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Abstract— Distributed parameter flexible systems face in-
creasingly tighter specifications and performance requirements,
which are typically handled by improving and developing novel
feedforward control design methods. In the control synthesis
of these systems, taking into account flexible dynamics play
an increasingly important role. This work proposes an LTV
feedforward control scheme which is based on the feasible
and stable inversion of a minimum-phase fourth-order LTV
approximation of the plant. This approximation takes into
account resonant dynamics and (as a result) provides improved
phase tracking. The results are validated through measurement
results obtained through a rotational two-mass-spring-damper
system.

I. INTRODUCTION

The ever-increasing requirements in the semiconductor

industry in terms of increased throughput and smaller scales

while retaining small servo errors lead to constant progress

in terms of control design. In the current stage of evolution,

a significant importance is attributed to feedforward control,

since it constitutes the majority of the actuator control effort

produced during scanning operation.

Traditional control schemes, e.g. classic acceleration feed-

forward schemes, account for the rigid body (RB) behavior of

the plant. The subsequent development of snap feedforward

[5] made it possible to account for the compliant and poten-

tially resonant dynamics expressed by non-rigid-body (NRB)

modes. Examples in the LTI domain include [3] which deals

with the feedforward control of a motion stage system in

the discrete-time domain, and [2] which compares different

model-inversion based feedforward control designs for non-

minimum-phase systems. In [1] and [8], a combination

of feedforward and feedback control synthesis is used to

account for flexible dynamics.

A fundamental aspect of stage systems used in lithography

tools is the LTV nature it demonstrates during scanning,

which is becoming increasingly more difficult to ignore, as

the designs become more flexible especially when compared

with the forces being applied to them [?] and the increasing
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Fig. 1: Flexible thin plate representing a stage system. The

point of interest changes with time (blue), inducing LTV

dynamics.

accuracies required. This is illustrated by means of the

thin plate shown in Fig. 1. It can be seen that the flexible

dynamics of a thin plate, here representing a wafer stage, are

different in each performance location. As the performance

location changes with time, LTV dynamics determine the

system’s response. As such, there have been numerous works

which attack the feedforward servo control problem in the

LTV domain. One of the earlier works applicable to this

framework, [4] uses stable inversion to calculate a non-causal

feedforward signal. Specifically for LTV systems, the work

in [7] finds that difficulties arise when the relative degree of

the system changes during operation, highlighting also the

issue of shifting from a minimum-phase to a non-minimum-

phase plant mid-experiment, i.e. during scanning. In [6], a

lifted system representation is used to calculate the inverse

model of an LTV plant in discrete-time. The work in [9]

presents an LTV feedforward capable of accounting for time-

varying compliant dynamics of flexible systems. Similar to

previous works, it is shown that time-derivatives of the time-

varying parameters of the plant need to be taken into account,

signifying the understanding that LTV systems are more than

simply the series connection of LTI systems. In fact, the

manner, e.g. the speed, by which the time-variation takes

place is key in achieving motion performance.

The work in this paper introduces a resonant and compliant

dynamics LTV feedforward control scheme. The class of

systems addressed is similar to [9], i.e. double-integrator-

based flexible systems with position-dependent time-varying

flexible dynamics. A first contribution in this work is that

an LTV fourth-order model is used to approximate the total



time-varying compliant dynamics of the plant, and due to

its low damping coefficient, it can also account for the

dominant resonant dynamics. The proposed control scheme

is able to account for arbitrarily high time-varying dynamics,

given appropriate smoothness requirements for the time-

varying parameters. Moreover, in comparison with [9], the

controller shows significantly smaller phase delay due to

the low damping coefficient of the model approximation.

Therefore, this control scheme can account for position-

dependent flexible dynamics in high-precision motion stages,

which traditionally suffer from internal deformations. As

a second contribution, a global asymptotic stability crite-

rion dedicated to the design of the feedforward controller

is provided via a common quadratic Lyapunov function

(CQLF) formulation, which serves as a hard constraint on

the controller’s performance. A third contribution involves

measurement results, which serve as a proof of concept of the

viability of the control design in the motion control practice,

and which will be performed on a rotational two mass-spring-

damper system.

The remainder of this work is organized as follows. Sec-

tion II poses the problem. Section III presents the proposed

feedforward control scheme. Section IV investigates feasibil-

ity and stability aspects. Section V discusses measurement

results in discrete time using a setup of a mass-spring-damper

system. Finally, Section VI gives concluding remarks.

II. PROBLEM STATEMENT

Consider the class of LTV systems illustrated in Fig. 2, which

consists of one RB mode and an arbitrary amount of NRB

modes post-multiplied by time-varying compliances, which

serve as indicators of a time-varying sensor location. 1
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Fig. 2: Block diagram of LTV flexible system H.

This scheme represents a lumped parameter system, or a

finite-order approximation of a distributed parameter system,

and can be described by the LTV state-space model,

H :

{

ẋ(t) = Amx(t) +Bmu(t)

y(t) = Cm(t)x(t)
, (1)

1The time-differential operator p = d/dt is used, rather than using the
Laplace variable s, to clearly distinguish between time and frequency.

where Am ∈ R
n×n, Bm ∈ R

n×1, Cm(t) ∈ R
1×n, with

n ∈ N. The state and input matrices, Am and Bm re-

spectively, are constant-valued. Due to the aforementioned

post-multiplication, only the output matrix Cm(t) can be

considered time-dependent.

As a special case of LTI, which is included in the class of

(1), consider the single-input single-output (SISO) flexible

system as the real plant to be accounted for via feedforward

control, which for the purpose of presentation is limited to

one RB and two NRB modes, as follows,

H(s) =
1

ms2
+ c1

ω2
1

s2 + 2ω1ζ1s+ ω2
1

+ c2
ω2
2

s2 + 2ω2ζ2s+ ω2
2

,

(2)

where m is the mass, c1 and c2 the compliances of the two

NRB modes, where the first mode is dominant, i.e. c1 ≫
c2, located at frequencies ω1 and ω2, with ω2 > ω1, and

damping coefficients ζ1 and ζ2, respectively.

The control scheme in Fig. 3 is applied on H in (2),

where a reference trajectory is given by ry . The feedforward

controller Cff produces the signal uff , which takes into

account the dynamics of H. The feedback controller Cfb
can be chosen appropriately with respect to the control

objectives, external disturbances, and the plant H itself.

Cfb H

Cff

ΣΣ
−

e y

uff

ry u

Fig. 3: Block diagram of the proposed LTV feedforward

control scheme.

Now let us introduce the following fourth-order model Pd

can be used as an approximation of H(s) in (2),

Pd(s) =
1

ms2
+ (c1 + c2)

ω2
s

s2 + 2ωsζs+ ω2
s

, (3)

whose inverse serves as a basis for Cff , where ωs is the cut-

off frequency and ζ the damping coefficient. It can be seen

that if the feedback controller Cfb = 0, the resulting tracking

error has the following sensitivity transfer function

S(s) =
e(s)

r(s)
= 1−H(s)Pd(s)

−1. (4)

Consider two cases for (3), Pd1
where the NRB mode

matches H, i.e. ωs = ω1 and ζ = ζ1, and Pd2
where the

NRB does not match H, and more specifically ωs < ω1 and

ζ = 1 (only real poles are allowed), as in [9]. The frequency

response functions of these two cases are depicted in Fig.

4. It can be seen that Pd1
is better able to match the phase

of H. The phase of H increases right before its resonance

occurs, due to complex-valued poles, while Pd2
is losing

phase due to its real poles. As such, the inverse of Pd1
, if
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(s) (red curve) .
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Fig. 5: Plant approximation Pd underpinning the proposed

feedforward controller, consisting of one RB mode, and

second-order low-pass filter cascaded with a time-varying

gain C(t) which equals the time-varying compliance of the

system.

stable, is expected to provide better error suppression at the

low-frequency range. Moreover, the resonance shifts toward

a higher frequency which gives suppression over a larger

frequency interval.

The aim of this work is to extend the concept represented

by P−1
d1

for the LTI system in (2), toward the LTV system

in (1).

III. RESONANT-DYNAMICS FEEDFORWARD CONTROL

SCHEME

For the LTV case, consider the plant approximation Pd ≃ H
illustrated by the block diagram in Fig. 5. The inverse of Pd

forms the basis of Cff , which filters the desired trajectory

ry in order to produce the feedforward signal uff . The

lower branch of Pd can be perceived from the perspective

of capturing not only the plant’s compliant dynamics C(t),
but potentially also the resonance of a single NRB mode

through the proposed low-pass filter. This would require that

the second-order low-pass filter’s poles are complex, such

that it approaches or matches with the damping coefficient

of the NRB mode.

The LTV model of Pd is governed by the equations

y(t) =
1

m

t∫∫

u(τ)dτ + C(t)v(t) ⇔

d2(my(t))

dt2
=u(t) +

d2(mC(t)v(t))

dt2
,

(5)

and

ω2
su(t) = v̈(t) + 2ωsζv̇(t) + ω2

sv(t), (6)

where ωs > 0 denotes the resonance frequency and ζ > 0
the damping coefficient. The function C(t) = C(rp(t))
gives the time-varying compliance of the plant H. The time-

varying parameter rp(t) indicates the manner by which the

performance location changes over time. For stage systems

this is usually a spatial variable, indicating the point of

interest.

Given a desired trajectory ry(t) ∈ C1, solving (6) with

respect to u(t) and after substitution into (5) gives

v̈(t) = −
2ωs(ζ + ωsmĊ(t))

ω2
smC(t) + 1

︸ ︷︷ ︸

ξ1(t)

v̇(t)−
ω2
s(1 +mC̈(t))

ω2
smC(t) + 1

︸ ︷︷ ︸

ξ2(t)

v(t)

+
ω2
sm

ω2
smC(t) + 1

︸ ︷︷ ︸

ξ3(t)

r̈y(t).

(7)

Equation (7) reveals that in order to prevent division by zero,

it is required that,

ω2
smC(t) + 1 > 0. (8)

Since one control objective of this feedforward controller

is to cancel the dominant resonance of the plant located

at frequency ω1 [rad/sec], according to (8) the compliance

function is lower-limited by,

C(t) >
−1

mω2
1

. (9)

If (9) cannot be satisfied, a choice has to be made of

either accounting for the full compliance of the plant, or

the resonant dynamics of the NRB mode corresponding to

frequency ω1. In the latter case, the tracking error naturally

correlates with the magnitude of negative compliance the

feedforward controller was unable to account for. In the first

case, a smaller error than [9] is expected, due to the lower

damping coefficient which guarantees better phase tracking,

as shown in Section II.

Equation (7) can be solved for the signals v(t), v̇(t), and

v̈(t) through numerical integration. The feedforward control

input is given by

uff (t) =
1

ω2
s

︸︷︷︸
µ1

v̈(t) +
2ζ

ωs
︸︷︷︸
µ2

v̇(t) + v(t).
(10)

The second time-derivative of ry is assumed to be known a

priori, which ensures the exact calculation of the feedforward



signal uff (t) for time t ∈ R≥0. A state-space realization of

the feedforward controller is given by,

Cff :







ẋ(t) =

[

0 1

ξ2(t) ξ1(t)

]

︸ ︷︷ ︸

AFF (t)

x(t) +

[

0

ξ3(t)

]

︸ ︷︷ ︸

BFF (t)

r̈y(t),

uff (t) =
[

µ1ξ2(t) + 1 µ1ξ1(t) + µ2

]

︸ ︷︷ ︸

CFF (t)

x(t)

+
[

µ1ξ3(t)
]

︸ ︷︷ ︸

DFF (t)

r̈y(t),

(11)

where x(t) = [x1(t) x2(t)]
T = [v(t) v̇(t)]T . The initial

state of (11) is zero, as the system is assumed to be at

rest for t < 0. Successful model inversion ensures that

this feedforward control scheme can successfully account

for rigid body, compliant, and resonant dynamics. However,

depending on the choices for the cut-off frequency ωs,

compliance function C(rp(t)), and damping ratio ζ, the

feedforward signal can become unbounded, which potentially

deteriorates performance.

IV. BOUNDED-INPUT BOUNDED-OUTPUT STABILITY

Given the feasibility condition in (8), a feedforward signal

can always be calculated. However, the performance associ-

ated with the controller is not guaranteed in the sense of a

bounded-input bounded-output signal.

Bounded-input bounded-output stability of the LTV feed-

forward controller in (11) can be assessed in two steps.

Step 1, guaranteeing asymptotic stability for the autonomous

system

ẋ(t) = AFF (t)x(t), (12)

via an appropriate Lyapunov function V (x), and step 2,

requiring boundedness for BFF (t), CFF (t), and DFF (t),
guaranteeing bounded-input bounded-output (BIBO) stability

for the non-autonomous system. For deriving bounds in step

2, the reader will be referred to [9]. To the best knowledge

of the authors, there are no necessary and sufficient stability

conditions for arbitrary LTV systems that can be practically

verified [10]. As such, in this paper, an additional theorem

for finding a candidate Lyapunov function V (x) for step 1

is presented. The benefit in doing so will be the increase of

cases for which stability can be guaranteed.

Theorem 1. Consider the real-valued, second-order time-

varying autonomous system

ẍ(t)− ξ1ẋ(t)− ξ2x(t) = 0, ∀t > t0, (13)

where t0 is the initial time. The time-varying parameters,

ξ1 = ξ1(t), ξ2 = ξ2(t) ∈ C2, (14)

are uniformly bounded from below and above as follows,

ǫ2 ≤ ξ1(t) ≤ ǫ1 < 0, (15)

and

ǫ4 ≤ ξ2(t) ≤ ǫ3 < 0. (16)

Define the time-varying functions

δ1(β, t) = −(β2 + βξ1(t) + ξ2(t)) + 2
√

β(β + ξ1(t))ξ2(t)
(17)

and

δ2(β, t) = −(β2 + βξ1(t) + ξ2(t))− 2
√

β(β + ξ1(t))ξ2(t).
(18)

A quadratic Lyapunov function which guarantees global

exponential stability for system (13) exists if and only if

there exists a β satisfying

0 < β < min(−ξ1(t)), ∀t > t0, (19)

such that an ǫ ∈ R>0 can be found for which

max δ2(β, t) < ǫ < min δ1(β, t), ∀t > t0. (20)

Proof. Consider a candidate quadratic Lyapunov function,

which without loss of generality can be written as

V (x) = xTPx = xT

[
α β
β 1

]

x, (21)

where

α = β2 + ǫ, (22)

for some ǫ ∈ R>0. System (13) can be written in state-space

form as,

ẋ(t) = AFF (t)x(t) =

[
0 1
ξ2 ξ1

]

x(t), ∀t > t0. (23)

The time derivative of (21), given system (23), reads

V̇ (x(t)) =ẋTPx+ xTPẋ

=xTAFF (t)
TPx+ xTPAFF (t)x

=xT (AFF (t)
TP + PAFF (t))x

=xT

[
2βξ2 α+ βξ1 + ξ2

α+ βξ1 + ξ2 2(β + ξ1)

]

x

=xT

[
2βξ2 β2 + βξ1 + ξ2 + ǫ

β2 + βξ1 + ξ2 + ǫ 2(β + ξ1)

]

︸ ︷︷ ︸

PV (t)

x

(24)

The real-valued V̇ (x(t)) in (24) is negative for any x ∈ R 6=0

if and only if PV (t) ≺ 0, which holds if and only if its

first principal minor is negative and second principal minor

positive. This requirement yields the following conditions,

2βξ2 < 0, (25)

and

4ξ2β(β + ξ1) > (β2 + βξ1 + ξ2 + ǫ)2. (26)



Condition (25) combined with (16) gives β > 0. The right

side of (26) is non-negative, thus it can be seen that we

require

4ξ2β(β + ξ1) > 0, ∀ t > t0, (27)

thus

0 < β < min(−ξ1(t)), ∀t > 0. (28)

Therefore the possible values of β which can yield a feasible

Lyapunov function are bounded from above and below.

Returning to (26), the polynomial is expanded with respect

to ǫ as follows,

−ǫ2 − 2(β2 + βξ1 + ξ2)ǫ− (β2 + βξ1 − ξ2)
2 > 0. (29)

The second-order polynomial (29) has a negative second

derivative with respect to ǫ, thus in order to be positive for

some ǫ it needs to have real roots. Its discriminant is required

to be non-negative, or

∆ = (−2(β2 + βξ1 + ξ2))
2 − 4(−1)(−(β2 + βξ1 − ξ2)

2)

= 16β(β + ξ1)ξ2 ≥ 0 (30)

Inequality (30) holds when (28) holds, thus it is automatically

satisfied. The (real) roots of (29) are then given by,

δ1(β, t) = −(β2 + βξ1(t) + ξ2(t)) + 2
√

β(β + ξ1(t))ξ2(t),
(31)

and

δ2(β, t) = −(β2 + βξ1(t) + ξ2(t))− 2
√

β(β + ξ1(t))ξ2(t).
(32)

Thus, a common quadratic Lyapunov function for (13) exists

if and only if an ǫ can be found such that

max δ2(β, t) < ǫ < min δ1(β, t), ∀t > t0, (33)

which guarantees global exponential stability. �

Stability using Theorem 1 can be practically utilized by

plotting (31) and (32) where β can vary according to (28). A

successful choice for β (for the system used later on in the

experiments) is shown in Fig. 6. If a β can be found such that

(33) holds, global asymptotic stability for the autonomous

system is guaranteed, and thus step 1 of the proof. Given step

1, appropriate boundedness criteria for step 2 ensure BIBO

stability for the non-autonomous system. If an appropriate

β cannot be found, a quadratic Lyapunov function (with

a constant P ) guaranteeing stability does not exist for this

system, thus different conditions need to be considered.

V. MEASUREMENTS

The resonance feedforward control scheme presented in

section III is validated using a rotational two-mass-spring-

damper system which is controlled in discrete-time, at sam-

pling rate Fs = 1048Hz, and which is shown in Fig. 7. The

discrete-time implementation is straightforward and will not

further be explained due to space considerations. The input-

output response of the LTI system consists of the collocated

transfer function,
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Fig. 6: Graphical check of stability for the system used in

measurements of Section V, for β = 3. The grey line denotes

δ1(β, t), the black line δ2(β, t), and the red line a valid ǫ
which guarantees stability.

Fig. 7: Photo of the rotational two-mass-spring-damper

(MSD) experimental setup used for measurements. The sam-

pling rate of the encoders is set to 1048Hz.

Hc(s) =
x1(s)

F (s)
=

1

I ′s2
︸︷︷︸

Prb

+
I ′22

I ′(I ′1I
′
2s

2 + dI ′s+ I ′k)
︸ ︷︷ ︸

Pc

,
(34)

and the non-collocated transfer function,

Hnc(s) =
x2(s)

F (s)
=

1

I ′s2
︸︷︷︸

Prb

+
−I ′1I

′
2

I ′(I ′1I
′
2s

2 + dI ′s+ I ′k)
︸ ︷︷ ︸

Pnc

,
(35)

where k = 3.925 [N · m/rad], d = 6.84 · 10−4[N · m · s/rad].
The constants I ′1, I ′2, and I ′ = I ′1 + I ′2 include both the

moments of inertia of the two masses I1, I2, and the torque

constant of the motor KT , as follows, I ′1 = I1KT = 1.938 ·
10−4 [kg·I3 ·N/A], I ′2 = I2KT = 1.504·10−4 [kg·m3 ·N/A]
. From (35) it can be seen that Prb denotes the RB mode, Pc

the collocated NRB mode, and Pnc the non-collocated NRB

mode.



An LTV system is created by gradually shifting between

the collocated and the non-collocated outputs, as follows

xout = rp(t)x1(t) + (1− rp(t))x2(t), rp(t) ∈ [0, 1], (36)

with rp(t) the POI function

rp(t) = 0.5− 0.4 cos(10πt). (37)

This leads to the LTV system

H(p) =
1

I ′p2
︸︷︷︸

Prb

+
I ′2(rp(t)I

′ − I ′1)

I ′(I ′1I
′
2p

2 + dI ′p+ I ′k)
︸ ︷︷ ︸

PNRB-LTV

.
(38)

The compliance function is given by PNRB-LTV in (38), as

follows,

C(rp(t)) = PNRB-LTV|p=0 =
I ′2(rp(t)I

′ − I ′1)

I ′2k
. (39)

The POI function was chosen to oscillate at 5[Hz], which

poses enough challenge to the system such that the LTV

performance of the feedforward controller can become ap-

parent. For the same reason, the feedback controller Cfb is

chosen such that the bandwidth does not exceed 5 [Hz], while

stabilizing (38), treating the RB mode as the nominal system

and the NRB-LTV mode as an additive uncertainty. The

feedback controller consists of CPD which includes a PD

controller with a second-order roll-off filter, CI which adds

integral action , and a notch filter CN, given as follows,

Cfb(s) =(CPD(s) + CI(s))CN(s) =







1.42 · 104s+ 5.685 · 105

s2 + 2513s+ 1.58 · 106
︸ ︷︷ ︸

CPD(s)

+
5.7

s
︸︷︷︸

CI(s)













2.15 · 10−5s2 + 1.41 · 10−4s+ 1

2.15 · 10−5s2 + 5.94 · 10−4s+ 1
︸ ︷︷ ︸

CN(s)







.

(40)

The measurement results are shown in Fig. 8, where the

tracking error using acceleration feedforward control, i.e.

Cacc(s) = ms2 = 3.442 · 10−4s2 (41)

is compared to the proposed resonance LTV feedforward

controller as in (11) using the system specifications men-

tioned. It can be seen that the error of the proposed feedfor-

ward controller is much smaller. It is important to note here

that the POI function and the feedback controller were espe-

cially chosen to illustrate this difference. More specifically,

the POI function was chosen fast enough to simulate highly

varying LTV dynamics. In turn, the feedback controller was

chosen slow enough, i.e. to have a bandwidth as low as 5Hz.

Consequently, frequencies near and above 5Hz are amplified

due to the waterbed effect. The POI function was chosen as

a sinusoid of 5Hz to exploit that fact. The reason this was

necessary is that while in simulations the LTV feedforward

controller provided always improved results by many orders

of magnitude, these errors are usually too small to be
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Fig. 8: Error with mass feedforward (grey), LTV feedforward

(red), scaled set-point (solid black), and POI function (dash-

dot black).

detected by the encoders of the setup, and as such become

invisible in the presence of measurement and quantization

noise. The acceleration feedforward results indicate the error

magnitude the LTV dynamics of this system can normally

cause. From the tracking error of the LTV feedforward, it

can be seen that this scheme can cope successfully with

highly time-varying dynamics. Nonetheless, a residual error

remains, which has two main components when analyzed

through a cumulative power spectral density (CPSD) plot.

The first residue comes from the POI function frequency

itself, i.e. 5Hz, and the second component contains two

frequency modulations of the main resonance at 34Hz, at

29Hz and 39Hz, which indicates that the modulation is

caused again by the POI function.

VI. CONCLUSIONS AND REMARKS

This paper presents a controller which accounts for resonant

and position-dependent compliant dynamics of LTV flexible

plants. More precisely, a plant-inversion method is proposed

using a fourth-order approximation model which captures

the full compliance and the resonant dynamics of one of

the NRB modes of the plant. Under appropriate conditions,

which are graphically verifiable, the feedforward produces a

feasible and bounded control signal. Measurement results us-

ing a two-mass-spring-damper system show the controller’s

ability to capture highly time-varying dynamics. This shows

that the controller can produce feedforward signals which

can successfully account for plant dynamics when using ag-

gressive motion profiles and/or lightweight motion systems.
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