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We address the recently observed unexpected behavior of Aharonov-Bohm oscillations in the electronic
Mach-Zehnder interferometer that was realized experimentally in a quantum Hall system [I. Neder et al.,
Phys. Rev. Lett. 96, 016804 (2006)]. We argue that the measured lobe structure in the visibility of
oscillations and the phase rigidity result from a strong long-range interaction between two adjacent
counterpropagating edge states, which leads to a resonant scattering of plasmons. The visibility and phase
shift, which we express in terms of the transmission coefficient for plasmons, can be used for the
tomography of edge states.
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Quantum interference effects, particularly the
Aharonov-Bohm (AB) effect [1], and their suppression
due to interactions [2] have always been a central subject
of mesoscopic physics, and by now are thoroughly inves-
tigated. However, recent experiments on the AB effect in
Mach-Zehnder (MZ) [3,4] and Fabry-Perot–type [5] inter-
ferometers, which utilize quantum Hall edge states [6] as
one-dimensional conductors, have posed a number of puz-
zles indicating that the physics of edge states is not yet well
understood [7]. For instance the lobe-type pattern in the
visibility of AB oscillations as a function of voltage bias, as
well as the rigidity of the phase of oscillations followed by
abrupt jumps by �, observed in Ref. [3], cannot be ex-
plained within the single-particle formalism [8] that is
supposed to describe edge states at integer filling factor [9].

Indeed, according to a single-particle picture, the elec-
tron edge states propagate as plane waves with the group
velocity vF at Fermi level. They are transmitted through
the MZ interferometer (see Fig. 1) at the left and right
quantum point contacts (QPCs) with amplitudes tL and tR,
respectively. In the case of low transmission, two ampli-
tudes add so that the total transmission probability T /
jtLj2 � jtRj2 � 2jtLtRj cos�’AB � ���x=vF� oscillates as
a function of the AB phase ’AB and bias ��, where �x is
the length difference between two interfering paths of the
interferometer. The AB oscillations may be seen in the
differential conductance G � dI=d��, which is given by
the Landauer-Büttiker formula [8],G � T=2�. The degree
of coherence is quantified by the visibility of AB oscilla-
tions VAB � �Gmax �Gmin�=�Gmax �Gmin�, which for low
transmission acquires the simple form

 V�0�AB � 2jtLtRj=�jtLj
2 � jtRj

2�; (1)

i.e., it is independent of bias. Moreover, the phase shift of
AB oscillations is just a linear function of bias; �’AB �
���x=vF.

Dephasing in ballistic mesoscopic rings was reported in
Ref. [10] and theoretically addressed in Ref. [11]. Since the

first experiment on an electronic MZ interferometer [4],
several theoretical models of dephasing in this particular
system have been proposed, including classical fluctuating
field [12] and dephasing probe [13] models. However, the
unusual dephasing of AB oscillations in Ref. [3] (also see
[14]) seems to arise from a specific interaction at the edge
of a quantum Hall system.

In this Letter we propose a model which may explain the
unusual AB effect. We note that an important feature of the
MZ setup [3] is the existence of a counterpropagating edge
state (labeled as �3 in Fig. 1), which closely approaches
the edge state forming the upper arm of the interferometer
(labeled as �2 in Fig. 1) and strongly interacts with it [15].
Being localized inside a finite interval of the length L, the
interaction leads to a resonant scattering of collective
charge excitations (plasmons), which carry away the phase
information. As a result, AB oscillations vanish at certain

FIG. 1 (color online). Schematic representation of the elec-
tronic Mach-Zehnder interferometer experimentally realized in
Ref. [3]. Two edge states (blue lines, �1 and �2), which
propagate from left to right, are coupled via two quantum point
contacts and form the Aharonov-Bohm loop. The bias ��
applied to one of the source Ohmic contacts causes the current
I to flow around the loop, so that the differential conductance
G � dI=d�� oscillates as a function of the phase ’AB. The
specific property of the setup in Ref. [3] is that the third counter-
propagating edge state (red line, �3) closely approaches the
upper branch of the MZ interferometer (inside the resonator
shown by a dashed box) and strongly interacts with it.
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values of bias �� (see Fig. 2), where the AB phase jumps
by �. We found an important relation between the trans-
mission coefficient of plasmons and the visibility of AB
oscillation, Eqs. (5) and (11), which opens a possibility for
the tomography of the edge state interactions.

Model of a Mach-Zehnder interferometer.—To describe
quantum Hall edges at filling factor � � 1, we apply the
chiral Luttinger liquid model [9,16] and write the
Hamiltonian as H � �vF=4��

P
�

R
dx�r���x��

2 �Hint.
The bosonic fields ��, � � 1, 2, 3, describe low-energy
collective charge excitations at the edges; ���x� �
�1=2��r���x�. They satisfy the commutation relations:
����x�; ���y�� � �i�sgn�x� y�, where the minus sign
stands for the counterpropagating field �3. Details of
the interaction Hint are not exactly known. Here we as-
sume a general density-density interaction: Hint �

�1=2�
P
��dxdyU���x; y����x����y�.

We note that electron-electron interaction within one
edge, while generally leading to a smooth suppression of
the visibility [17] as a function of ��, cannot explain the
lobe structure observed in Ref. [3]. We therefore fur-
ther assume that only the elements U23 and U22 � U33

inside the resonator are nonzero. Going over to the
canonical variable � � ��2 ��3�=2 and its dual variable
� � ��3 ��2�=2, such that ���x�;r��y�� � i�	�x� y�,
we obtain the final Hamiltonian H � �v=4��	R
dx�r�1�x��2 �HLL, where the important part,

 HLL �
vF
2�

Z
dx��r��2 � �r��2� �

ZZ dxdy

4�2

	�U�x; y�r��x�r��y� � V�x; y�r��x�r��y��;

(2)

takes into account the interaction, U 
 U22 �U23, V 

U22 �U23, at the resonator.

In the experiment [3], two point contacts located at x‘,
‘ � L, R, mix the edge states and allow interference
between them. This can be described by the tunneling
Hamiltonian [18]
 

HT � A� Ay; A � AL � AR; (3a)

A‘ � t‘ 
y
2 �x‘� 1�x‘�; ‘ � L;R; (3b)

where  1 and  2 are electron operators, and the tunneling
amplitudes t‘ depend on the Aharonov-Bohm phase ’AB.

Visibility of Aharonov-Bohm oscillations.—We will in-
vestigate interference effects in the tunneling current I �
i�A� Ay�; see Fig. 1. To the lowest order in tunneling
amplitudes t‘ its expectation value is given by I �R
dth�Ay�t�; A�0��i [19], where the average is taken with

respect to the ground state of the system biased by the
potential difference ��. Taking into account Eqs. (3), we
write the total current as a sum of three terms: I � IL �
IR � ILR, where two terms I‘ �

R
dth�Ay‘ �t�; A‘�0��i are

direct contributions of two point contacts, and ILR �

R
dth�AyL�t�; AR�0��i � c:c: is the interference term that

contains the AB phase.
Next, we recall that in our model the interaction is

effectively present only at the resonator between points
xL and xR. There are two important consequences of this.
First, the interaction cannot affect direct contributions IL
and IR. Therefore, we readily obtain the conductances for
noninteracting electrons: dI‘=d�� � G‘ � 2�n2

Fjt‘j
2,

where nF is the density of states at the Fermi level.
And second, the interference term, GLR � nFtLtR	
exp�i���x=vF�G�� � c:c:, still depends on the inter-
action via the Fourier transform G�� � v�1

F

R
dX	

exp�i���=vF�X�G�X� of the electronic correlator

 G �X� � h 2�xL; t� 
y
2 �xR�i; (4)

which, however, depends on coordinates only via the com-
bination X 
 xR � xL � vFt. Thus we obtain an important
result for the visibility of AB oscillations and for the AB
phase shift:
 

VAB=V
�0�
AB � �1=2�nF�jG��j; (5a)

�’AB � ���x=vF � arg�G���; (5b)

where V�0�AB is the visibility in the absence of interaction; see
Eq. (1).

Electron correlation function.—As a next step, we quan-
tize plasmons, taking into account inhomogeneous inter-
action. The Hamiltonian (2) generates two coupled
equations of motion for fields� and �. We choose periodic
boundary conditions on the spatial interval of the lengthW,
which in the end is taken to infinity. Then the equations of
motion may be solved in terms of an infinite set f�n;�ng
of mutually orthogonal eigenfunctions that satisfy equa-

FIG. 2. In the case of a long-range interaction of counter-
propagating edge states at the resonator of the length L (see
Fig. 1), the visibility of Aharonov-Bohm oscillations varies as a
function of the normalized bias, ��L=2vF, in a lobelike man-
ner. The phase of AB oscillations (not shown) stays constant at
the lobes and changes abruptly by � at zeros of the visibility. The
visibility is plotted here for the simplified capacitive coupling
model, Eq. (14), with TL � TR.
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tions
 

!n�n � vFr�n � ��2��
�1
Z
dyV�x; y�r�n�y�; (6a)

!n�n � vFr�n � �2���1
Z
dyU�x; y�r�n�y� (6b)

and can be chosen to be real and normalized as follows:

 

Z W

0
dx�n�x�r�m�x� � �!n	nm: (7)

The solutions then read
 

��x; t� �
X
n

���������
�

2!n

s
�n�x��ane

�i!nt � aynei!nt�; (8a)

��x; t� � i
X
n

���������
�

2!n

s
�n�x��ane�i!nt � aynei!nt�; (8b)

where the plasmon operators an satisfy the commutation
relations �an; a

y
m� � 	nm and diagonalize the Hamiltonian:

HLL �
P
n!na

y
nan.

Proceeding with the bosonization of the electron opera-
tors, we write  2 / exp�i��� ���, where the normaliza-
tion prefactor is determined by the ultraviolet cutoff [16].
In the zero-temperature case considered here the evalu-
ation of the correlation function G�X� amounts to normal
ordering of the product  2�xL; t� 

y
2 �xR�, taking into ac-

count Eqs. (8). We finally obtain the following result:

 logG � �
X
n

�
4!n
fjFn�xL�j2 � jFn�xR�j2

� 2F�n�xL�Fn�xR�e�i!ntg; (9)

where Fn�x� � �n�x� � i�n�x�.
Scattering of plasmons.—We note that the result (9)

holds for arbitrary potentials U and V. However, in our
model the interaction is localized between points xL and
xR; therefore, the correlator (9) can be expressed in terms
of the scattering properties of plasmons. Indeed, in an open
system, the differential Eqs. (6) describe the scattering of
incoming plane waves with continuous spectrum ! �
vFk > 0 to outgoing plane waves. The scattering matrix
is symmetric; therefore, quite generally we can write for
the transmission coefficient T � jT jei’ and for the re-
flection coefficients R � ijRjei�’�	� and R0 �

ijRjei�’�	�, where ’ and 	 are scattering phases.
Imposing now the periodic boundary condition on the
interval �0; W�, we obtain a discrete set of eigenfunctions
f�n;�ng, n � 0;�1; . . . , which take the following form
outside the scattering region:

 �n�x� �

���������
2vF
W

s
	

�
sin�knx�

1
2 �knW � 	��; n > 0;

cos�knx�
1
2 �knW � 	��; n < 0;

(10)

and �n�x� � ��n�x�. They are normalized according

to Eq. (7), and the spectrum is given by knW �
j2�n� arccosjT j � ’j.

Substituting now �n and �n from Eq. (10) into Eq. (9)
and taking the limit W ! 1, we finally express the corre-
lation function of electrons in terms of the transmission
coefficient T for plasmons:

 logG�X� � �
Z 1

0

dk
k
�1�T ��k�e�iXk�; (11)

where, we remind, X 
 xR � xL � vFt. This equation to-
gether with Eqs. (5) is one of the central results of our
paper. In the noninteracting case the transmission is per-
fect, T � 1, and Eq. (11) generates the correlator G �
�ivFnF=�X� i0� for free fermions. One obtains jG��j �

2�nF, which implies [see Eqs. (5)] that the transport is
coherent for arbitrary bias ��. Conversely, in the case of
nonzero interaction T ! 0 for large k, the correlator G
becomes independent of t, and the visibility VAB vanishes
for large bias ��. Next, we consider a simple and natural
model of a long-range interaction, which qualitatively
reproduces the puzzling results of the experiment [3].

Long-range interaction model.—We assume capacitive
coupling between edge states: Hint � Q2=2C, where Q �R
L
0 dx��2 � �3� is the total charge in the interaction region.

ThenU � 2=C inside the interval �0; L�, while V � 0. The
Eqs. (6) are straightforward to solve, and we obtain the
transmission coefficient: T � 1� �1=2�jDj2=�D�
i�!C�, where D � eikL � 1.

We are interested in the first few resonances; therefore
kL� 1. Then the second term in the denominator of T is
of the order of vF=e2, i.e., the inverse interaction constant.
In the quantum Hall system of [3] this value is much
smaller than 1, so the second term in the denominator
can be neglected, and we arrive at

 T � �1� e�ikL�=2: (12)

It is quite remarkable that the interaction constant drops
from the final result, leading to the universality which will
be addressed below.

The evaluation of the integral (11) is now straightfor-
ward, and we obtain the electron correlator

 G �X� � �ivFnF��X� i0��X� L� i0���1=2: (13)

Evaluating further the Fourier transform of G, we find that
G�� � 2�nF exp�i��L=2vF�J0���L=2vF�, where J0 is
the zero-order Bessel function. Finally, using Eqs. (5) we
obtain that (see Fig. 2)

 VAB=V
�0�
AB � jJ0���L=2vF�j; (14)

while ’AB���� exhibits � jumps at the zeros of the Bessel
function, in full agreement with the experiment [3]. The
characteristic L dependence of the position of zeros of the
visibility suggests that our theory may be experimentally
verified by changing the length L of the resonator.
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The key feature of the model is the presence of strong
jumps in the potential U at the points x � 0 and x � L.
The system compensates this effect by adjusting ��0� �
��L�, which immediately gives T eikL � 1�R, and
T � e�ikL �R0eikL, independent of details of the inter-
action. Solving these equations we obtain T �
cos
ei�
�kL�, where the phase 
 depends on the interac-
tion. In our capacitive model U is constant, and 2
 is equal
to the phase kL, accumulated between x � 0 and x � L,
which leads to the result (12). The phase 
 will increase if
the realistic repulsive interaction is taken into account.
However, this should merely shift zeros of the visibility
downward, as compared to zeros of the Bessel function.

Short-range interaction model.—To complete our analy-
sis, we investigate the case of short-range interactions at
the edge and therefore write U � 2�U0	�x� y� and V �
2�V0	�x� y�. Then the Hamiltonian acquires the stan-
dard form [16] HLL � �1=2��

R
dx��v=K��r��2 �

vK�r��2�. The jump in the group velocity v and the
Luttinger constant K at the points x � 0 and x � L lead
to resonant scattering of plasmons. The result for the
electronic correlator may be presented as follows:

 G � �ivFnF
Y1
n�0

�X� Xn � i0�
��n ; (15)

where Xn � ��2n� 1��vF=v� � 1�L, and �n � 4K=�K �
1�2 	 ��K � 1�=�K � 1��2n. The infinite product in (15) is
due to multiple scattering at the ends of the resonator and
Xn are the lengths of corresponding paths. The result of the
numerical evaluation of the Fourier transform for G�� is
shown in Fig. 3. Note that the lobe-type structure in the

visibility is absent and the phase shift develops smooth
oscillations. This behavior disagrees with experimental
findings.

To summarize, we have demonstrated that the lobe
structure and phase slips observed in Ref. [3] provide
evidence of strong long-range interaction between quan-
tum Hall edge states. By comparing two different models
of edge states, we have demonstrated strong sensitivity of
AB oscillations to the character of the interaction. This
suggests that AB interferometry can be used as a powerful
tool for the tomography of interactions at the quantum Hall
edge and possibly in other systems.
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[8] M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).
[9] X.-G. Wen, Quantum Field Theory of Many-Body Systems

(Oxford University Press, Oxford, 2004).
[10] A. E. Hansen et al., Phys. Rev. B 64, 045327 (2001).
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0:1) is plotted versus bias normalized to the interaction depen-
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