Resonant Hypergeometric Systems and Mirror Symmetry

Jan Stienstra
Mathematisch Instituut, Universiteit Utrecht
Postbus $80.010,3508$ TA Utrecht, The Netherlands
E-mail: stien@math.ruu.nl

Abstract

In Part I the Γ-series of 11 are adapted so that they give solutions for certain resonant systems of Gel'fand-Kapranov-Zelevinsky hypergeometric differential equations. For this some complex parameters in the Γ series are replaced by nilpotent elements from a $\operatorname{ring} \mathcal{R}_{\mathrm{A}, \mathcal{T}}$. The adapted Γ-series is a function $\Psi_{\mathcal{T}, \beta}$ with values in the finite dimensional vector space $\mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes_{\mathbb{Z}} \mathbb{C}$. Part II describes applications of these results in the context of toric Mirror Symmetry. Building on Batyrev's work 22 we show that a certain relative cohomology module $H^{n}\left(\widetilde{\mathbb{T}} \mathrm{rel} \widetilde{Z}_{s-1}\right)$ is a GKZ hypergeometric \mathcal{D}-module which over an appropriate domain is isomorphic to the trivial \mathcal{D}-module $\mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathcal{O}_{\mathcal{T}}$, where $\mathcal{O}_{\mathcal{T}}$ is the sheaf of holomorphic functions on this domain. The isomorphism is explicitly given by adapted Γ-series. As a result one finds the periods of a holomorphic differential form of degree d on a d-dimensional Calabi-Yau manifold, which are needed for the B-model side input to Mirror Symmetry. Relating our work with that of Batyrev and Borisov [3] we interpret the ring $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ as the cohomology ring of a toric variety and a certain principal ideal in it as a subring of the Chow ring of a Calabi-Yau complete intersection. This interpretation takes place on the A-model side of Mirror Symmetry.

Contents

Part I Introduction I

1. Regular triangulations and the pointed secondary fan
2. The ring $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$.
3. A domain of definition for the function $\Psi_{\mathcal{T}, \beta}$.
4. The special case $\beta=0$
5. Triangulations with non-empty core

Introduction II
Part II
Introduction IIB
Part IIB Introduction IIB
6. VMHS associated with a Gorenstein cone

Part IIA Introduction IIA
7. Triangulations with non-empty core and completely split reflexive Gorenstein cones
8. Triangulations and toric varieties
9. Calabi-Yau complete intersections in toric varieties

Conclusions
References

PART I

Introduction I

A GKZ hypergeometric system (11] depends on four parameters: two positive integers N and n, a set $\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\}$ of vectors in \mathbb{Z}^{n} and a vector β in \mathbb{C}^{n}. The standard assumptions [11] are

Condition 1 円 $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}$ generate a rank n sub-lattice \mathbb{M} in \mathbb{Z}^{n}

$$
\begin{equation*}
\exists \mathfrak{a}_{0}^{\vee} \in \mathbb{Z}^{n \vee} \text { such that } \mathfrak{a}_{0}^{\vee} \cdot \mathfrak{a}_{i}=1 \quad(i=1, \ldots, N) \tag{1}
\end{equation*}
$$

The GKZ system with these parameters is the following system of partial differential equations for functions Φ on a torus with coordinates v_{1}, \ldots, v_{N} :

$$
\begin{align*}
\left(-\beta+\sum_{j=1}^{N} \mathfrak{a}_{j} v_{j} \frac{\partial}{\partial v_{j}}\right) \Phi & =0 \tag{3}\\
\left(\prod_{\ell_{j}>0}\left[\frac{\partial}{\partial v_{j}}\right]^{\ell_{j}}-\prod_{\ell_{j}<0}\left[\frac{\partial}{\partial v_{j}}\right]^{-\ell_{j}}\right) \Phi & =0 \quad \text { for } \ell \in \mathbb{L} \tag{4}
\end{align*}
$$

where (3) is in fact a system of n equations and

$$
\begin{equation*}
\mathbb{L}:=\left\{\ell=\left(\ell_{1}, \ldots, \ell_{N}\right)^{t} \in \mathbb{Z}^{N} \mid \ell_{1} \mathfrak{a}_{1}+\ldots+\ell_{N} \mathfrak{a}_{N}=0\right\} \tag{5}
\end{equation*}
$$

Some of the above data are displayed in the following short exact sequence in which \mathcal{A} denotes the linear map $\mathcal{A}: \mathbb{Z}^{N} \rightarrow \mathbb{Z}^{n}, \mathcal{A}(\lambda)=\lambda_{1} \mathfrak{a}_{1}+\ldots+\lambda_{N} \mathfrak{a}_{N}$.

$$
\begin{equation*}
0 \rightarrow \mathbb{L} \longrightarrow \mathbb{Z}^{N} \xrightarrow{\mathcal{A}} \mathbb{M} \rightarrow 0 \tag{6}
\end{equation*}
$$

We are going to construct solutions for $G K Z$ systems with $\beta \in \mathbb{M}$. Of special interest for applications to mirror symmetry are the cases $\beta=0$ and $\beta=-\mathfrak{a}_{0}$ with \mathfrak{a}_{0} as in the definition of reflexive Gorenstein cone (definition 5).

The idea is as follows. Gel'fand-Kapranov-Zelevinskii 11] give solutions for (3)-(4) in the form of so-called Γ-series

$$
\begin{equation*}
\sum_{\ell \in \mathbb{L}} \prod_{j=1}^{N} \frac{v_{j}^{\gamma_{j}+\ell_{j}}}{\Gamma\left(\gamma_{j}+\ell_{j}+1\right)} \tag{7}
\end{equation*}
$$

[^0]Γ is the usual Γ-function, $\ell=\left(\ell_{1}, \ldots, \ell_{N}\right)^{t} \in \mathbb{L} \subset \mathbb{Z}^{N}$. The series depends on an additional parameter $\gamma=\left(\gamma_{1}, \ldots, \gamma_{N}\right)^{t} \in \mathbb{C}^{N}$ which must satisfy
\[

$$
\begin{equation*}
\gamma_{1} \mathfrak{a}_{1}+\ldots+\gamma_{N} \mathfrak{a}_{N}=\beta \tag{8}
\end{equation*}
$$

\]

Allowing the obvious formal rules for differentiating such Γ-series one sees that the functional equations of the Γ-function guarantee that (7) satisfies the differential equations (4) and that condition (8) on γ takes care of (3). The issue is to interpret the Γ-series (7) as a function on some domain. In order that (7) can be realized as a function γ must satisfy more conditions. Gel'fand-KapranovZelevinskii obtain convenient conditions from a triangulation \mathcal{T} of the convex hull of $\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\}$. However, if β is in \mathbb{M} and the triangulation has more than one maximal simplex, the vectors γ which satisfy these extra conditions do not provide enough Γ-series solutions for the GKZ system. This phenomenon is called resonance 11]. An extreme case of resonance, in which all Γ-series coincide, occurs when β is in \mathbb{M} and \mathcal{T} is unimodular.

Definition 1 (cf. 24) A triangulation is called unimodular if all its maximal simplices have volume 1 ; the volume of a maximal simplex $\operatorname{conv}\left\{\mathfrak{a}_{i_{1}}, \ldots, \mathfrak{a}_{i_{n}}\right\}$ is defined as $\left|\operatorname{det}\left(\mathfrak{a}_{i_{1}}, \ldots, \mathfrak{a}_{i_{n}}\right)\right|$.

To get around the resonance problem for $\beta \in \mathbb{M}$ we proceed as follows. Fixing a solution $\gamma^{\circ} \in \mathbb{Z}^{N}$ for equation (8) we write the general solution of (8) as $\gamma=\gamma^{\circ}+\mathrm{c}$ with $\mathrm{c}=\left(c_{1}, \ldots, c_{N}\right)^{t}$ such that

$$
\begin{equation*}
c_{1} \mathfrak{a}_{1}+\ldots+c_{N} \mathfrak{a}_{N}=0 \tag{9}
\end{equation*}
$$

and note $\gamma+\mathbb{L}=\mathrm{c}+\mathcal{A}^{-1}(\beta)$. Thus ($\left(\mathbb{)}\right.$) becomes $\sum_{\lambda \in \mathcal{A}^{-1}(\beta)} \prod_{j=1}^{N} \frac{v_{j}^{c_{j}+\lambda_{j}}}{\Gamma\left(c_{j}+\lambda_{j}+1\right)}$. Multiplying this by $\prod_{j=1}^{N} \Gamma\left(c_{j}+1\right)$ we obtain

$$
\begin{equation*}
\Phi_{\mathcal{T}, \beta}(\mathrm{v}):=\sum_{\lambda \in \mathcal{A}^{-1}(\beta)} Q_{\lambda}(\mathrm{c}) \cdot \prod_{j=1}^{N} v_{j}^{\lambda_{j}} \cdot \prod_{j=1}^{N} v_{j}^{c_{j}} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{\lambda}(\mathrm{c}):=\frac{\prod_{\lambda_{j}<0} \prod_{k=0}^{-\lambda_{j}-1}\left(c_{j}-k\right)}{\prod_{\lambda_{j}>0} \prod_{k=1}^{\lambda_{j}}\left(c_{j}+k\right)} \tag{11}
\end{equation*}
$$

The key observation is that (11) and (10) also make sense when c_{1}, \ldots, c_{N} are taken from a \mathbb{Q}-algebra in which they are nilpotent. The expression $v_{j}^{c_{j}}$ can still be interpreted as $\exp \left(c_{j} \log v_{j}\right)$.

Definition 2 Let $\mathrm{A}=\left(a_{i j}\right)$ denote the $n \times N$-matrix with columns $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}$. For a regular triangulation $\mathcal{T}\left(c f . \S(1.1)\right.$ of the polytope $\Delta:=\operatorname{conv}\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\}$ we define:

$$
\begin{equation*}
\mathcal{R}_{\mathrm{A}, \mathcal{T}}:=\mathbb{Z}\left[D^{-1}\right]\left[C_{1}, \ldots, C_{N}\right] / \mathcal{J} \tag{12}
\end{equation*}
$$

where \mathcal{J} is the ideal generated by the linear forms

$$
\begin{equation*}
a_{i 1} C_{1}+\ldots+a_{i N} C_{N} \quad \text { for } i=1, \ldots, n \tag{13}
\end{equation*}
$$

and by the monomials

$$
\begin{equation*}
C_{i_{1}} \cdot \ldots \cdot C_{i_{s}} \quad \text { with } \quad \operatorname{conv}\left\{\mathfrak{a}_{i_{1}}, \ldots, \mathfrak{a}_{i_{s}}\right\} \quad \text { not a simplex in } \mathcal{T} \tag{14}
\end{equation*}
$$

D is the product of the volumes of the maximal simplices of \mathcal{T}.
We write c_{i} for the image of C_{i} in $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$.

In theorem 3 we show that $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ is a free $\mathbb{Z}\left[D^{-1}\right]$-module with rank equal to the number of maximal simplices in the triangulation. This implies that c_{1}, \ldots, c_{N} are nilpotent and hence

$$
Q_{\lambda}(\mathrm{c}) \in \mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{Q}
$$

Theorem 1 With this interpretation of $Q_{\lambda}(\mathrm{c})$ the function $\Phi_{\mathcal{T}, \beta}(\mathrm{v})$ defined by (10) takes values in the algebra $\mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{C}$.

The domain of definition of the function $\Phi_{\mathcal{T}, \beta}(\mathrm{v})$ is discussed hereafter. Relation (13) ensures that this function $\Phi_{\mathcal{T}, \beta}(\mathrm{v})$ satisfies the differential equations (3); it automatically satisfies (4). Relation (14) ensures that the series expansion for $\Phi_{\mathcal{T}, \beta}(\mathrm{v})$ only contains λ 's (i.e. $\left.Q_{\lambda}(\mathrm{c}) \neq 0\right)$ which satisfy

$$
\begin{equation*}
\mathcal{A} \lambda=\beta \quad \text { and } \quad \operatorname{conv}\left\{\mathfrak{a}_{i} \mid \lambda_{i}<0\right\} \quad \text { is a simplex in the triangulation } \mathcal{T} . \tag{15}
\end{equation*}
$$

This is important for determining a domain of definition for $\Phi_{\mathcal{T}, \beta}(\mathrm{v})$.
As we tried to distinguish a kind of regular behavior for the λ 's which satisfy (15), we were led to triangulations for which the intersection of the maximal simplices is not empty. We call

$$
\begin{equation*}
\text { core } \mathcal{T}:=\text { intersection of the maximal simplices of } \mathcal{T} \tag{16}
\end{equation*}
$$

the core of the triangulation \mathcal{T}. We use the short notation $i \in \operatorname{core} \mathcal{T}$ for $\mathfrak{a}_{i} \in$ core \mathcal{T}. The following result is corollary 3 in section 5 .

Theorem 2 Assume core $\mathcal{T} \neq \emptyset$ and $\beta=\sum_{i \in \operatorname{core} \mathcal{T}} m_{i} \mathfrak{a}_{i}$ with all $m_{i}<0$. Then the function $\Phi_{\mathcal{T}, \beta}(\mathrm{v})$ takes values in the principal ideal $c_{\mathrm{core}} \mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{C}$ where

$$
c_{\text {core }}:=\prod_{i \in \operatorname{core} \mathcal{T}} c_{i}
$$

Multiplication by $c_{\text {core }}$ on $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ induces a linear isomorphism

$$
\begin{equation*}
\mathcal{R}_{\mathrm{A}, \mathcal{T}} / \operatorname{Ann} c_{\text {core }} \xrightarrow{\simeq} c_{\text {core }} \mathcal{R}_{\mathrm{A}, \mathcal{T}} \tag{17}
\end{equation*}
$$

Thus one can also say that the function $\Phi_{\mathcal{T}, \beta}(\mathrm{v})$ takes values in the algebra $\mathcal{R}_{\mathrm{A}, \mathcal{T}} / \mathrm{Ann} c_{\text {core }} \otimes \mathbb{C}$.

By composing $\Phi_{\mathcal{T}, \beta}$ with a linear map $\mathcal{R}_{\mathrm{A}, \mathcal{T}} \rightarrow \mathbb{C}$ one obtains a \mathbb{C}-multivalued function which satisfies the system of differential equations (3)-(4). When $\beta=0$ and \mathcal{T} is unimodular all solutions of (3)-(4) can be obtained in this way; see theorem 5 .

For $\beta \neq 0$ not all solutions of (3)-(4) can be obtained in this way. Yet what we need for mirror symmetry are the solutions which can be obtained in this way for appropriate β and \mathcal{T}; see theorem 10. Our proof of this theorem makes essential use of the relation:

$$
\begin{equation*}
\frac{\partial}{\partial v_{i}} \Phi_{\mathcal{T}, \beta}(\mathrm{v})=\Phi_{\mathcal{T}, \beta-\mathfrak{a}_{i}}(\mathrm{v}) \tag{18}
\end{equation*}
$$

which follows imediately from the formulas (10) and (11).
Remark 1 The ideal generated by the monomials in (14) is known as the Stanley-Reisner ideal and has been defined for finite simplicial complexes in general 22. It is well-known [5, 10, 21] that the cohomology ring of a toric variety constructed from a complete simplicial fan has a presentation by generators and relations as in (13)-(14). Unimodular triangulations whose core is not empty and is not contained in the boundary of Δ, give rise to such toric varieties and in that case $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ is indeed the cohomology ring of a toric variety; see theorem 9. However not all triangulations to which the present discussion applies are of this kind. For instance for the triangulation \mathcal{T}_{5} in figure 1 we find $\mathcal{R}_{\mathrm{A}, \mathcal{T}_{5}}=\mathbb{Z}\left[c_{1}, c_{2}, c_{5}\right] /\left(c_{1}^{2}, c_{2}^{2}, c_{5}^{2}, c_{1} c_{2}, c_{2} c_{5}\right)$. An element like c_{2} which annihilates the whole degree 1 part of $\mathcal{R}_{\mathrm{A}, \mathcal{T}_{5}}$ can not exist in the cohomology of a toric variety.

Remark 2 Our method for solving GKZ systems in the resonant case evolved directly from the Γ-series of Gel'fand-Kapranov-Zelevinskii. In hindsight it can also be viewed as a variation on the classical method of Frobenius 99]. The latter would view $\gamma_{1}, \ldots, \gamma_{N}$ in (7) or c_{1}, \ldots, c_{N} in (10) as variables with a restriction given by (8) or (9); then differentiate (repeatedly if necessary) with respect to these variables and set $\gamma=\left(\gamma_{1}, \ldots, \gamma_{N}\right)$ in the derivatives equal to its special value γ°, c.q. set $c_{1}=\ldots=c_{N}=0$, to obtain solutions for (3)-(4). Frobenius [9] considered only functions in one variable. In the case with more variables one also needs a good bookkeeping device for the linear relations between the solutions of the differential equations. The rings $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ resp. $\mathcal{R}_{\mathrm{A}, \mathcal{T}} /$ Ann $c_{\text {core }}$ are such a bookkeeping devices. Hosono-Klemm-TheisenYau have applied Frobenius' method directly in the situation of the Picard-Fuchs equations of certain families of Calabi-Yau threefolds; see [17] formulas (4.9) and (4.10). In their work the cohomology ring of the mirror Calabi-Yau threefold plays a similar role of bookkeeper; in fact $\mathcal{R}_{\mathrm{A}, \mathcal{T}} / \operatorname{Ann} c_{\text {core }}$ is the cohomology ring of the mirror Calabi-Yau manifold. The way in which we arrive at our result looks quite different from that in 17 §4. Moreover the formulation in op. cit. is restricted to the situation of Calabi-Yau threefolds.

Remark 3 Some of our $\Phi_{\mathcal{T}, \beta}$'s are similar to expressions presented by Givental in 14] theorems 3 and 4 ; more specifically, \vec{g}_{l} in 14] thm. 4 is a special case of $\Phi_{\mathcal{T}, \beta}$ in our theorem 2 with $\beta=-\sum_{i \in \text { core } \mathcal{T}} \mathfrak{a}_{i}$, whereas in 14 thm. 3 there is a difference in that the input data are not subject to (2) in condition 1. The algebra H in 14 thm. 3 is the cohomology algebra of a toric variety while our $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ for appropriate \mathcal{T} is also the cohomology algebra of a toric variety. The algebra H in 14 thm. 4 is the algebra $\mathcal{R}_{\mathrm{A}, \mathcal{T}} / \operatorname{Ann} c_{\text {core }}$ in our theorem 2 .

For a proper treatment of the logarithms which appear in (10) we set

$$
\begin{align*}
& v_{j}:=\exp \left(2 \pi \mathrm{i} z_{j}\right) \quad(j=1, \ldots, N) \\
& \mathrm{z} \tag{19}\\
& \mathrm{c} \quad:=\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{C}^{N \vee} \\
& \left(c_{1}, \ldots, c_{N}\right)^{t} \in \mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{Z}^{N}
\end{align*}
$$

by (9) c lies in fact in $\mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{L}$. Instead of (10) we now consider

$$
\begin{equation*}
\Psi_{\mathcal{T}, \beta}(\mathrm{z}):=\sum_{\lambda \in \mathcal{A}^{-1}(\beta)} Q_{\lambda}(\mathrm{c}) \mathrm{e}^{2 \pi \mathrm{i} \mathrm{z} \cdot \lambda} \cdot \mathrm{e}^{2 \pi \mathrm{i} \cdot \mathrm{c} \cdot} \tag{20}
\end{equation*}
$$

Note that $\mathrm{e}^{2 \pi \mathrm{iz} \cdot \mathrm{c}}$ is just a polynomial, but $\sum_{\lambda \in \mathcal{A}^{-1}(\beta)} Q_{\lambda}(\mathrm{c}) \mathrm{e}^{2 \pi \mathrm{iz} \cdot \lambda}$ is really a series. In section 3 we analyse the convergence of this series and give a domain $\mathcal{V}_{\mathcal{T}}$ in $\mathbb{C}^{N V}$ on which the function $\Psi_{\mathcal{T}, \beta}$ is defined; see theorem 4 .

The domain $\mathcal{V}_{\mathcal{T}}$ is invariant under translations by elements of $\mathbb{Z}^{N \vee}$ and by elements of $\mathbb{M}_{\mathbb{C}}^{\vee}:=\operatorname{Hom}(\mathbb{M}, \mathbb{C}) \subset \mathbb{C}^{N \vee}$. From (20) one immediately sees

$$
\begin{align*}
\Psi_{\mathcal{T}, \beta}(\mathrm{z}+\mu) & =\mathrm{e}^{2 \pi \mathrm{i} \mu \cdot \mathrm{c}} \cdot \Psi_{\mathcal{T}, \beta}(\mathrm{z}) & \forall \mu \in \mathbb{Z}^{N \vee} \tag{21}\\
\Psi_{\mathcal{T}, \beta}(\mathrm{z}+\mathrm{m}) & =\mathrm{e}^{2 \pi \mathrm{i} \mathrm{~m} \cdot \beta} \cdot \Psi_{\mathcal{T}, \beta}(\mathrm{z}) & \forall \mathrm{m} \in \mathbb{M}_{\mathbb{C}}^{\vee} \tag{22}
\end{align*}
$$

The functional equation (21) gives the monodromy of $\Phi_{\mathcal{T}, \beta}$, when viewed as a multivalued function on $\mathcal{V}_{\mathcal{T}} / \mathbb{Z}^{N \vee}$ with values in the vector space $\mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{C}$. Because of (13) elements of $\mathbb{M}_{\mathbb{Z}}^{V}:=\operatorname{Hom}(\mathbb{M}, \mathbb{Z})$ give trivial monodromy and the actual monodromy comes from $\mathbb{L}_{\mathbb{Z}}^{V}:=\operatorname{Hom}(\mathbb{L}, \mathbb{Z})$.

As $\mathbb{M}_{\mathbb{Z}}^{\vee}$ acts trivially, the translation action of $\mathbb{M}_{\mathbb{C}}^{\vee}$ descends to an action of the torus $\mathbb{M}_{\mathbb{C}}^{V} / \mathbb{M}_{\mathbb{Z}}^{V}=\operatorname{Hom}\left(\mathbb{M}, \mathbb{C}^{*}\right)$. The functional equation (22), whose infinitesimal analogues are the differential equations (3), means that $\Psi_{\mathcal{T}, \beta}$ is an eigenfunction with character β.

If one wants an invariant function for $\beta \neq 0$ one must replace the range of values of $\Psi_{\mathcal{T}, \beta}$ by $\left(\mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{C}\right) / \mathbb{C}^{*}$, the orbit space for the natural \mathbb{C}^{*}-action on the vector space $\mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{C}$. On a possibly slightly smaller domain of definition the invariant function even takes values in the projective space $\mathbb{P}\left(\mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{C}\right)$. The $\mathbb{M}_{\mathbb{C}}^{\vee}$-invariant function $\Psi_{\mathcal{T}, \beta} \bmod \mathbb{C}^{*}$ is defined on the domain $\mathbb{L}_{\mathbb{R}}^{\vee}+\sqrt{-1} \mathcal{B}_{\mathcal{T}}$ in $\mathbb{L}_{\mathbb{C}}^{\vee}$; cf. formula (39). The (multivalued) function $\Phi_{\mathcal{T}, \beta} \bmod \mathbb{C}^{*}$ is defined on a domain in the torus $\operatorname{Hom}\left(\mathbb{L}, \mathbb{C}^{*}\right)$.

For a good overall picture it is appropriate to point out here that the pointed secondary fan (the construction of which is recalled in section 1.2) defines a toric
variety which compactifies the torus $\operatorname{Hom}\left(\mathbb{L}, \mathbb{C}^{*}\right)$. To each regular triangulation of Δ corresponds a special point in the boundary of this compactification. The domain of definition of $\Phi_{\mathcal{T}, \beta} \bmod \mathbb{C}^{*}$ is the intersection of the torus $\operatorname{Hom}\left(\mathbb{L}, \mathbb{C}^{*}\right)$ and a neighborhood of the special point corresponding to \mathcal{T}; see the end of section 3 .

Example 1 Let $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{6}$ be the columns of the following matrix A :

$$
\begin{aligned}
A & =\left(\begin{array}{rrrrrr}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & -1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & -1
\end{array}\right) \\
B & =\left(\begin{array}{llllll}
1 & 0 & 0 & -2 & 0 & 1 \\
0 & 1 & 1 & -3 & 0 & 1 \\
0 & 0 & 1 & -2 & 1 & 0
\end{array}\right)
\end{aligned}
$$

$$
\Delta=
$$

These satisfy conditions (11) and (2) with $\mathbb{M}=\mathbb{Z}^{3}$ and $\mathfrak{a}_{0}^{\vee}=(1,0,0)$.
Figure 1 shows all regular triangulations of the polytope Δ, with two triangulations joined by an edge iff the corresponding cones in the pointed secondary fan are adjacent.

The columns of the matrix B^{t} constitute a \mathbb{Z}-basis for \mathbb{L} by means of which one can identify \mathbb{L} with \mathbb{Z}^{3} and $\mathbb{L}_{\mathbb{R}}^{\vee}$ with $\mathbb{R}^{3 \vee}$. The rows $\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{6}$ of the matrix B^{t} are then identified with the images of the standard basis vectors under the projection $\mathbb{R}^{6 \vee} \rightarrow \mathbb{L}_{\mathbb{R}}$, dual to the inclusion $\mathbb{L} \subset \mathbb{Z}^{6}$. Thus one finds $\ell_{j}=$ $\mathfrak{b}_{j} \cdot \ell$ for every $\ell \in \mathbb{L}_{\mathbb{R}} \simeq \mathbb{R}^{3}$ and (15) becomes a condition on the signs of $\mathfrak{b}_{1} \cdot \ell+\gamma_{1}^{\circ}, \ldots, \mathfrak{b}_{6} \cdot \ell+\gamma_{6}^{\circ}$. The signs give a vector in $\{-1,0,+1\}^{6}$

These sign vectors correspond exactly to the various strata in the stratification of \mathbb{R}^{3} induced by the six planes $\mathfrak{b}_{j} \cdot x+\gamma_{j}^{\circ}=0(j=1, \ldots, 6)$. Figure 2
shows the zonotope spanned by $\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{6}$. The $3-j$-dimensional faces of this zonotope correspond bijectively with the j-dimensional strata in the stratification for $\gamma^{\circ}=0$. The stratum with sign vector $\left(s_{1}, \ldots, s_{6}\right)$ corresponds with the face whose centre is $s_{1} \mathfrak{b}_{1}+s_{2} \mathfrak{b}_{2}+s_{3} \mathfrak{b}_{3}+s_{4} \mathfrak{b}_{4}+s_{5} \mathfrak{b}_{5}+s_{6} \mathfrak{b}_{6}$. The vertices 1-14 (resp. 15-28) of the zonotope have sign vectors $\left(s_{1}, \ldots, s_{6}\right)$ (resp. $-\left(s_{1}, \ldots, s_{6}\right)$) as given in table 1.

The sign vectors of all faces of the zonotope give all possible signs for $\ell=\left(\ell_{1}, \ldots, \ell_{6}\right) \in \mathbb{L}$. Thus by comparing this with (15) one can see for every triangulation \mathcal{T} what types of terms are involved in the series of $\Psi_{\mathcal{T}, 0}$. For example for triangulation \mathcal{T}_{1} the series of $\Psi_{\mathcal{T}_{1}, 0}$ involves precisely those $\ell \in \mathbb{L}$ whose sign vector corresponds to a face of the zonotope containing at least one of the vertices $1,2,3$ or 4 .

figure 2

table 1

The series $\Psi_{\mathcal{T}_{1},-\mathfrak{a}_{4}}$ involves the same ℓ 's with exception of $\ell=0$ (which corresponds to the 3 -dimensional the zonotope itself). Using the Pochhammer symbol notation $(x)_{m}:=x(x+1) \cdot \ldots \cdot(x+m-1)$ we have

$$
\left.\begin{array}{rl}
\Psi_{\mathcal{T}_{1},-\mathfrak{a}_{4}} & = \\
c_{4} \mathrm{e}^{-2 \pi i z_{4}} T_{1}^{c_{1}} T_{2}^{c_{2}} T_{5}^{c_{5}} \times \\
\times & \left\{\begin{array}{l}
\sum_{p, q, r \geq 0}(-1)^{q} \frac{\left(2 c_{1}+3 c_{2}+2 c_{5}+1\right)_{2 p+3 q+2 r}}{\left(c_{1}\right)_{p}\left(c_{2}\right)_{q}\left(c_{5}\right)_{r}\left(c_{1}+c_{2}\right)_{p+q}\left(c_{2}+c_{5}\right)_{q+r}} T_{1}^{p} T_{2}^{q} T_{5}^{r} \\
\\
-c_{1} \sum_{r \geq 0,-q \leq p<0}(-1)^{q+p} \frac{(2 p+3 q+2 r)!(-p-1)!}{q!r!(p+q)!(q+r)!} T_{1}^{p} T_{2}^{q} T_{5}^{r}
\end{array}\right. \\
\quad-c_{5} \sum_{p \geq 0,-q \leq r<0}(-1)^{q+r} \frac{(2 p+3 q+2 r)!(-r-1)!}{p!q!(p+q)!(q+r)!} T_{1}^{p} T_{2}^{q} T_{5}^{r}
\end{array}\right\}
$$

where

$$
\begin{aligned}
T_{1}:=\mathrm{e}^{2 \pi i\left(z_{1}-2 z_{4}+z_{6}\right)}, \quad T_{2} & :=\mathrm{e}^{2 \pi i\left(z_{2}+z_{3}-3 z_{4}+z_{6}\right)}, \quad T_{5}:=\mathrm{e}^{2 \pi i\left(z_{3}-2 z_{4}+z_{5}\right)} \\
c_{4} & =-2 c_{1}-3 c_{2}-2 c_{5}
\end{aligned}
$$

and

$$
\mathcal{R}_{\mathrm{A}, \mathcal{T}_{1}}=\mathbb{Z}\left[c_{1}, c_{2}, c_{5}\right] /\left(c_{1}^{2}-c_{2}^{2}, c_{1}^{2}-c_{5}^{2}, c_{1}^{2}+c_{1} c_{2}, c_{1}^{2}+c_{2} c_{5}, c_{1} c_{5}\right)
$$

Note that $c_{4} c_{1}=c_{4} c_{2}=c_{4} c_{5}$. One may therefore simplify the expression for $\Psi_{\mathcal{T}_{1},-\mathfrak{a}_{4}}$ and replace c_{2} and c_{5} by c_{1}.

1 Regular triangulations and the pointed secondary fan

In this section we review some results about regular triangulations and about the pointed secondary fan, essentially following [音. One may take as a definition of regular triangulations that these are the triangulations produced by the construction in this section; see in particular proposition 11 .

1.1 Regular triangulations

We start from a set of vectors $\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\}$ in \mathbb{Z}^{n} satisfying condition in. Let $\Delta=\operatorname{conv}\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\}$ denote the convex hull of this set of points in \mathbb{R}^{n}. We are interested in triangulations of Δ such that all vertices are among the marked points $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}$. The notation can be conveniently simplified by referring to a simplex conv $\left\{\mathfrak{a}_{i_{1}}, \ldots, \mathfrak{a}_{i_{m}}\right\}$ by just the index set $\left\{i_{1}, \ldots, i_{m}\right\}$. We will allways take the indices in increasing order. If \mathcal{T} is a triangulation, we write \mathcal{T}^{m} for the set of simplices with m vertices. A triangulation is completely determined by its set of maximal simplices \mathcal{T}^{n}.

For the construction of a regular triangulation we take an N-tuple of positive real numbers $\mathrm{d}=\left(d_{1}, \ldots, d_{N}\right)$ and consider the polytope

$$
\begin{equation*}
\mathcal{P}_{\mathrm{d}}:=\operatorname{conv}\left\{0, d_{1}^{-1} \mathfrak{a}_{1}, \ldots, d_{N}^{-1} \mathfrak{a}_{N}\right\} \subset \mathbb{R}^{n} \tag{23}
\end{equation*}
$$

Consider a subset $I=\left\{i_{1}, \ldots, i_{n}\right\}$ of $\{1, \ldots, N\}$ for which $\mathfrak{a}_{i_{1}}, \ldots, \mathfrak{a}_{i_{n}}$ are linearly independent. The affine hyperplane through $d_{i_{1}}^{-1} \mathfrak{a}_{i_{1}}, \ldots, d_{i_{n}}^{-1} \mathfrak{a}_{i_{n}}$ is given by the equation $D_{\mathrm{d}, I}(\mathrm{x})=0$ with

$$
D_{\mathrm{d}, I}(\mathrm{x}):=\operatorname{det}\left(\begin{array}{cccc}
d_{i_{1}}^{-1} \mathfrak{a}_{i_{1}} & \ldots & d_{i_{n}}^{-1} \mathfrak{a}_{i_{n}} & \mathrm{x} \tag{24}\\
1 & \ldots & 1 & 1
\end{array}\right)
$$

Write $I^{*}:=\{1, \ldots, N\} \backslash I$. Then $\left\{d_{i_{1}}^{-1} \mathfrak{a}_{i_{1}}, \ldots, d_{i_{n}}^{-1} \mathfrak{a}_{i_{n}}\right\}$ lies in a codimension 1 face of \mathcal{P}_{d} if and only if for all $j \in I^{*}$:

$$
\begin{equation*}
D_{\mathrm{d}, I}\left(d_{j}^{-1} \mathfrak{a}_{j}\right) \cdot D_{\mathrm{d}, I}(0) \geq 0 \tag{25}
\end{equation*}
$$

This face is a simplex with vertices $d_{i_{1}}^{-1} \mathfrak{a}_{i_{1}}, \ldots, d_{i_{n}}^{-1} \mathfrak{a}_{i_{n}}$ iff $D_{\mathrm{d}, I}\left(d_{j}^{-1} \mathfrak{a}_{j}\right) \neq 0$ for every $j \in I^{*}$. Thus if d does not lie on any hyperplane in \mathbb{R}^{N} given by the vanishing of $D_{\mathrm{d}, I}\left(d_{j}^{-1} \mathfrak{a}_{j}\right)$ for some I and j with $j \notin I$, then all faces of \mathcal{P}_{d} opposite to the vertex 0 are simplicial.

In this case the projection with center 0 projects the boundary of \mathcal{P}_{d} onto a triangulation \mathcal{T} of Δ. The maximal simplices of \mathcal{T} are those $I=\left\{i_{1}, \ldots, i_{n}\right\}$ for which $D_{\mathrm{d}, I}\left(d_{j}^{-1} \mathfrak{a}_{j}\right) \cdot D_{\mathrm{d}, I}(0)>0$ holds for every $j \in I^{*}$.

Let $\mathrm{A}=\left(a_{i j}\right)$ denote the $n \times N$-matrix with columns $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}$. The triangulation obviously depends only on d modulo the row space of A. Let us reformulate the above construction accordingly.

Take $\mathbb{L}=\operatorname{ker} \mathrm{A} \subset \mathbb{Z}^{N}$ as in (5). Assumption (2) implies $\ell_{1}+\ldots+\ell_{N}=0$ for every $\ell=\left(\ell_{1}, \ldots, \ell_{N}\right)^{t} \in \mathbb{L}$. Take an $(N-n) \times N$-matrix B with entries in \mathbb{Z} such that columns of B^{t} constitute a basis for \mathbb{L}.

Let $w \in \mathbb{R}^{N-n}$. Then there exists a row vector of positive real numbers $\mathrm{d}=\left(d_{1}, \ldots, d_{N}\right)$ such that $w=\mathbf{B d}^{t}$. Take the matrices

$$
\widetilde{\mathrm{A}}:=\left(\begin{array}{c|c}
\mathrm{A} & 0 \\
-\overline{\mathrm{d}} & -1
\end{array}\right) \quad \text { and } \quad \widetilde{\mathrm{B}}:=(\mathrm{B} \mid-w) .
$$

Denote by $\widetilde{\mathrm{A}}_{K}$ (resp. $\widetilde{\mathrm{B}}_{K}$) the submatrix of $\widetilde{\mathrm{A}}$ (resp. $\widetilde{\mathrm{B}}$) composed of the entries with column index in a subset K of $\{1, \ldots, N+1\}$. Since $\operatorname{rank} \widetilde{\mathrm{A}}=n+1$, $\operatorname{rank} \widetilde{\mathrm{B}}=N-n$ and $\widetilde{\mathrm{A}} \cdot \widetilde{\mathrm{B}}^{t}=0$ there is a non-zero $r \in \mathbb{Q}$ such that for every $J \subset\{1, \ldots, N+1\}$ of cardinality $n+1$ and $J^{\prime}=\{1, \ldots, N+1\} \backslash J$

$$
\operatorname{det}\left(\widetilde{\mathrm{A}}_{J}\right)=(-1)^{\sum_{j \in J} j} r \operatorname{det}\left(\widetilde{\mathrm{~B}}_{J^{\prime}}\right)
$$

One sees that (25) is equivalent to

$$
\begin{equation*}
(-1)^{\sharp\left\{h \in I^{*} \mid h>j\right\}} \operatorname{det}\left(\left(\mathrm{B}_{I^{*} \backslash\{j\}} \mid w\right)\right) \cdot \operatorname{det}\left(\mathrm{B}_{I^{*}}\right) \geq 0 ; \tag{26}
\end{equation*}
$$

here $\mathrm{B}_{I^{*}}$ resp. $\mathrm{B}_{I^{*} \backslash\{j\}}$ is the submatrix of B consisting of the entries with column index in I^{*} resp. $I^{*} \backslash\{j\}$.

Thus the triangulation \mathcal{T} can also be constructed from (26).

1.2 The pointed secondary fan

For a more intrinsic formulation which does not refer to a choice of a basis for \mathbb{L} we consider the $(N-n)$-dimensional real vector space $\mathbb{L}_{\mathbb{R}}^{\vee}:=\operatorname{Hom}(\mathbb{L}, \mathbb{R})$. Let $\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{N} \in \mathbb{L}_{\mathbb{R}}^{\vee}$ be the images of the standard basis vectors of $\mathbb{R}^{N \vee}$ under the surjection $\mathbb{R}^{N \vee} \rightarrow \mathbb{L}_{\mathbb{R}}^{\vee}$ dual to the inclusion $\mathbb{L} \hookrightarrow \mathbb{Z}^{N}$. Let \mathfrak{B} (resp. \mathfrak{D}) be the collection of those subsets J of $\{1, \ldots, N\}$ of cardinality $N-n$ (resp. $N-n-1)$ for which the vectors $\mathfrak{b}_{j}(j \in J)$ are linearly independent. For $K=\left\{k_{1}, \ldots, k_{N-n}\right\} \in \mathfrak{B}$ and $J=\left\{j_{1}, \ldots, j_{N-n-1}\right\} \in \mathfrak{D}$ we write

$$
\begin{aligned}
\mathcal{C}_{K} & :=\left\{t_{1} \mathfrak{b}_{k_{1}}+\ldots+t_{N-n} \mathfrak{b}_{k_{N-n}} \in \mathbb{L}_{\mathbb{R}} \mid t_{1}, \ldots, t_{N-n} \in \mathbb{R}_{\geq 0}\right\} \\
H_{J} & :=\left\{t_{1} \mathfrak{b}_{j_{1}}+\ldots+t_{N-n-1} \mathfrak{b}_{j_{N-n-1}} \in \mathbb{L}_{\mathbb{R}}^{\vee} \mid t_{1}, \ldots, t_{N-n-1} \in \mathbb{R}\right\}
\end{aligned}
$$

Choosing a basis for \mathbb{L} as before one can identify $\mathbb{L}_{\mathbb{R}}^{\vee}$ with $\mathbb{R}^{N-n \vee}$ and $\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{N}$ with the rows of matrix B^{t}. The inequality (26) becomes equivalent to the statement $w \in \mathcal{C}_{I^{*}}$. The condition $D_{\mathrm{d}, I}\left(d_{j}^{-1} \mathfrak{a}_{j}\right) \neq 0$ for the left hand factor in (25) becomes equivalent to $w \notin H_{J}$ for $J=\{1, \ldots, N+1\} \backslash(I \cup\{j\})$.

Thus the preceding discussion shows:

Proposition 1 (cf. (in lemma 4.3.) For $w \in \mathbb{L}_{\mathbb{R}}^{\vee} \backslash \bigcup_{J \in \mathfrak{D}} H_{J}$ the set

$$
\mathcal{T}^{n}:=\left\{I \mid I^{*} \in \mathfrak{B} \text { and } w \in \mathcal{C}_{I^{*}}\right\}
$$

is the set of maximal simplices of a regular triangulation \mathcal{T} of Δ. (Recall the notation $I^{*}:=\{1, \ldots, N\} \backslash I$.)

If \mathcal{T} is a regular triangulation of Δ write

$$
\begin{equation*}
\mathcal{C}_{\mathcal{T}}=\bigcap_{I \in \mathcal{T}^{n}} \mathcal{C}_{I^{*}} \tag{27}
\end{equation*}
$$

Then every $w \in \mathcal{C}_{\mathcal{T}} \backslash \bigcup_{J \in \mathfrak{D}} H_{J}$ leads by the above construction to the same triangulation \mathcal{T}.

The cones $\mathcal{C}_{\mathcal{T}}$ one obtains in this way from all regular triangulations of Δ constitute the collection of maximal cones of a complete fan in $\mathbb{L}_{\mathbb{R}}^{\vee}$. This fan is called the pointed secondary fan.

Remark 4 The dual (or polar) set of \mathcal{P}_{d} in (23) is (e.g. 1] def.4.1.1, 10 p.24)

$$
\begin{equation*}
\mathcal{P}_{\mathrm{d}}^{\vee}:=\left\{\mathrm{y} \in \mathbb{R}^{n \vee} \mid \mathrm{y} \cdot \mathrm{x} \geq-1 \text { for all } \mathrm{x} \in \mathcal{P}_{\mathrm{d}}\right\} \tag{28}
\end{equation*}
$$

It is the intersection of half-spaces given by the inequalities

$$
\mathrm{y} \cdot \mathfrak{a}_{i}+d_{i} \geq 0 \quad(i=1, \ldots, N)
$$

$\mathcal{P}_{\mathrm{d}}^{\vee}$ is an unbounded polyhedron. Its vertices correspond with the codimension 1 faces of \mathcal{P}_{d} which do not contain 0 .

Adding to d an element of the row space of matrix A amounts to just a translation of the polyhedron $\mathcal{P}_{\mathrm{d}}^{\vee}$ in $\mathbb{R}^{n \vee}$. If d gives rise to a unimodular triangulation, then $\mathcal{P}_{\mathrm{d}}^{\vee}$ is an (unbounded) Delzant polyhedron in the sense of [16] p.8. Thus, by the constructions in 16] a point in the real cone $\mathcal{C}_{\mathcal{T}}$ for a unimodular regular triangulation \mathcal{T} can be interpreted as a parameter for the symplectic structure of a toric variety. In view of formula (3马) this applies in particular to the imaginary part of the variable \mathbf{z} in (20).

2 The ring $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$.

Theorem 3 Consider the ring $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ as in definition B.
(i). $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ is a free $\mathbb{Z}\left[D^{-1}\right]$-module of rank $\sharp \mathcal{T}^{n}$.
(ii). $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ is a graded ring. Let $\mathcal{R}_{\mathrm{A}, \mathcal{T}}^{(k)}$ denote its homogeneous component of degree k. Then the Poincaré series of $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ is:

$$
\sum_{k \geqslant 0}\left(\operatorname{rank} \mathcal{R}_{\mathrm{A}, \mathcal{T}}^{(k)}\right) \tau^{k}=\sum_{m=0}^{n} \sharp\left(\mathcal{T}^{m}\right) \tau^{m}(1-\tau)^{n-m}
$$

where $\sharp\left(\mathcal{T}^{m}\right)=$ the number of simplices with m vertices; $\sharp\left(\mathcal{T}^{0}\right)=1$ by convention. In particular

$$
\mathcal{R}_{\mathrm{A}, \mathcal{T}}^{(k)}=0 \quad \text { for } \quad k \geq n
$$

(iii). $\left\{c_{I} \mid I \in \mathcal{T}^{n}\right\}$ is a $\mathbb{Z}\left[D^{-1}\right]$-basis for $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$. (cf. formula (3q))

The proof of theorem 3 closely follows the proofs of Danilov ([5] § 10) and Fulton (10 §5.2) for the analogous presentation of the Chow ring of a complete simplicial toric variety. We include a proof here in order check that it needs no reference to algebraic cycles and also works when the simplicial complex is homeomorphic to a ball instead of a sphere as in $[5,10$.

For the construction of a basis for $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ we choose a vector ξ in Δ which should be linearly independent from every $n-1$-tuple of vectors in $\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\}$. If I is a maximal simplex, then $\left\{\mathfrak{a}_{i}\right\}_{i \in I}$ is a basis of \mathbb{R}^{n} and $\xi=\sum_{i \in I} x_{i} \mathfrak{a}_{i}$ with all $x_{i} \neq 0$. We define

$$
\begin{align*}
I^{-} & :=\left\{i \in I \mid x_{i}<0\right\} \tag{29}\\
c_{I} & :=\prod_{i \in I^{-}} c_{i} \tag{30}
\end{align*}
$$

Let \mathcal{T} be associated with $\mathrm{d}=\left(d_{1}, \ldots, d_{N}\right)$ as in section 1.1. For $I \in \mathcal{T}^{n}$ let p_{I} be the positive real number such that $p_{I} \xi$ lies in the affine hyperplane through the points $d_{i}^{-1} \mathfrak{a}_{i}$ with $i \in I$, i.e. $D_{\mathrm{d}, I}\left(p_{I} \xi\right)=0$. We may assume that d is chosen such that $p_{I_{1}} \neq p_{I_{2}}$ whenever $I_{1} \neq I_{2}$; indeed, for $I_{1} \neq I_{2}$ the equality $p_{I_{1}}=p_{I_{2}}$ amounts to a non-trivial linear equation for d_{1}, \ldots, d_{N}. As in 10 we define a total ordering on \mathcal{T}^{n} :

$$
\begin{equation*}
I_{1}<I_{2} \quad \text { iff } \quad p_{I_{1}}<p_{I_{2}} \tag{31}
\end{equation*}
$$

Lemma 1 (cf. 10 p.101(*)) If $I_{1}^{-} \subset I_{2}$ then $I_{1} \leq I_{2}$.
proof: By definition of $p_{I_{1}}$ there exist $s_{j} \in \mathbb{R}$ such that $p_{I_{1}} \xi=\sum_{j \in I_{1}} s_{j} d_{j}^{-1} \mathfrak{a}_{j}$ and $1=\sum_{j \in I_{1}} s_{j}$. If $I_{1} \neq I_{2}$ and $I_{1}^{-} \subset I_{2}$ then $s_{j}>0$ for every $j \in I_{1} \backslash I_{2}$. Using this and (25) for I_{2} one checks: $D_{\mathrm{d}, I_{2}}\left(p_{I_{1}} \xi\right) \cdot D_{\mathrm{d}, I_{2}}(0)>0$. This shows that 0 and $p_{I_{1}} \xi$ lie on the same side of the affine hyperplane through the points $d_{i}^{-1} \mathfrak{a}_{i}$ with $i \in I_{2}$. Hence: $p_{I_{1}}<p_{I_{2}}$.

Lemma 2 (cf. 10] p.102) Let J be a simplex in \mathcal{T}. Then: $I^{-} \subset J \subset I$ where $I:=\min \left\{I^{\prime} \in \mathcal{T}^{n} \mid J \subset I^{\prime}\right\}$.
proof: The conclusion is clear if $I=J$. So assume $I \neq J$ and take $i \in I \backslash J$. Then $I \backslash\{i\}$ is a codim 1 simplex in the triangulation, which either is contained in the boundary of Δ or is contained in another maximal simplex $I^{\prime} \neq I$.

If $I \backslash\{i\}$ is a boundary simplex, then ξ and \mathfrak{a}_{i} are on the same side of the linear hyperplane in \mathbb{R}^{n} spanned be the vectors \mathfrak{a}_{j} with $j \in I \backslash\{i\}$. This implies $x_{i}>0$ in the expansion $\xi=\sum_{j \in I} x_{j} \mathfrak{a}_{j}$. So $i \notin I^{-}$.

If $I \backslash\{i\}$ is contained in a maximal simplex $I^{\prime} \neq I$, then $J \subset I^{\prime}$ and hence $I<I^{\prime}$. Now look at the two expansions $\xi=x_{i} \mathfrak{a}_{i}+\sum_{j \in I \cap I^{\prime}} x_{j} \mathfrak{a}_{j}$ and $\xi=$ $y_{k} \mathfrak{a}_{k}+\sum_{j \in I \cap I^{\prime}} y_{j} \mathfrak{a}_{j}$ where $\{k\}=I^{\prime} \backslash\left(I \cap I^{\prime}\right)$. Then $y_{k}<0$ because $I^{\prime-} \not \subset I$ by the preceding lemma. On the other hand, x_{i} and y_{k} have different signs because \mathfrak{a}_{i} and \mathfrak{a}_{k} lie on different sides of the linear hyperplane spanned by the vectors \mathfrak{a}_{j} with $j \in I \cap I^{\prime}$. We see $x_{i}>0$ and $i \notin I^{-}$.

Conclusion: $I^{-} \subset J$.
Proposition 2 The elements $c_{I}\left(I \in \mathcal{T}^{n}\right)$ generate $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ as a $\mathbb{Z}\left[D^{-1}\right]$-module.
proof: $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ is linearly generated by monomials in c_{1}, \ldots, c_{N}. For one $I_{0} \in \mathcal{T}^{n}$ we have $I_{0}^{-}=\emptyset$, hence $c_{I_{0}}=1$. Therefore we only need to show that for every j and every I_{1} the product $c_{j} \cdot c_{I_{1}}$ can be written as a linear combination of c_{I} 's. If $j \in I_{1}$ one can use the linear relations (13) to express every c_{i} with $i \in I_{1}$ as a $\mathbb{Z}\left[D^{-1}\right]$-linear combination of c_{k} 's with $k \notin I_{1}$. Since this works for c_{j} in particular, the problem can be reduced to showing that a monomial of the form $\prod_{i \in J} c_{i}$ with J a simplex of the triangulation, can be written as a linear combination of c_{I} 's. Given such a J take $I_{J} \in \mathcal{T}^{n}$ such that $I_{J}^{-} \subset J \subset I_{J}$; see lemma 2. If $J=I_{J}^{-}$, then $\prod_{i \in J} c_{i}=c_{I_{J}}$ and we are done. If $J \neq I_{J}^{-}$ take $m \in J \backslash I_{J}^{-}$and use the linear relations (13) to rewrite c_{m} as a $\mathbb{Z}\left[D^{-1}\right]$ linear combination of c_{k} 's with $k \notin I_{J}$. This leads to an expression for $\prod_{i \in J} c_{i}$ as a $\mathbb{Z}\left[D^{-1}\right]$-linear combination of monomials of the form $\prod_{i \in K} c_{i}$ with K a simplex of the triangulation and $I_{J}^{-} \subsetneq K$. Given such a K take $I_{K} \in \mathcal{T}^{n}$ such that $I_{K}^{-} \subset K \subset I_{K}$. Then, according to lemma 11, $I_{J}<I_{K}$. We proceed by induction.

Next we follow Danilov's arguments in remark 3.8 to prove

$$
\begin{equation*}
\sum_{k \geqslant 0}\left(\operatorname{dim}_{\mathbb{Q}} \mathcal{R}_{\mathrm{A}, \mathcal{T}}^{(k)} \otimes \mathbb{Q}\right) \tau^{k}=\sum_{m=0}^{n} \sharp\left(\mathcal{T}^{m}\right) \tau^{m}(1-\tau)^{n-m} \tag{32}
\end{equation*}
$$

We have added a few references of which 20 is most relevant because it deals with a triangulation of a polytope, while deals with a triangulation of a sphere. In 22,20$]$ the Stanley-Reisner ring $\mathbb{Q}[\mathcal{T}]$ of the simplicial complex \mathcal{T} over the field \mathbb{Q} is defined as the quotient of the polynomial ring $\mathbb{Q}\left[C_{1}, \ldots, C_{N}\right]$ modulo the ideal generated by the monomials (14). $\mathbb{Q}[\mathcal{T}]$ is a Cohen-Macaulay ring of Krull dimension n; see 20] thm.2.2 and [22] thm 1.3. By definition 2
there is a natural homomorphism $\mathbb{Q}[\mathcal{T}] \rightarrow \mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{Q}$ with kernel generated by the n elements $\alpha_{i}:=a_{i 1} C_{1}+a_{i 2} C_{2}+\ldots+a_{i N} C_{N}$. By proposition 2 the $\operatorname{ring} \mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{Q}$ is a finite dimensional \mathbb{Q}-vector space and hence has Krull dimension 0 . It also follows from proposition 2 that $\mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{Q}$ and $\mathbb{Q}[\mathcal{T}]$ are local rings. We can now apply 19] thm.16.B and see that $\alpha_{1}, \ldots, \alpha_{n}$ is a regular sequence. As pointed out in [5] remark 3.8 b this implies that the Poincaré series of $\mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{Q}$ is equal to $(1-\lambda)^{n}$ times the Poincaré series of $\mathbb{Q}[\mathcal{T}]$. The latter is $\sum_{m=0}^{n} \sharp\left(\mathcal{T}^{m}\right) \lambda^{m}(1-$ $\lambda)^{-m}$ by 22] thm. 1.4 (where it is called Hilbert series). Formula (32) follows.

We see that $\operatorname{dim}_{\mathbb{Q}} \mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{Q}=\sharp \mathcal{T}^{n}$ and hence that the elements $c_{I}\left(I \in \mathcal{T}^{n}\right)$ are linearly independent over \mathbb{Q}. This completes the proof of theorem

Corollary 1 If \mathcal{T} is unimodular, then
(i). $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ is a free \mathbb{Z}-module with rank equal to vol Δ.
(ii). $\Delta \cap \mathbb{Z}^{n}=\mathcal{T}^{1}=\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\}$
(iii). there is an isomorphism $\mathcal{R}_{\mathrm{A}, \mathcal{T}}^{(1)} \xrightarrow{\sim} \mathbb{L}_{\mathbb{Z}}^{\vee}$ such that $c_{j} \leftrightarrow \mathfrak{b}_{j}(j=1, \ldots, N)$
proof: (i) immediately follows from theorem 3 .
(ii) Assume that there is a lattice point in Δ which is not a vertex of \mathcal{T}. This point lies in some maximal simplex and gives rise to a decomposition of this simplex into at least two integral simplices. This contradicts the assumption.
(iii) Because of (ii) all monomials in (14) have degree ≥ 2. Consequently, $\mathcal{R}_{\mathrm{A}, \mathcal{T}}^{(1)}$ is just the quotient of $\mathbb{Z} C_{1} \oplus \ldots \oplus \mathbb{Z} C_{N}$ modulo the span of the linear forms in (13). This quotient is $\mathbb{L}_{\mathbb{Z}}^{\vee}$.

3 A domain of definition for the function $\Psi_{\mathcal{T}, \beta}$.

We first investigate for which λ 's one possibly has $Q_{\lambda}(\mathrm{c}) \neq 0$ in $\mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{Q}$.
For $I \in \mathcal{T}^{n}$ let A_{I} denote the $n \times n$-submatrix of A with columns $\mathfrak{a}_{i}(i \in I)$.
By p_{I} we denote the $N \times N$-matrix whose entries with row index not in I are all 0 and whose $n \times N$-submatrix of entries with row index in I is $A_{I}^{-1} \mathrm{~A}$. This p_{I} is an idempotent linear operator on \mathbb{R}^{N}. Now define:

$$
\begin{equation*}
\mathfrak{P}_{\mathcal{T}}:=\operatorname{conv}\left\{\mathfrak{p}_{I} \mid I \in \mathcal{T}^{n}\right\} \quad \text { in } \quad \operatorname{Mat}_{N \times N}(\mathbb{R}) \tag{33}
\end{equation*}
$$

The image of the idempotent operator $1-\mathrm{p}_{I}$ is $\mathbb{L}_{\mathbb{R}}$. Therefore all elements of $1-\mathfrak{P}_{\mathcal{T}}=\operatorname{conv}\left\{1-\mathrm{p}_{I} \mid I \in \mathcal{T}^{n}\right\}$ are idempotent operators on \mathbb{R}^{N} with image $\mathbb{L}_{\mathbb{R}}$. Hence all elements of $\mathfrak{P}_{\mathcal{T}}$ are also idempotent operators on \mathbb{R}^{N}.

For every $\lambda \in \mathbb{Z}^{N}$ one has the polytope $\mathfrak{P}_{\mathcal{T}}(\lambda)$ which is the convex hull of $\left\{\mathrm{p}_{I}(\lambda) \mid I \in \mathcal{T}^{n}\right\}$ in \mathbb{R}^{N}. This obviously depends only on $\lambda \bmod \mathbb{L}$.

Lemma 3 If $\lambda \in \mathbb{Z}^{N}$ is such that $Q_{\lambda}(c) \neq 0$ in $\mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{Q}$, then λ lies in the set $\mathfrak{P}_{\mathcal{T}}(\lambda)+\mathcal{C}_{\mathcal{T}}{ }^{\vee}$. Here $\mathcal{C}_{\mathcal{T}}{ }^{\vee}$ is the dual of the cone $\mathcal{C}_{\mathcal{T}}$ defined in (2才):

$$
\begin{equation*}
\mathcal{C}_{\mathcal{T}}^{\vee}:=\left\{\ell \in \mathbb{L}_{\mathbb{R}} \mid \omega \cdot \ell \geq 0 \text { for all } \omega \in \mathcal{C}_{\mathcal{T}}\right\} \tag{34}
\end{equation*}
$$

proof: If $Q_{\lambda}(\mathrm{c}) \neq 0$ then $\left\{i \mid \lambda_{i}<0\right\}$ is contained in some maximal simplex I of \mathcal{T}. Let $\ell=\left(1-\mathrm{p}_{I}\right)(\lambda)$. Then $\ell=\left(\ell_{1}, \ldots, \ell_{N}\right) \in \mathbb{L}_{\mathbb{R}}$ and $\mathfrak{b}_{j} \cdot \ell=\ell_{j}=\lambda_{j} \geq 0$ for all $j \in I^{*}$. This shows $\left(1-\mathrm{p}_{I}\right)(\lambda) \in \mathcal{C}_{I^{*}}^{\vee} \subset \mathcal{C}_{\mathcal{T}^{\vee}}$.

Lemma 4 The coefficients in the power series expansion

$$
\begin{equation*}
\frac{\prod_{\lambda_{j}<0} \prod_{k=0}^{-\lambda_{j}-1}\left(k+x_{j}\right)}{\prod_{\lambda_{j}>0} \prod_{k=1}^{\lambda_{j}}\left(k-x_{j}\right)}=\sum_{m_{1}, \ldots, m_{N} \geq 0} K_{m_{1}, \ldots, m_{N}} x_{1}^{m_{1}} \cdot \ldots \cdot x_{N}^{m_{N}} \tag{35}
\end{equation*}
$$

satisfy

$$
\begin{equation*}
0 \leq K_{m_{1}, \ldots, m_{N}} \leq N^{\|\lambda\|} \cdot 2^{\|m\|+N} \cdot N!\cdot(\max (1, N-\operatorname{deg} \lambda))! \tag{36}
\end{equation*}
$$

with $\|m\|:=\sum_{i=1}^{N} m_{i}$ and $\|\lambda\|:=\sum_{i=1}^{N}\left|\lambda_{i}\right|$ and $\operatorname{deg} \lambda:=\sum_{i=1}^{N} \lambda_{i}=\mathfrak{a}_{0}^{\vee} \cdot \beta$.
proof: Clearly $K_{m_{1}, \ldots, m_{N}} \geq 0$. Clearly also $2^{-\|m\|} K_{m_{1}, \ldots, m_{N}}$ is less than the value of the left hand side at $x_{1}=\ldots=x_{N}=\frac{1}{2}$. Therefore

$$
K_{m_{1}, \ldots, m_{N}}<2^{\|m\|+S} \cdot \frac{\prod_{\lambda_{j}<0}\left(-\lambda_{j}\right)!}{\prod_{\lambda_{j}>0}\left(\lambda_{j}-1\right)!} \leq 2^{\|m\|+S} \cdot \frac{P!}{(R-S)!} \cdot S^{R-S}
$$

where $P=-\sum_{\lambda_{i}<0} \lambda_{i}$ and $R=\sum_{\lambda_{i}>0} \lambda_{i}$ and $S=\sharp\left\{i \mid \lambda_{i}>0\right\}$.
If $P \leq R-S$ then $\frac{P!}{(R-S)!} \leq 1$. If $P>R-S$ then $\frac{P!}{(R-S)!} \leq 2^{P} \cdot(P-R+S)$!. Combining these estimates one arrives at (36).

The sum of the series $\sum_{\lambda \in \mathcal{A}^{-1}(\beta)} Q_{\lambda}(\mathrm{c}) \mathrm{e}^{2 \pi \mathrm{iz} \cdot \lambda}$ in formula (20) should be computed as a limit for $L \rightarrow \infty$ of partial sums Σ_{L} taking only terms with $\|\lambda\| \leq L$. These sums only involve λ 's with $Q_{\lambda}(\mathrm{c}) \neq 0$. According to lemma 3 such a λ is of the form $\lambda=\tilde{\lambda}+\ell$ with $\ell \in \mathcal{C}_{\mathcal{T}}{ }^{\vee}$ and with $\tilde{\lambda}$ contained in a compact polytope which only depends on β. Therefore $\|\lambda\| \leq\|\ell\|+$ some constant which only depends on β. Since

$$
Q_{\lambda}(\mathrm{c})=(-1)^{\sharp\left\{i \mid \lambda_{i}<0\right\}} \sum_{m_{1}, \ldots, m_{N} \geq 0,\|m\| \leq n}(-1)^{\|m\|} K_{m_{1}, \ldots, m_{N}} c_{1}^{m_{1}} \cdot \ldots \cdot c_{N}^{m_{N}}
$$

lemmat shows that the coordinates of $Q_{\lambda}(\mathrm{c})$ with respect to a basis of the vector space $\mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{Q}$ are less than $N^{\|\ell\|}$ times some constant which only depends on β. Thus one sees that the limit of the partial sums exists if the imaginary part $\Im z$ of z satisfies

$$
\begin{equation*}
\Im z \cdot \ell>\frac{\log N}{2 \pi}\|\ell\| \quad \text { for all } \ell \in \mathcal{C}_{\mathcal{T}}{ }^{\vee} \tag{37}
\end{equation*}
$$

Let $p: \mathbb{R}^{N \vee} \rightarrow \mathbb{L}_{\mathbb{R}}^{\vee}$ denote the canonical projection. If $b \in \mathbb{L}_{\mathbb{R}}^{\vee}$ is any vector which satisfies

$$
\begin{equation*}
b \cdot \ell>\frac{\log N}{2 \pi}\|\ell\| \quad \text { for all } \ell \in \mathcal{C}_{\mathcal{T}}{ }^{\vee} \tag{38}
\end{equation*}
$$

then $b \in \mathcal{C}_{\mathcal{T}}$ and every z with the property $p(\Im z) \in b+\mathcal{C}_{\mathcal{T}}$ satisfies (37). Let us therefore define

$$
\begin{equation*}
\mathcal{B}_{\mathcal{T}}:=\bigcup_{b \text { s.t. }(38)}\left(b+\mathcal{C}_{\mathcal{T}}\right) \tag{39}
\end{equation*}
$$

The above discussion proves:

Theorem 4 Formula (20):

$$
\Psi_{\mathcal{T}, \beta}(\mathrm{z}):=\sum_{\lambda \in \mathcal{A}^{-1}(\beta)} Q_{\lambda}(\mathrm{c}) \mathrm{e}^{2 \pi \mathrm{iz} \cdot \lambda} \cdot \mathrm{e}^{2 \pi \mathrm{iz} \cdot \mathrm{c}}
$$

defines a function with values in $\mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{C}$ on the domain

$$
\begin{equation*}
\mathcal{V}_{\mathcal{T}}:=\left\{\mathbf{z} \in \mathbb{C}^{N \vee} \mid p(\Im \mathrm{z}) \in \mathcal{B}_{\mathcal{T}}\right\} \tag{40}
\end{equation*}
$$

In order to have a more global geometric picture of where the domain of definition of the function $\Psi_{\mathcal{T}, \beta}$ is situated we give a brief description of the toric variety associated with the pointed secondary fan.

The pointed secondary fan is a complete fan of strongly convex polyhedral cones which are generated by vectors from the lattice $\mathbb{L}_{\mathbb{Z}}^{\vee}$. By the general theory of toric varieties 10, 21] this lattice-fan pair gives rise to a toric variety. In the case of $\mathbb{L}_{\mathbb{Z}}^{\vee}$ and the pointed secondary fan the general construction reads as follows.

For each regular triangulation \mathcal{T} one has the cone $\mathcal{C}_{\mathcal{T}}$ in the secondary fan and one considers the monoid ring $\mathbb{Z}\left[\mathbb{L}_{\mathcal{T}}\right]$ of the sub-monoid $\mathbb{L}_{\mathcal{T}}$ of \mathbb{L} :

$$
\begin{equation*}
\mathbb{L}_{\mathcal{T}}:=\mathbb{L} \cap \mathcal{C}_{\mathcal{T}}{ }^{\vee}=\left\{\ell \in \mathbb{L} \mid \omega \cdot \ell \geq 0 \quad \text { for all } \omega \in \mathcal{C}_{\mathcal{T}}\right\} \tag{41}
\end{equation*}
$$

The affine schemes $\mathcal{U}_{\mathcal{T}}:=\operatorname{spec} \mathbb{Z}\left[\mathbb{L}_{\mathcal{T}}\right]$ for the various triangulations naturally glue together to form the toric variety for the pointed secondary fan.

A complex point of $\mathcal{U}_{\mathcal{T}}$ is just a homomorphism from the additive monoid $\mathbb{L}_{\mathcal{T}}$ to the multiplicative monoid \mathbb{C}. There is a special point in $\mathcal{U}_{\mathcal{T}}$, namely the homomorphism sending $0 \in \mathbb{L}_{\mathcal{T}}$ to 1 and all other elements of $\mathbb{L}_{\mathcal{T}}$ to 0 . A disc of radius $r, 0<r<1$, about this special point consists of homomorphisms $\mathbb{L}_{\mathcal{T}} \rightarrow \mathbb{C}$ with image contained in the disc of radius r in \mathbb{C}.

A vector $z \in \mathbb{C}^{N \vee}$ defines the homomorphism

$$
\mathbb{L} \rightarrow \mathbb{C}^{*}, \quad \ell \mapsto \mathrm{e}^{2 \pi i z \cdot \ell}
$$

and hence a point of the toric variety. The point lies in the disc of radius $r<1$ about the special point corresponding to a regular triangulation \mathcal{T} iff $\Im z \cdot \ell>-\frac{\log r}{2 \pi}$ holds for every $\ell \in \mathbb{L}_{\mathcal{T}}$. It suffices of course to require this only for a set of generators of $\mathbb{L}_{\mathcal{T}}$.

If b is in $\mathcal{C}_{\mathcal{T}}$ and K is such that $K>b \cdot \ell$ for all ℓ from a set of generators of $\mathbb{L}_{\mathcal{T}}$, then the set $\left\{\mathbf{z} \in \mathbb{C}^{N \vee} \mid p(\Im \mathbf{z}) \in b+\mathcal{C}_{\mathcal{T}}\right\}$ contains the intersection of the disc of radius $\exp (-2 \pi K)$ with the torus $\operatorname{Hom}\left(\mathbb{L}, \mathbb{C}^{*}\right)$.

This shows that the domain of definition of the function $\Psi_{\mathcal{T}, \beta}$ is situated about the special point associated with \mathcal{T} in the toric variety of the pointed secondary fan.

4 The special case $\beta=0$

The function $\Psi_{\mathcal{T}, 0}$ is invariant under the action of $\mathbb{M}_{\mathbb{C}}^{\vee}$; see (22). So it is in fact a function on the domain $\mathbb{L}_{\mathbb{R}}^{\vee}+\sqrt{-1} \mathcal{B}_{\mathcal{T}}$ in $\mathbb{L}_{\mathbb{C}}^{\vee}$. For $F \in \operatorname{Hom}\left(\mathcal{R}_{\mathrm{A}, \mathcal{T}}, \mathbb{C}\right)$ we have the \mathbb{C}-valued function $F \Psi_{\mathcal{T}, 0}$ on $\mathbb{L}_{\mathbb{R}}^{\vee}+\sqrt{-1} \mathcal{B}_{\mathcal{T}}$.

Lemma 5 If $F \Psi_{\mathcal{T}, 0}$ is the 0-function on $\mathbb{L}_{\mathbb{R}}^{\vee}+\sqrt{-1} \mathcal{B}_{\mathcal{T}}$ then $F=0$.
proof: By lemma 3 the series $\Psi_{\mathcal{T}, 0}$ involves only λ 's in $\mathbb{L} \cap \mathcal{C}_{\mathcal{T}}{ }^{\vee}$ and $\lambda=0$ is really present with $Q_{0}(\mathrm{c})=1$. Moreover $\mathcal{B}_{\mathcal{T}}$ is contained in the interior of $\mathcal{C}_{\mathcal{T}}$. Therefore, if $F \Psi_{\mathcal{T}, 0}=0$, then the polynomial function

$$
\sum_{m_{1}, \ldots, m_{N} \geq 0} \frac{(2 \pi i)^{m_{1}+\ldots+m_{N}}}{m_{1}!\cdot \ldots \cdot m_{N}!} \cdot F\left(c_{1}^{m_{1}} \cdot \ldots \cdot c_{N}^{m_{N}}\right) \cdot z_{1}^{m_{1}} \cdot \ldots \cdot z_{N}^{m_{N}}
$$

is bounded on an unbounded open domain in \mathbb{C}^{N}. So, this is the zero polynomial. Therefore $F\left(c_{1}^{m_{1}} \cdot \ldots \cdot c_{N}^{m_{N}}\right)=0$ for all $m_{1}, \ldots, m_{N} \geq 0$.

Theorem 5 If $\beta=0$ and \mathcal{T} is unimodular, then there is an isomorphism:

$$
\operatorname{Hom}\left(\mathcal{R}_{\mathrm{A}, \mathcal{T}}, \mathbb{C}\right) \xrightarrow{\sim} \text { solution space of }(3)-(4), \quad F \mapsto F \Phi_{\mathcal{T}, 0} .
$$

proof: Lemma 5 shows that the map is injective. From corollary 11 we know $\operatorname{dim} \operatorname{Hom}\left(\mathcal{R}_{\mathrm{A}, \mathcal{T}}, \mathbb{C}\right)=\operatorname{vol} \Delta$. Since the triangulation \mathcal{T} is unimodular, the proof of [24] prop. 13.15 shows that the normality condition for the correction in (12] to [11] thm. 5 is satisfied. Therefore the number of linearly independent solutions of the GKZ system (3)-(4) at a generic point equals vol Δ.

5 Triangulations with non-empty core

The intersection of all maximal simplices in a regular triangulation \mathcal{T} of Δ is a remarkable structure. We call it the core of \mathcal{T}. It is a simplex in the triangulation \mathcal{T}. Since we identify simplices with their index sets, we view core \mathcal{T} also as a subset of $\{1, \ldots, N\}$.

Definition $3 \quad$ core $\mathcal{T}:=\bigcap_{I \in \mathcal{T}^{n}} I$

Lemma 6 A simplex which does not contain core \mathcal{T} lies in the boundary of Δ.
proof: It suffices to prove this for simplices of the form $I \backslash\{j\}$ with $I \in \mathcal{T}^{n}$ and $j \in$ core \mathcal{T}. Since every maximal simplex contains j, I is the only maximal simplex which contains $I \backslash\{j\}$. Therefore $I \backslash\{j\}$ lies in the boundary of Δ. \boxtimes

Lemma $7 \quad$ core $\mathcal{T}=\left\{j \mid \ell_{j} \leq 0\right.$ for all $\left.\ell \in \mathcal{C}_{\mathcal{T}}^{\vee}\right\}$
proof: \supset : assume $j \notin$ core \mathcal{T}, say $j \notin I$ for some $I \in \mathcal{T}^{n}$. Then there is a relation $\mathfrak{a}_{j}-\sum_{i \in I} x_{i} \mathfrak{a}_{i}=0 ;$ whence an $\ell \in \mathbb{L}$ with $\ell_{j}>0$ and $\left\{i \mid \ell_{i}<0\right\} \subset I$. As in the proof of lemma 3 this implies $\ell \in \mathcal{C}_{\mathcal{T}}^{\vee}$.
\subset : assume $j \in \operatorname{core} \mathcal{T}$. First consider an $\ell \in \mathbb{L}_{\mathbb{R}}$ such that $\left\{i \mid \ell_{i}<0\right\}$ is a simplex. Let $L=\sum_{\ell_{i}>0} \ell_{i}=\sum_{\ell_{i}<0}-\ell_{i}$. The relation in (5) can be rewritten as

$$
\begin{equation*}
\sum_{\ell_{i}>0} \frac{\ell_{i}}{L} \mathfrak{a}_{i}=\sum_{\ell_{i}<0} \frac{-\ell_{i}}{L} \mathfrak{a}_{i} \tag{42}
\end{equation*}
$$

Suppose $\ell_{j}>0$. Then the simplex $\left\{i \mid \ell_{i}<0\right\}$ lies in a boundary face of Δ. Take a linear functional F whose restriction to Δ attains its maximum exactly on this face. Evaluate F on both sides of (42). The value on the right hand side is max F, but on the left hand side it is $<\max F$, because $F\left(\mathfrak{a}_{j}\right)<\max F$ and $\ell_{j}>0$. Contradiction! Therefore we conclude: $\ell_{j} \leq 0$ if ℓ is such that $\left\{i \mid \ell_{i}<0\right\}$ is a simplex. From the constructions in section 1.2 one sees that $\left\{i \mid \ell_{i}<0\right\}$ is a simplex if and only if $\ell \in \mathcal{C}_{I^{*}}^{\vee}$ for some $I \in \mathcal{T}^{n}$; note: $\ell_{j}=\mathfrak{b}_{j} \cdot \ell$. Since $\mathcal{C}_{\mathcal{T}}^{\vee}$ is the Minkowski sum of the cones $\mathcal{C}_{I^{*}}^{\vee}$ with $I \in \mathcal{T}^{n}$ we finally get: $\ell_{j} \leq 0$ for every $\ell \in \mathcal{C}_{\mathcal{T}}^{\vee}$.

Definition 4

$$
\begin{equation*}
c_{\text {core }}:=\prod_{i \in \operatorname{core} \mathcal{T}} c_{i} \tag{43}
\end{equation*}
$$

Corollary 2 If λ is such that $\mathcal{A} \lambda=\sum_{i \in \operatorname{core} \mathcal{T}} m_{i} \mathfrak{a}_{i}$ with all $m_{i}<0$ then $\lambda_{i}<0$ for every $i \in \operatorname{core} \mathcal{T}$ and hence

$$
Q_{\lambda}(\mathrm{c}) \in c_{\text {core }} \mathcal{R}_{\mathrm{A}, \mathcal{T}}
$$

proof: Let $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right)$ be defined by $\mu_{i}=m_{i}$ for $i \in \operatorname{core} \mathcal{T}$ and $\mu_{i}=0$ for $i \notin$ core \mathcal{T}. Then $\mathfrak{P}_{\mathcal{T}}(\lambda)=\mathfrak{P}_{\mathcal{T}}(\mu)$ in lemma 3. From the definitions one sees immediately that $\mathfrak{P}_{\mathcal{T}}(\mu)=\{\mu\}$. The result now follows from lemmas 3 and 7 .

Corollary 3 If core \mathcal{T} is not empty and $\beta=\sum_{i \in \operatorname{core} \mathcal{T}} m_{i} \mathfrak{a}_{i}$ with all $m_{i}<0$ then the function $\Psi_{\mathcal{T}, \beta}$ takes values in the ideal $c_{\text {core }} \mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{C}$.

Theorem 6 If core \mathcal{T} is not empty and $\beta=\sum_{i \in \operatorname{core} \mathcal{T}} m_{i} \mathfrak{a}_{i}$ with all $m_{i}<0$ then the linear map

$$
\operatorname{Hom}\left(c_{\mathrm{core}} \mathcal{R}_{\mathrm{A}, \mathcal{T}}, \mathbb{C}\right) \longrightarrow \text { solution space of (3)-(4), } \quad F \mapsto F \Phi_{\mathcal{T}, \beta}
$$

is injective.
proof: From lemma 3 and the proof of corollary 2 one sees that the series $\Psi_{\mathcal{T}, \beta}$ involves only λ 's in $\mu+\left(\mathbb{L} \cap \mathcal{C}_{\mathcal{T}}{ }^{\vee}\right)$ and that $\lambda=\mu$ is really present:

$$
Q_{\mu}(\mathrm{c})=c_{\mathrm{core}} \cdot U \quad \text { with } \quad U:=\prod_{i \in \mathrm{core} \mathcal{T}} \prod_{k=1}^{-m_{i}-1}\left(c_{i}-k\right)
$$

The rest of the proof is analogous to the proof of lemma 5 . In particular, if $F \Psi_{\mathcal{T}, \beta}$ is the 0 -function on $\mathcal{V}_{\mathcal{T}}$, then $F\left(c_{\text {core }} \cdot U \cdot c_{1}^{n_{1}} \cdot \ldots \cdot c_{N}^{n_{N}}\right)=0$ for all $n_{1}, \ldots, n_{N} \geq 0$. The desired result now follows because U is invertible in the $\operatorname{ring} \mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathbb{Q}$.

PART II

Introduction II

One aspect of the mirror symmetry phenomenon (cf. [25, 15) is that (generalized) Calabi-Yau manifolds seem to come in pairs (X, Y) with the geometries of X and Y related in a beautifully intricate way. On one side of the mirror usually called the B-side - it is the geometry of complex structure, of periods of a holomorphic differential form, of variations of Hodge structure. On the other side - the A-side - it is the geometry of symplectic structure, of algebraic cycles and of enumerative questions about curves on the manifold.

Batyrev [1] showed that behind many examples of the mirror symmetry phenomenon one can see a simple combinatorial duality. Batyrev and Borisov gave a generalization of this combinatorial duality and formulated a mirror symmetry conjecture for generalized Calabi-Yau manifolds in arbitrary dimension ([3] 2.17). The fundamental combinatorial structure is a reflexive Gorenstein cone.

Definition 5 ([3] definitions 2.1-2.8.) A cone Λ in \mathbb{R}^{n} is called a Gorenstein cone if it is generated, i.e.

$$
\begin{equation*}
\Lambda=\mathbb{R}_{\geq 0} \mathfrak{a}_{1}+\ldots+\mathbb{R}_{\geq 0} \mathfrak{a}_{N} \tag{44}
\end{equation*}
$$

by a finite set $\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\} \subset \mathbb{Z}^{n}$ which satisfies condition Z. It is called a reflexive Gorenstein cone if both Λ and its dual Λ^{\vee} are Gorenstein cones,

$$
\begin{equation*}
\Lambda^{\vee}:=\left\{y \in \mathbb{R}^{n \vee} \mid \forall x \in \Lambda: y \cdot x \geq 0\right\} \tag{45}
\end{equation*}
$$

i.e. there should also exist a vector $\mathfrak{a}_{0} \in \mathbb{Z}^{n}$ and a set $\left\{\mathfrak{a}_{1}^{\vee}, \ldots, \mathfrak{a}_{N^{\prime}}^{\vee}\right\} \subset \mathbb{Z}^{n \vee}$ of generators for Λ^{\vee} such that $\mathfrak{a}_{i}^{\vee} \cdot \mathfrak{a}_{0}=1$ for $i=1, \ldots, N^{\prime}$. The vectors \mathfrak{a}_{0}^{\vee} and \mathfrak{a}_{0} are uniquely determined by Λ. The integer $\mathfrak{a}_{0}^{\vee} \cdot \mathfrak{a}_{0}$ is called the index of Λ.

For a reflexive Gorenstein cone one has one new datum in addition to the data for GKZ systems; namely \mathfrak{a}_{0}. It has the very important property

$$
\begin{equation*}
\operatorname{interior}(\Lambda) \cap \mathbb{Z}^{n}=\mathfrak{a}_{0}+\Lambda \tag{46}
\end{equation*}
$$

Our aim is to show that in the case of a mirror pair (X, Y) associated with a reflexive Gorenstein cone Λ and a unimodular regular triangulation \mathcal{T} whose core is not empty and is not contained in the boundary of Δ, the periods of a holomorphic differential form on X are given by the function $\Phi_{\mathcal{T},-\mathfrak{a}_{0}}$ which takes values in the ring $\mathcal{R}_{\mathrm{A}, \mathcal{T}} / \operatorname{Ann} c_{\text {core }} \otimes \mathbb{C}$ and that the $\operatorname{ring} \mathcal{R}_{\mathrm{A}, \mathcal{T}} / \operatorname{Ann} c_{\text {core }}$ is isomorphic with a subring of the Chow ring of Y.

This project naturally has a B-side and an A-side which we develop separately in Part II B and Part II A. Our method puts some natural restrictions on the generality. For Part II B we must eventually assume that there is a unimodular triangulation \mathcal{T} of the polytope

$$
\begin{equation*}
\Delta:=\operatorname{conv}\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\}=\left\{\mathrm{x} \in \Lambda \mid \mathfrak{a}_{0}^{\vee} \cdot \mathrm{x}=1\right\} . \tag{47}
\end{equation*}
$$

This restriction which comes from the use of theorem 5, also implies

$$
\begin{equation*}
\mathfrak{a}_{0} \in \mathbb{Z}_{\geq 0} \mathfrak{a}_{1}+\ldots+\mathbb{Z}_{\geq 0} \mathfrak{a}_{N} \tag{48}
\end{equation*}
$$

So, $\Phi_{\mathcal{T},-\mathfrak{a}_{0}}$ is defined in Part I. For Part II A we must additionally assume that the core of \mathcal{T} is not empty and is not contained in the boundary of Δ.

PART II B

Introduction II B

For a Gorenstein cone Λ we denote the monoid algebra $\mathbb{C}\left[\Lambda \cap \mathbb{Z}^{n}\right]$ by \mathcal{S}_{Λ} and view it as a subalgebra of the algebra $\mathbb{C}\left[u_{1}^{ \pm 1}, \ldots, u_{n}^{ \pm 1}\right]$ by identifying $\mathrm{m}=$ $\left(m_{1}, \ldots, m_{n}\right)^{t} \in \Lambda \cap \mathbb{Z}^{n}$ with the Laurent monomial $\mathbf{u}^{m}:=u_{1}^{m_{1}} \cdot \ldots \cdot u_{n}^{m_{n}}$. For $\mathrm{m} \in \mathbb{Z}^{n}$ we put $\operatorname{deg} \mathrm{u}^{\mathrm{m}}:=\operatorname{deg} \mathrm{m}:=\mathfrak{a}_{0}^{\vee} \cdot \mathrm{m}$. Thus \mathcal{S}_{Λ} becomes a graded ring. The scheme $\mathbb{P}_{\Lambda}:=\operatorname{Proj} \mathcal{S}_{\Lambda}$ is a projective toric variety. If Λ is a reflexive Gorenstein cone, the zero set in \mathbb{P}_{Λ} of a global section of $\mathcal{O}_{\mathbb{P}_{\Lambda}}(1)$ is called a generalized Calabi-Yau manifold of dimension $n-2$ ([3] 2.15).

The toric variety \mathbb{P}_{Λ} is a compactification of the n-1-dimensional torus

$$
\begin{equation*}
\mathbb{T}:=\widetilde{\mathbb{T}} /\left(\mathbb{Z} \mathfrak{a}_{0}^{\vee} \otimes \mathbb{C}^{*}\right) \tag{49}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{\mathbb{T}}:=\operatorname{Hom}\left(\mathbb{Z}^{n}, \mathbb{C}^{*}\right)=\mathbb{Z}^{n \vee} \otimes \mathbb{C}^{*} \tag{50}
\end{equation*}
$$

is the n-dimensional torus of \mathbb{C}-points of Spec $\mathbb{C}\left[u_{1}^{ \pm 1}, \ldots, u_{n}^{ \pm 1}\right]$. A global section of $\mathcal{O}_{\mathbb{P}_{\Lambda}}(1)$ is given by a Laurent polynomial

$$
\begin{equation*}
\mathrm{s}=\sum_{\mathrm{m} \in \Delta \cap \mathbb{Z}^{n}} v_{\mathrm{m}} \mathrm{u}^{\mathrm{m}} \tag{51}
\end{equation*}
$$

with Δ as in (47). As in we assume from now on

Condition $2 \quad\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\}=\Delta \cap \mathbb{Z}^{n}$

The Laurent polynomial s gives a function on $\widetilde{\mathbb{T}}$ which is homogeneous of degree 1 for the action of $\mathbb{Z} \mathfrak{a}_{0}^{\vee} \otimes \mathbb{C}^{*}$. Let

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{s}}:=\{\text { zero locus of } \mathrm{s}\} \subset \mathbb{T} \tag{52}
\end{equation*}
$$

Over the complementary set $\mathbb{T} \backslash Z_{s}$ there is a section of $\widetilde{\mathbb{T}} \rightarrow \mathbb{T}$ which identifies $\mathbb{T} \backslash Z_{s}$ with the zero set \widetilde{Z}_{s-1} of $s-1$ in $\widetilde{\mathbb{T}}$:

$$
\begin{equation*}
\mathbb{T} \backslash Z_{s} \simeq \widetilde{Z}_{s-1} \subset \widetilde{\mathbb{T}} \tag{53}
\end{equation*}
$$

One may say that according to Batyrev [2] the geometry on the B-side of mirror symmetry is encoded in the weight n part $\mathcal{W}_{n} H^{n-1}\left(\mathbb{T} \backslash \mathrm{Z}_{\mathrm{s}}\right)$ of the Variation of Mixed Hodge Structure of $H^{n-1}\left(\mathbb{T} \backslash Z_{s}\right)$; the variation comes from varying the coefficients v_{m} in (51).

Remark 5 One usually formulates Mirror Symmetry with on the B-side the Variation of Hodge Structure on the d-th cohomology of a d-dimensional CalabiYau manifold. For a CY hypersurface in a toric variety the Poincaré residue mapping gives an isomorphism with the $d+1$-st cohomology of the hypersurface complement, at least on the primitive parts (see 2] prop.5.3). For a CY complete intersection of codimension >1 in a toric variety one needs besides the Poincaré residue mapping also corollary 3.4 and remark 3.5 in 3] to relate the CYCI's cohomology to the cohomology of the complement of a generalized Calabi-Yau hypersurface in a toric variety, i.e. to the situation we are studying in this paper. Our investigations do however also allow on this B-side of the mirror generalized Calabi-Yau hypersurfaces which are not related to CY complete intersections, although on the other A-side we do eventually want a Calabi-Yau complete intersection (see [3] $\S 5$ for an example of mirror symmetry with such an asymmetry between the two sides).

In [2] Batyrev described the weight and Hodge filtrations of this Variation of Mixed Hodge Structure (VMHS) in terms of the combinatorics of Λ. In
particular, $\mathcal{W}_{n} H^{n-1}\left(\mathbb{T} \backslash Z_{s}\right)$ corresponds with the ideal $\mathbb{C}\left[\operatorname{interior}(\Lambda) \cap \mathbb{Z}^{n}\right]$ in \mathcal{S}_{Λ}. If Λ is a reflexive Gorenstein cone of index κ, this ideal is the principal ideal generated by $\mathbf{u}^{\mathfrak{a}_{0}}$ (cf. (46)) and the part of weight n and Hodge type ($n-\kappa, \kappa$) has dimension 1.

Batyrev [2] also showed that the periods of the rational $(n-1)$-form

$$
\begin{equation*}
\omega_{\mu}:=\frac{\mathrm{u}^{\mu}}{\mathrm{s}^{\operatorname{deg} \mu}} \frac{d t_{2}}{t_{2}} \wedge \ldots \wedge \frac{d t_{n}}{t_{n}} \tag{54}
\end{equation*}
$$

$\left(\mu \in \Lambda \cap \mathbb{Z}^{n}, t_{2}, \ldots, t_{n}\right.$ coordinates on $\left.\mathbb{T}\right)$ as functions of the coefficients v_{m} satisfy a GKZ system of differential equations (3)-(4) with parameters $\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\}$ and $\beta=-\mu$. However, not all solutions of this system are \mathbb{C}-linear combinations of the periods of ω_{μ}. Theorem 10 shows precisely which solutions of this system are \mathbb{C}-linear combinations of the periods of ω_{μ} in case $\mu \in$ $\mathbb{Z}_{\geq 0} \mathfrak{a}_{1}+\ldots+\mathbb{Z}_{\geq 0} \mathfrak{a}_{N}$.

The key point of our method is to study the VMHS on $H^{n}\left(\widetilde{\mathbb{T}}\right.$ rel $\left.\widetilde{Z}_{s-1}\right)$. This has the advantage that if $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}$ generate \mathbb{Z}^{n}, then $H^{n}\left(\widetilde{\mathbb{T}}\right.$ rel $\left.\widetilde{Z}_{s-1}\right)$ is a hypergeometric \mathcal{D}-module as in 11] with parameters $\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\}$ and $\beta=0$; see theorem 8 .

If s is Λ-regular (cf. definition 6) there is an exact sequence of mixed Hodge structures

$$
\begin{equation*}
0 \rightarrow H^{n-1}(\widetilde{\mathbb{T}}) \rightarrow H^{n-1}\left(\widetilde{Z}_{s-1}\right) \rightarrow H^{n}\left(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{Z}_{s-1}\right) \rightarrow H^{n}(\widetilde{\mathbb{T}}) \rightarrow 0 \tag{55}
\end{equation*}
$$

The left hand 0 results from a theorem of Bernstein-Danilov-Khovanskii [8, 2]. On the right we used $H^{n}\left(\widetilde{Z}_{s-1}\right)=0$ because \widetilde{Z}_{s-1} is an affine variety of dimension $n-1$. Writing as usual $\mathbb{Q}(m)$ for the 1-dimensional \mathbb{Q}-Hodge structure which is purely of weight $-2 m$ and Hodge type $(-m,-m)$ one has

$$
\begin{equation*}
H^{n-1}(\widetilde{\mathbb{T}}) \simeq \mathbb{Q}^{n} \otimes \mathbb{Q}(1-n), \quad H^{n}(\widetilde{\mathbb{T}}) \simeq \mathbb{Q}(-n) \tag{56}
\end{equation*}
$$

Morphisms of mixed Hodge structures are strictly compatible with the weight filtrations ([6] thm. 2.3.5). Thus the sequence (55) in combination with (53) gives the isomorphisms

$$
\begin{equation*}
\mathcal{W}_{i} H^{n-1}\left(\mathbb{T} \backslash \mathrm{Z}_{\mathrm{s}}\right) \xrightarrow{\simeq} \mathcal{W}_{i} H^{n-1}\left(\widetilde{Z}_{\mathrm{s}-1}\right) \xrightarrow{\simeq} \mathcal{W}_{i} H^{n}\left(\widetilde{\mathbb{T}} \mathrm{rel} \widetilde{Z}_{\mathrm{s}-1}\right) \tag{57}
\end{equation*}
$$

for $i \leq 2 n-3$. In particular if $n \geq 3$, the weight n part relevant for the geometry on the B-side of mirror symmetry will get a complete and simple description by our analysis of the GKZ hypergeometric \mathcal{D}-module $H^{n}\left(\widetilde{\mathbb{T}}\right.$ rel $\left.\bar{Z}_{s-1}\right)$.

Remark 6 Though it plays no role in this paper I want to point out that there is an interesting relation with recent work of Deninger [7]. The group G of diagonal $n \times n$-matrices with entries ± 1 acts naturally on $\widetilde{\mathbb{T}}=\operatorname{Hom}\left(\mathbb{Z}^{n}, \mathbb{C}^{*}\right)$. From the inclusion $\imath: \widetilde{\mathrm{Z}}_{\mathrm{s}-1} \hookrightarrow \widetilde{\mathbb{T}}$ one gets the G-equivariant map $G \times \widetilde{\mathrm{Z}}_{\mathrm{s}-1} \rightarrow \widetilde{\mathbb{T}}$,
$(g, z) \mapsto g \cdot \imath(z)$. Corresponding to this map there is an exact sequence of mixed Hodge structures with G-action analogous to (55). Taking isotypical parts for the character det : $G \rightarrow\{ \pm 1\}$ and using $H^{n-1}(\widetilde{\mathbb{T}})(\operatorname{det})=0, H^{n}(\widetilde{\mathbb{T}})(\operatorname{det}) \stackrel{\cong}{\rightarrow}$ $H^{n}(\widetilde{\mathbb{T}})$ and $H^{n-1}\left(G \times \widetilde{\mathrm{Z}}_{\mathrm{s}-1}\right)(\operatorname{det}) \stackrel{\simeq}{\leftrightharpoons} H^{n-1}\left(\widetilde{\mathrm{Z}}_{\mathrm{s}-1}\right)$ one finds the short exact sequence

$$
\begin{equation*}
0 \rightarrow H^{n-1}\left(\widetilde{\mathbf{Z}}_{\mathrm{s}-1}\right) \rightarrow H^{n}\left(\widetilde{\mathbb{T}} \operatorname{rel}\left(G \times \widetilde{\mathbf{Z}}_{\mathrm{s}-1}\right)\right)(\operatorname{det}) \rightarrow H^{n}(\widetilde{\mathbb{T}}) \rightarrow 0 \tag{58}
\end{equation*}
$$

see [7] (12). In [7] remark 2.4 Deninger sketches how the extension (58) comes from a Steinberg symbol in the group $K_{n}\left(\widetilde{Z}_{\mathrm{s}-1}\right)$ in the algebraic K-theory of \widetilde{Z}_{s-1}; in our coordinates (see remark 8) this Steinberg symbol reads

$$
\begin{equation*}
\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in K_{n}\left(\mathbb{C}\left[u_{1}^{ \pm 1}, \ldots, u_{n}^{ \pm 1}\right] /(\mathrm{s}-1)\right) \tag{59}
\end{equation*}
$$

The exact sequence (55) decomposes into two short exact sequences

$$
\begin{align*}
& 0 \rightarrow H^{n-1}(\widetilde{\mathbb{T}}) \rightarrow H^{n-1}\left(\widetilde{Z}_{s-1}\right) \rightarrow P H^{n-1}\left(\widetilde{Z}_{s-1}\right) \rightarrow 0 \tag{60}\\
& 0 \rightarrow P H^{n-1}\left(\widetilde{Z}_{s-1}\right) \rightarrow H^{n}\left(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{Z}_{s-1}\right) \rightarrow H^{n}(\widetilde{\mathbb{T}}) \rightarrow 0 \tag{61}
\end{align*}
$$

which define the primitive part of cohomology ([2] def. 3.13). The relation between the various cohomology groups is best displayed in the following commutative diagram with injective horizontal and surjective vertical arrows:

$$
\begin{array}{cccc}
H^{n-1}(\widetilde{\mathbb{T}}) \rightarrow \quad H^{n-1}\left(\widetilde{\mathrm{Z}}_{\mathrm{s}-1}\right) & \rightarrow & H^{n}\left(\widetilde{\mathbb{T}} \mathrm{rel}\left(G \times \widetilde{\mathrm{Z}}_{\mathrm{s}-1}\right)\right)(\mathrm{det}) \tag{62}\\
& & \downarrow & \\
& P H^{n-1}\left(\widetilde{\mathrm{Z}}_{\mathrm{s}-1}\right) & \rightarrow & \\
& & & H^{n}\left(\widetilde{\mathbb{T}} \mathrm{rel} \widetilde{\mathrm{Z}}_{\mathrm{s}-1}\right) \\
& & & \downarrow \\
& & & H^{n}(\widetilde{\mathbb{T}})
\end{array}
$$

With varying coefficients v_{m} the story plays in the category of Variations of Mixed Hodge Structures. With coefficients v_{m} fixed in some number field the story plays in a category of Mixed Motives. A challenge for further research is to combine these stories and our results on hypergeometric systems.

6 VMHS associated with a Gorenstein cone

In this section we prove theorem 8. This result is essentially implicitly contained in [2]. Our proof is mainly a review of constructions and results in [2].

Shifting emphasis from the polytope Δ to the cone Λ we write \mathcal{S}_{Λ} (instead of S_{Δ} as in [2]) for the monoid algebra $\mathbb{C}\left[\Lambda \cap \mathbb{Z}^{n}\right]$ viewed as a subalgebra of $\mathbb{C}\left[u_{1}^{ \pm 1}, \ldots, u_{n}^{ \pm 1}\right]$. The grading is given by $\operatorname{deg} u^{m}=\mathfrak{a}_{0}^{\vee} \cdot m$ for $m \in \mathbb{Z}^{n}$. A homogeneous element s of degree 1 in \mathcal{S}_{Λ} is a Laurent polynomial as in (51):

$$
\begin{equation*}
\mathrm{s}=\sum_{i=1}^{N} v_{i} \mathbf{u}^{\mathfrak{a}_{i}} \tag{63}
\end{equation*}
$$

with coefficients $v_{i} \in \mathbb{C}$. Let $\widetilde{\mathbb{T}}, \mathbb{T}, \mathrm{Z}_{\mathrm{s}}$ and \widetilde{Z}_{s-1} be as in (49)-(53).

Remark 7 When comparing with [2] one should keep in mind that in op.cit. n is the dimension of the polytope Δ whereas here n is the dimension of the cone Λ and the polytope Δ has dimension $n-1$. Also one has to make the following change of coordinates on \mathbb{Z}^{n} and $\mathbb{Z}^{n \vee}$. The idempotent $n \times n$-matrix $\mathfrak{a}_{1} \cdot \mathfrak{a}_{0}^{\vee}$ gives rise to a direct sum decomposition $\mathbb{Z}^{n \vee}=\mathbb{Z} \mathfrak{a}_{0}^{\vee} \oplus \Xi$ and thus to a basis $\left\{\mathfrak{a}_{0}^{\vee}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ for $\mathbb{Z}^{n \vee}$. The coordinate change on \mathbb{Z}^{n} amounts to multiplying vectors in \mathbb{Z}^{n} by the matrix $M=\left(m_{i j}\right)$ with rows $\mathfrak{a}_{0}^{\vee}, \alpha_{2}, \ldots, \alpha_{n}$. In particular, in the new coordinates $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}$ all have first coordinate 1 .

The above coordinate change also induces a change of coordinates on $\widetilde{\mathbb{T}}$: $u_{j}=\prod_{i=1}^{n} t_{i}^{m_{i j}}$. The map $\widetilde{\mathbb{T}} \rightarrow \mathbb{T}$ is then just omitting the coordinate t_{1}. In t-coordinates s takes the form $t_{1} \cdot f$ where f is a Laurent polynomial in the variables t_{2}, \ldots, t_{n}. Thus s corresponds with F_{0} and $\mathrm{s}-1$ with F in [2] def. 4.1.

Remark 8 When comparing with [7] one sees again a shift of dimensions from n in op. cit. to $n-1$ here; T^{n} with coordinates t_{1}, \ldots, t_{n} in op. cit. is our \mathbb{T} with coordinates t_{2}, \ldots, t_{n}. The polynomial P of op. cit. and our s are related by $s=t_{1} \cdot P$. The identification of $\mathbb{T} \backslash \mathrm{Z}_{\mathrm{s}}$ with $\widetilde{\mathrm{Z}}_{\mathrm{s}-1}$ now gives for the Steinberg symbols $\left\{P, t_{2}, \ldots, t_{n}\right\}=-\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ if the coordinates are ordered such that $\operatorname{det} M=-1$.

Before we can state Batyrev's results we need some definitions/notations. [2] def. 2.8 defines an ascending sequence of homogeneous ideals in \mathcal{S}_{Λ} :

$$
\begin{equation*}
I_{\Delta}^{(0)} \subset I_{\Delta}^{(1)} \subset \ldots \subset I_{\Delta}^{(n)} \subset I_{\Delta}^{(n+1)} \tag{64}
\end{equation*}
$$

where $I_{\Delta}^{(k)}$ is generated by the elements u^{m} with m in $\Lambda \cap \mathbb{Z}^{n}$ but not in any codimension k face of Λ; in particular

$$
\begin{equation*}
I_{\Delta}^{(0)}=0, \quad I_{\Delta}^{(1)}=\mathbb{C}\left[\operatorname{interior}(\Lambda) \cap \mathbb{Z}^{n}\right], \quad I_{\Delta}^{(n)}=\mathcal{S}_{\Lambda}^{+}, \quad I_{\Delta}^{(n+1)}=\mathcal{S}_{\Lambda} \tag{65}
\end{equation*}
$$

$\mathcal{S}_{\Lambda}^{+}$is the ideal in \mathcal{S}_{Λ} generated by the monomials of degree >0.
[2] p. 379 defines a descending sequence of \mathbb{C}-vector spaces in \mathcal{S}_{Λ} :

$$
\begin{equation*}
\ldots \supset \mathcal{E}^{-k} \supset \mathcal{E}^{-k+1} \supset \ldots \supset \mathcal{E}^{-1} \supset \mathcal{E}^{0} \supset \mathcal{E}^{1}=0 \tag{66}
\end{equation*}
$$

where \mathcal{E}^{-k} is spanned by the monomials \mathbf{u}^{m} with $\operatorname{deg} \mathrm{u}^{\mathrm{m}} \leq k$.
(2) def. 7.2 defines the differential operators

$$
\begin{equation*}
D_{i}:=u_{i} \frac{\partial}{\partial u_{i}}+u_{i} \frac{\partial \mathrm{~s}}{\partial u_{i}}, \quad(i=1, \ldots, n) \tag{67}
\end{equation*}
$$

These operate on $\mathbb{C}\left[u_{1}^{ \pm 1}, \ldots, u_{n}^{ \pm 1}\right]$, preserving \mathcal{S}_{Λ} and $\mathcal{S}_{\Lambda}^{+}$. [2] thm. 4.8 can be used as a definition:

Definition 6 s is said to be Λ－regular if $u_{1} \frac{\partial \mathrm{~s}}{\partial u_{1}}, u_{2} \frac{\partial \mathrm{~s}}{\partial u_{2}} \ldots, u_{n} \frac{\partial \mathrm{~s}}{\partial u_{n}}$ is a regular sequence in \mathcal{S}_{Λ} ．

Theorem 7 （summary of results in［2］）
If s is Λ－regular，then there is a commutative diagram

$$
\begin{array}{rlll}
\mathcal{S}_{\Lambda}^{+} / \sum_{i=1}^{n} D_{i} \mathcal{S}_{\Lambda}^{+} & \stackrel{\cong}{\rightrightarrows} & H^{n-1}\left(\widetilde{Z}_{\mathrm{s}-1}\right) & \stackrel{\cong}{\rightrightarrows} H^{n-1}\left(\mathbb{T} \backslash \mathrm{Z}_{\mathrm{s}}\right) \\
\downarrow & \downarrow & & \tag{68}\\
\mathcal{S}_{\Lambda} / \sum_{i=1}^{n} D_{i} \mathcal{S}_{\Lambda} & \stackrel{\cong}{\rightrightarrows} H^{n}\left(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{Z}_{\mathrm{s}-1}\right) & &
\end{array}
$$

in which the horizontal arrows are isomorphisms．These isomorphisms restrict to the following isomorphisms relating（65）and（66）with the weight and Hodge filtrations on $H^{n-1}\left(\mathbb{T} \backslash \mathrm{Z}_{\mathrm{s}}\right)$ and $H^{n}\left(\mathbb{T} \mathrm{rel} \mathrm{Z}_{\mathrm{s}-1}\right)$ ．
For $k=-1,0,1, \ldots, n, n+1$ ：

$$
\begin{array}{ll}
\text { image } I_{\Delta}^{(k)} \text { in } \mathcal{S}_{\Lambda}^{+} / \sum_{i=1}^{n} D_{i} \mathcal{S}_{\Lambda}^{+} & \xlongequal{\leftrightharpoons} \mathcal{W}_{k+n-1} H^{n-1}\left(\mathbb{T} \backslash \mathrm{Z}_{\mathrm{s}}\right) \\
\text { image } \mathcal{E}^{-k} \cap \mathcal{S}_{\Lambda}^{+} \text {in } \mathcal{S}_{\Lambda}^{+} / \sum_{i=1}^{n} D_{i} \mathcal{S}_{\Lambda}^{+} & \stackrel{\Im}{\rightarrow} \mathcal{F}^{n-k} H^{n-1}\left(\mathbb{T} \backslash \mathrm{Z}_{\mathrm{s}}\right) \\
\text { image } I_{\Delta}^{(k)} \text { in } \mathcal{S}_{\Lambda} / \sum_{i=1}^{n} D_{i} \mathcal{S}_{\Lambda} & \stackrel{\cong}{\rightrightarrows} \mathcal{W}_{k+n-1} H^{n}\left(\widetilde{\mathbb{T}} \mathrm{rel} \widetilde{Z}_{\mathrm{s}-1}\right) \\
\text { image } \mathcal{E}^{-k} \text { in } \mathcal{S}_{\Lambda} / \sum_{i=1}^{n} D_{i} \mathcal{S}_{\Lambda} & \cong \mathcal{F}^{n-k} H^{n}\left(\widetilde{\mathbb{T}} \mathrm{rel} \widetilde{Z}_{\mathrm{s}-1}\right)
\end{array}
$$

proof：The statements for $H^{n-1}\left(\mathbb{T} \backslash Z_{s}\right)$ are theorems 7．13， 8.1 and 8.2 in［2］． The statements about $H^{n}\left(\widetilde{\mathbb{T}}\right.$ rel $\left.\widetilde{Z}_{s-1}\right)$ can also be derived with the methods of op．cit．，as follows．Recall that $H^{*}\left(\widetilde{\mathbb{T}} \mathrm{rel} \widetilde{Z}_{s-1}\right)$ is the cohomology of the cone of the natural map of DeRham complexes $\Omega_{\mathbb{T}}^{\bullet} \rightarrow \Omega_{\dot{Z}_{s-1}}^{\bullet}$ and that this cone complex is in degrees i and $i+1$

$$
\begin{array}{rllll}
\ldots \rightarrow \quad \Omega_{\widetilde{\mathbb{T}}}^{i} \oplus \Omega_{\widetilde{\mathrm{Z}}_{\mathrm{s}-1}}^{i-1} & \longrightarrow & \Omega_{\widetilde{\mathbb{T}}}^{i+1} \oplus \Omega_{\widetilde{\mathrm{Z}}_{\mathrm{s}-1}}^{i} & \rightarrow \ldots \\
\left(\omega_{1}, \omega_{2}\right) & \mapsto & \left(-d \omega_{1}, d \omega_{2}+\left.\omega_{1}\right|_{\tilde{\mathrm{Z}}_{\mathrm{s}-1}}\right) & \tag{69}
\end{array}
$$

A basis for the $\mathbb{C}\left[u_{1}^{ \pm 1}, \ldots, u_{n}^{ \pm 1}\right]$－module $\Omega_{\widetilde{\mathbb{T}}}^{\bullet}$ is given by the forms $\frac{d u_{i_{1}}}{u_{i_{1}}} \wedge \ldots \wedge \frac{d u_{i_{r}}}{u_{i_{r}}}$ ． Let $\Omega_{\stackrel{\rightharpoonup}{\mathbb{T}}, 0}^{\bullet}$ denote the subgroup of $\Omega_{\widetilde{\mathbb{T}}}^{\bullet}$ consisting of the linear combinations of the basic forms with coefficients in \mathbb{C} ．The standard differential d on $\Omega_{\mathbb{T}}^{\bullet}$ is 0 on $\Omega_{\stackrel{\mathbb{T}}{\bullet}, 0}^{\bullet}$ ．The inclusion of complexes $\Omega_{\stackrel{\mathbb{T}}{\bullet}, 0}^{\bullet} \hookrightarrow \Omega_{\stackrel{\mathbb{T}}{\bullet}}^{\bullet}$ is a quasi－isomorphism．So in（69） we may replace $\Omega_{\mathbb{T}}^{\bullet}$ by $\Omega_{\stackrel{\mathbb{T}}{\bullet}, 0}^{\bullet}$ ．

For the proof of［2］thm．7．13 Batyrev uses the \mathbb{C}－linear map $\mathcal{R}: \mathcal{S}_{\Lambda}^{+} \rightarrow \Omega_{\tilde{\mathrm{Z}}_{s-1}}^{n-1}$ ， $\mathcal{R}\left(u^{m}\right):=(-1)^{\operatorname{deg} \mathrm{m}-1}(\operatorname{deg} \mathrm{~m}-1)!\mathrm{u}^{\mathrm{m}} \frac{d t_{2}}{t_{2}} \wedge \ldots \wedge \frac{d t_{n}}{t_{n}}(\mathrm{cf}$ ．remark $⿴ 囗 ⿱ 一 一$ for the t－ coordinates）．Let us extend this to a \mathbb{C}－linear map $\mathcal{R}: \mathcal{S}_{\Lambda} \rightarrow \Omega_{\mathbb{T}, 0}^{n} \oplus \Omega_{\tilde{\mathrm{Z}}_{\mathrm{s}-1}}^{n-1}$ by setting $\mathcal{R}(1)=\left(\frac{d t_{1}}{t_{1}} \wedge \ldots \wedge \frac{d t_{n}}{t_{n}}, 0\right)$ ．This induces a surjective linear map
$\mathcal{S}_{\Lambda} \longrightarrow H^{n}\left(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathbf{Z}}_{\mathrm{s}-1}\right)$ with $\sum_{i=1}^{n} D_{i} \mathcal{S}_{\Lambda}^{+}$in its kernel. Note $D_{i}(1)=u_{i} \frac{\partial \mathrm{~s}}{\partial u_{i}} . \mathrm{A}$ direct calculation shows for $i=1, \ldots, n$:

$$
(-1)^{i-1} \mathcal{R}\left(t_{i} \frac{\partial \mathrm{~s}}{\partial t_{i}}\right)=d\left(\frac{d t_{1}}{t_{1}} \wedge \ldots \wedge \frac{\widehat{d t_{i}}}{t_{i}} \wedge \ldots \wedge \frac{d t_{n}}{t_{n}}, 0\right)
$$

in $\Omega_{\widetilde{\mathbb{T}}, 0}^{n} \oplus \Omega_{\tilde{\mathbf{Z}}_{\mathrm{s}-1}}^{n-1}$. Therefore \mathcal{R} induces a surjective linear map

$$
\mathcal{S}_{\Lambda} / \sum_{i=1}^{n} D_{i} \mathcal{S}_{\Lambda} \rightarrow H^{n}\left(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{Z}_{s-1}\right)
$$

A simple dimension count now shows that this is in fact an isomorphism.
The statements about the Hodge filtration and the weight filtration on $H^{n}\left(\widetilde{\mathbb{T}} \mathrm{rel} \widetilde{\mathrm{Z}}_{\mathrm{s}-1}\right)$ follow from the corresponding statements for $H^{n-1}\left(\mathbb{T} \backslash \mathrm{Z}_{\mathrm{s}}\right)$ and from (56).

The principal A-determinant of Gel'fand-Kapranov-Zelevinskii 13] is a polynomial $E_{\mathrm{A}}\left(v_{1}, \ldots, v_{N}\right) \in \mathbb{Z}\left[v_{1}, \ldots, v_{N}\right]$ such that (see [2] prop. 4.16):

$$
\begin{equation*}
\mathrm{s} \text { is } \Lambda \text {-regular } \quad \Longleftrightarrow \quad E_{\mathrm{A}}\left(v_{1}, \ldots, v_{N}\right) \neq 0 \tag{70}
\end{equation*}
$$

Now we want to vary the coefficients v_{i} in (6す) and work over the ring

$$
\begin{equation*}
\mathbb{C}[\mathrm{v}]:=\mathbb{C}\left[v_{1}, \ldots, v_{N}, E_{\mathrm{A}}^{-1}\right] \tag{71}
\end{equation*}
$$

Let Ω^{\bullet} resp. $\widetilde{\Omega}^{\bullet}$ denote the DeRham complex of $\mathbb{C}\left[u_{1}^{ \pm 1}, \ldots, u_{n}^{ \pm 1}\right] \otimes \mathbb{C}[\mathrm{v}]$ relative to $\mathbb{C}[v]$ resp. relative to \mathbb{C}. Define on these complexes a new differential

$$
\begin{align*}
& \delta: \Omega^{i} \rightarrow \Omega^{i+1} \text { resp. } \widetilde{\Omega}^{i} \rightarrow \widetilde{\Omega}^{i+1} \\
& \delta \omega:=d \omega+d \mathrm{~s} \wedge \omega \tag{72}
\end{align*}
$$

where d is the ordinary differential on DeRham complexes.
As a basis for the $\mathbb{C}\left[u_{1}^{ \pm 1}, \ldots, u_{n}^{ \pm 1}\right] \otimes \mathbb{C}[\mathrm{v}]$-module Ω^{1} (resp. $\widetilde{\Omega}^{1}$) we take $\frac{d u_{1}}{u_{1}}, \ldots, \frac{d u_{n}}{u_{n}}$ (resp. $\left.\frac{d u_{1}}{u_{1}}, \ldots, \frac{d u_{n}}{u_{n}}, d v_{1}, \ldots, d v_{N}\right)$ and extend it by taking wedge products to a basis for Ω^{\bullet} (resp. $\widetilde{\Omega}^{\bullet}$). Let $\Omega_{\Lambda}^{\bullet}$ (resp. $\Omega_{\Lambda^{+}}^{\bullet}$) denote the subgroups of Ω^{\bullet} consisting of the linear combinations of the given basic forms with coefficients in $\mathcal{S}_{\Lambda} \otimes \mathbb{C}[\mathbf{v}]$ (resp. $\left.\mathcal{S}_{\Lambda}^{+} \otimes \mathbb{C}[\mathrm{v}]\right)$. Define $\widetilde{\Omega}_{\Lambda}^{\bullet}$ (resp. $\widetilde{\Omega}_{\Lambda^{+}}^{\bullet}$) in the same way as subgroups of $\widetilde{\Omega}^{\bullet}$. The differential $\delta(72)$ preserves these subgroups. Thus we get the two complexes

$$
\begin{array}{lll}
\left(\Omega_{\Lambda}^{\bullet}, \delta\right) & : & \Omega_{\Lambda}^{0} \xrightarrow{\delta} \Omega_{\Lambda}^{1} \xrightarrow{\delta} \ldots \stackrel{\delta}{\rightarrow} \Omega_{\Lambda}^{n-1} \xrightarrow{\delta} \Omega_{\Lambda}^{n} \\
\left(\widetilde{\Omega}_{\Lambda}^{\bullet}, \delta\right) & : & \widetilde{\Omega}_{\Lambda}^{0} \xrightarrow{\delta} \widetilde{\Omega}_{\Lambda}^{1} \xrightarrow{\delta} \ldots \xrightarrow{\delta} \widetilde{\Omega}_{\Lambda}^{n-1} \xrightarrow{\delta} \widetilde{\Omega}_{\Lambda}^{n} \xrightarrow{\delta} \widetilde{\Omega}_{\Lambda}^{n+1} \xrightarrow{\delta} \ldots \xrightarrow{\delta} \widetilde{\Omega}_{\Lambda}^{N+n}
\end{array}
$$

Then

$$
\begin{equation*}
H^{n}\left(\Omega_{\Lambda}^{\bullet}, \delta\right)=\left(\mathcal{S}_{\Lambda} / \sum_{i=1}^{n} D_{i} \mathcal{S}_{\Lambda}\right) \otimes \mathbb{C}[\mathbf{v}] \tag{73}
\end{equation*}
$$

The Gauss-Manin connection

$$
\begin{equation*}
\nabla: H^{n}\left(\Omega_{\Lambda}^{\bullet}, \delta\right) \rightarrow H^{n}\left(\Omega_{\Lambda}^{\bullet}, \delta\right) \otimes \Omega_{\mathbb{C}[\mathrm{v}] / \mathbb{C}}^{1} \tag{74}
\end{equation*}
$$

on this module is described by the Katz-Oda construction (cf. 18 §1.4) as follows. Lift the given $\xi \in H^{n}\left(\Omega_{\Lambda}^{\bullet}, \delta\right)$ to an element $\tilde{\xi}$ in $\widetilde{\Omega}_{\Lambda}^{n}$. Then $\nabla \xi$ is the cohomology class of $\delta \tilde{\xi} \in \widetilde{\Omega}_{\Lambda}^{n+1}$ in $H^{n}\left(\Omega_{\Lambda}^{\bullet}, \delta\right) \otimes \Omega_{\mathbb{C}[v] / \mathbb{C}}^{1}$. Having $\nabla \xi$ one defines $\frac{\partial}{\partial v_{j}} \xi \in H^{n}\left(\Omega_{\Lambda}^{\bullet}, \delta\right)$ by

$$
\begin{equation*}
\nabla \xi=\sum_{j=1}^{N}\left(\frac{\partial}{\partial v_{j}} \xi\right) \otimes d v_{j} \tag{75}
\end{equation*}
$$

In particular for $\mu \in \Lambda \cap \mathbb{Z}^{n}$ and

$$
\begin{equation*}
\xi_{\mu}:=\text { cohomology class of } \mathrm{u}^{\mu} \cdot \frac{d u_{1}}{u_{1}} \wedge \ldots \wedge \frac{d u_{n}}{u_{n}} \in H^{n}\left(\Omega_{\Lambda}^{\bullet}, \delta\right) \tag{76}
\end{equation*}
$$

we find

$$
\begin{align*}
\frac{\partial}{\partial v_{j}} \xi_{\mu} & =\text { cohomology class of } \mathbf{u}^{\mathfrak{a}_{j}+\mu} \cdot \frac{d u_{1}}{u_{1}} \wedge \ldots \wedge \frac{d u_{n}}{u_{n}} \tag{77}\\
& =\xi_{\mu+\mathfrak{a}_{j}} \tag{78}
\end{align*}
$$

The form ξ_{μ} for $\mu \neq 0$ corresponds via (73) and [2] thm.7.13 with the form ω_{μ} in (54); more precisely ξ_{μ} is the cohomology class of ω_{μ} modulo $H^{n-1}(\widetilde{\mathbb{T}})$.

Corollary 4

$$
\begin{align*}
\left(\mu+\sum_{j=1}^{N} \mathfrak{a}_{j} v_{j} \frac{\partial}{\partial v_{j}}\right) \xi_{\mu} & =0 \tag{79}\\
\left(\prod_{\ell_{j}>0}\left[\frac{\partial}{\partial v_{j}}\right]^{\ell_{j}}-\prod_{\ell_{j}<0}\left[\frac{\partial}{\partial v_{j}}\right]^{-\ell_{j}}\right) \xi_{\mu} & =0 \quad \text { for } \ell \in \mathbb{L} \tag{80}
\end{align*}
$$

proof: On the level of differential forms in the complex $\left(\Omega_{\Lambda}^{\bullet}, \delta\right)$ the i-th equation of (79) reads

$$
\begin{aligned}
& \left(\mu_{i}+\sum_{j=1}^{N} a_{i j} v_{j} \frac{\partial}{\partial v_{j}}\right) \mathrm{u}^{\mu} \cdot \frac{d u_{1}}{u_{1}} \wedge \ldots \wedge \frac{d u_{n}}{u_{n}}= \\
& =\delta\left((-1)^{i-1} \mathrm{u}^{\mu} \frac{d u_{1}}{u_{1}} \wedge \ldots \wedge \frac{d u_{i-1}}{u_{i-1}} \wedge \frac{d u_{i+1}}{u_{i+1}} \wedge \ldots \wedge \frac{d u_{n}}{u_{n}}\right)
\end{aligned}
$$

(80) follows immediately from (77).

Remark 9 We have essentially repeated the proof of [2] thm. 14.2. There is however a small difference: Batyrev uses coefficients in $\overline{\mathcal{S}}_{\Lambda}^{+}$where we are using coefficients in \mathcal{S}_{Λ}. His differential equations hold for $H^{n-1}\left(\mathbb{T} \backslash Z_{\mathrm{s}}\right)=H^{n}\left(\Omega_{\Lambda^{+}}^{\bullet}, \delta\right)$ whereas ours only hold in the primitive part $P H^{n-1}\left(\mathbb{T} \backslash Z_{s}\right)$. On the other hand we can also treat ξ_{0}. The following theorem shows that this gives an important advantage.

Theorem 8 If $\Lambda \cap \mathbb{Z}^{n}=\mathbb{Z}_{\geq 0} \mathfrak{a}_{1}+\ldots+\mathbb{Z}_{\geq 0} \mathfrak{a}_{N}$, then ξ_{0} generates $H^{n}\left(\Omega_{\Lambda}^{\bullet}, \delta\right)$ as a module over the ring $\mathcal{D}:=\mathbb{C}\left[v_{1}, \ldots, v_{N}, E_{\mathrm{A}}^{-1}, \frac{\partial}{\partial v_{1}}, \ldots, \frac{\partial}{\partial v_{N}}\right]$. The annihilator of ξ_{0} in \mathcal{D} is the left ideal generated by the differential operators

$$
\sum_{j=1}^{N} a_{i j} v_{j} \frac{\partial}{\partial v_{j}} \quad \text { and } \quad \prod_{\ell_{j}>0}\left[\frac{\partial}{\partial v_{j}}\right]^{\ell_{j}}-\prod_{\ell_{j}<0}\left[\frac{\partial}{\partial v_{j}}\right]^{-\ell_{j}}
$$

with $1 \leq i \leq n$ and $\ell \in \mathbb{L}$.
In other words, $H^{n}\left(\widetilde{\mathbb{T}} \mathrm{rel} \widetilde{\mathbf{Z}}_{\mathrm{s}-1}\right)=H^{n}\left(\Omega_{\Lambda}^{\bullet}, \delta\right)$ is the hypergeometric \mathcal{D}-module in the sense of 11 §2.1 with parameters $\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\}$ and $\beta=0$.
proof: Let \mathcal{M}_{0} denote the hypergeometric \mathcal{D}-module with parameters $\beta=0$ and $\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\}$ as in [11] section 2.1. By corollary 1 and formula (78) we have a surjective homomorphism of \mathcal{D}-modules $\mathcal{M}_{0} \rightarrow H^{n}\left(\Omega_{\Lambda}^{\bullet}, \delta\right)$. The filtration of \mathcal{D} by the order of differential operators induces an ascending filtration on \mathcal{M}_{0} and $H^{n}\left(\Omega_{\Lambda}^{\bullet}, \delta\right)$. It suffices to prove that the above surjection induces an isomorphism for the associated graded modules. According to 11 prop. $3 \mathrm{gr} \mathcal{M}_{0}$ is isomorphic to the quotient of the ring $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right] \otimes \mathbb{C}[\mathrm{v}]$ by the ideal generated by the linear forms $\sum_{j=1}^{N} a_{i j} x_{j}$ for $i=1, \ldots, n$ and by the polynomials $\prod_{\ell_{j}>0} x_{j}^{\ell_{j}}-\prod_{\ell_{j}<0} x_{j}^{-\ell_{j}}$ with $\ell \in \mathbb{L}$. Via the substitution homorphism $x_{j} \mapsto \mathrm{u}^{\mathfrak{a}_{j}}$ this quotient ring is isomorphic to the quotient of the ring $\mathcal{S}_{\Lambda} \otimes \mathbb{C}[v]$ by the ideal generated by $u_{1} \frac{\partial \mathrm{~s}}{\partial u_{1}}, u_{2} \frac{\partial \mathrm{~s}}{\partial u_{2}}, \ldots, u_{n} \frac{\partial \mathrm{~s}}{\partial u_{n}}$. Using (77), (73) and (67) one checks that the latter quotient ring is isomorphic to $\operatorname{gr} H^{n}\left(\Omega_{\Lambda}^{\bullet}, \delta\right)$.

PART II A

Introduction II A

In this Part II A we give our results the flavor of Mirror Symmetry by showing that for a regular triangulation \mathcal{T} which satisfies conditions (81), (82), (83), the ring $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ is the cohomology ring of a toric variety constructed somehow from the dual Gorenstein cone Λ^{\vee} and that the ring $\mathcal{R}_{\mathrm{A}, \mathcal{T}} / \operatorname{Ann} c_{\text {core }}$ is a subring of the Chow ring of a Calabi-Yau complete intersection in that toric variety; more precisely the subring is the image of the Chow ring of the ambient toric variety.

We construct several toric varieties which are also used in [3]. As we want to promote the use of triangulations we give a construction of these toric varieties
as a quotient of an open part of $\mathbb{C}^{d}(d$ an appropriate dimension) by a torus. The torus is related to \mathbb{L} and the open part is given by the triangulation \mathcal{T}. Such a construction of toric varieties is well known (see for instance 16]).

7 Triangulations with non-empty core and completely split reflexive Gorenstein cones.

Proposition 3 Assume that \mathcal{T} satisfies the following three conditions
core \mathcal{T} is not empty and core $\mathcal{T}=\{1, \ldots, \kappa\}$
core \mathcal{T} is not contained in the boundary of Δ
\mathcal{T} is unimodular
Then $\Lambda:=\mathbb{R}_{\geq 0} \mathfrak{a}_{1}+\ldots+\mathbb{R}_{\geq 0} \mathfrak{a}_{N}$ is a reflexive Gorenstein cone of index κ and the dual cone Λ^{\vee} is completely split in the sense of [3] definition 3.9.
proof: By lemma 6 and hypotheses (81) and (82) the $(n-2)$-dimensional simplices in the boundary of Δ are precisely the simplices $I \backslash\{i\}$ with $I \in \mathcal{T}^{n}$ and $i=1, \ldots, \kappa$. It follows that the dual cone Λ^{\vee} is generated by the set of row vectors $\left\{\mathfrak{a}_{I, i}^{\vee} \mid I \in \mathcal{T}^{n}, i=1, \ldots, \kappa\right\}$ where

$$
\mathfrak{a}_{I, i}^{\vee}:=\text { the } i \text {-th row of the matrix } \mathrm{A}_{I}^{-1}
$$

Hypothesis (83) implies $\mathfrak{a}_{I, i}^{\vee} \in \mathbb{Z}^{n \vee}$ for all I, i. By construction

$$
\mathfrak{a}_{I, i}^{\vee} \cdot \mathfrak{a}_{j}= \begin{cases}\geq 0 & \text { for } j=1, \ldots, N \tag{84}\\ 1 & \text { if } j=i \\ 0 & \text { if } 1 \leq j \leq \kappa, j \neq i\end{cases}
$$

So if we take

$$
\begin{equation*}
\mathfrak{a}_{0}:=\mathfrak{a}_{1}+\ldots+\mathfrak{a}_{\kappa} \in \mathbb{R}^{n} \tag{85}
\end{equation*}
$$

then

$$
\mathfrak{a}_{I, i}^{\vee} \cdot \mathfrak{a}_{0}=1 \quad \text { for } \quad I \in \mathcal{T}^{n}, i=1, \ldots, \kappa
$$

This shows that Λ^{\vee} is a Gorenstein cone. Hence Λ is a reflexive Gorenstein cone with index $\mathfrak{a}_{0}^{\vee} \cdot \mathfrak{a}_{0}=\kappa$.

Every element of Λ^{\vee} can be written as $\sum_{I, i} s_{I, i} \mathfrak{a}_{I, i}^{\vee}$ with all $s_{I, i} \in \mathbb{R}_{\geq 0}$. Such a sum can be rearranged as $\sum_{i=1}^{\kappa} t_{i} \alpha_{i}$ with $t_{i}=\sum_{I} s_{I, i}$ and $\alpha_{i} \in \square_{i}$ where

$$
\begin{equation*}
\square_{i}:=\operatorname{conv}\left\{\mathfrak{a}_{I, i}^{\vee} \mid I \in \mathcal{T}^{n}\right\} \tag{86}
\end{equation*}
$$

\square_{i} is a lattice polytope in the $(n-\kappa)$-dimensional affine subspace of $\mathbb{R}^{n \vee}$ given by the equations $\xi \cdot \mathfrak{a}_{i}=1$ and $\xi \cdot \mathfrak{a}_{j}=0$ if $1 \leq j \leq \kappa, j \neq i$ (cf. (84)). This shows that Λ^{\vee} is a completely split reflexive Gorenstein cone of index κ in the sense of [3] definition 3.9.

Note that the dimension of \square_{i} equals $n-2$ minus the dimension of the minimal face of Δ which contains $\left\{\mathfrak{a}_{j} \mid j \in \operatorname{core} \mathcal{T} \backslash\{i\}\right\}$.

8 Triangulations and toric varieties

We assume from now on that \mathcal{T} satisfies the conditions (81), 87), 83).
Take some $I_{0} \in \mathcal{T}^{n}$ and consider the matrix $\left(u_{i j}\right):=\mathrm{A}_{I_{0}}^{-1} \mathrm{~A}$. Then in definition 2 the linear forms

$$
\begin{equation*}
u_{i 1} C_{1}+u_{i 2} C_{2}+\ldots+u_{i N} C_{N} \quad(i=1, \ldots, n) \tag{87}
\end{equation*}
$$

together with the monomials in (14) give another system of generators for the ideal \mathcal{J}. The corresponding relations in $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ for $i=1, \ldots, \kappa$ express $c_{1}, \ldots, c_{\kappa}$ as linear combinations of $c_{\kappa+1}, \ldots, c_{N}$. The relations for $i=\kappa+1, \ldots, n$ do not involve $c_{1}, \ldots, c_{\kappa}$. Also the monomials in (14) do not involve $C_{1}, \ldots, C_{\kappa}$.

Let $\mathfrak{u}_{\kappa+1}, \ldots, \mathfrak{u}_{N} \in \mathbb{R}^{n-\kappa}$ be the columns of the matrix $\left(u_{i j}\right)_{\kappa<i \leq n, \kappa<j \leq N}$. There is a simplicial fan \mathcal{F}^{\prime} in $\mathbb{R}^{n-\kappa}$ given by the cones

$$
\begin{equation*}
\mathbb{R}_{\geq 0} \mathfrak{u}_{i_{1}}+\ldots+\mathbb{R}_{\geq 0} \mathfrak{u}_{i_{s}} \quad \text { with } i_{1}, \ldots, i_{s}>\kappa \text { and }\left\{i_{1}, \ldots, i_{s}\right\} \in \mathcal{T} \tag{88}
\end{equation*}
$$

i.e. the index set is a simplex in the triangulation \mathcal{T}.

The fan \mathcal{F}^{\prime} is complete iff $0 \in \mathbb{R}^{n-\kappa}$ is a linear combination with positive coefficients of the vectors $\mathfrak{u}_{\kappa+1}, \ldots, \mathfrak{u}_{N}$. This is equivalent to condition (82). Condition (83) implies that \mathcal{F}^{\prime} is a fan of regular simplicial cones, i.e. its maximal cones are spanned by a basis of $\mathbb{Z}^{n-\kappa}$.

Combining these considerations with [5] thm. 10.8 or 10 prop.p. 106 we find:
Theorem 9 If the triangulation \mathcal{T} satisfies conditions (81), (82), (83), then $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ is isomorphic to the cohomology ring $H^{*}\left(\mathbb{P}_{\mathcal{T}}, \mathbb{Z}\right)$ of the $(n-\kappa)$-dimensional smooth projective toric variety $\mathbb{P}_{\mathcal{T}}$ associated with the fan \mathcal{F}^{\prime} (see definition $\mathbb{8}$); more precisely:

$$
\mathcal{R}_{\mathrm{A}, \mathcal{T}}^{(m)} \simeq H^{2 m}\left(\mathbb{P}_{\mathcal{T}}, \mathbb{Z}\right), \quad m=0,1, \ldots, n-\kappa
$$

and $\mathcal{R}_{\mathrm{A}, \mathcal{T}}^{(m)}=0$ for $m>n-\kappa$.

There is much more geometry in those three conditions than was used for theorem 9. Consider in \mathbb{R}^{n} the fan \mathcal{F} consisting of the cones

$$
\begin{equation*}
\mathbb{R}_{\geq 0} \mathfrak{a}_{i_{1}}+\ldots+\mathbb{R}_{\geq 0} \mathfrak{a}_{i_{s}}, \quad\left\{i_{1}, \ldots, i_{s}\right\} \in \mathcal{T} \tag{89}
\end{equation*}
$$

The standard constructions produce a toric variety $\mathbb{E}_{\mathcal{T}}$ from this fan. We recall the construction of the toric variety $\mathbb{E}_{\mathcal{T}}$ as a quotient of an open part of \mathbb{C}^{N} by the torus $\mathbb{L} \otimes \mathbb{C}^{*}$. This torus appears here because \mathbb{L} is the lattice of linear relations between the vectors $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}$; by condition (83) and corollary 1 these are exactly the generators of the 1 -dim cones of the $\operatorname{fan} \mathcal{F}$.

Take \mathbb{C}^{N} with coordinates x_{1}, \ldots, x_{N} and define

$$
\begin{align*}
\mathbb{C}_{I}^{N} & :=\left\{\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{C}^{N} \mid x_{j} \neq 0 \text { if } j \notin I\right\} \quad \text { for } \quad I \in \mathcal{T}^{n} \\
\mathbb{C}_{\mathcal{T}}^{N} & :=\bigcup_{I \in \mathcal{T}^{n}} \mathbb{C}_{I}^{N} \tag{90}
\end{align*}
$$

The torus $\mathbb{C}^{* N}$ acts on \mathbb{C}^{N} via coordinatewise multiplication. The inclusion $\mathbb{L} \subset \mathbb{Z}^{N}$ induces an inclusion of tori $\mathbb{L} \otimes \mathbb{C}^{*} \subset \mathbb{C}^{* N}$. Thus $\mathbb{L} \otimes \mathbb{C}^{*}$ acts on \mathbb{C}^{N}. For $\ell=\left(\ell_{1}, \ldots, \ell_{N}\right) \in \mathbb{L}, t \in \mathbb{C}^{*}$ the element $\ell \otimes t$ acts as

$$
\begin{equation*}
(\ell \otimes t) \cdot\left(x_{1}, \ldots, x_{N}\right):=\left(t^{\ell_{1}} x_{1}, \ldots, t^{\ell_{N}} x_{N}\right) \tag{91}
\end{equation*}
$$

Definition $7 \quad \mathbb{E}_{\mathcal{T}}:=\mathbb{C}_{\mathcal{T}}^{N} / \mathbb{L} \otimes \mathbb{C}^{*}$.

Take an $(N-n) \times N$-matrix B with entries in \mathbb{Z} such that the columns of B^{t} constitute a basis for \mathbb{L}. For $I \subset\{1, \ldots, N\}$ we denote by A_{I} (resp. $\mathrm{B}_{I^{*}}$) the submatrix of A (resp. B) composed of the entries with column index in I (resp. in $I^{*}:=\{1, \ldots, N\} \backslash I$). Consider $I=\left\{i_{1}, \ldots, i_{n}\right\} \in \mathcal{T}^{n}$. Then $\operatorname{det}\left(\mathrm{B}_{I^{*}}\right)= \pm \operatorname{det}\left(\mathrm{A}_{I}\right)= \pm 1$ by condition (83). So $\mathrm{B}_{I^{*}}$ is invertible over \mathbb{Z}. From this one easily sees that there is an isomorphism

$$
\begin{align*}
& \mathbb{C}^{n} \xrightarrow{\simeq} \mathbb{C}_{I}^{N} / \mathbb{L} \otimes \mathbb{C}^{*} \tag{92}\\
&\left(y_{1}, \ldots, y_{n}\right) \mapsto \\
&\left(x_{1}, \ldots, x_{N}\right) \text { with } x_{j}= \begin{cases}y_{t} & \text { if } j=i_{t} \in I \\
1 & \text { if } j \notin I\end{cases}
\end{align*}
$$

Hence $\mathbb{E}_{\mathcal{T}}$ is a smooth toric variety. The torus $\mathbb{C}^{* N} / \mathbb{L} \otimes \mathbb{C}^{*}=\mathbb{M} \otimes \mathbb{C}^{*}$ acts on $\mathbb{E}_{\mathcal{T}}$ and the variety $\mathbb{E}_{\mathcal{T}}$ contains $\mathbb{M} \otimes \mathbb{C}^{*}$ as a dense open subset.

One constructs in the same way the toric variety $\mathbb{P}_{\mathcal{T}}$ from the fan \mathcal{F}^{\prime} (see (88)). Now the lattice of linear relations between the generators $\mathfrak{u}_{\kappa+1}, \ldots, \mathfrak{u}_{N}$ of the 1-dimensional cones of the fan \mathcal{F}^{\prime} is the image of the composite map $\mathbb{L} \hookrightarrow \mathbb{Z}^{N} \rightarrow \mathbb{Z}^{N-\kappa}$. This map $\mathbb{L} \rightarrow \mathbb{Z}^{N-\kappa}$ is also injective. Take $\mathbb{C}^{N-\kappa}$ with coordinates $x_{\kappa+1}, \ldots, x_{N}$ and define

$$
\begin{align*}
\mathbb{C}_{I}^{N-\kappa} & :=\left\{\left(x_{\kappa+1}, \ldots, x_{N}\right) \in \mathbb{C}^{N} \mid x_{j} \neq 0 \text { if } j \notin I\right\} \quad \text { for } \quad I \in \mathcal{T}^{n} \\
\mathbb{C}_{\mathcal{T}}^{N-\kappa} & :=\bigcup_{I \in \mathcal{T}^{n}} \mathbb{C}_{I}^{N-\kappa} \tag{93}
\end{align*}
$$

$\mathbb{L} \otimes \mathbb{C}^{*}$ is a subtorus of $\mathbb{C}^{* N-\kappa}$ and acts accordingly; i.e. as in (91) using only the coordinates with index $>\kappa$.

Definition $8 \quad \mathbb{P}_{\mathcal{T}}:=\mathbb{C}_{\mathcal{T}}^{N-\kappa} / \mathbb{L} \otimes \mathbb{C}^{*}$.
$\mathbb{P}_{\mathcal{T}}$ is a smooth projective toric variety: smooth for the same reason as $\mathbb{E}_{\mathcal{T}}$ and projective because the fan \mathcal{F}^{\prime} is complete. Projection onto the last $N-\kappa$ coordinates induces a surjective morphism

$$
\begin{equation*}
\pi: \mathbb{E}_{\mathcal{T}} \rightarrow \mathbb{P}_{\mathcal{T}} \tag{94}
\end{equation*}
$$

As (90) puts no restriction on the coordinates $x_{1}, \ldots, x_{\kappa}$, the fibers of π are complex vector spaces of dimension κ; more precisely, (92) gives a trivialization

$$
\mathbb{C}_{I}^{N} / \mathbb{L} \otimes \mathbb{C}^{*} \simeq \mathbb{C}^{n} \simeq \mathbb{C}^{\kappa} \times \mathbb{C}^{n-\kappa} \simeq \mathbb{C}^{\kappa} \times\left(\mathbb{C}_{I}^{N-\kappa} / \mathbb{L} \otimes \mathbb{C}^{*}\right)
$$

Thus:

Proposition $4 \mathbb{E}_{\mathcal{T}}$ has the structure of a vector bundle of rank κ over $\mathbb{P}_{\mathcal{T}}$. \boxtimes

The dual vector bundle $\mathbb{E}_{\mathcal{T}}^{\vee} \rightarrow \mathbb{P}_{\mathcal{T}}$ can be constructed as

$$
\begin{equation*}
\mathbb{E}_{\mathcal{T}}^{\vee}:=\mathbb{C}_{\mathcal{T}}^{N} /\left(\mathbb{L} \otimes \mathbb{C}^{*}\right)^{\prime} \tag{95}
\end{equation*}
$$

with $\mathbb{C}_{\mathcal{T}}^{N}$ as in definition $\mathbb{7}$, but with the action of $\mathbb{L} \otimes \mathbb{C}^{*}$ slightly modified from (91): the element $\ell \otimes t$ now acts as

$$
\begin{equation*}
(\ell \otimes t) \cdot^{\prime}\left(x_{1}, \ldots, x_{N}\right):=\left(t^{-\ell_{1}} x_{1}, \ldots, t^{-\ell_{\kappa}} x_{\kappa}, t^{\ell_{\kappa+1}} x_{\kappa+1}, \ldots, t^{\ell_{N}} x_{N}\right) \tag{96}
\end{equation*}
$$

For the sake of completeness we also describe the construction of the bundle of projective spaces $\mathbb{P}_{\mathcal{T}} \rightarrow \mathbb{P}_{\mathcal{T}}$ associated with the vector bundle $\mathbb{E}_{\mathcal{T}} \rightarrow \mathbb{P}_{\mathcal{T}}$. Take as before \mathbb{C}^{N} with coordinates x_{1}, \ldots, x_{N}. Define for $i \in \operatorname{core} \mathcal{T}$ and $I \in \mathcal{T}^{n}$

$$
\begin{array}{ll}
\mathbb{C}_{i, I}^{N} & :=\left\{\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{C}^{N} \mid x_{i} \neq 0 \text { and } x_{j} \neq 0 \text { if } j \notin I\right\} \\
\mathbb{C}_{\mathcal{T} \circ}^{N} & :=\bigcup_{i \in \operatorname{core} \mathcal{T}, I \in \mathcal{T}^{n}} \mathbb{C}_{i, I}^{N} \tag{97}
\end{array}
$$

Write $\mathrm{k}:=\left(k_{1}, \ldots, k_{N}\right)^{t}$ with $k_{j}=1$ if $j \in \operatorname{core} \mathcal{T}$ resp. $k_{j}=0$ if $j \notin$ core \mathcal{T}, i.e. $\mathrm{k}=(1, \ldots, 1,0, \ldots, 0)^{t}$. Clearly $\mathrm{k} \notin \mathbb{L}$. Hence $\mathbb{Z} \cdot \mathrm{k} \oplus \mathbb{L} \subset \mathbb{Z}^{N}$ and $(\mathbb{Z} \cdot \mathrm{k} \oplus \mathbb{L}) \otimes \mathbb{C}{ }^{*} \subset$ $\mathbb{C}^{* N}$. Then

$$
\begin{equation*}
\mathbb{P E}_{\mathcal{T}}:=\mathbb{C}_{\mathcal{T}_{\circ}}^{N} /(\mathbb{Z} \cdot \mathrm{k} \oplus \mathbb{L}) \otimes \mathbb{C}^{*} \tag{98}
\end{equation*}
$$

with the morphism $\mathbb{P E}_{\mathcal{T}} \rightarrow \mathbb{P}_{\mathcal{T}}$ induced from projection onto the last $N-\kappa$ coordinates.

There are two kinds of codim 1 simplices in the triangulation \mathcal{T} : those which do contain core \mathcal{T} and those which do not. Those which do not contain core \mathcal{T} are precisely the ones of the form $I \backslash\{i\}$ with $I \in \mathcal{T}^{n}$ and $i \in \operatorname{core} \mathcal{T}$. Notice the relation with (97). The codim 1 simplices which do not contain core \mathcal{T} constitute a triangulation of the boundary of Δ. Let as in (85)

$$
\mathfrak{a}_{0}:=\mathfrak{a}_{1}+\ldots+\mathfrak{a}_{\kappa}
$$

Then $\mathbb{Z} \cdot \mathbf{k} \oplus \mathbb{L} \subset \mathbb{Z}^{N}$ is precisely the lattice of linear relations between the vectors $\mathfrak{a}_{1}-\frac{1}{\kappa} \mathfrak{a}_{0}, \mathfrak{a}_{2}-\frac{1}{\kappa} \mathfrak{a}_{0}, \ldots, \mathfrak{a}_{N}-\frac{1}{\kappa} \mathfrak{a}_{0}$. Thus we see:

Proposition $5 \mathbb{P E}_{\mathcal{T}}$ is the $(n-1)$-dimensional smooth projective toric variety associated with the lattice $\mathbb{Z}\left(\mathfrak{a}_{1}-\frac{1}{\kappa} \mathfrak{a}_{0}\right)+\ldots+\mathbb{Z}\left(\mathfrak{a}_{N}-\frac{1}{\kappa} \mathfrak{a}_{0}\right)$ and the fan consisting the cones with apex 0 over the simplices of the triangulation of the boundary of $-\frac{1}{\kappa} \mathfrak{a}_{0}+\Delta$ induced by \mathcal{T}.

9 Calabi-Yau complete intersections in toric varieties

According to proposition 3 conditions (81), (82), (83) imply that Λ^{\vee} is a completely split reflexive Gorenstein cone. In 3] Batyrev and Borisov relate this
splitting property to complete intersections in toric varieties. Formulated in our present context this relation is as follows.

A (global) section of $\mathbb{E}_{\mathcal{T}}^{\vee} \rightarrow \mathbb{P}_{\mathcal{T}}$ is given by polynomials $P_{i}\left(x_{\kappa+1}, \ldots, x_{N}\right)$ $(i=1, \ldots, \kappa)$ which satisfy the homogeneity condition

$$
\begin{equation*}
P_{i}\left(t^{\ell_{\kappa+1}} \cdot x_{\kappa+1}, \ldots, t^{\ell_{N}} \cdot x_{N}\right)=t^{-\ell_{i}} \cdot P_{i}\left(x_{\kappa+1}, \ldots, x_{N}\right) \tag{99}
\end{equation*}
$$

for every $t \in \mathbb{C}^{*}$ and $\ell=\left(\ell_{1}, \ldots, \ell_{N}\right)^{t} \in \mathbb{L}$. The vector bundle is a direct sum of line bundles and the polynomial P_{i} gives a section of the i-th line bundle.

The polynomial P_{i} is a linear combination of monomials $x_{\kappa+1}^{m_{\kappa+1}} \cdot \ldots \cdot x_{N}^{m_{N}}$ such that

$$
\ell_{\kappa+1} m_{\kappa+1}+\ldots+\ell_{N} m_{N}=-\ell_{i} \quad \text { for all } \ell=\left(\ell_{1}, \ldots, \ell_{N}\right) \in \mathbb{L}
$$

These monomials correspond bijectively to the elements $\left(m_{1}, \ldots, m_{N}\right)$ in the row space of matrix A which satisfy $m_{i}=1, m_{j}=0$ if $1 \leq j \leq \kappa, j \neq i$ and $m_{j} \geq 0$ if $j>\kappa$. Equivalently, these monomials correspond bijectively to the elements $\mathrm{w} \in \mathbb{Z}^{n \vee}$ which satisfy

$$
\mathrm{w} \cdot \mathfrak{a}_{j}= \begin{cases}\geq 0 & \text { for } j=1, \ldots, N \tag{100}\\ 1 & \text { if } j=i \\ 0 & \text { if } 1 \leq j \leq \kappa, j \neq i\end{cases}
$$

So the monomials in the polynomial P_{i} correspond bijectively to the integral lattice points in the polytope \square_{i}; see (86).

The zero locus of the section of $\mathbb{E}_{\mathcal{T}}^{\nu} \rightarrow \mathbb{P}_{\mathcal{T}}$ corresponding to the polynomials $P_{i}\left(x_{\kappa+1}, \ldots, x_{N}\right)(i=1, \ldots, \kappa)$ is clearly the complete intersection in $\mathbb{P}_{\mathcal{T}}$ with (homogeneous) equations

$$
\begin{equation*}
P_{i}\left(x_{\kappa+1}, \ldots, x_{N}\right)=0 \quad(i=1, \ldots, \kappa) \tag{101}
\end{equation*}
$$

If the coefficients of these polynomials satisfy a Λ^{\vee}-regularity condition, then this complete intersection is a Calabi-Yau variety Y of dimension $n-2 \kappa$.

The ring $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ is isomorphic to the cohomology ring of the toric variety $\mathbb{P}_{\mathcal{T}}$. The elements $-c_{1}, \ldots,-c_{\kappa}$ are the Chern classes of the hypersurfaces associated with the polynomials $P_{1}, \ldots, P_{\kappa}$. With as before $c_{\text {core }}=c_{1} \cdot \ldots \cdot c_{\kappa}$, the ring $\mathcal{R}_{\mathrm{A}, \mathcal{T}} /$ Ann $c_{\text {core }}$ is isomorphic to the image of $H^{*}\left(\mathbb{P}_{\mathcal{T}}, \mathbb{Z}\right)$ in $H^{*}(Y, \mathbb{Z})$.

Conclusions

Consider the map $v: \mathbb{C}^{N \vee} \rightarrow \mathbb{C}^{N \vee}, v\left(z_{1}, \ldots, z_{N}\right):=\left(\mathrm{e}^{2 \pi i z_{1}}, \ldots, \mathrm{e}^{2 \pi i z_{N}}\right)$. According to 13 p. 304 cor. 1.7 there is a vector $b \in \mathcal{C}_{\mathcal{T}}$ such that

$$
\begin{equation*}
E_{\mathrm{A}}(\mathrm{v}(\mathrm{z})) \neq 0 \quad \text { for all } \quad \mathrm{z} \in \mathbb{C}^{N \vee} \quad \text { such that } \quad p(\Im \mathrm{z}) \in b+\mathcal{C}_{\mathcal{T}} \tag{102}
\end{equation*}
$$

here $p: \mathbb{R}^{N \vee} \rightarrow \mathbb{L}_{\mathbb{R}}^{\vee}$ denotes the surjection dual to the inclusion $\mathbb{L} \hookrightarrow \mathbb{Z}^{n}$. This shows how one can replace the domain of definition $\mathcal{V}_{\mathcal{T}}$ of the functions $\Psi_{\mathcal{T}, \beta}$
(cf. (40)) by a slightly smaller domain $\mathcal{V}_{\mathcal{T}}^{\prime}$ such that on $v\left(\mathcal{V}_{\mathcal{T}}^{\prime}\right)$ the function E_{A} is nowhere zero. The \mathcal{D}-module $H^{n}\left(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{Z}_{s-1}\right)$ is therefore defined on $v\left(\mathcal{V}_{\mathcal{T}}^{\prime}\right)$;
 where $\mathcal{O}_{\mathcal{T}}$ denotes the ring of holomorphic functions on $\mathcal{V}_{\mathcal{T}}^{\prime}$ and $\mathcal{D}_{\mathcal{T}}$ denotes the corresponding ring of differential operators.

The functions $\Psi_{\mathcal{T}, \beta}$ are also defined on the domain $\mathcal{V}_{\mathcal{T}}^{\prime}$ and

$$
\Psi_{\mathcal{T}, \beta} \in \mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathcal{O}_{\mathcal{T}}
$$

$\mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathcal{O}_{\mathcal{T}}$ is a $\mathcal{D}_{\mathcal{T}}$-module with $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ as its group of horizontal sections.
The following theorem summarizes the results of this paper:

Theorem 10 Let $\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\}$ be a finite subset of \mathbb{Z}^{n} which satisfies condition 1. Let $\Lambda:=\mathbb{R}_{\geq 0} \mathfrak{a}_{1}+\ldots+\mathbb{R}_{\geq 0} \mathfrak{a}_{N}$ be the associated Gorenstein cone and $\Delta:=$ $\operatorname{conv}\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\}$.
(i). If there exists a unimodular regular triangulation of Δ, then condition 8 is satisfied and $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}$ generate \mathbb{Z}^{n}, i.e.

$$
\begin{equation*}
\Delta \cap \mathbb{Z}^{n}=\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\} \quad \text { and } \quad \mathbb{M}=\mathbb{Z}^{n} \tag{103}
\end{equation*}
$$

(ii). For every unimodular regular triangulation \mathcal{T} there is an isomorphism of $\mathcal{D}_{\mathcal{T} \text {-modules on }} \mathcal{V}_{\mathcal{T}}^{\prime}$:

$$
\begin{equation*}
H^{n}\left(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{Z}_{\mathrm{s}-1}\right) \otimes \mathcal{O}_{\mathcal{T}} \simeq \mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathcal{O}_{\mathcal{T}} \tag{104}
\end{equation*}
$$

through which ξ_{0} corresponds with $\Psi_{\mathcal{T}, 0}$. More generally ξ_{μ} corresponds with $\Psi_{\mathcal{T},-\mu}$ if $\mu \in \Lambda \cap \mathbb{Z}^{n}$.
(iii). In particular if Λ is a reflexive Gorenstein cone of index κ and \mathcal{T} is a unimodular regular triangulation, then $\mathcal{W}_{n} H^{n}\left(\widetilde{\mathbb{T}} \mathrm{rel} \widetilde{\mathrm{Z}}_{\mathrm{s}-1}\right) \otimes \mathcal{O}_{\mathcal{T}}$ is generated as a $\mathcal{D}_{\mathcal{T} \text {-module by }} \xi_{\mathfrak{a}_{0}}$ and corresponds via (104) with the sub- $\mathcal{D}_{\mathcal{T}}$-module of $\mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathcal{O}_{\mathcal{T}}$ generated by $\Psi_{\mathcal{T},-\mathfrak{a}_{0}}$.
Moreover $\xi_{\mathfrak{a}_{0}}$ has weight n and Hodge type $(n-\kappa, \kappa)$.
(iv). If Λ is a reflexive Gorenstein cone and \mathcal{T} is a unimodular regular triangulation with non-empty core, then (104) induces an isomorphism

$$
\begin{align*}
\mathcal{W}_{n} H^{n}\left(\widetilde{\mathbb{T}} \operatorname{rel} \tilde{Z}_{\mathrm{s}-1}\right) \otimes \mathcal{O}_{\mathcal{T}} & \simeq c_{\mathrm{core}} \mathcal{R}_{\mathrm{A}, \mathcal{T}} \otimes \mathcal{O}_{\mathcal{T}} \\
& \simeq \mathcal{R}_{\mathrm{A}, \mathcal{T}} / \operatorname{Ann} c_{\mathrm{core}} \otimes \mathcal{O}_{\mathcal{T}} \tag{105}
\end{align*}
$$

(v). Now assume \mathcal{T} satisfies conditions (81), (82), (83), i.e. \mathcal{T} is a unimodular regular triangulation whose core is not empty and is not contained in the boundary of Δ. Then
(a) Λ is a reflexive Gorenstein cone.
(b) $\mathcal{R}_{\mathrm{A}, \mathcal{T}}$ is isomorphic to the cohomology $\operatorname{ring} H^{*}\left(\mathbb{P}_{\mathcal{T}}, \mathbb{Z}\right)$ of the $(n-\kappa)$ dimensional smooth projective toric variety $\mathbb{P}_{\mathcal{T}}$:

$$
\begin{equation*}
\mathcal{R}_{\mathrm{A}, \mathcal{T}}^{(m)} \simeq H^{2 m}\left(\mathbb{P}_{\mathcal{T}}, \mathbb{Z}\right), \quad m=0,1, \ldots, n-\kappa \tag{106}
\end{equation*}
$$

and in particular for $m=1: \mathbb{L}_{\mathbb{Z}}^{\vee} \simeq \operatorname{Pic}\left(\mathbb{P}_{\mathcal{T}}\right)$.
(c) $c_{\text {core }}=c_{\kappa}\left(\mathbb{E}_{\mathcal{T}}\right)$, the top Chern class of the vectorbundle $\mathbb{E}_{\mathcal{T}}$.
(d) The zero locus of a general section of the dual vector bundle $\mathbb{E}_{\mathcal{T}}^{\vee}$ is an $n-2 \kappa$-dimensional Calabi-Yau complete intersection in $\mathbb{P}_{\mathcal{T}}$.
(e)

$$
\begin{align*}
H^{n}\left(\widetilde{\mathbb{T}} \mathrm{rel} \widetilde{Z}_{\mathrm{s}-1}\right) \otimes \mathcal{O}_{\mathcal{T}} & \simeq H^{*}\left(\mathbb{P}_{\mathcal{T}}, \mathbb{Z}\right) \otimes \mathcal{O}_{\mathcal{T}} \tag{107}\\
\mathcal{W}_{n} H^{n}\left(\widetilde{\mathbb{T}} \mathrm{rel} \widetilde{Z}_{\mathrm{s}-1}\right) \otimes \mathcal{O}_{\mathcal{T}} & \simeq c_{\kappa}\left(\mathbb{E}_{\mathcal{T}}\right) H^{*}\left(\mathbb{P}_{\mathcal{T}}, \mathbb{Z}\right) \otimes \mathcal{O}_{\mathcal{T}} \tag{108}
\end{align*}
$$

(f) The monodromy representation is isomorphic to the representation of $\operatorname{Pic}\left(\mathbb{P}_{\mathcal{T}}\right)$ on $H^{*}\left(\mathbb{P}_{\mathcal{T}}, \mathbb{Z}\right)$ (resp. on $c_{\kappa}\left(\mathbb{E}_{\mathcal{T}}\right) H^{*}\left(\mathbb{P}_{\mathcal{T}}, \mathbb{Z}\right)$) in which the Chern class $c_{1}(\mathcal{L})$ of a line bundle \mathcal{L} acts as multiplication by $\exp \left(c_{1}(\mathcal{L})\right)$.

Proof: (i): corollary 1. (ii): theorems 5 and 8, formulas (18) and (78). (iii): formulas (46), (48), (65) and theorem 7. (iv): corollary 3 and theorem 6. (v a): proposition 3. ($\mathbf{v} b)$: theorem 9 and corollary 11. ($\mathbf{v} c)$: section 9 . ($\mathbf{v} d$): section 9. (ve): 104) and (105). (vf): formula (21).

All cases which have on the A-side of mirror symmetry a smooth complete intersection Calabi-Yau variety in a smooth projective toric variety, are covered by this theorem. Indeed, a smooth projective toric variety \mathbb{P} of dimension d can be constructed from a complete simplicial fan in which every maximal cone is generated by a basis of the lattice \mathbb{Z}^{d}. Let $u_{1}, \ldots, u_{p} \in \mathbb{Z}^{d}$ be the generators of the 1-dimensional cones in the fan and let

$$
\overline{\mathbb{L}}:=\left\{\left(m_{1}, \ldots, m_{p}\right) \in \mathbb{Z}^{p} \mid m_{1} \mathbf{u}_{1}+\ldots m_{p} \mathbf{u}_{p}=0\right\}
$$

The toric variety \mathbb{P} can also be obtained as the quotient of a certain open part of \mathbb{C}^{p} by the action of the subtorus $\overline{\mathbb{L}} \otimes \mathbb{C}^{*}$ of $\left(\mathbb{C}^{*}\right)^{p}$. The Calabi-Yau complete intersection Y of codimension κ in \mathbb{P} is the common zero locus of polynomials $P_{1}, \ldots, P_{\kappa}$ which are homogeneous for the action of $\overline{\mathbb{L}} \otimes \mathbb{C}^{*}$. The homogeneity of P_{i} is given by a character of this torus, i.e. by a linear map $\chi_{i}: \overline{\mathbb{L}} \rightarrow \mathbb{Z}$. Now set $N=p+\kappa$ and $n=d+\kappa$. Let

$$
\mathbb{L}:=\left\{\left(-\chi_{1}(\mathrm{~m}), \ldots,-\chi_{\kappa}(\mathrm{m}), m_{1}, \ldots, m_{p}\right) \in \mathbb{Z}^{N} \mid \mathrm{m}=\left(m_{1}, \ldots, m_{p}\right) \in \overline{\mathbb{L}}\right\}
$$

Then \mathbb{L} has rank $N-n$. The Calabi-Yau condition for Y implies $\ell_{1}+\ldots+\ell_{N}=0$ for every $\ell=\left(\ell_{1}, \ldots, \ell_{N}\right) \in \mathbb{L}$.

Let B be an $(N-n) \times N$-matrix with entries in \mathbb{Z} such that the columns of B^{t} constitute a basis for \mathbb{L}. Let A be an $n \times N$-matrix of rank n with entries
in \mathbb{Z} such that $\mathrm{A} \cdot \mathrm{B}^{t}=0$. Then the columns $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}$ of A satisfy condition 11. One obtains a regular triangulation of $\Delta:=\operatorname{conv}\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{N}\right\}$ which satisfies the three conditions (81), (82), (83), by taking as its maximal simplices all $\operatorname{conv}\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{\kappa}, \mathfrak{a}_{\kappa+i_{1}}, \ldots, \mathfrak{a}_{\kappa+i_{d}}\right\}$ for which $\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{d}}$ span a maximal cone in the fan defining \mathbb{P}.

Acknowledgments

I want to thank the Taniguchi Foundation and the organizers of the Taniguchi Workshop "Special Differential Equations" 1991 for inviting me to this interesting workshop where I first learnt about GKZ hypergeometric functions and regular triangulations. Special thanks are for Bruce Hunt, who kindly pointed out that the example in my talk [23] at the workshop reminded him very much of the examples in Batyrev's talk a few weeks earlier in Kaiserslautern.

I want to thank the Japan Society for the Promotion of Science for a JSPS Invitation Fellowship in November-December 1996 and Kobe University for support for a visit in July 1997. The stimulating atmosphere I experienced during these two visits to Kobe was very important for finishing this work. I also want to thank the organizers of various workshops - in particular the Taniguchi Symposium "Integrable Systems and Algebraic Geometry" 1997 - to which I was invited during these visits. I am very grateful to Masa-Hiko Saito for arranging as my host both visits and for the pleasant co-operation.

References

[1] V. Batyrev: Dual polyhedra and the mirror symmetry for for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994) 493-535
[2] V. Batyrev: Variations of mixed Hodge structure of affine hypersurfaces in algebraic tori, Duke Math. J. 69 (1993) 349-409
[3] V. Batyrev, L. Borisov: Dual Cones and Mirror Symmetry for Generalized Calabi-Yau Manifolds, in 15
[4] L.J. Billera, P. Filliman, B. Sturmfels: Constructions and Complexity of Secondary Polytopes, Advances in Math. 83 (1990) 155-179
[5] V.I. Danilov: The Geometry of Toric Varieties, Russian Math. Surveys 33:2 (1978) 97-154
[6] P. Deligne: Theorie de Hodge, II, Publ. Math. IHES 40 (1971) 5-58
[7] C. Deninger: Deligne Periods of Mixed Motives, K-theory and the Entropy of certain \mathbb{Z}^{n}-actions, J. Amer. Math. Soc. 10 (1997) 259-281
[8] V.I. Danilov, A.G. Khovanskii: Newton polyhedra and an algorithm for computing Hodge-Deligne numbers, Math. USSR Izvestiya 29 (1987) 279298
[9] F.G. Frobenius: Über die Integration der linearen Differentialgleichungen durch Reihen, J.f.d.reine u. angewandte Math. 76 (1873) 214-235; reprinted in Frobenius' Gesammelte Abhandlungen, Band I, Springer Verlag, Berlin, 1968
[10] W. Fulton: Introduction to Toric Varieties, Annals of Mathematics Studies, Study 131, Princeton University Press, 1993
[11] I.M. Gel'fand, A.V. Zelevinskii, M.M. Kapranov: Hypergeometric functions and toral varieties, Funct. Analysis and its Appl. 23 (1989) 94-106
[12] correction to [1], Funct. Analysis and its Appl. 27 (1993) 295
[13] I.M. Gel'fand, M.M. Kapranov, A.V. Zelevinsky: Discriminants, Resultants and Multidimensional Determinants, Birkhäuser Boston, 1994
[14] A.B. Givental: Homological Geometry and Mirror Symmetry, Proceedings ICM Zürich 1994 p.472-480; Birkhauser, Basel, 1995
[15] B. Greene, S.-T. Yau (eds.): Mirror Symmetry II, Studies in Avanced mathematics vol. 1 American Math. Soc. / International Press (1997)
[16] V. Guillemin: Moment Maps and Combinatorial Invariants of Hamiltonian T^{n}-spaces, Progress in Math. vol. 22 Birkhäuser Boston, 1994
[17] S. Hosono, A. Klemm, S. Theisen, S.-T. Yau: Mirror Symmetry, Mirror Map and Applications to Complete Intersection Calabi-Yau Spaces, in 15
[18] N. Katz: Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Inventiones Math. 18 (1972) 1-118
[19] H. Matsumura: Commutative Algebra (2nd edition), Benjamin/ Cummings Publ. Comp., 1980
[20] J. Munkres: Topological results in combinatorics, Michigan Math. J. 31 (1984) 113-128
[21] T. Oda: Convex Bodies and Algebraic Geometry, Ergebnisse der Math. 3. Folge Band 15, Springer Verlag, Berlin, 1988
[22] R.P. Stanley: Combinatorics and Commutative Algebra (second edition), Progress in Math. 41, Birkhäuser, Boston, 1996
[23] J. Stienstra: A variation of mixed Hodge structure for a special case of Appell's F_{4}, in the informal proceedings of the Taniguchi Workshop 1991 "Special differential equations" M. Yoshida (ed.), published by the Department of Mathematics Kyushu University, Fukuoka, Japan
[24] B. Sturmfels: Gröbner Bases and Convex Polytopes, University Lecture Series vol. 8, American Math. Soc., 1996
[25] S.-T. Yau (ed.): Essays on Mirror Manifolds, Hong Kong: International Press (1992)

[^0]: $1 \quad \mathbb{Z}^{n}, \mathbb{R}^{n}, \mathbb{C}^{n}$ resp. $\mathbb{Z}^{n \vee}, \mathbb{R}^{n \vee}, \mathbb{C}^{n} \vee$ denote spaces of column vectors resp. row vectors.

