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Resonant enhancement of high-order optical nonlinearities based on atomic coherence
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We show that the effect of coherent population trapping may result in resonant enhancement ofx (5) or
higher-order nonlinearities. The enhancement is accompanied by suppression of the other linear and nonlinear
susceptibility terms. This effect has promise for a realistic scheme of photon phase gates necessary for practical
implementation of quantum processing protocols.
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I. INTRODUCTION

It is well known that the potential devices for quantu
computing and quantum information processing require u
tary operations. The main problem faced in the design
such devices is the loss in quantum circuits and decoher
associated with it@1,2#. While the resonant two-level medi
can provide the highest values of nonlinearities necessary
the interaction of single optical quanta, there is an unavo
able trade-off between the values of the nonlinear susce
bility and the absorption@3#. This makes the usage of suc
media extremely difficult for quantum computing.

Coherent effects such as electromagnetically indu
transparency~EIT! @4# and coherent population trappin
~CPT! @5,6# attract a lot of attention because of their abili
to suppress a linear absorption of a resonant multilevel
dia, keeping nonlinear susceptibility at a very high lev
@7,8#. A number of studies were focused on the creation
large x (3) nonlinearities that allows either effective se
action of an electromagnetic field on a single photon ene
level @9#, or effective interaction of two electromagnet
fields due to refractive@8,10,11# and absorptive@12# Kerr
nonlinearities.

In this paper we discuss the possibilities of resonant
hancement ofx (5) and higher-order nonlinearities keepin
the losses at a low level. Our proposition is based on
existence of CPT in multilevel media and resembles the e
ideas of Kerr nonlinearity enhancement. Our estimatio
show thatx (5) nonlinearity may be so high that three-phot
phase gates~as described below! become feasible. Moreove
constructing an absorptivex (5) nonlinearity, we are able to
remove exactly one photon each from the three modes
can be useful for quantum logic operation with photonic e
tangled states.

CPT results in trapping all the population of a reson
system into the so-called ‘‘dark state,’’ which is uncoupl
from the electromagnetic fields. A weak external disturba
of the dark state by means of another electromagnetic fi
results in the partial destruction of the dark state. This
accompanied by residual refraction and absorption that
possess nonlinear properties of great importance for quan
and nonlinear optics.
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II. MODEL

We consider a medium~atomic, molecular, semiconduc
tor! with the energy level structure shown in Fig. 1, whe
levels uai& have fast natural decayg i . Ground-state levels
ubi& have no decay. The coherence between levelsubi& and
ubj&( iÞ j ) has slow homogeneous decayg i j . This decay re-
sults from either finite time of flight of atoms through th
interaction region~for atomic vapors! or from phonon-
associated decoherence~for solids!. For the sake of simplic-
ity we assume thatg i j 5g0.

The energy levels are coupled by weak probe electrom
netic fields having Rabi frequenciesa i and strong coupling
fields having Rabi frequenciesV i(uV i u@ua i u). All the fields
are resonant with associated transitions except the probe
am21, which has a detuningD. The relation between Rab
frequencies of the probe fields and quantum operators
scribing the corresponding field mode can be written as

â i5A2p` i
2n i

\Vi
âi5j i âi , ~1!

where ` i is the dipole moment of the transitionuai&
→ubi&,n i is the field frequency,Vi is the quantization vol-
ume of the mode, andâi and âi

† are the annihilation and
creation operators.

FIG. 1. Energy level schemes for the resonant enhancemen
nonlinear susceptibilities of the media:~a! x (3) nonlinearity; ~b!
x (5) nonlinearity;~c! x (m) nonlinearity.
©2002 The American Physical Society04-1



ns

in
ia

M. S. ZUBAIRY, A. B. MATSKO, AND M. O. SCULLY PHYSICAL REVIEW A 65 043804
The Hamiltonian of the generalized atomic system@Fig.
1~c!# in slowly varying amplitude and phase approximatio
is

Ĥm5\Duam&^amu1\~âmuam&^bmu1H.c.!1\ (
j 51

m21

~ â j uaj&

3^bj u1V j uaj&^bj 11u1H.c.!, ~2!

where H.c. means Hermitian conjugate.
First we assume thatD→`. Then each system, shown

Fig. 1, has a dark state. The eigenvalue of the Hamilton
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for this state is equal to zero,lDm
50, i.e., ĤmuDm&

5lDm
uDm&50. For the scheme shown in Fig. 1~a!, the dark

state is

uD2&5
j1An111ub2 ,n1&2V1ub1 ,n111&

Aj1
2~n111!1uV1u2

. ~3!

Similarly, the dark state for the scheme shown in Fig. 1~b! is
given by
uD3&5~j1j2A~n111!~n211!ub3 ,n1 ,n2&2V2j1An111ub2 ,n1 ,n211&1V1V2ub1 ,n111,n211&)/

Aj1
2j2

2~n111!~n211!1uV2u2j1
2~n111!1uV1u2uV2u2, ~4!
n

the

r-
ral
and so on. In Eqs.~3! and~4!, the Fock statesuni&( i 51,2) is
the eigenstate ofai

†ai with eigenvaluesni .
Next we consider the case of finiteD. Strictly speaking,

there is no dark state in the system in this case. Howe
when the detuning is large such thatD@uV j u@uju(nj11),
ub1& is a quasidark state corresponding to the eigenvalue
goes to zero when the detuning is infinite. In the Appen
we discuss the level scheme of Fig. 1~a! (m52) and derive
the eigenstates and the eigenvectors of the Hamilonian~2!.
An effective Hamiltonian can then be derived in terms of t
resultingx (3) nonlinearity.

Following the approach of the Appendix we can consid
the case form53 @see Fig. 1~b!#. As, in the case ofm52,
we write the Hamiltonian~2! in terms of the basis of state

ub3 ,n1 ,n2 ,n311&, ub2 ,n1 ,n211,n311&,

ub1 ,n111,n211,n311&, ua3 ,n1 ,n2 ,n3&,

ua2 ,n1 ,n2 ,n311&, ua1 ,n1 ,n211,n311&.

The corresponding equation for the eigenvalues is then of
form

l61al51bl41cl31dl21el1 f 50, ~5!

a5D, f 52ua1u2ua2u2ua3u2,

b52ua1u22uV1u22ua2u22uV2u22ua3u2,

c5D~ uV1u21uV2u21ua3u2!,

d5ua1u2ua2u21ua2u2ua3u21ua1u2ua3u21uV1u2ua3u2

1uV2u2uV2u21uV2u2ua1u2,

e52D~ ua1u2ua3u21uV2u2ua1u22uV2u2uV2u2!,
r,

at
x

r

he

whereuaku25jk
2(nk11). The Hamiltonian of the system ca

then be presented in form

Ĥ5 (
k51

6

(
n1 ,n2 ,n3

`

\lkulk&^lku, ~6!

wherelk are the eigenvalues@roots of Eq.~5!# and ulk& are
the corresponding eigenvectors. Here the eigenvalue for
disturbed dark state is

l65l D̃3
'

j3
2~n311!

D

j2
2~n211!

uV2u2

j1
2~n111!

uV1u2
, ~7!

and the corresponding eigenstate is

uD̃3&5ub1 ,n111,n211,n311&. ~8!

It can be shown that none of the other eigenstaesul j& ( j
5125) contain the stateub1&. Thus for atoms initially in the
stateub1&, the approximate Hamiltonian is

Ĥ'\ (
n1 ,n2 ,n3

` j3
2~n311!

D

j2
2~n211!

uV2u2

j1
2~n111!

uV1u2

3ub1 ,n111,n211,n311&

3^b1 ,n111,n211,n311u. ~9!

To derive an effective Hamiltonian from Eq.~6!, we ex-
changenk11 by the photon number operatorâk

†âk .
We can derive now an effective Hamiltonian for the inte

action of the probe fields with a single atom in the gene
form

Ĥm5~21!m11\
jm

2 âm
† âm

D )
j 51

m21
j j

2â j
†â j

uV j u2
. ~10!
4-2
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RESONANT ENHANCEMENT OF HIGH-ORDER OPTICAL . . . PHYSICAL REVIEW A 65 043804
As all the atomic population is eventually optically pump
into the dark state and, as discussed above, almost al
population of the dark state is in theub1& state, this interac-
tion Hamiltonian does not contain atomic operators.

We next estimate the maximum strength of the field int
action in the case when the medium shows the enhancedx (5)

nonlinearity~Fig. 1!, i.e.,

Ĥ35\d̃â1
†â1â2

†â2â3
†â3 , ~11!

where d̃ is the coupling constant. Assuming that all para
eters of the optical transitions are nearly the same and
using the expressioǹ2/\53c3g/4n3, we get

d̃5
3

8p
Nl2c

g

D

1

nV1nV2
, ~12!

whereN is the atomic density in the interaction volume,l is
the optical wavelength,c is the speed of light in the vacuum
andnV@1 is the average number of the photons of the c
pling field in the interaction region. We assume here that
interaction and quantization volumes are the same.

The minimum value of the photon number in the coupli
field nV is restricted by the necessary conditionuVu@Ag0g
of the validity of the CPT approximation. For an atomic tra
g0.1025g'50 Hz can be reached, anduVu2 should exceed
1025g2 which corresponds to the intensity of 0.1mW/cm2.

We now estimate the coupling constantd̃. For the linear
size of the interaction regionL.0.3 cm, one can have th
power of the coupling field PV.0.3 mW, so that
1/(nV1nV2)'0.01 ~for the interaction time;L/c). Taking
N.3 1012 cm23,l.1024 cm, and g/D50.3, we get d̃
'3 1011s21. If we assume that the interaction time is equ
to L/c, we get phase shiftd̃t'3 rad.

Therefore, atomic coherence allows us to achieve a str
nonlinear interaction among three electromagnetic wav
This nonlinearity can be only a couple of orders of mag
tude less than the maximum susceptibility of an atomic s
tem. We point out that a single photon absorption of a we
resonant radiation propagating through a two-level syst
which actually determines the maximum of the susceptibi
~inverse Beer’s length!, is equal to 3Nl2/8p @cf. Eq. ~12!#.
However, winning in the value of the nonlinearity we lose
the bandwidth of the nonlinearity. The effective interacti
can be achieved for the continuous waves only. An exp
mental realization of the interaction for light pulses is not
simple. We discuss this problem in the next section.

If the detuningD is small compared tog, the refractive
nonlinearity is small. However, the absorptive nonlinearity
large. In the case of the scheme Fig. 1~a! the probability of
simultaneous absorption of two photons froma1 and a2
fields significantly exceed the probability of independe
photon absorption@12#. In the more general case consider
here @Fig. 1~b!#, the probability ofthree-photon absorption
significantly exceeds the other absorption probabilities.

If initially only the driving fieldsV1 andV2 are applied
to the atom, only levelub1& is populated. When the atom
starts to interact with probe photons there is no absorp
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unlessa150. If a1Þ0, anda25a350 there is no absorp
tion due to EIT. The same is true ifa1Þ0 anda2Þ0, but
a350. Only when all three probe fields are present the
sorption is possible.

The probability of spontaneous photon emission per u
time per single atom shown in Fig. 1~b! can be estimated a

Wm5g(
j 51

m

^D̃muaj&^aj uD̃m&. ~13!

In the approximation of strong drive and weak probe fie
we find

Wm.
jm

2 nm

g )
j 51

m21
j j

2nj

uV j u2
. ~14!

The probability ofm photon absorption during interactio
time t is equal toWmt and can be very high. We can simp
send the atoms through a cavity with excited probe mode
remove three photons or put the absorbing material inside
cavity.

Let us discuss the possibilities of experimental implem
tation of the schemes. For the simplest case of two-pho
refraction and absorption@scheme in Fig. 1~a!# an appropri-
ate choice is theD1 line of 87Rb @12#. For the level scheme
shown in Fig. 1~b! any material that has a triplet in th
Ground-state and not less than a triplet in the excited s
would be appropriate. An example is the Pr31-doped Y2SiO5
~Pr:YSO! crystal, used recently to demonstrate a slow gro
velocity of light @13#.

It is worth mentioning here that we have so far conside
a homogeneously broadened medium and a realization o
scheme in a Doppler-broadened medium is difficult. The
tuning D should be large enough to exceed the Dopp
width Dd . The coupling fields should be much stronger to
The usual condition to have a Doppler-free EIT isuVu
@DdAg0 /g. If these conditions are satisfied the factord̃t
becomes 5–6 orders of magnitude less then the factor ca
lated above.

III. PROPAGATION PROBLEM

The above analysis is valid for the cw regime. Propa
tion substantially modifies the nonlinear interaction, inclu
ing both the refractive and absorptive nonlinearities. The r
son for this modification was recognized in@10#. Let us
present here a simple argument to explain the phenome
and estimate a phase shift occurring among copropaga
pulses in the nonlinear medium.

We consider here the probe pulses initially having t
same shape and overlapping envelops. This picture cha
after the pulses enter the nonlinear medium. As almost all
atomic population is collected in theub1& atomic level~see
Fig. 1!, the pulse of the probe fielda1 propagates much
slower than the other pulses@14#. The group velocity of this
pulse can be estimated as
4-3
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vg1.F 3

8p
Nl2

g

uV1u2
G21

!c. ~15!

The spatial dimensions of the pulse changes, too. If
length of the pulse in the vacuum wasLa , it reduces up to
Lavg1 /c in the medium. The peak Rabi frequency of t
pulse stays unchanged.

The other probe pulses propagate with the speed clos
the speed of light in the vacuum because the atomic st
the pulses interact with are almost empty. These pulses
the slow pulse and leave the medium first.

To estimate the phase shift acquired by the probe pu
due to the interaction using Hamiltonian~10!, we have to
know the interaction time and the number of atoms intera
ing with the pulses during this time. We consider the ca
when the length of the medium exceeds the compres
length of the slow pulse, i.e.,L@Lavg1 /c. Then the interac-
tion time is determined by the passage time of the fast pu
through the slow one. This time is equal toLa /c. The num-
ber of atoms interacting with the pulses is determined by
volume of the spatially compressed slow pulse and is m
smaller than the number of atoms contained in the cell.
can estimate this number asNLaAvg1 /c, whereA is the
cross-sectional area of the probe laser beams.

We now estimate the phase shift in the case of interac
of three pulses. The effective interaction Hamiltonian can
presented in the form similar to Eq.~11!,

Ĥ35\d̃8â1
†â1â2

†â2â3
†â3 , ~16!

whered̃8 is the new coupling constant

d̃85
3

8p

g

D

l2

A
1

nV2

c

La
. ~17!

This coupling constant isLc/(Lavg1)@1 times weaker than
the coupling constantd̃ ~12! derived in cw approximation
Our estimation gives the same result as the strict calcula
performed for the case of the two probe fields in@10#. The
numerical factor ‘‘3/(8p)’’ can be modified depending on
the pulse shapes.

According to Eq.~17! it is impossible to get a phase shi
per probe photon more than unity because the maxim
phase shiftd̃8La /c contains all multipliers less than 1. T
overcome this situation, the technique proposed in@11# may
be applied. The main idea is to slow down all the pro
pulses so that their group velocities are equal to each o
Then the interaction time between the pulses increases b
factor Lc/(Lavg1), thus returning us to our previous c
result.

As it was noted in@11#, group velocity of the fast pulse in
an N-type level scheme can be reduced if the atomic c
contains not only the atoms that induce the nonlinear in
action between electromagnetic fields, but also other ato
These atoms create aL-type scheme for the fast pulse an
slow it down@14#. By choosing an appropriate density of th
miscellaneous gas we are able to match the group veloc
and increase the nonlinear interaction. TheL-type atoms do
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not introduce nonlinearity itself and do not change the n
linear interaction we discussed above.

Slowing down of the light pulse can be achieved by us
different isotopes in the atomic cell. One isotope creates
effective nonlinear interaction between fields while the oth
isotope influences on the group velocity of the pulses.

The idea of controlling the group velocity of the pulses
means of different atoms works for us, too. However,
might be impractical for the case of many fields. Instead
real atoms quantum dots~‘‘artificial atoms’’! may be used.
We can control the level structure of a quantum dot
changing its shape and size. Practical usage of quantum
however, is complicated because of different types of non
diative broadenings associated with quantum dots@15#.

Another problem is associated with the nonlinear pu
propagation. Due to the nonlinear interaction, different pa
of the pulse acquires different phase shift during propa
tion. For the case of a single-mode~plane wave! field dis-
cussed so far, this is not a problem. We first explain
essence of the problem considering the example of
pulses interacting via atoms inN-type level configuration
@Fig. 1~a!#.

If the pulses move with the same velocityvg , the solution
at the cell exit can be written in the form@11#

Êa1~L,t !5Êa1~0,t8!exp@ igLÊa2
† ~0,t8!Êa2~0,t8!#,

~18!

Êa2~L,t !5Êa2~0,t8!exp@ igLÊa1
† ~0,t8!Êa1~0,t8!#,

~19!

where Êa1 and Êa2 are the quantum operators of pulse
field, t85t2L/vg is the retarded time, andg is the interac-
tion constant. As it follows from Eqs.~18! and~19! the non-
linear phase shift changes for each pulse with time. This s
is small in the tails of the pulse and large in the pulse cen
This can restrict the application of the nonlinearity signi
cantly.

The problem of different phase shifts is valid for all kind
of nonlinearities because it depends on the pulse geom
We see two ways for the solution of this problem. One w
is based on the obvious use of long pulses with small ta
The inhomogeneous phase shift appears on the tails
and, hence, it can be reduced. Another way is based on
usage of pulses with a little mismatch between group velo
ties. If we send a slower pulse on the front of a faster pu
the faster pulse passes the slower pulse in the nonlinear
dium. During this passage each point of one pulse intera
with each point of the other pulse. Therefore, each point
both the pulses acquires the same, averaged, phase shift
group velocity mismatch should be chosen in such a way
the pulse interaction time nearly corresponds to the time
pulse crossing the nonlinear medium@16#. It might be a
problem, however, to use this technique to achieve effic
interaction between multiple~three or more! pulses. This
question will be discussed in detail elsewhere.
4-4
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IV. MULTIPHOTON QUANTUM PHASE GATES

We now discuss the potential applications of the lo
gates based on the interaction~11!. It is well known that a
unitary transformation~one-bit gate! and a two-bit condi-
tional quantum phase gate form a universal quantum c
puter. The one-bit quantum gate for thei th qubit is given by

Uu,f
i 5S cosu 2 ie2 ifsinu

2 ieifsinu cosu D . ~20!

The transformation for a two-bit quantum phase gate is gi
by

Qh
(2)ua1 ,a2&5exp~ ihda1,1da2,1!ua1 ,a2&, ~21!

whereua1& and ua2& stand for the basis statesu0& or u1& of
the two qubits, andda1,1 is the Kroneckerd symbol, which is

equal to 1 if there is a photon in the modea1 and zero
otherwise. Thus the quantum phase gate introduces a p
h only when both the qubits in the input state are 1. Th
for example, a representation of the quantum phase gate
h5p is given by

Qp
(2)5u0,0&^0,0u1u0,1&^0,1u

1u1,0&^1,0u2u1,1&^1,1u. ~22!

This phase gate can be realized by means of a lossless
medium, for example using the medium with levels shown
Fig. 1~a!, i.e., Q(2)5exp(2iĤ2t/\).

There are, however, situations where one may needm-bit
quantum phase gate defined via

Qh
(m)ua1 ,a2 , . . .am&

5exp~ ihda1,1da2,1 . . . dam,1
!ua1 ,a2 , . . .am&,

~23!

i.e., a phaseh is introduced when all the qubits are in sta
u1&. It is easily seen that such a multiphoton phase gate
be constructed via interaction~10! Qh

(m)5exp(2iĤmt/\),h

5d̃t. Such a construction is extremely simple as compare
a possible but cumbersome implementation via one-bit u
tary gate and two-bit quantum phase gate. For example
implementation of one three-bit quantum phase gate m
require five two-bit quantum phase gates and four one
unitary gate@17#. Such higher-order quantum phase ga
may have important applications in quantum computi
Here we discuss one such application in the implementa
of Grover’s quantum search algorithm@18#.

The Grover’s algorithm for the search of an item in
unsorted database containingN52q items can be accom
plished as follows. In the first step, an initial sta
u01,02 , . . . ,0q& undergoes Walsh-Hadamard transformat
W which rotates each qubit fromu0& to (u0&1u1&)/A2 and
u1& to (u1&2u0&)/A2. The resulting state is
04380
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us&5
1

AN
(

a1 ,a2 , . . . ,aq50

1

ua1 ,a2 , . . . ,aq&, ~24!

i.e., a superposition of all possibleN states. Now anoracle
flips the phase of a target stateut& in the superpositionus& via
an operationCt5122ut&^tu. The objective is to determine
the target state. Next an inversion about the mean is acc
plished viaN5122us&^su. In the Grover’s algorithm the
combined operatorG52CtN is applied on the initial statek
times. Whenk5pAN/4, the probability of recovering the
target stateut& becomes maximum@19#.

In Fig. 2 we present a scheme for the implementation
Grover’s algorithm for eight objects (q53! based on the
multiphoton quantum phase gate discussed earlier. The b
of the quantum states we are working in can consist of
horizontally and vertically polarized one-photon states

uH&5S 1

0D , uV&5S 0

1D . ~25!

Then the unitary transformations

U15
1

A2
S 1 21

1 1 D , U25S 0 1

1 0D ~26!

can be realized by al/2 plate rotated at ap/8 angle and a
l/2 plate rotated at ap/4 angle.

V. CONCLUSION

In conclusion, we have proposed a realization of me
with resonantly enhancedx (5) and higher orders of optica
nonlinearity where one-photon resonant absorption is s
pressed due to coherence effects. Such media are usefu
the creation of logical elements necessary for quantum c
putation. We have discussed an example of Grover’s se
algorithm improved by the application of nonlinear gat
based on the nonlinearities of higher orders.
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FIG. 2. A scheme for the implementation of Grover’s algorith
for eight objects (q53) based on the multiphoton quantum pha
gate.
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APPENDIX: DERIVATION OF AN EFFECTIVE
HAMILTONIAN FOR A FOUR-LEVEL N SCHEME

Here we consider the level scheme shown in Fig. 1~a!.
The Hamiltonian describing the atom-field interaction h
the form @cf. Eq. ~2!#

Ĥ25\S 0 â1 V1 0

â1
† 0 0 0

V1* 0 0 â2
†

0 0 â2 D

D . ~A1!

We introduce the basis of states

ub1 ,n111,n211&, ua1 ,n1 ,n211&, ~A2!

ub2 ,n1 ,n211&, ua2 ,n1 ,n2&,

and calculate the eigenvalues of the Hamiltonian in this
sis. The eigenvalue equation is

U 2l j1An111 V1* 0

j1An111 2l 0 0

V1 0 2l j2An211

0 0 j2An211 D2l

U50.

~A3!

Equation~A3! can be rewritten in the usual algebraic form

l41al31bl21cl1d50, ~A4!

where

a52D,d5j1
2j2

2~n111!~n211!,

b52j1
2~n111!2uV1u22j2

2~n211!,

c5D@j1
2~n111!1uV1u2#.

We solve this equation assumingD@uV1u@j iAni11. The
resultant eigenvalues are

l1.D,

l2.Aj1
2~n111!1uV1u2,

l3.2Aj1
2~n111!1uV1u2,

l4[l D̃2
.2

j1
2j2

2~n111!~n211!

DuV1u2
.

It is easy to calculate the corresponding eigenvectors
they are

ul1&.ua2 ,n1 ,n2&,
04380
s

-

d

ul2&.
1

A2
~ ua1 ,n1 ,n211&1ub2 ,n1 ,n211&),

ul3&.
1

A2
~ ua1 ,n1 ,n211&2ub2 ,n1 ,n211&),

ul4&[uD̃2&.ub1 ,n111,n211&.

The eigenvluel D̃2
and the corresponding eigenvectoruD̃2&

correspond to the disturbed dark state. Thus an atom initi
in stateub& will remain there and the atom-field interaction
purely dispersive as shown below.

The Hamiltonian of the system can now be written in t
form

Ĥ25 (
k51

4

(
n1 ,n2

`

\lkulk&^lku, ~A5!

and for an atom initially in the stateub& can be approximated
as

Ĥ2' (
n1 ,n2

`

\l D̃2
uD̃2&^D̃2u, ~A6!

wherelk are the eigenvalues@roots of Eq.~A4!# andulk& are
the corresponding eigenvectors. Using the above results
represent this expression as

Ĥ'2\ (
n1 ,n2

` j2
2~n211!

D

j1
2~n111!

uV1u2

3ub1 ,n111,n211&^b1 ,n111,n211u. ~A7!

To derive an effective Hamiltonian from Eq.~A5!, we
exchangenk11 by the photon number operatorâk

†âk ,

Ĥ2'2\
j1

2â1
†â1

D

j2
2â2

†â2

uV1u2
(

n1 ,n2

`

ub1 ,n111,n211&

3^b1 ,n111,n211u

52\
j1

2â1
†â1

D

j2
2â2

†â2

uV1u2
. ~A8!

As all the atomic population is eventually optically pump
into the dark state, almost all the population of the dark st
is in the ub1& state. Therefore, we have not included t
atomic operators in the interaction Hamiltonian in the la
line of Eq. ~A7!. To keep all the population in the dark sta
during the interaction process, we need to satisfy adiabati
the conditionVT@1, whereT is a characteristic time of the
process.
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