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Abstract—This paper presents a method based on adaptive-network-
based fuzzy inference system (ANFIS) to calculate the resonant
frequency of a circular microstrip antenna (MSA) with a dielectric
cover. The ANFIS is a class of adaptive networks which are
functionally equivalent to fuzzy inference systems (FISs). Six
optimization algorithms, hybrid learning, least-squares, nelder-mead,
genetic, differential evolution and particle swarm, are used to
determine optimally the design parameters of the ANFIS. The resonant
frequency results predicted by ANFIS are in very good agreement with
the results reported elsewhere. When the performances of ANFIS
models are compared with each other, the best result is obtained from
the ANFIS model optimized by the LSQ algorithm.
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1. INTRODUCTION

Microstrip antennas (MSAs) have many attractive features such as
light weight, low production cost, low profile, integrability into arrays,
conformability to curved surfaces, simplicity of fabrication, and ease
of integration with microwave integrated circuit (MIC) or monolithic
microwave integrated circuit (MMIC) components [1-17]. These
attractive features have recently increased the application of MSAs
and stimulated greater effort to investigate their performance.

A dielectric cover or superstrate is usually employed in practice
to protect the MSAs from environmental hazards, or may be naturally
formed (e.g., ice) during flight or severe weather conditions. Due to
the limited bandwidth of MSAs, it is important to determine the effect
of a dielectric cover on the resonant frequency of MSAs in order to
introduce appropriate corrections in the design of MSAs.

Several methods [18-24], varying in accuracy and computational
effort, have been proposed and used to calculate the resonant frequency
of a circular MSA with a dielectric cover. The Hankel transform
analysis [18], the modified Wolff model [19], Galerkin’s method in
the Hankel transform domain [22], a formula [23] based on an
improved cavity model [25] and Bernhard’s work [26] were presented for
computing the resonant frequency of a circular MSA with a dielectric
cover. The spectral-domain moment-method proposed by Fan and
Lee [20] can also be used to calculate the resonant frequency. Lee
and Fan [21] presented a Fortran program of CAD (Computer-Aided
Design) formula for the resonant frequency of a circular MSA with a
dielectric cover. This CAD formula was obtained by using a database
built by moment-method. Closed-form Hankel transforms for circular
disk basis modes involving Chebyshev polynomials and edge condition
closed-form expressions for two kinds of Hankel transform integrals,
which are encountered in the spectral moment method solution of a
circular patch, were obtained in [24]. These expressions were applied
in the formulation of the the full-wave moment method solution for
the resonance frequency of a circular microstrip patch antenna with
a dielectric cover. It is clear that the methods used in calculating
the resonant frequency can be broadly classified into two categories:
analytical and numerical methods. The analytical methods, based
on some fundamental simplifying physical assumptions regarding the
radiation mechanism of antennas, are the most useful for practical
design as well as providing a good intuitive explanation of the operation
of MSAs. However, these methods are not suitable for many structures,
in particular, if the thickness of the substrate is not very thin. The
numerical techniques provide accurate results but usually require
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considerable computational time and costs.

In this paper, a method for computing the resonant frequency
of the circular MSA with a dielectric cover, based on the adaptive-
network-based fuzzy inference system (ANFIS) [27,28], is presented.
First, the antenna parameters related to the resonant frequency are
determined, and then the resonant frequency depending on these
parameters is calculated by using the ANFIS. The ANFIS is a class of
adaptive networks which are functionally equivalent to fuzzy inference
systems (FISs). The FIS is a popular computing framework based
on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy
reasoning. The ANFIS can simulate and analysis the mapping relation
between the input and output data through a learning to determine
optimal parameters of a given FIS. It can be trained with no need
for the expert knowledge usually required for the standard fuzzy logic
design. A prominent advantage of the ANFIS is that, after proper
training, ANFIS completely bypasses the repeated use of complex
iterative processes for new cases presented to it. Even if training takes
a few minutes, the test process takes only a few microseconds. Because
of these attractive features, the ANFIS in this paper is used to calculate
the resonant frequency of a circular MSA with a dielectric cover.

In previous works [29-38], we successfully utilized ANFIS for
computing accurately the various parameters of the rectangular,
triangular, and circular MSAs, and for tracking multiple targets and
estimating the phase inductance of the switched reluctance motors.
In reference [32], the resonant frequency of circular MSA without a
dielectric cover has been computed by using ANFIS. In this paper,
ANFIS is employed to compute the resonant frequency of circular MSA
with a dielectric cover. In previous works [29-38], only the hybrid
learning (HL) algorithm [27,28] was used to determine the optimum
design parameters of the ANFIS. However, in this study, six different
optimization algorithms, HL algorithm, least-squares (LSQ) algorithm
[39-41], nelder-mead (NM) algorithm [42, 43|, genetic algorithm (GA)
[44,45], differential evolution algorithm (DEA) [46-48], and particle
swarm optimization (PSO) [49,50], are used to determine optimally
the design parameters of the ANFIS. These optimization algorithms
are employed to obtain better performance and faster convergence with
simpler structure.

In this paper, the next section briefly describes the spectral-
domain moment-method [20, 21] for computing the resonant frequency
of the circular MSA with a dielectric cover. The application of the
ANTFIS to the resonant frequency computation is given in the following
section. The results are then presented and conclusion is made.
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2. RESONANT FREQUENCY OF A CIRCULAR
MICROSTRIP ANTENNA WITH A DIELECTRIC
COVER

The basic geometry of a circular MSA covered by a dielectric layer and

the co-ordinate system under consideration is depicted in Figure 1.
The patch is circular with radius a and is fed through coaxial probe.

€r0

€r1

€
7=0—2

Figure 1. Geometry of the circular microstrip antenna with a
dielectric cover.

The coaxial probe is modeled by a uniform cylindrical current sheet
of radius ap. The substrate-dielectric cover thicknesses and relative
dielectric constants are ho, h1 and, €., €,1, respectively. The resonant
frequency of the circular MSA with a dielectric cover can be obtained
by using the spectral-domain moment-method proposed by [20, 21].
In this method, the problem is formulated in the Hankel transform
domain. First, the integral equations are obtained for the surface
current density on the patch. Galerkin’s method is then used to solve
for the surface current density, and the resonant frequency is calculated
by using the input impedance formula. The surface current density I,
is given by the following equation for 1A total current in the coaxial
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. 1 0[|r — 2d| — ay)
I, =21,(r,¢) = o T (1)

where d is the feed location. The problem can be solved either with
vector Hankel transforms or Hankel transforms with the r and ¢
components in quadrature [51]. The following vector F is defined by

Fy = F, £ jF, (2a)

The Hankel transform quantities Fy are given by

o0

i (a) = / Fy (1) Jusr (ar) rdr (2b)
0

The following integral equations are obtained for the unknown patch
current densities [20].

[G11f5+ + Grols_ + Hl} Jnt1 (ar) ada = 0, on the patch (3a)

[G21f5+ + Gool,_ + Hg} Jn—1 (ar) ada = 0, on the patch (3b)

0\8 0\8

with
Co [k3S2  Ro
= Gu = - = 1
G G2 % | O + D (4a)
G [kES2 Ro
= G =~ -2 4
G2 Ga1 % | O ) (4b)
CoRs 200,
H pr— — p— 4
1 2= 5 koD 73 (4c)
So = jytanyihi +m (4d)
Ry = v1v2 (jm tanyihy + €,170) (4e)
G = 5—27 ko = w?pogo (4f)

D = e1m1 (=72 + jerayo cot y2ho)
— (js%lvo’yg + arﬂf cot "}/th) tan 1 hy (4g)
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Q = 7 (=0 + jy2 cot y2h2)

— (471 + Y072 cot y2hs) tan y1hy (4h)
. 1 '
I, = 7 JIn (ad) Jo (aap) (41)
vi = \/erikd —a?, i=0,1,2. (4j)

Galerkin’s method can be used to solve Eq. (3). The surface patch
current density I+ is expanded in terms of basis functions:

e}

M
Iy (’I“, ¢) = Z ejnd) Z Crmt (n)Ismi (T’, TL) (5)
m=1

n=—0oo

The surface patch current density I,+ in the Hankel transform
domain can be written as

M
Lt(a,n) = Cons () Lz (a,m) (6)

m=1

The following equations are obtained by substituting Eq. (6) into
Eq. (3) and multiplying the resulting equation by rlg4(r,n) and
integrating from r = 0 to oo,

(ZiComg + Zi2Cp) = Vi, i=1,... .M (7a)

M=M=

(Z3.Cmy + 2220 ) = V2, i=1,....,M (7b)

m=1
with
Zilnll(n) = /szanstrada = Z,lnlz(n) (8a)
0
22 (n) = / T Grolum_ada = 221 (n) (8b)
0
Zfﬁb(n) = /fsi_Gggfsm_ozdoz = Z,?,ng(n) (8¢)

0
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Vii(n) = —/jsz‘+H1OédOé (9a)
0

Vi(n) = — / Jsi— Hyado (9b)
0

The input impedance can be expressed as [20, 21, 52]

00 M M
Zin=m 3 | Y CniV+ Y Cn V2| + iy (10a)
n=-—o00 Lm=1 m=1
with
Ty = 0 tan (koh2) (10b)
VEr2

The resonant frequency is the frequency at which the input resistance
is maximum.
The space-domain basis functions can be chosen as [20]

Ism:ﬁ:(ra n) = Jn:tl (kmnr> , r<a (11)

where ki, is the mth root of J), (kmna) = 0. The prime sign denotes
the derivative of Bessel function J,,(x) with respect to the argument
x. The Hankel transform is given by

fsmi(a,n) =a [aJnil (kmna) J), 11 (ca)
—kmnInt1 (@) Ty (kmna)} / (k?nn - ()‘2) (12)

From the formulations given above and in the literature [18-24]
we see that only five parameters, a, hi, €1, ho, and .9, are needed to
describe the resonant frequency of the circular MSA with a dielectric
cover. It is clear that the method described above is mathematically
complex and requires high performance large-scale computer resources
and a very large number of computations. For this reason, in this work,
the resonant frequency of the circular MSA with a dielectric cover is
computed by using a method based on ANFIS. Only five parameters,
a, hi, €71, ha, and €9, are used in calculating the resonant frequency.

3. APPLICATION OF ANFIS TO THE COMPUTATION
OF RESONANT FREQUENCY

The ANFIS [27,28] is a class of adaptive networks which are
functionally equivalent to FISs. It is a very powerful approach for



286 Guney and Sarikaya

building complex and nonlinear relationship between a set of input
and output data. The ANFIS used in this paper implements a
first-order Sugeno fuzzy model [27,28]. Among many FIS models,
the Sugeno fuzzy model is the most widely applied one for its high
interpretability and computational efficiency, and built-in optimal and
adaptive techniques.

The ANFIS architecture used in this work for the resonant
frequency calculation of circular MSAs with a dielectric cover is
illustrated in Figure 2, in which a circle indicates a fixed note, whereas
a rectangular indicates an adaptive note. For the ANFIS, the inputs
are hi/a, ha/a, e;1, and e,9, and the output is the normalized resonant
frequency f/fno- fr and fno represent, respectively, the resonant
frequencies of the TM1; mode (dominant mode) of the circular MSA
with and without dielectric cover.

h/a ha €, €
VB A ]

h1/a h2/a €n €n

Fuzzy Product Normalized De-fuzzy Summation
Layer Layer Layer Layer Layer

Figure 2. Architecture of ANFIS.

The accuracy of a properly trained ANFIS depends on the
accuracy and the effective representation of the data used for its
training. A good collection of the training data, i.e., data which
is well-distributed, sufficient, and accurately simulated, is the basic
requirement to obtain an accurate model. There are two types of
data generators for antenna applications. These data generators are
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the measurement and simulation. The selection of a data generator
depends on the application and the availability of the data generator.
The training and test data sets used in this paper have been obtained
from the Fortran program [21] developed by using the results of
spectral-domain moment method described in Section 2. 1000 data
sets are used to train the ANFIS. Training data sets are in the range
of 0 < h1/a < 03,0 < hy/a <02, 1<eq<1l,and 1 < g9 < 11,
177 data sets, which are completely different from training data sets,
are used to test the ANFIS. The input and output data sets are scaled
between 0 and 1 before training.

In the design of ANFISs, it is very important to determine the
types and the parameters of membership functions (MFs). The number
of the MF's for the input variables hi/a, ha/a, €,1, and e,9 are 2, 3, 2
and 3, respectively. The number of rules is then 36 (2 x 3 x2x 3 = 36).
The types of the input MF's for the input variables hy/a, ha/a, €,1, and
gro are the Gaussian, Generalized bell, Gaussian, and Generalized bell,
respectively. The Gaussian and the Generalized bell MFs are specified
by two and three parameters, respectively. Therefore, the ANFIS used
in this work contains a total of 206 fitting parameters, of which 26
(2x24+3x34+2x2+43x3=26) are the premise parameters and
180 (5 x 36 = 180) are the consequent parameters.

Each possible combination of inputs and their associated MFs is
represented by a rule in the rule base of the ANFIS in the following
equation:

1. if (hl/a is MH) and (hQ/CL is Mgl) and (67«1 is Mgl) and (51”2 is

Myy) then Ry = f1 (hi/a, h2/a, €1, €r2)

2. if (hy1/a is My1) and (he/a is Ma1) and (g1 is M31) and (g2 is

M) then Ry = fo (h1/a, ha/a, €1, €/2)

3. if (hl/a is Mll) and (hg/a is MQl) and (Erl is M31) and ({:‘7»2 is

My3) then Rz = f3 (hi/a, ha/a, €41, €2)

4. if (h1/a is Miy) and (he/a is Map) and (e,1

Myy) then Ry = f4 (h1/a, ha/a, €1, €r2)

is Ms2) and (g2 is

(13)

35. if (hy1/a is My2) and (ha/a is Ma3) and (g, is M3z) and (g9 is
My2) then R3s = f35 (hi/a, ha/a, €r1, €r2)

36. if (h1/a is Mi2) and (ha/a is Ma3) and (g, is M3z) and (g9 is
My3) then R3g = f36 (h1/a, ha/a, €r1, €r2)

where M;;, Ry, and f;, represent the jth MF of the ith input, the

output of the kth rule, and the kth output MF, respectively.
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In this work, the input MFs are Gaussian and Generalized bell
types and the output MF's are a linear type as given bellow:

_l(m)
My(z) = Gauss (z;c5,04) =e *\ 7
i=(1,3),=(1,2), (x = hi/aore,n)

1
Mij(x) = Gbell (z; ay, by, cj) = ———5— (14)

2b;;
1 + T—Cj 9

ay
i=(2,4), j=(1,2,3), (x = ha/aorey)
Ry = fi(hi/a, ha/a, er1, €r2)
= dg1h1/a+dgahe/a+diser1 +dgacra+des k= (1,...,36)

Here ag, bj, cij, o4 and dj are the parameters that characterize
the shapes of the MFs. The optimal values of these parameters are
determined by training.

The output of the ANFIS is the weighted average of the individual
rule outputs. The weighting factor of each rule, which is expressed
as wg, is calculated by evaluating the membership expressions in the
antecedent of the rule. This is accomplished by first converting the
input values to fuzzy membership values by utilizing the input MF's and
then applying the “and” operator to these membership values. The
“and” operator corresponds to the multiplication of input membership
values. Hence, the weighting factors of the rules are calculated as
follows:

wy = My1 (hi/a) - May (ha/a) - M3y (€r1) - My (gr2)
wy = Myy (h1/a) - May (ha/a) - M3y (€r1) - Maa (gr2)
wy = Miy (hi/a) - Moy (ha/a) - M3y (€r1) - M3 (er2)
wy = M1 (h1/a) - Moy (ha/a) - M3 (er1) - My (er2)

wss = M2 (hy/a) - Ma3 (hz‘/a) - M3 (e71) - My2 (r2)
wse = Mi2 (hy/a) - Maz (ha/a) - M3 (e,1) - My (er2)

Once the weighting factors are obtained, the output of the ANFIS can
be found by calculating the weighted average of the individual rule
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outputs:

36
Zkak 36
f'r/fno: k::;67 :Zu_}kfk‘ (16)

k=1
>
k=1

It is clear that the ANFIS architecture consists of five layers: fuzzy
layer, product layer, normalized layer, de-fuzzy layer, and summation
layer [27,28]. In the fuzzy layer, crisp input values are converted to
fuzzy values by the MFs. After, in product layer, “and” operation
is performed between the fuzzy values by using production so as to
calculate the firing strength of each rule. Then, the normalized firing
strengths are calculated in the normalized layer. In the de-fuzzy layer,
the output rules are constructed. Finally, each rule is weighted by own
normalized firing strength and the output of the ANFIS is calculated
by summing of all rule outputs in the summation layer.

The ANFIS makes use of an optimization algorithm to optimize
the fuzzy system parameters of the first-order Sugeno fuzzy model. The
parameter optimization is done in a way such that the error measure
between the target and the actual output is minimized. It can be
observed that there are two adaptive layers in the ANFIS architecture,
namely the fuzzy layer and the de-fuzzy layer. During the learning
process of the ANFIS, the premise parameters in the fuzzy layer and
the consequent parameters in the de-fuzzy layer are tuned until the
desired response of the FIS is achieved.

In this paper, six different optimization algorithms, which are
described briefly below, are used to determine the optimum values
of the design parameters and adapt the FIS.

3.1. Optimization Algorithms
3.1.1. Hybrid Learning (HL) Algorithm

The HL algorithm [27,28], which combines the least-squares (LSQ)
method and the gradient descent (GD) algorithm, is commonly used
to train and adapt the FIS. This algorithm converges much faster since
it reduces the dimension of the search space of the GD algorithm.

From the architecture of the ANFIS, it is clear that the output
can be expressed as:

O=T(us) (17)
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where u is the vector of input variables, s is the total parameter set
which combines premise parameters s, and consequent parameters s,
and I' is the overall function implemented by the FIS. There will exist
a function T such that the composite of T o I’ will be linear in s. as
follows:

T(O)="ToTl (u,s) (18)

where Y is the identity function. Hence, substituting values of the
premise parameters s, and the training data set P into Eq. (18), a
matrix equation can be obtained as:

Ax =y (19)

where x is the unknown parameter in s.. Let |s.| = n and |P| = m.
Then the dimensions of A, x and y are m xn, n x 1, and m x 1,
respectively. As the number of training data m is usually greater than
the number of linear parameters n, a LSQ method is used to find x.
On the other hand, the error measure for the jth (1 < j < m) training
data can be defined as the sum of squared errors:

2
E; =) (Ti; - Oiy) (20)
i=1
where T; ; is the ith component of the jth target output vector and

O; ; is the ith component of the actual output vector produced by the
jth input vector. So, the overall error measure is equal to:

E= zm:Ej (21)

and the derivative of the overall error measure F with respect to the
any premise parameter § (§ € sp,) will be calculated as:

OE = OE,

The update formula for the any premise parameter (3 is accordingly to
be:

_,9F

A= (23)
with

(24)
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where 7 is a predetermined positive number and 7 is the step size,
which can be changed to vary the speed of convergence. Now, the
combination of the GD and the LSQ methods to update the parameters
of the ANFIS is possible. As each epoch of the HL algorithm involves
a forward pass and a backward pass in the ANFIS, the output of
the whole system will be a linear combination of the consequent
parameters. Thus, the output is written as in Eq. (16). Based on
Eq. (16), the node outputs go forward till de-fuzzy layer and consequent
parameters can be identified by the LSQ method, according to the
calculation of Eq. (19) in the forward pass. On the other hand, the
error rates of each node output propagate from the output end toward
fuzzy layer, and the premise parameters are updated by the GD method
using Eq. (23) in the backward pass. The merit of HL algorithm is that
it can efficiently obtain the optimal premise parameters and consequent
parameters values in the optimization process.

3.1.2. Least-Squares (LSQ) Optimization Algorithm

The LSQ optimization algorithm [39-41] is a mathematical optimiza-
tion technique which, when given a series of observation data, attempts
to find a function which closely approximates the data. It attempts
to minimize the sum of the squares of the ordinate differences (called
residuals) between the points generated by the function and the corre-
sponding points in the data.

Although the LSQ methods for linear models are the most widely
used techniques for fitting a set of observation data, occasionally it is
appropriate to assume that the data are related through a model with
nonlinear parameters. Nonlinear models can be divided into two types,
which are referred to as intrinsically linear and intrinsically nonlinear
models. Through appropriate transformations of its input-output
variables and fitting parameters, an intrinsically linear model can be
expressed in the standard form of a linear model. Thus standard LSQ
method is applied to approximate the optimal parameters effectively.
In the least-squares problem, the output of a system is generally given
by the linearly parameterized expression:

y=fi(wz+ fo(u)za+ -+ fo () 2n (25)
where u = [ug,ug,--- ,up]T is the input vector of the system,
f1, f2, -+, fn are known functions of u, and z1, z9, - - - , &, are unknown

parameters to be estimated.

For estimating the unknown parameters x;, some experiments
should be performed to obtain a training data set includes data pairs as
{(wj;9;),i =1,--- ,;m}; they represent the desired input-output pairs
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of the target system. Using Eq. (25), a set of m linear equations is
expressed as:

fifu)zi+ fo(u)aze+-+ fu(w)zn = u
fi(w)zr+ fo(ug)we + -+ fr(u)r, = y2
: Do (26)
fr () 2+ fo (W) 22+ 4 fo (W) 20 = Y
Using matrix notation, Eq. (26) can be rewritten as:
Ax =y (27)
with
fiw) o fo(ur) 1 (7
A= : : : o X= 1, Y=o (28)
fitam) o fo(um) Ln Ym

where A is an m X n design matrix, x is an n x 1 unknown parameter
vector, and y is an m x 1 output vector.

For determining as uniquely the unknown vector x, it is necessary
that m > n. If A is square (m =n) and nonsingular, it can be
rewritten as:

x=A"ly (29)

Generally, m is greater than n (there are more data pairs than
parameters) and an exact solution satisfying all the m equations is
not always possible since the data might be contaminated by noise.
Thus, Eq. (27) should be modified by incorporating an error vector e
(represents random noise or modeling error):

Ax+e=y (30)

Instead of finding the exact solution, a solution which minimizes
the sum of squared error is searched:

E(x) = Z e?=ele=(y— Ax)" (y — Ax) (31)
i=1

where e = (y — Ax) is the error vector for specific x.
In this work, Levenberg-Marquardt method, which combines the
best features of Gauss-Newton technique and the steepest-descent
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method, is used for the calculation of the next step (x,41) in the
least-squares optimization:

Xp41 =X, — = (JTT + 191)_1 g (32)

N —

where JTJ = H is the Hessian matrix which consists of the second
partial derivatives of F (x), g is gradient of E(x), ¢ is some
nonnegative value, and I is the identity matrix. Depending on 9,
the algorithm transits smoothly between Gauss-Newton method and
steepest-descent method.

3.1.3. Nelder-Mead (NM) Optimization Algorithm

The NM “simplex” optimization algorithm [42,43] is an enormously
popular direct search method for multidimensional unconstrained
minimization. The method uses the concept of a simplex, which
is a geometrical figure consisting, in n dimension, (n + 1) vertices
(zo,x1,...,%n), and approximately finds a locally optimal solution
to a problem with n variables when the cost (objective) function varies
smoothly. The algorithm is applied several times with a different
simplex for the beginning in order to explore new regions of the study
domain and to find the global minimum of the cost function.

If zq is accepted as initial starting point, then other n points z; are
generated according to the relation x; = xg + £¢;, where ¢; are n unit
vectors, and £ is a constant which is typically equal to 1. The initial
simplex is moved, expanded, contracted and shrunk through a sequence
of elementary geometric transformations. These transformations are
called as reflection, expansion, contraction, and shrinkage (or multi-
contraction), respectively. Through these transformations, the simplex
can improve itself and come closer and closer to a local optimum point
sequentially. After each transformation, the current worst vertex is
replaced by a better one. Trial moves are generated according to the
following basic operations:

At the beginning of the algorithm, one moves only the point of
the simplex, where the objective function is worst, and one generates
another point image of the worst point. This operation is the reflection.
The reflection point z, is calculated by:

zr = (1+p)% — pay (33)

n—1
where T = ) 7% is the centroid of the n best points (all vertices except
i=0

for x,) and p is the reflection coefficient.
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If the reflected point is better than all other points, the method
expands the simplex in this direction. This operation is the expansion.
The expansion point x. is calculated by

ze=(1-x)T+ xzr (34)

where y is the expansion coefficient. If z. is not better than all other
points and at least better then the worst, the algorithm performs again
the reflection with the new worst point.

When the worst point is at least as good as the reflected point,
the contraction is implemented as:

2e=(1—)T+ px, (35)

where ¢ is the contraction coefficient. In this operation, the simplex
adapts itself to the function landscape and finally surrounds the
optimum.

If the worst point is better than the contracted point, the shrinkage
is performed as:

v; =z + ¢ (x; — o), i=1,...,n (36)

where 1) is the shrinkage coefficient. Here, the (unordered) vertices of
the simplex at the next iteration consist of xg, vy, ... ,vy.

At each step it is checked that the generated point is not outside
the allowed reduced solution space. The algorithm stops when the
difference between the best point and the worst point of the simplex is
smaller than a certain value. Another criterion for the end of the
algorithm is the number of function evaluations in order to avoid
excessive calculation times.

3.1.4. Genetic Algorithm (GA)

The GA [44,45] is a derivative-free stochastic optimization method
based loosely on the concepts of natural selection and evolutionary
processes. It is also is a parallel, robust, and probabilistic search
technique that is simple and easily implemented without gradient
calculation, compared with the conventional gradient-based search
procedure.

A basic GA consists of six components. These are a random
number generator, a fitness evaluation unit and genetic operators for
reproduction, crossover, mutation, and selection operations.

The initial population required at the start of the algorithm is a set
of number strings generated by the random number generator. After
the initialization, the fitness value of each individual in the population
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is calculated. The fitness of each individual in the population is rated
correspondingly by its efficiency to finding the required solution.

Later, the termination criterion is tested. This step is the main
for a loop which continues testing successive generations until the
termination criterion is satisfied.

Then, a subpopulation is chosen for reproduction to closest
adherence to the desired solution and the crossover is performed. The
genetic chromosomes of the selected subpopulation are paired and their
genetic material is combined to produce a third chromosome. Two
parents possessing a desirable genetic sequence have a high likelihood
of producing offspring with similar traits. The number of crossover
operations is governed by a crossover rate.

The next operator is the mutation. In mutation, the resulting
offspring is subjected to random mutation. The success of genetic
algorithms stems largely from this crucial step which allows rapid
adaptation to changing conditions in the population. The number
of mutation operations is determined by a mutation rate.

After the mutation, best solutions are kept for the next generation
by means of the selection. In the selection process, the solutions
in the population are evaluated and a fitness value of each solution
is calculated that how closely the solution approximates the desired
solution.

Finally, fitness level of the new population is measured to
determine whether to terminate the algorithm or to continue with
successive generations until the termination criterion is satisfied.

3.1.5. Differential Evolution Algorithm (DEA)

The DEA [46-48] is a simple, population based, and direct-search
algorithm for optimizing globally the multi-modal functions. Like the
GA, it employs the crossover and mutation operators, and selection
mechanism. An important difference between the GA and the DEA
is that the GA relies on the crossover operator which provides the
exchange of information among the solutions to construct the better
solutions, while the DEA relies on the mutation operation as the
main operator. The DEA also employs a non uniform crossover
which takes child vector parameters from one parent more often than
from others. The non uniform crossover operator efficiently shuffles
information about successful combinations. This enables the search
to focus on the most promising area of the solution space. The DEA
introduces a novel mutation operation which is not only simple, but
also significantly effective. The mutation operation is based on the
differences of randomly sampled pairs of solutions in the population.
Apart from being simple and able globally optimizing multi-modal
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search spaces, some other features of the DEA are being: fast, easy
to use, very easily adaptable for integer and discrete optimization, and
quite effective in nonlinear constraint optimization including penalty
functions.

The version of DEA used in this work is known as DE/best/1/exp
or “DE1” [46-48]. Classic DEA begins by initializing a population
of Np and D-dimensional vectors with parameter values which are
distributed with random uniformity between the pre-specified lower
initial parameter bound z; ., and the upper initial parameter bound

Zj high:

Ljit = Ljlow + rand (O, 1) (xj,high - xj,low) )
j:(1,2,...,D), i:(l,Q,...,Np), t=20 (37)

The subscript t is the generation index, while 5 and ¢ are the parameter
and population indices, respectively. Hence, x;;; is the jth parameter
of the ¢th population vector in generation ¢.

To generate a trial solution, DEA first mutates a best solution
vector from the current population by adding to the scaled difference
of two other vectors from the current population:

Vi,t - Xbest,t + SC (Xn,t - X?"z,t) ) r1, T2 S {17 27 sy Np} (38)

where v; ; is the mutant vector. Vector indices r1 and ro are randomly
selected except that all are distinct and different from the population
index 7 (i.e., r1 # r2 # ). The mutation scale factor Sc is a positive
real number that is typically less than 1.0.

Next, one or more parameter values of this mutant vector v; ; are
exponentially crossed with those belonging to the ¢th population vector
x;¢ (the target vector). The result is the trial vector u;:

; jrand € {1723--- ,D}
(39)

Ui+ = Uj’i’t lf rcmd (0’ 1) S CT or J = jrumd
it xj;¢ otherwise

The crossover constant (0.0 < Cr < 1.0) controls the fraction of
parameters that the mutant vector contributes to the trial vector. In
addition, the trial vector always inherits the mutant vector parameter
with the randomly chosen index j,.qnq to ensure that the trial vector
differs by at least one parameter from the vector with which it will be
compared (i.e., the target vector, x; ).

As the final operation, the selection is used to create better
solutions. If the trial vector’s function value is less than or equal to
that of the target vector, the trial vector replaces the target vector
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in the next generation. Otherwise, the target vector remains in the
population for at least one more generation:

oo o i TS (i) < f (xie) (40)

L+l = X;: otherwise
These processes are repeated until a termination criterion is attained
or a predetermined generation number is reached.

3.1.6. Particle Swarm Optimization (PSO) Algorithm

The PSO algorithm [49, 50] is an evolutionary computation technique
inspired by social behavior of bird flocking or fish schooling. Similar
to GA, PSO is an optimization tool based on population, and the
system is initialized with a population of random solutions and can
search for optima by the updating of generations. In the algorithm
each member of the population is called a “particle”, and each particle
“flies” around in the multidimensional search space with a velocity,
which is constantly updated by the particle’s own experience and the
experience of the particle’s neighbors or the experience of the whole
swarm. Compared to other evolutionary techniques, the advantages of
PSO are that it is easy to implement and there are only few parameters
to adjust.

Let x and v denote a particle positions and its corresponding
velocity in a multidimensional search space, respectively. The best
previous position of a particle is recorded and denoted by p®. The best
particle among all the particles in the group is denoted by p9. At last,
the modified velocity and position of each particle can be calculated
as:

Uyl = S (vt + 11 (p? — xt> + cara (pf — xt)> , (41a)

Ti41 = X¢ + Ut+1 (41b)

where ¢ is the constriction factor, ¢; and ¢y are the positive constant
coefficients, r1 and ro are the uniformly distributed random numbers
in [0, 1], vy is the current velocity of the particle at iteration ¢, z; is
the current position of the particle at iteration ¢, viyq is the modified
velocity, and ;41 is the position of the particle at iteration ¢t + 1. The
constriction factor ¢ which can prevent explosion is calculated by [50]:

2

‘2 (e1 4 ¢2) — \/(C1+62)2 —4(c1 + )

¢ = (42)
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The algorithm is terminated if the minimum error criterion is attained
or a predetermined number of iterations is reached. In this paper,
Clerc’s Constricted PSO [50] was used.

3.2. Parameter Values of Optimization Algorithms

Selection of parameters of the optimization algorithm mostly depends
on experience besides the type of problem at hand. The parameter
values of the optimization algorithms are: for HL, the initial step
size=0.06, the step size decrease rate=0.9, and the step size
increase rate=1.1; for LS(Q, the seed number=0; for NM, the
reflection coefficient =1, the expansion coeflicient = 2, the contraction
coefficient =0.5, and the shrinkage coefficient=0.5; for GA, the
population size =350, the number of elite individuals=20, the
crossover rate=0.8, the mutation rate=0.05, and the migration
rate =0.2; for DEA, the population size=2060, the mutation scale
factor =0.001, the crossover rate =0.5, and the strategy =1; for PSO
algorithm, the particles size =30, the maximum velocity divisor =4,
the acceleration constants # 1 and # 2=2.1, and the constriction
coefficient =0.64174.

4. RESULTS AND CONCLUSIONS

The resonant frequency of the circular MSA with a dielectric cover is
successfully computed by using ANFIS models. The optimum design
parameters of the ANFIS are determined with the use of HL, LSQ, NM,
GA, DEA, and PSO. The training and test RMS errors of six ANFIS
models are given in Table 1. These RMS error values clearly show that
the ANFIS models can be used in calculating the resonant frequency
of the circular MSA with a dielectric cover. When the performances
of ANFIS models are compared with each other, the best results for
training and testing are obtained from the ANFIS model optimized by
the LSQ optimization algorithm, as shown in Table 1. The final shapes
of the MFs are illustrated in Figure 3 for the ANFIS model optimized
by the LSQ. For brevity, the final shapes of the MFs of other ANFIS
models are not given.

The test results of ANFIS optimized by the LSQ are compared
with the results of the moment-method full-wave analysis [20] and the
CAD formula [21] in Figures 4-6. It can be clearly seen from Figures 4
6 that the results of ANFIS are in very good agreement with the results
of moment-method and the CAD formula.

In order to make a further validation, the results of ANFIS
optimized by the LSQ are compared with the results of Galerkin’s
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Figure 3. Shapes of the MFs of input variables (Input #1 = h;/a,
Input # 2 = hg/a, Input # 3 = ¢,1, and Input # 4 = &,9) for the
ANFIS model optimized by the LSQ.

method in the Hankel transform domain [22] in Figure 7. It is seen
from Figure 7 that the results of ANFIS are in good agreement with
the results of Galerkin’s method in the Hankel transform domain.

The resonant frequency test result of ANFIS optimized by the
LSQ is also compared with the measured result [22] in Table 2. For
comparison, the results obtained by using the other theories [21-24]
are also given in Table 2. It is evident that the result of ANFIS agrees
better with the measured result than the results of [21-24].

In this paper, only the resonant frequency of the TMi; mode
is calculated by using the ANFIS because this circular microstrip
patch mode is widely used in MSA applications. However, the ANFIS
can be easily adapted to compute the resonant frequencies of higher-
order modes of practical interest if the data sets for these modes are
available. It must also be emphasized that the proposed method is
not limited to the resonant frequency calculation of circular MSA
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Table 1. Training and test errors of ANFIS models optimized by
different algorithms.

Optimization o
) RMS Training Errors RMS Test Errors
Algorithms
HL 0.0004860 0.0013710
LSQ 0.0003898 0.0002597
NM 0.0004809 0.0005790
GA 0.0004868 0.0009843
DEA 0.0004867 0.0009824
PSO 0.0004899 0.0009589
1 ; ;
— CAD Formula
0.99 - © ANFIS
.*.
0ol Moment Method
0.97 - .
hy/a=0.05
L2096} 8
T 0%E hy/a=01 |
0.94 - .
0.93 - -
£.=3.0 h/a=0.2
092 ¢,=30 a
0.91 ‘ ‘ :

0 005 01 015 02 025 03 035
hi/a

Figure 4. Comparison of the resonant frequency results of the ANFIS
optimized by the LSQ, the moment-method [20], and the CAD formula
[21] for e,1 = 3.0 and &,2 = 3.0.

with a dielectric cover. This method can easily be applied to other
antenna and microwave circuit problems. Accurate, fast, and reliable
ANFIS models can be developed from measured/simulated antenna
data. Once developed, these ANFIS models can be used in place
of computationally intensive numerical models to speed up antenna
design.



Progress In Electromagnetics Research, PIER 72, 2007 301

1 T T
—— CAD Formula
0.98 | O ANFIS H
* Moment Method

0.96 |
0.94 | hJa= 0.05-]
o
~ 092} .

h/a=0.1

09} R
0.88 | R
£€.=50 ha/a=02
086 ¢,=30 A

i

0.84
0

0.05 0.1 0.15 0.2 0.25 0. 0.35

h,/a

w

Figure 5. Comparison of the resonant frequency results of the ANFIS
optimized by the LSQ, the moment-method [20], and the CAD formula
[21] for £, = 5.0 and £,9 = 3.0.
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Figure 6. Comparison of the resonant frequency results of the ANFIS
optimized by the LSQ, the moment-method [20], and the CAD formula
[21] for ;1 = 3.0 and £,2 = 5.0.
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Figure 7. Comparison of the resonant frequency results of the ANFIS
optimized by the LSQ and Galerkin’s method in the Hankel transform
domain (HTD) [22] for hy = 1.5875mm, a/hy = 5, and £,9 = 2.5.

Table 2. Comparison of the computed resonant frequency results of
the ANFIS optimized by the LSQ, Ensemble [22], and [21-24] with
the measured result for a = 5.89mm, hy = 0.49mm, hy/he = 3.11,
€r1 = 2.5515, and &,9 = 2.43.

Resonant Frequency (GHz)
Calculated
Measured| Ensemble | Losadaet al.| Bouttout et al | Guh@and| Leeand | - Present
) Siddiqui Fan ANFIS
[22] [22] [22] [24] (23] [21] Model
8.57 8.79 8.71 8.80 8.60 8.61 8.58

As a consequence, an alternative method based on ANFIS is used
to compute accurately the resonant frequency of the circular MSA with
a dielectric cover. The HL, LSQ, NM, GA, DEA and PSO are used to
optimize the parameters of ANFIS. The best result is obtained from the
ANFIS optimized by LSQ algorithm. It was shown that the ANFIS
results are in very good agreement with the results available in the
literature. The ANFIS has the advantages of easy implementation and
good learning ability. The high-speed real-time computation feature
of the ANFIS recommends its use in antenna CAD programs.
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