy(s)
�= Y (r, s)

Va(s)
=

∞∑
i=1

Caφi(r)[φ′
i (r1) − φ′

i (r2)]

ρAL3
(
s2 + ω2

i

) (14)

where Ca = 1
2Ead31w(ta + tb), d31 is the electric charge

constant of the film, Ea is Young’s modulus of the film and

Table 1. Parameters of the piezoelectric laminate beam.

Beam length, L 0.775 m
Beam width 0.05 m
Beam thickness, tb 0.00589 m
Piezoceramic position, r1 0.03 m
Piezoceramic position, r2 0.10 m
Charge constant, d31 −210 × 10−12 m v−1

Voltage constant, g31 −11.5 × 10−3 Vm N−1

Coupling coefficient 0.340
Capacitance, C 32.9 nF
Piezoceramic width 0.025 m
Piezoceramic thickness ta 1 × 10−3 m

Table 2. The first eight modes of the cantilever beam.

ωi (Hz)

Mode Experimental Analytical

1 7.98 7.96
2 50.04 47.75
3 140.14 134.9
4 274.61 258.3
5 453.95 430.5
6 678.13 644.5
7 947.13 903
8 1261.0 1206

ta is the thickness of the piezo-patch. Also, the frequencies

ωi are related to λi by ωi =
√

EI
ρA
λ2
i , where E, I , A, Va(r, t)

and ρ represent Young’s modulus, the moment of inertia, the
cross-section area, the voltage across the actuating layer and
the linear mass density of the beam, respectively.

The parameters for the experimental beam at the
University of Newcastle and the PIC151 piezoceramic
parameters are given in table 1. The first eight values of
ωi for this beam are shown in table 2.

Equation (14) describes the elastic deflection of the
entire flexible beam due to a voltage applied to the actuating
piezoelectric layer. Our controller design is based on this
particular model. The sensor voltage expression can be written
as [27]

vs(t) = Cs

∞∑
i=1

qi(t)(φ
′
i (r2) − φ′

i(r1)).

Substituting the above expressions in the transfer
functions defined earlier, we get

Gfv(s)
�= Vs(s)

F (d, s)
=

∞∑
i=1

Csφi(d)[φ′
i (r2) − φ′

i (r1)]

ρAL3
(
s2 + ω2

i

) (15)
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Gvv(s)
�= Vs(s)

Va(s)
= −

∞∑
i=1

CaCs[φ′
i (r1) − φ′

i (r2)]2

ρAL3
(
s2 + ω2

i

) (16)

and

Gfy(r, s) =
∞∑
i=1

φi(r)φi(d)

ρAL3
(
s2 + ω2

i

) . (17)

In the next section we look at the closed-loop stability of the
resonant controllers.

4. Closed-loop Stability

The passivity theorem [28] is used here to prove the stability
of the closed-loop system. A linear system is said to be passive
if the phase of its frequency response is within ±90◦, i.e. it
stays in the first and the fourth quadrant. The passivity theorem
states that a feedback interconnection of two passive systems is
passive. In the following we show that the closed-loop system
can be written as an interconnection of two passive systems.

Theorem 1. The closed-loop system

Vs(s) = Gvv(s)Vi(s)

1 +
∑N

i=1 sGvv(s)Ãi(s)

with

Ãi(s) = −kai
Ci(Ri + Lis)

LiCis2 + RiCis + 1

is stable for all Li > 0, Ri > 0, Ci > 0 and kai > 0.

From equation (16) we have

−sGvv(s) =
∞∑
i=1

sCaCs [φ′
i (r1) − φ′

i (r2)]2

ρAL3
(
s2 + ω2

i

) .

It can be easily verified that R
{

ω

−ω2+ω2
i

}
� 0,∀ω ∈

[−∞,∞], that is s

s2+ω2
i

is passive. Further defining,

ci
�= CaCs[φ′

i (r1) − φ′
i (r2)]2

ρAL3

−sGvv(s) can be seen as a positively weighted (ci > 0) sum
of passive transfer functions. This implies that −sGvv(s) is
passive [28]. Similarly it can be seen that Ãi(s) is strictly
passive (Ãi (jω) + Ãi(−jω) � 0 ∀ω). Again Ã(s) is a sum
of positively weighted transfer functions, hence the strict
passivity of Ã(s). The stability of the closed-loop system is
due to the passivity theorem [28] which states that a negative
feedback interconnection of a passive system and a strictly
passive system is stable.

Remarks

1. With the above definition Ãi(s) = Ai(s)

s
, where Ai(s) are

the resonant controllers given in equation (2). Theorem 1
proves the stability of the closed-loop systems considered
in this paper. The theoretical gain margin of these
controllers is infinity.

2. The above discussion implies that the phase of Gvv(s) is
always between 0◦ and 180◦, implying the well-known
pole-zero interlacing property of the colocated transfer
functions.

Figure 8. Experimental beam.
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Figure 9. Experimental frequency response for the first mode.

5. Experimental verification

The experimental set-up at the University of Newcastle is
shown in figure 8. A cantilever beam with two piezoelectric
patches is used to demonstrate the method. The parameters for
the beam are given in table 1. A lowpass filter with a cut-off
at 300 Hz is used to filter out the effect of discretized output
from the digital controller. A Tektronix active probe was
used to sample the sensor voltage to avoid loading the sensor.
A ds1102 dSPACE board is used to implement the digital
controller with a 2 kHz sampling frequency. A HP spectrum
analyser was used to obtain frequency response between Vs(s)
and Vi(s) as shown in figure 8.

Experiments were performed to damp the first, second and
third modes, both individually and jointly. The resonant con-
troller for the first mode A1(s) can be built with ω1 = 7.98 Hz,
R1 = 2.5 k/, C1 = 1µF and L1 = 39.716 H. Figure 9 shows
the open-loop and closed-loop frequency responses of the
system. The sinusoidal response (7.98 Hz) of the open-loop
and closed-loop systems is shown in figure 10.

The responses with the resonant controller (ω2 = 49.9 Hz,
R2 = 250/, C2 = 1µF and L2 = 10.994 H), to control the
second mode, are shown in figures 11 and 12. These figures
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Figure 11. Experimental frequency response for the second mode.
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Figure 13. Experimental frequency response for the third mode.
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Figure 14. Experimental sinusoidal response for the third mode.

clearly demonstrate the improvement due to the resonant
controller.

The third mode controller A3(s) for the resonant
frequency ω3 = 135 Hz needs R3 = 130/, C3 = 1µF
and L3 = 1.3899 H. Figures 13 and 14 show the frequency
response and the sinusoidal response for the open-loop and
closed-loop systems, respectively. Again the improvement in
the response is obvious.

Note that the resonant peak in figure 13 has almost
disappeared.

5.1. All three mode controllers

All three modes can be damped simultaneously using one
sensor–actuator pair and three parallel combinations of
resonant mode controllers. The frequency response of such a
system is shown in figure 15. Figure 16 shows the frequency
response for the entire frequency range of interest. The
robustness of the method is clearly demonstrated from these
figures.
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6. Conclusions

The experiments have shown the effectiveness of the proposed
resonant controllers, both in their robustness and multi-modal
control of smart structures. The structure of these controllers is
simple and they can be implemented very easily using passive
circuit elements and two op-amps. These controllers can be
effectively used to damp other distributed parameter systems,
e.g. active control of acoustic noise. In conclusion, in this
paper we present a simple and yet effective method to damp
oscillations in distributed parameter systems such as smart
structures.
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