Resonant Hypergeometric Systems and Mirror Symmetry

Jan Stienstra

Mathematisch Instituut, Universiteit Utrecht Postbus 80.010,3508 TA Utrecht, The Netherlands E-mail: stien@math.ruu.nl

Abstract

In Part I the Γ -series of [11] are adapted so that they give solutions for certain resonant systems of Gel'fand-Kapranov-Zelevinsky hypergeometric differential equations. For this some complex parameters in the Γ series are replaced by nilpotent elements from a ring $\mathcal{R}_{A,\mathcal{T}}$. The adapted Γ -series is a function $\Psi_{\mathcal{T},\beta}$ with values in the finite dimensional vector space $\mathcal{R}_{A,\mathcal{T}} \otimes_{\mathbb{Z}} \mathbb{C}$. Part II describes applications of these results in the context of toric Mirror Symmetry. Building on Batyrev's work [2] we show that a certain relative cohomology module $H^n(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{s-1})$ is a GKZ hypergeometric \mathcal{D} -module which over an appropriate domain is isomorphic to the trivial \mathcal{D} -module $\mathcal{R}_{A,\mathcal{T}} \otimes \mathcal{O}_{\mathcal{T}}$, where $\mathcal{O}_{\mathcal{T}}$ is the sheaf of holomorphic functions on this domain. The isomorphism is explicitly given by adapted Γ -series. As a result one finds the periods of a holomorphic differential form of degree d on a d-dimensional Calabi-Yau manifold, which are needed for the B-model side input to Mirror Symmetry. Relating our work with that of Batyrev and Borisov [3] we interpret the ring $\mathcal{R}_{\mathsf{A},\mathcal{T}}$ as the cohomology ring of a toric variety and a certain principal ideal in it as a subring of the Chow ring of a Calabi-Yau complete intersection. This interpretation takes place on the A-model side of Mirror Symmetry.

Contents

Part I

Introduction I

- 1. Regular triangulations and the pointed secondary fan
- 2. The ring $\mathcal{R}_{\mathsf{A},\mathcal{T}}$.
- 3. A domain of definition for the function $\Psi_{\mathcal{T},\beta}$.
- 4. The special case $\beta = 0$
- 5. Triangulations with non-empty core

Part II Introduction II

Part IIB Introduction IIB

6. VMHS associated with a Gorenstein cone

Part IIA Introduction IIA

7. Triangulations with non-empty core and completely split reflexive Gorenstein cones

8. Triangulations and toric varieties

9. Calabi-Yau complete intersections in toric varieties

Conclusions References

PART I

Introduction I

A GKZ hypergeometric system [11] depends on four parameters: two positive integers N and n, a set $\{a_1, \ldots, a_N\}$ of vectors in \mathbb{Z}^n and a vector β in \mathbb{C}^n . The standard assumptions [11] are

Condition 1⁻¹
$$\mathfrak{a}_1, \ldots, \mathfrak{a}_N$$
 generate a rank *n* sub-lattice \mathbb{M} in \mathbb{Z}^n (1)

$$\exists \mathfrak{a}_0^{\vee} \in \mathbb{Z}^{n^{\vee}} \text{ such that } \mathfrak{a}_0^{\vee} \cdot \mathfrak{a}_i = 1 \ (i = 1, \dots, N)$$

$$(2)$$

The GKZ system with these parameters is the following system of partial differential equations for functions Φ on a torus with coordinates v_1, \ldots, v_N :

$$\left(-\beta + \sum_{j=1}^{N} \mathfrak{a}_{j} v_{j} \frac{\partial}{\partial v_{j}}\right) \Phi = 0$$
(3)

$$\left(\prod_{\ell_j>0} \left[\frac{\partial}{\partial v_j}\right]^{\ell_j} - \prod_{\ell_j<0} \left[\frac{\partial}{\partial v_j}\right]^{-\ell_j}\right) \Phi = 0 \quad \text{for } \ell \in \mathbb{L}$$
(4)

where (3) is in fact a system of n equations and

$$\mathbb{L} := \left\{ \ell = (\ell_1, \dots, \ell_N)^t \in \mathbb{Z}^N \mid \ell_1 \mathfrak{a}_1 + \dots + \ell_N \mathfrak{a}_N = 0 \right\}.$$
 (5)

Some of the above data are displayed in the following short exact sequence in which \mathcal{A} denotes the linear map \mathcal{A} : $\mathbb{Z}^N \to \mathbb{Z}^n$, $\mathcal{A}(\lambda) = \lambda_1 \mathfrak{a}_1 + \ldots + \lambda_N \mathfrak{a}_N$.

$$0 \to \mathbb{L} \longrightarrow \mathbb{Z}^N \xrightarrow{\mathcal{A}} \mathbb{M} \to 0 \tag{6}$$

We are going to construct solutions for GKZ systems with $\beta \in \mathbb{M}$. Of special interest for applications to mirror symmetry are the cases $\beta = 0$ and $\beta = -\mathfrak{a}_0$ with \mathfrak{a}_0 as in the definition of reflexive Gorenstein cone (definition 5).

The idea is as follows. Gel'fand-Kapranov-Zelevinskii [11] give solutions for (3)-(4) in the form of so-called Γ -series

$$\sum_{\ell \in \mathbb{L}} \prod_{j=1}^{N} \frac{v_j^{\gamma_j + \ell_j}}{\Gamma(\gamma_j + \ell_j + 1)} \tag{7}$$

¹ $\mathbb{Z}^n, \mathbb{R}^n, \mathbb{C}^n$ resp. $\mathbb{Z}^{n\vee}, \mathbb{R}^{n\vee}, \mathbb{C}^{n\vee}$ denote spaces of column vectors resp. row vectors.

 Γ is the usual Γ -function, $\ell = (\ell_1, \ldots, \ell_N)^t \in \mathbb{L} \subset \mathbb{Z}^N$. The series depends on an additional parameter $\gamma = (\gamma_1, \ldots, \gamma_N)^t \in \mathbb{C}^N$ which must satisfy

$$\gamma_1 \mathfrak{a}_1 + \ldots + \gamma_N \mathfrak{a}_N = \beta \tag{8}$$

Allowing the obvious formal rules for differentiating such Γ -series one sees that the functional equations of the Γ -function guarantee that (7) satisfies the differential equations (4) and that condition (8) on γ takes care of (3). The issue is to interpret the Γ -series (7) as a function on some domain. In order that (7) can be realized as a function γ must satisfy more conditions. Gel'fand-Kapranov-Zelevinskii obtain convenient conditions from a triangulation \mathcal{T} of the convex hull of $\{\mathfrak{a}_1, \ldots, \mathfrak{a}_N\}$. However, if β is in \mathbb{M} and the triangulation has more than one maximal simplex, the vectors γ which satisfy these extra conditions do not provide enough Γ -series solutions for the GKZ system. This phenomenon is called resonance [11]. An extreme case of resonance, in which all Γ -series coincide, occurs when β is in \mathbb{M} and \mathcal{T} is unimodular.

Definition 1 (cf. [24]) A triangulation is called unimodular if all its maximal simplices have volume 1; the volume of a maximal simplex conv $\{a_{i_1}, \ldots, a_{i_n}\}$ is defined as $|\det(a_{i_1}, \ldots, a_{i_n})|$.

To get around the resonance problem for $\beta \in \mathbb{M}$ we proceed as follows. Fixing a solution $\gamma^{\circ} \in \mathbb{Z}^N$ for equation (8) we write the general solution of (8) as $\gamma = \gamma^{\circ} + \mathsf{c}$ with $\mathsf{c} = (c_1, \ldots, c_N)^t$ such that

$$c_1 \mathfrak{a}_1 + \ldots + c_N \mathfrak{a}_N = 0 \tag{9}$$

and note $\gamma + \mathbb{L} = \mathbf{c} + \mathcal{A}^{-1}(\beta)$. Thus (7) becomes $\sum_{\lambda \in \mathcal{A}^{-1}(\beta)} \prod_{j=1}^{N} \frac{v_j^{c_j + \lambda_j}}{\Gamma(c_j + \lambda_j + 1)}$. Multiplying this by $\prod_{j=1}^{N} \Gamma(c_j + 1)$ we obtain

$$\Phi_{\mathcal{T},\beta}(\mathsf{v}) := \sum_{\lambda \in \mathcal{A}^{-1}(\beta)} Q_{\lambda}(\mathsf{c}) \cdot \prod_{j=1}^{N} v_{j}^{\lambda_{j}} \cdot \prod_{j=1}^{N} v_{j}^{c_{j}}$$
(10)

where

$$Q_{\lambda}(\mathsf{c}) := \frac{\prod_{\lambda_{j}<0} \prod_{k=0}^{-\lambda_{j}-1} (c_{j}-k)}{\prod_{\lambda_{j}>0} \prod_{k=1}^{\lambda_{j}} (c_{j}+k)}.$$
 (11)

The key observation is that (11) and (10) also make sense when c_1, \ldots, c_N are taken from a \mathbb{Q} -algebra in which they are nilpotent. The expression $v_j^{c_j}$ can still be interpreted as $\exp(c_j \log v_j)$.

Definition 2 Let $A = (a_{ij})$ denote the $n \times N$ -matrix with columns $\mathfrak{a}_1, \ldots, \mathfrak{a}_N$. For a regular triangulation T (cf. § 1.1) of the polytope $\Delta := \operatorname{conv} \{\mathfrak{a}_1, \ldots, \mathfrak{a}_N\}$ we define:

$$\mathcal{R}_{\mathsf{A},\mathcal{T}} := \mathbb{Z}[D^{-1}][C_1,\ldots,C_N] / \mathcal{J}$$
(12)

where \mathcal{J} is the ideal generated by the linear forms

$$a_{i1}C_1 + \ldots + a_{iN}C_N$$
 for $i = 1, \ldots, n$ (13)

and by the monomials

 $C_{i_1} \cdot \ldots \cdot C_{i_s}$ with $\operatorname{conv} \{\mathfrak{a}_{i_1}, \ldots, \mathfrak{a}_{i_s}\}$ not a simplex in \mathcal{T} ; (14)

D is the product of the volumes of the maximal simplices of \mathcal{T} . We write c_i for the image of C_i in $\mathcal{R}_{\mathsf{A},\mathcal{T}}$.

In theorem 3 we show that $\mathcal{R}_{A,\mathcal{T}}$ is a free $\mathbb{Z}[D^{-1}]$ -module with rank equal to the number of maximal simplices in the triangulation. This implies that c_1, \ldots, c_N are nilpotent and hence

$$Q_{\lambda}(\mathsf{c}) \in \mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{Q}$$

Theorem 1 With this interpretation of $Q_{\lambda}(\mathsf{c})$ the function $\Phi_{\mathcal{T},\beta}(\mathsf{v})$ defined by (10) takes values in the algebra $\mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{C}$.

The domain of definition of the function $\Phi_{\mathcal{T},\beta}(\mathsf{v})$ is discussed hereafter. Relation (13) ensures that this function $\Phi_{\mathcal{T},\beta}(\mathsf{v})$ satisfies the differential equations (3); it automatically satisfies (4). Relation (14) ensures that the series expansion for $\Phi_{\mathcal{T},\beta}(\mathsf{v})$ only contains λ 's (i.e. $Q_{\lambda}(\mathsf{c}) \neq 0$) which satisfy

 $\mathcal{A}\lambda = \beta$ and $\operatorname{conv}\left\{\mathfrak{a}_{i} \mid \lambda_{i} < 0\right\}$ is a simplex in the triangulation \mathcal{T} . (15)

This is important for determining a domain of definition for $\Phi_{\mathcal{T},\beta}(\mathsf{v})$.

As we tried to distinguish a kind of regular behavior for the λ 's which satisfy (15), we were led to triangulations for which the intersection of the maximal simplices is not empty. We call

core
$$\mathcal{T} :=$$
 intersection of the maximal simplices of \mathcal{T} (16)

the core of the triangulation \mathcal{T} . We use the short notation $i \in \operatorname{core} \mathcal{T}$ for $\mathfrak{a}_i \in \operatorname{core} \mathcal{T}$. The following result is corollary 3 in section 5.

Theorem 2 Assume core $\mathcal{T} \neq \emptyset$ and $\beta = \sum_{i \in \text{core } \mathcal{T}} m_i \mathfrak{a}_i$ with all $m_i < 0$. Then the function $\Phi_{\mathcal{T},\beta}(\mathsf{v})$ takes values in the principal ideal $c_{\text{core}} \mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{C}$ where

$$c_{\text{core}} := \prod_{i \in \text{core } \mathcal{T}} c_i$$

Multiplication by c_{core} on $\mathcal{R}_{A,\mathcal{T}}$ induces a linear isomorphism

$$\mathcal{R}_{\mathsf{A},\mathcal{T}}/\operatorname{Ann} c_{\operatorname{core}} \xrightarrow{\simeq} c_{\operatorname{core}} \mathcal{R}_{\mathsf{A},\mathcal{T}}$$
 (17)

Thus one can also say that the function $\Phi_{\mathcal{T},\beta}(\mathsf{v})$ takes values in the algebra $\mathcal{R}_{\mathsf{A},\mathcal{T}}/\operatorname{Ann} c_{\operatorname{core}} \otimes \mathbb{C}$.

 \boxtimes

 \boxtimes

By composing $\Phi_{\mathcal{T},\beta}$ with a linear map $\mathcal{R}_{\mathsf{A},\mathcal{T}} \to \mathbb{C}$ one obtains a \mathbb{C} -multivalued function which satisfies the system of differential equations (3)-(4). When $\beta = 0$ and \mathcal{T} is unimodular all solutions of (3)-(4) can be obtained in this way; see theorem 5.

For $\beta \neq 0$ not all solutions of (3)-(4) can be obtained in this way. Yet what we need for mirror symmetry are the solutions which can be obtained in this way for appropriate β and \mathcal{T} ; see theorem 10. Our proof of this theorem makes essential use of the relation:

$$\frac{\partial}{\partial v_i} \Phi_{\mathcal{T},\beta}(\mathsf{v}) = \Phi_{\mathcal{T},\beta-\mathfrak{a}_i}(\mathsf{v}).$$
(18)

which follows imediately from the formulas (10) and (11).

Remark 1 The ideal generated by the monomials in (14) is known as the *Stanley-Reisner ideal* and has been defined for finite simplicial complexes in general [22]. It is well-known [5, 10, 21] that the cohomology ring of a toric variety constructed from a complete simplicial fan has a presentation by generators and relations as in (13)-(14). Unimodular triangulations whose core is not empty and is not contained in the boundary of Δ , give rise to such toric varieties and in that case $\mathcal{R}_{A,\mathcal{T}}$ is indeed the cohomology ring of a toric variety; see theorem 9. However not all triangulations to which the present discussion applies are of this kind. For instance for the triangulation \mathcal{T}_5 in figure 1 we find $\mathcal{R}_{A,\mathcal{T}_5} = \mathbb{Z}[c_1, c_2, c_5]/(c_1^2, c_2^2, c_5^2, c_1c_2, c_2c_5)$. An element like c_2 which annihilates the whole degree 1 part of $\mathcal{R}_{A,\mathcal{T}_5}$ can not exist in the cohomology of a toric variety.

Remark 2 Our method for solving GKZ systems in the resonant case evolved directly from the Γ -series of Gel'fand-Kapranov-Zelevinskii. In hindsight it can also be viewed as a variation on the classical method of Frobenius [9]. The latter would view $\gamma_1, \ldots, \gamma_N$ in (7) or c_1, \ldots, c_N in (10) as variables with a restriction given by (8) or (9); then differentiate (repeatedly if necessary) with respect to these variables and set $\gamma = (\gamma_1, \ldots, \gamma_N)$ in the derivatives equal to its special value γ° , c.q. set $c_1 = \ldots = c_N = 0$, to obtain solutions for (3)-(4). Frobenius [9] considered only functions in one variable. In the case with more variables one also needs a good bookkeeping device for the linear relations between the solutions of the differential equations. The rings $\mathcal{R}_{A,\mathcal{T}}$ resp. $\mathcal{R}_{A,\mathcal{T}}/\operatorname{Ann}\mathit{c_{\operatorname{core}}}$ are such a bookkeeping devices. Hosono-Klemm-Theisen-Yau have applied Frobenius' method directly in the situation of the Picard-Fuchs equations of certain families of Calabi-Yau threefolds; see [17] formulas (4.9) and (4.10). In their work the cohomology ring of the mirror Calabi-Yau threefold plays a similar role of bookkeeper; in fact $\mathcal{R}_{A,\mathcal{T}}/\operatorname{Ann} c_{\operatorname{core}}$ is the cohomology ring of the mirror Calabi-Yau manifold . The way in which we arrive at our result looks quite different from that in [17] §4. Moreover the formulation in op. cit. is restricted to the situation of Calabi-Yau threefolds.

Remark 3 Some of our $\Phi_{\mathcal{T},\beta}$'s are similar to expressions presented by Givental in [14] theorems 3 and 4; more specifically, \vec{g}_l in [14] thm. 4 is a special case of $\Phi_{\mathcal{T},\beta}$ in our theorem 2 with $\beta = -\sum_{i \in \operatorname{core} \mathcal{T}} \mathfrak{a}_i$, whereas in [14] thm. 3 there is a difference in that the input data are not subject to (2) in condition 1. The algebra H in [14] thm. 3 is the cohomology algebra of a toric variety while our $\mathcal{R}_{\mathsf{A},\mathcal{T}}$ for appropriate \mathcal{T} is also the cohomology algebra of a toric variety. The algebra H in [14] thm. 4 is the algebra $\mathcal{R}_{\mathsf{A},\mathcal{T}}/\operatorname{Ann} c_{\operatorname{core}}$ in our theorem 2.

For a proper treatment of the logarithms which appear in (10) we set

$$\begin{aligned}
v_j &:= \exp(2\pi i z_j) \quad (j = 1, \dots, N) \\
z &:= (z_1, \dots, z_N) \in \mathbb{C}^{N \vee} \\
c &:= (c_1, \dots, c_N)^t \in \mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{Z}^N;
\end{aligned} \tag{19}$$

by (9) c lies in fact in $\mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{L}$. Instead of (10) we now consider

$$\Psi_{\mathcal{T},\beta}(\mathsf{z}) := \sum_{\lambda \in \mathcal{A}^{-1}(\beta)} Q_{\lambda}(\mathsf{c}) \mathsf{e}^{2\pi \mathsf{i} \, \mathsf{z} \cdot \lambda} \cdot \mathsf{e}^{2\pi \mathsf{i} \, \mathsf{z} \cdot \mathsf{c}} \,.$$
(20)

Note that $e^{2\pi i z \cdot c}$ is just a polynomial, but $\sum_{\lambda \in \mathcal{A}^{-1}(\beta)} Q_{\lambda}(c) e^{2\pi i z \cdot \lambda}$ is really a series. In section 3 we analyse the convergence of this series and give a domain $\mathcal{V}_{\mathcal{T}}$ in $\mathbb{C}^{N\vee}$ on which the function $\Psi_{\mathcal{T},\beta}$ is defined; see theorem 4.

The domain $\mathcal{V}_{\mathcal{T}}$ is invariant under translations by elements of $\mathbb{Z}^{N\vee}$ and by elements of $\mathbb{M}_{\mathbb{C}}^{\vee}$:= Hom(\mathbb{M}, \mathbb{C}) $\subset \mathbb{C}^{N\vee}$. From (20) one immediately sees

$$\Psi_{\mathcal{T},\beta}(\mathsf{z}+\mu) = \mathsf{e}^{2\pi \mathsf{i}\,\mu\cdot\mathsf{c}} \cdot \Psi_{\mathcal{T},\beta}(\mathsf{z}) \quad \forall\,\mu\in\mathbb{Z}^{N\vee}$$
(21)

$$\Psi_{\mathcal{T},\beta}(\mathsf{z}+\mathsf{m}) = \mathsf{e}^{2\pi\mathsf{i}\,\mathsf{m}\,\cdot\beta} \cdot \Psi_{\mathcal{T},\beta}(\mathsf{z}) \quad \forall\,\mathsf{m}\in\mathbb{M}^{\vee}_{\mathbb{C}}.$$
(22)

The functional equation (21) gives the monodromy of $\Phi_{\mathcal{T},\beta}$, when viewed as a multivalued function on $\mathcal{V}_{\mathcal{T}}/\mathbb{Z}^{N\vee}$ with values in the vector space $\mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{C}$. Because of (13) elements of $\mathbb{M}_{\mathbb{Z}}^{\vee} := \operatorname{Hom}(\mathbb{M}, \mathbb{Z})$ give trivial monodromy and the actual monodromy comes from $\mathbb{L}_{\mathbb{Z}}^{\vee} := \operatorname{Hom}(\mathbb{L}, \mathbb{Z})$.

As $\mathbb{M}_{\mathbb{Z}}^{\vee}$ acts trivially, the translation action of $\mathbb{M}_{\mathbb{C}}^{\vee}$ descends to an action of the torus $\mathbb{M}_{\mathbb{C}}^{\vee}/\mathbb{M}_{\mathbb{Z}}^{\vee} = \operatorname{Hom}(\mathbb{M}, \mathbb{C}^*)$. The functional equation (22), whose infinitesimal analogues are the differential equations (3), means that $\Psi_{\mathcal{T},\beta}$ is an eigenfunction with character β .

If one wants an invariant function for $\beta \neq 0$ one must replace the range of values of $\Psi_{\mathcal{T},\beta}$ by $(\mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{C})/\mathbb{C}^*$, the orbit space for the natural \mathbb{C}^* -action on the vector space $\mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{C}$. On a possibly slightly smaller domain of definition the invariant function even takes values in the projective space $\mathbb{P}(\mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{C})$. The $\mathbb{M}^{\vee}_{\mathbb{C}}$ -invariant function $\Psi_{\mathcal{T},\beta} \mod \mathbb{C}^*$ is defined on the domain $\mathbb{L}^{\vee}_{\mathbb{R}} + \sqrt{-1}\mathcal{B}_{\mathcal{T}}$ in $\mathbb{L}^{\vee}_{\mathbb{C}}$; cf. formula (39). The (multivalued) function $\Phi_{\mathcal{T},\beta} \mod \mathbb{C}^*$ is defined on a domain in the torus $\operatorname{Hom}(\mathbb{L}, \mathbb{C}^*)$.

For a good overall picture it is appropriate to point out here that the pointed secondary fan (the construction of which is recalled in section 1.2) defines a toric

variety which compactifies the torus $\operatorname{Hom}(\mathbb{L}, \mathbb{C}^*)$. To each regular triangulation of Δ corresponds a special point in the boundary of this compactification. The domain of definition of $\Phi_{\mathcal{T},\beta} \mod \mathbb{C}^*$ is the intersection of the torus $\operatorname{Hom}(\mathbb{L}, \mathbb{C}^*)$ and a neighborhood of the special point corresponding to \mathcal{T} ; see the end of section 3.

Example 1 Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_6$ be the columns of the following matrix A:

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & -1 \end{pmatrix}$$
$$B = \begin{pmatrix} 1 & 0 & 0 & -2 & 0 & 1 \\ 0 & 1 & 1 & -3 & 0 & 1 \\ 0 & 0 & 1 & -2 & 1 & 0 \end{pmatrix}$$
$$\Delta = \begin{array}{c} \mathfrak{a}_{3} & \mathfrak{a}_{4} & \mathfrak{a}_{5} \\ \bullet & \mathfrak{a}_{6} \end{array}$$

These satisfy conditions (1) and (2) with $\mathbb{M} = \mathbb{Z}^3$ and $\mathfrak{a}_0^{\vee} = (1, 0, 0)$.

Figure 1 shows all regular triangulations of the polytope Δ , with two triangulations joined by an edge iff the corresponding cones in the pointed secondary fan are adjacent.

The columns of the matrix B^t constitute a \mathbb{Z} -basis for \mathbb{L} by means of which one can identify \mathbb{L} with \mathbb{Z}^3 and $\mathbb{L}_{\mathbb{R}}^{\vee}$ with $\mathbb{R}^{3\vee}$. The rows $\mathfrak{b}_1, \ldots, \mathfrak{b}_6$ of the matrix B^t are then identified with the images of the standard basis vectors under the projection $\mathbb{R}^{6\vee} \to \mathbb{L}_{\mathbb{R}}^{\vee}$, dual to the inclusion $\mathbb{L} \subset \mathbb{Z}^6$. Thus one finds $\ell_j =$ $\mathfrak{b}_j \cdot \ell$ for every $\ell \in \mathbb{L}_{\mathbb{R}} \simeq \mathbb{R}^3$ and (15) becomes a condition on the signs of $\mathfrak{b}_1 \cdot \ell + \gamma_1^\circ, \ldots, \mathfrak{b}_6 \cdot \ell + \gamma_6^\circ$. The signs give a vector in $\{-1, 0, +1\}^6$

These sign vectors correspond exactly to the various strata in the stratification of \mathbb{R}^3 induced by the six planes $\mathfrak{b}_j \cdot \mathbf{x} + \gamma_j^\circ = 0$ $(j = 1, \dots, 6)$. Figure 2

shows the zonotope spanned by $\mathfrak{b}_1, \ldots, \mathfrak{b}_6$. The 3 - j-dimensional faces of this zonotope correspond bijectively with the *j*-dimensional strata in the stratification for $\gamma^\circ = 0$. The stratum with sign vector (s_1, \ldots, s_6) corresponds with the face whose centre is $s_1\mathfrak{b}_1 + s_2\mathfrak{b}_2 + s_3\mathfrak{b}_3 + s_4\mathfrak{b}_4 + s_5\mathfrak{b}_5 + s_6\mathfrak{b}_6$. The vertices 1–14 (resp. 15–28) of the zonotope have sign vectors (s_1, \ldots, s_6) (resp. $-(s_1, \ldots, s_6)$) as given in table 1.

The sign vectors of all faces of the zonotope give all possible signs for $\ell = (\ell_1, \ldots, \ell_6) \in \mathbb{L}$. Thus by comparing this with (15) one can see for every triangulation \mathcal{T} what types of terms are involved in the series of $\Psi_{\mathcal{T},0}$. For example for triangulation \mathcal{T}_1 the series of $\Psi_{\mathcal{T}_{1,0}}$ involves precisely those $\ell \in \mathbb{L}$ whose sign vector corresponds to a face of the zonotope containing at least one of the vertices 1, 2, 3 or 4.

table 1

The series $\Psi_{\mathcal{T}_{1},-\mathfrak{a}_{4}}$ involves the same ℓ 's with exception of $\ell = 0$ (which corresponds to the 3-dimensional the zonotope itself). Using the Pochhammer symbol notation $(x)_{m} := x(x+1) \cdot \ldots \cdot (x+m-1)$ we have

$$\begin{split} \Psi_{\mathcal{T}_{1,-\mathfrak{a}_{4}}} &= c_{4} \, \mathrm{e}^{-2\pi i z_{4}} \, T_{1}^{c_{1}} T_{2}^{c_{2}} T_{5}^{c_{5}} \times \\ &\times \left\{ \sum_{p,q,r \geq 0} (-1)^{q} \frac{(2c_{1} + 3c_{2} + 2c_{5} + 1)_{2p+3q+2r}}{(c_{1})_{p}(c_{2})_{q}(c_{5})_{r}(c_{1} + c_{2})_{p+q}(c_{2} + c_{5})_{q+r}} T_{1}^{p} T_{2}^{q} T_{5}^{r} \right. \\ &\left. - c_{1} \sum_{r \geq 0, -q \leq p < 0} (-1)^{q+p} \frac{(2p + 3q + 2r)!(-p - 1)!}{q!r!(p+q)!(q+r)!} T_{1}^{p} T_{2}^{q} T_{5}^{r} \right. \\ &\left. - c_{5} \sum_{p \geq 0, -q \leq r < 0} (-1)^{q+r} \frac{(2p + 3q + 2r)!(-r - 1)!}{p!q!(p+q)!(q+r)!} T_{1}^{p} T_{2}^{q} T_{5}^{r} \right. \\ &\left. - c_{2} \sum_{-p \leq q < 0, -r \leq q < 0} \frac{(2p + 3q + 2r)!(-q - 1)!}{p!r!(p+q)!(q+r)!} T_{1}^{p} T_{2}^{q} T_{5}^{r} \right\} \end{split}$$

where

$$\begin{split} T_1 &:= \mathsf{e}^{2\pi i (z_1 - 2z_4 + z_6)} \;, \quad T_2 &:= \mathsf{e}^{2\pi i (z_2 + z_3 - 3z_4 + z_6)} \;, \quad T_5 &:= \mathsf{e}^{2\pi i (z_3 - 2z_4 + z_5)} \\ &c_4 &= -2c_1 - 3c_2 - 2c_5 \end{split}$$

and

$$\mathcal{R}_{\mathsf{A},\mathcal{T}_1} = \mathbb{Z}[c_1, c_2, c_5] / (c_1^2 - c_2^2, c_1^2 - c_5^2, c_1^2 + c_1 c_2, c_1^2 + c_2 c_5, c_1 c_5).$$

Note that $c_4c_1 = c_4c_2 = c_4c_5$. One may therefore simplify the expression for $\Psi_{\mathcal{T}_1,-\mathfrak{a}_4}$ and replace c_2 and c_5 by c_1 .

1 Regular triangulations and the pointed secondary fan

In this section we review some results about regular triangulations and about the pointed secondary fan, essentially following [4]. One may take as a definition of *regular triangulations* that these are the triangulations produced by the construction in this section; see in particular proposition 1.

1.1 Regular triangulations

We start from a set of vectors $\{a_1, \ldots, a_N\}$ in \mathbb{Z}^n satisfying condition 1. Let $\Delta = \operatorname{conv} \{a_1, \ldots, a_N\}$ denote the convex hull of this set of points in \mathbb{R}^n . We are interested in triangulations of Δ such that all vertices are among the marked points a_1, \ldots, a_N . The notation can be conveniently simplified by referring to a simplex conv $\{a_{i_1}, \ldots, a_{i_m}\}$ by just the index set $\{i_1, \ldots, i_m\}$. We will allways take the indices in increasing order. If \mathcal{T} is a triangulation, we write \mathcal{T}^m for the set of simplices with m vertices. A triangulation is completely determined by its set of maximal simplices \mathcal{T}^n .

For the construction of a regular triangulation we take an N-tuple of positive real numbers $d = (d_1, \ldots, d_N)$ and consider the polytope

$$\mathcal{P}_{\mathsf{d}} := \operatorname{conv}\left\{0, d_1^{-1}\mathfrak{a}_1, \dots, d_N^{-1}\mathfrak{a}_N\right\} \subset \mathbb{R}^n \,. \tag{23}$$

Consider a subset $I = \{i_1, \ldots, i_n\}$ of $\{1, \ldots, N\}$ for which $\mathfrak{a}_{i_1}, \ldots, \mathfrak{a}_{i_n}$ are linearly independent. The affine hyperplane through $d_{i_1}^{-1}\mathfrak{a}_{i_1}, \ldots, d_{i_n}^{-1}\mathfrak{a}_{i_n}$ is given by the equation $D_{\mathsf{d},I}(\mathsf{x}) = 0$ with

$$D_{\mathsf{d},I}(\mathsf{x}) := \det \left(\begin{array}{ccc} d_{i_1}^{-1} \mathfrak{a}_{i_1} & \dots & d_{i_n}^{-1} \mathfrak{a}_{i_n} & \mathsf{x} \\ 1 & \dots & 1 & 1 \end{array} \right)$$
(24)

Write $I^* := \{1, \ldots, N\} \setminus I$. Then $\{d_{i_1}^{-1} \mathfrak{a}_{i_1}, \ldots, d_{i_n}^{-1} \mathfrak{a}_{i_n}\}$ lies in a codimension 1 face of \mathcal{P}_{d} if and only if for all $j \in I^*$:

$$D_{\mathsf{d},I}(d_j^{-1}\mathfrak{a}_j) \cdot D_{\mathsf{d},I}(0) \ge 0 \tag{25}$$

This face is a simplex with vertices $d_{i_1}^{-1}\mathfrak{a}_{i_1},\ldots,d_{i_n}^{-1}\mathfrak{a}_{i_n}$ iff $D_{\mathsf{d},I}(d_j^{-1}\mathfrak{a}_j) \neq 0$ for every $j \in I^*$. Thus if d does not lie on any hyperplane in \mathbb{R}^N given by the vanishing of $D_{\mathsf{d},I}(d_j^{-1}\mathfrak{a}_j)$ for some I and j with $j \notin I$, then all faces of \mathcal{P}_{d} opposite to the vertex 0 are simplicial.

In this case the projection with center 0 projects the boundary of \mathcal{P}_{d} onto a triangulation \mathcal{T} of Δ . The maximal simplices of \mathcal{T} are those $I = \{i_1, \ldots, i_n\}$ for which $D_{\mathsf{d},I}(d_j^{-1}\mathfrak{a}_j) \cdot D_{\mathsf{d},I}(0) > 0$ holds for every $j \in I^*$.

Let $A = (a_{ij})$ denote the $n \times N$ -matrix with columns $\mathfrak{a}_1, \ldots, \mathfrak{a}_N$. The triangulation obviously depends only on d modulo the row space of A. Let us reformulate the above construction accordingly.

Take $\mathbb{L} = \ker \mathsf{A} \subset \mathbb{Z}^N$ as in (5). Assumption (2) implies $\ell_1 + \ldots + \ell_N = 0$ for every $\ell = (\ell_1, \ldots, \ell_N)^t \in \mathbb{L}$. Take an $(N - n) \times N$ -matrix B with entries in \mathbb{Z} such that columns of B^t constitute a basis for \mathbb{L} .

Let $w \in \mathbb{R}^{N-n}$. Then there exists a row vector of positive real numbers $\mathsf{d} = (d_1, \ldots, d_N)$ such that $w = \mathsf{B}\mathsf{d}^t$. Take the matrices

$$\widetilde{\mathsf{A}} \ := \ \left(egin{array}{c|c} \mathsf{A} & 0 \\ \hline \mathsf{d} & 1 \end{array}
ight) \qquad ext{and} \qquad \widetilde{\mathsf{B}} \ := \ \left(egin{array}{c|c} \mathsf{B} & -w \end{array}
ight) \,.$$

Denote by $\widetilde{\mathsf{A}}_K$ (resp. $\widetilde{\mathsf{B}}_K$) the submatrix of $\widetilde{\mathsf{A}}$ (resp. $\widetilde{\mathsf{B}}$) composed of the entries with column index in a subset K of $\{1, \ldots, N+1\}$. Since rank $\widetilde{\mathsf{A}} = n+1$, rank $\widetilde{\mathsf{B}} = N - n$ and $\widetilde{\mathsf{A}} \cdot \widetilde{\mathsf{B}}^t = 0$ there is a non-zero $r \in \mathbb{Q}$ such that for every $J \subset \{1, \ldots, N+1\}$ of cardinality n+1 and $J' = \{1, \ldots, N+1\} \setminus J$

$$\det(\widetilde{\mathsf{A}}_J) = (-1)^{\sum_{j \in J} j} r \det(\widetilde{\mathsf{B}}_{J'})$$

One sees that (25) is equivalent to

$$(-1)^{\sharp\{h\in I^*\mid h>j\}}\det\left(\left(\mathsf{B}_{I^*\setminus\{j\}}\mid w\right)\right)\cdot\det\left(\mathsf{B}_{I^*}\right)\geq 0\,;\tag{26}$$

here B_{I^*} resp. $B_{I^* \setminus \{j\}}$ is the submatrix of B consisting of the entries with column index in I^* resp. $I^* \setminus \{j\}$.

Thus the triangulation \mathcal{T} can also be constructed from (26).

1.2 The pointed secondary fan

For a more intrinsic formulation which does not refer to a choice of a basis for \mathbb{L} we consider the (N-n)-dimensional real vector space $\mathbb{L}_{\mathbb{R}}^{\vee} := \operatorname{Hom}(\mathbb{L}, \mathbb{R})$. Let $\mathfrak{b}_1, \ldots, \mathfrak{b}_N \in \mathbb{L}_{\mathbb{R}}^{\vee}$ be the images of the standard basis vectors of $\mathbb{R}^{N\vee}$ under the surjection $\mathbb{R}^{N\vee} \twoheadrightarrow \mathbb{L}_{\mathbb{R}}^{\vee}$ dual to the inclusion $\mathbb{L} \hookrightarrow \mathbb{Z}^N$. Let \mathfrak{B} (resp. \mathfrak{D}) be the collection of those subsets J of $\{1, \ldots, N\}$ of cardinality N - n (resp. N - n - 1) for which the vectors \mathfrak{b}_j $(j \in J)$ are linearly independent. For $K = \{k_1, \ldots, k_{N-n}\} \in \mathfrak{B}$ and $J = \{j_1, \ldots, j_{N-n-1}\} \in \mathfrak{D}$ we write

$$\begin{aligned} \mathcal{C}_K &:= \{ t_1 \mathfrak{b}_{k_1} + \ldots + t_{N-n} \mathfrak{b}_{k_{N-n}} \in \mathbb{L}_{\mathbb{R}}^{\vee} \mid t_1, \ldots, t_{N-n} \in \mathbb{R}_{\geq 0} \} \\ H_J &:= \{ t_1 \mathfrak{b}_{j_1} + \ldots + t_{N-n-1} \mathfrak{b}_{j_{N-n-1}} \in \mathbb{L}_{\mathbb{R}}^{\vee} \mid t_1, \ldots, t_{N-n-1} \in \mathbb{R} \} \,. \end{aligned}$$

Choosing a basis for \mathbb{L} as before one can identify $\mathbb{L}_{\mathbb{R}}^{\vee}$ with $\mathbb{R}^{N-n\vee}$ and $\mathfrak{b}_1, \ldots, \mathfrak{b}_N$ with the rows of matrix B^t . The inequality (26) becomes equivalent to the statement $w \in \mathcal{C}_{I^*}$. The condition $D_{\mathsf{d},I}(d_j^{-1}\mathfrak{a}_j) \neq 0$ for the left hand factor in (25) becomes equivalent to $w \notin H_J$ for $J = \{1, \ldots, N+1\} \setminus (I \cup \{j\})$.

Thus the preceding discussion shows:

Proposition 1 (cf. [4] lemma 4.3.) For $w \in \mathbb{L}^{\vee}_{\mathbb{R}} \setminus \bigcup_{J \in \mathfrak{D}} H_J$ the set

$$T^n := \{ I \mid I^* \in \mathfrak{B} \text{ and } w \in \mathcal{C}_{I^*} \}$$

is the set of maximal simplices of a regular triangulation \mathcal{T} of Δ . (Recall the notation $I^* := \{1, \ldots, N\} \setminus I$.)

If \mathcal{T} is a regular triangulation of Δ write

$$\mathcal{C}_{\mathcal{T}} = \bigcap_{I \in \mathcal{T}^n} \mathcal{C}_{I^*} \,. \tag{27}$$

 \boxtimes

Then every $w \in C_T \setminus \bigcup_{J \in \mathfrak{D}} H_J$ leads by the above construction to the same triangulation \mathcal{T} .

The cones $C_{\mathcal{T}}$ one obtains in this way from all regular triangulations of Δ constitute the collection of maximal cones of a complete fan in $\mathbb{L}_{\mathbb{R}}^{\vee}$. This fan is called *the pointed secondary fan*.

Remark 4 The dual (or polar) set of \mathcal{P}_d in (23) is (e.g. [1] def.4.1.1, [10] p.24)

$$\mathcal{P}_{\mathsf{d}}^{\vee} := \{ \mathsf{y} \in \mathbb{R}^{n \vee} \mid \mathsf{y} \cdot \mathsf{x} \ge -1 \text{ for all } \mathsf{x} \in \mathcal{P}_{\mathsf{d}} \}$$
(28)

It is the intersection of half-spaces given by the inequalities

$$\mathbf{y} \cdot \mathbf{a}_i + d_i \ge 0 \quad (i = 1, \dots, N)$$

 \mathcal{P}_d^{\vee} is an unbounded polyhedron. Its vertices correspond with the codimension 1 faces of \mathcal{P}_d which do not contain 0.

Adding to d an element of the row space of matrix A amounts to just a translation of the polyhedron \mathcal{P}_{d}^{\vee} in $\mathbb{R}^{n\vee}$. If d gives rise to a unimodular triangulation, then \mathcal{P}_{d}^{\vee} is an (unbounded) Delzant polyhedron in the sense of [16] p.8. Thus, by the constructions in [16] a point in the real cone $C_{\mathcal{T}}$ for a unimodular regular triangulation \mathcal{T} can be interpreted as a parameter for the symplectic structure of a toric variety. In view of formula (39) this applies in particular to the imaginary part of the variable z in (20).

2 The ring $\mathcal{R}_{A,\mathcal{T}}$.

Theorem 3 Consider the ring $\mathcal{R}_{A,\mathcal{T}}$ as in definition 2.

- (i). $\mathcal{R}_{\mathsf{A},\mathcal{T}}$ is a free $\mathbb{Z}[D^{-1}]$ -module of rank $\sharp \mathcal{T}^n$.
- (ii). $\mathcal{R}_{A,\mathcal{T}}$ is a graded ring. Let $\mathcal{R}_{A,\mathcal{T}}^{(k)}$ denote its homogeneous component of degree k. Then the Poincaré series of $\mathcal{R}_{A,\mathcal{T}}$ is:

$$\sum_{k \ge 0} \left(\operatorname{rank} \, \mathcal{R}_{\mathsf{A}, \mathcal{T}}^{(k)} \right) \, \tau^k \, = \, \sum_{m=0}^n \sharp \left(\, \mathcal{T}^m \, \right) \tau^m (1-\tau)^{n-m}$$

where $\sharp(T^m) =$ the number of simplices with *m* vertices; $\sharp(T^0) = 1$ by convention. In particular

$$\mathcal{R}_{\mathsf{A},\mathcal{T}}^{(k)} = 0 \quad for \quad k \ge n$$

(iii). $\{c_I \mid I \in T^n\}$ is a $\mathbb{Z}[D^{-1}]$ -basis for $\mathcal{R}_{A,T}$. (cf. formula (30))

The **proof of theorem 3** closely follows the proofs of Danilov ($[5] \S 10$) and Fulton ($[10] \S 5.2$) for the analogous presentation of the Chow ring of a complete simplicial toric variety. We include a proof here in order check that it needs no reference to algebraic cycles and also works when the simplicial complex is homeomorphic to a ball instead of a sphere as in [5, 10].

For the construction of a basis for $\mathcal{R}_{\mathsf{A},\mathcal{T}}$ we choose a vector ξ in Δ which should be linearly independent from every n-1-tuple of vectors in $\{\mathfrak{a}_1,\ldots,\mathfrak{a}_N\}$. If I is a maximal simplex, then $\{\mathfrak{a}_i\}_{i\in I}$ is a basis of \mathbb{R}^n and $\xi = \sum_{i\in I} x_i\mathfrak{a}_i$ with all $x_i \neq 0$. We define

$$I^{-} := \{ i \in I \mid x_i < 0 \},$$
(29)

$$c_I := \prod_{i \in I^-} c_i . \tag{30}$$

Let \mathcal{T} be associated with $\mathbf{d} = (d_1, \ldots, d_N)$ as in section 1.1. For $I \in \mathcal{T}^n$ let p_I be the positive real number such that $p_I \xi$ lies in the affine hyperplane through the points $d_i^{-1} \mathfrak{a}_i$ with $i \in I$, i.e. $D_{\mathbf{d},I}(p_I \xi) = 0$. We may assume that \mathbf{d} is chosen such that $p_{I_1} \neq p_{I_2}$ whenever $I_1 \neq I_2$; indeed, for $I_1 \neq I_2$ the equality $p_{I_1} = p_{I_2}$ amounts to a non-trivial linear equation for d_1, \ldots, d_N . As in [10] we define a total ordering on \mathcal{T}^n :

$$I_1 < I_2 \quad \text{iff} \quad p_{I_1} < p_{I_2} \,.$$
 (31)

Lemma 1 (cf. [10] p.101(*)) If $I_1^- \subset I_2$ then $I_1 \leq I_2$.

proof: By definition of p_{I_1} there exist $s_j \in \mathbb{R}$ such that $p_{I_1}\xi = \sum_{j \in I_1} s_j d_j^{-1} \mathfrak{a}_j$ and $1 = \sum_{j \in I_1} s_j$. If $I_1 \neq I_2$ and $I_1^- \subset I_2$ then $s_j > 0$ for every $j \in I_1 \setminus I_2$. Using this and (25) for I_2 one checks: $D_{\mathsf{d},I_2}(p_{I_1}\xi) \cdot D_{\mathsf{d},I_2}(0) > 0$. This shows that 0 and $p_{I_1}\xi$ lie on the same side of the affine hyperplane through the points $d_i^{-1}\mathfrak{a}_i$ with $i \in I_2$. Hence: $p_{I_1} < p_{I_2}$. **Lemma 2** (cf. [10] p.102) Let J be a simplex in \mathcal{T} . Then: $I^- \subset J \subset I$ where $I := \min\{I' \in \mathcal{T}^n \mid J \subset I'\}$.

proof: The conclusion is clear if I = J. So assume $I \neq J$ and take $i \in I \setminus J$. Then $I \setminus \{i\}$ is a codim 1 simplex in the triangulation, which either is contained in the boundary of Δ or is contained in another maximal simplex $I' \neq I$.

If $I \setminus \{i\}$ is a boundary simplex, then ξ and \mathfrak{a}_i are on the same side of the linear hyperplane in \mathbb{R}^n spanned be the vectors \mathfrak{a}_j with $j \in I \setminus \{i\}$. This implies $x_i > 0$ in the expansion $\xi = \sum_{j \in I} x_j \mathfrak{a}_j$. So $i \notin I^-$.

If $I \setminus \{i\}$ is contained in a maximal simplex $I' \neq I$, then $J \subset I'$ and hence I < I'. Now look at the two expansions $\xi = x_i \mathfrak{a}_i + \sum_{j \in I \cap I'} x_j \mathfrak{a}_j$ and $\xi = y_k \mathfrak{a}_k + \sum_{j \in I \cap I'} y_j \mathfrak{a}_j$ where $\{k\} = I' \setminus (I \cap I')$. Then $y_k < 0$ because $I'^- \not\subset I$ by the preceding lemma. On the other hand, x_i and y_k have different signs because \mathfrak{a}_i and \mathfrak{a}_k lie on different sides of the linear hyperplane spanned by the vectors \mathfrak{a}_j with $j \in I \cap I'$. We see $x_i > 0$ and $i \notin I^-$.

Conclusion: $I^- \subset J$.

 \boxtimes

Proposition 2 The elements c_I ($I \in T^n$) generate $\mathcal{R}_{A,T}$ as a $\mathbb{Z}[D^{-1}]$ -module.

proof: $\mathcal{R}_{A,\mathcal{T}}$ is linearly generated by monomials in c_1, \ldots, c_N . For one $I_0 \in \mathcal{T}^n$ we have $I_0^- = \emptyset$, hence $c_{I_0} = 1$. Therefore we only need to show that for every j and every I_1 the product $c_j \cdot c_{I_1}$ can be written as a linear combination of c_I 's. If $j \in I_1$ one can use the linear relations (13) to express every c_i with $i \in I_1$ as a $\mathbb{Z}[D^{-1}]$ -linear combination of c_k 's with $k \notin I_1$. Since this works for c_i in particular, the problem can be reduced to showing that a monomial of the form $\prod_{i \in J} c_i$ with J a simplex of the triangulation, can be written as a linear combination of c_I 's. Given such a J take $I_J \in T^n$ such that $I_J^- \subset J \subset I_J$; see lemma 2. If $J = I_J^-$, then $\prod_{i \in J} c_i = c_{I_J}$ and we are done. If $J \neq I_J^$ take $m \in J \setminus I_I^-$ and use the linear relations (13) to rewrite c_m as a $\mathbb{Z}[D^{-1}]$ linear combination of c_k 's with $k \notin I_J$. This leads to an expression for $\prod_{i \in J} c_i$ as a $\mathbb{Z}[D^{-1}]$ -linear combination of monomials of the form $\prod_{i \in K} c_i$ with K a simplex of the triangulation and $I_J^- \subsetneq K$. Given such a K take $I_K \in \mathcal{T}^n$ such that $I_K^- \subset K \subset I_K$. Then, according to lemma 1, $I_J < I_K$. We proceed by induction. \boxtimes

Next we follow Danilov's arguments in [5] remark 3.8 to prove

$$\sum_{k \ge 0} \left(\dim_{\mathbb{Q}} \mathcal{R}_{\mathsf{A},\mathcal{T}}^{(k)} \otimes \mathbb{Q} \right) \tau^{k} = \sum_{m=0}^{n} \sharp \left(\mathcal{T}^{m} \right) \tau^{m} (1-\tau)^{n-m}$$
(32)

We have added a few references of which [20] is most relevant because it deals with a triangulation of a polytope, while [5] deals with a triangulation of a sphere. In [22, 20] the Stanley-Reisner ring $\mathbb{Q}[\mathcal{T}]$ of the simplicial complex \mathcal{T} over the field \mathbb{Q} is defined as the quotient of the polynomial ring $\mathbb{Q}[C_1, \ldots, C_N]$ modulo the ideal generated by the monomials (14). $\mathbb{Q}[\mathcal{T}]$ is a Cohen-Macaulay ring of Krull dimension n; see [20] thm.2.2 and [22] thm 1.3. By definition 2 there is a natural homomorphism $\mathbb{Q}[\mathcal{T}] \to \mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{Q}$ with kernel generated by the n elements $\alpha_i := a_{i1}C_1 + a_{i2}C_2 + \ldots + a_{iN}C_N$. By proposition 2 the ring $\mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{Q}$ is a finite dimensional \mathbb{Q} -vector space and hence has Krull dimension 0. It also follows from proposition 2 that $\mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{Q}$ and $\mathbb{Q}[\mathcal{T}]$ are local rings. We can now apply [19] thm.16.B and see that $\alpha_1, \ldots, \alpha_n$ is a regular sequence. As pointed out in [5] remark 3.8b this implies that the Poincaré series of $\mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{Q}$ is equal to $(1-\lambda)^n$ times the Poincaré series of $\mathbb{Q}[\mathcal{T}]$. The latter is $\sum_{m=0}^n \sharp(\mathcal{T}^m) \lambda^m (1-\lambda)^{-m}$ by [22] thm. 1.4 (where it is called Hilbert series). Formula (32) follows.

We see that $\dim_{\mathbb{Q}} \mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{Q} = \sharp T^n$ and hence that the elements $c_I \ (I \in T^n)$ are linearly independent over \mathbb{Q} . This completes the proof of theorem 3

Corollary 1 If \mathcal{T} is unimodular, then

- (i). $\mathcal{R}_{A,\mathcal{T}}$ is a free \mathbb{Z} -module with rank equal to vol Δ .
- (ii). $\Delta \cap \mathbb{Z}^n = \mathcal{T}^1 = \{\mathfrak{a}_1, \dots, \mathfrak{a}_N\}$

(iii). there is an isomorphism $\mathcal{R}^{(1)}_{\mathbf{A},\mathcal{T}} \xrightarrow{\sim} \mathbb{L}^{\vee}_{\mathbb{Z}}$ such that $c_j \leftrightarrow \mathfrak{b}_j$ $(j = 1, \ldots, N)$

proof: (i) immediately follows from theorem 3.

(ii) Assume that there is a lattice point in Δ which is not a vertex of \mathcal{T} . This point lies in some maximal simplex and gives rise to a decomposition of this simplex into at least two integral simplices. This contradicts the assumption. (iii) Because of (ii) all monomials in (14) have degree ≥ 2 . Consequently, $\mathcal{R}_{A,\mathcal{T}}^{(1)}$ is just the quotient of $\mathbb{Z} C_1 \oplus \ldots \oplus \mathbb{Z} C_N$ modulo the span of the linear forms in (13). This quotient is $\mathbb{L}_{\mathbb{Z}}^{\vee}$.

3 A domain of definition for the function $\Psi_{\mathcal{T},\beta}$.

We first investigate for which λ 's one possibly has $Q_{\lambda}(\mathsf{c}) \neq 0$ in $\mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{Q}$.

For $I \in \mathcal{T}^n$ let A_I denote the $n \times n$ -submatrix of A with columns \mathfrak{a}_i $(i \in I)$. By \mathfrak{p}_I we denote the $N \times N$ -matrix whose entries with row index not in I are all 0 and whose $n \times N$ -submatrix of entries with row index in I is $A_I^{-1}A$. This \mathfrak{p}_I is an idempotent linear operator on \mathbb{R}^N . Now define:

$$\mathfrak{P}_{\mathcal{T}} := \operatorname{conv} \left\{ \mathsf{p}_{I} \mid I \in \mathcal{T}^{n} \right\} \quad \text{in} \quad \operatorname{Mat}_{N \times N}(\mathbb{R}) \,. \tag{33}$$

The image of the idempotent operator $1 - p_I$ is $\mathbb{L}_{\mathbb{R}}$. Therefore all elements of $1 - \mathfrak{P}_T = \operatorname{conv} \{1 - p_I \mid I \in T^n\}$ are idempotent operators on \mathbb{R}^N with image $\mathbb{L}_{\mathbb{R}}$. Hence all elements of \mathfrak{P}_T are also idempotent operators on \mathbb{R}^N .

For every $\lambda \in \mathbb{Z}^N$ one has the polytope $\mathfrak{P}_T(\lambda)$ which is the convex hull of $\{\mathfrak{p}_I(\lambda) \mid I \in \mathcal{T}^n\}$ in \mathbb{R}^N . This obviously depends only on $\lambda \mod \mathbb{L}$.

Lemma 3 If $\lambda \in \mathbb{Z}^N$ is such that $Q_{\lambda}(\mathsf{c}) \neq 0$ in $\mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{Q}$, then λ lies in the set $\mathfrak{P}_{\mathcal{T}}(\lambda) + \mathcal{C}_{\mathcal{T}}^{\vee}$. Here $\mathcal{C}_{\mathcal{T}}^{\vee}$ is the dual of the cone $\mathcal{C}_{\mathcal{T}}$ defined in (27):

$$\mathcal{C}_{\mathcal{T}}^{\vee} := \left\{ \ell \in \mathbb{L}_{\mathbb{R}} \mid \omega \cdot \ell \ge 0 \text{ for all } \omega \in \mathcal{C}_{\mathcal{T}} \right\}.$$
(34)

proof: If $Q_{\lambda}(c) \neq 0$ then $\{i \mid \lambda_i < 0\}$ is contained in some maximal simplex I of \mathcal{T} . Let $\ell = (1 - \mathsf{p}_I)(\lambda)$. Then $\ell = (\ell_1, \ldots, \ell_N) \in \mathbb{L}_{\mathbb{R}}$ and $\mathfrak{b}_j \cdot \ell = \ell_j = \lambda_j \ge 0$ for all $j \in I^*$. This shows $(1 - p_I)(\lambda) \in \mathcal{C}_{I^*}^{\vee} \subset \mathcal{C}_{\mathcal{T}}^{\vee}$. \square

Lemma 4 The coefficients in the power series expansion

$$\frac{\prod_{\lambda_j<0}\prod_{k=0}^{-\lambda_j-1}(k+x_j)}{\prod_{\lambda_j>0}\prod_{k=1}^{\lambda_j}(k-x_j)} = \sum_{m_1,\dots,m_N\ge 0} K_{m_1,\dots,m_N} x_1^{m_1} \cdot \dots \cdot x_N^{m_N}$$
(35)

satisfy

$$0 \le K_{m_1,...,m_N} \le N^{\|\lambda\|} \cdot 2^{\|m\|+N} \cdot N! \cdot (\max(1, N - \deg \lambda))!$$
 (36)

with $\| m \| := \sum_{i=1}^{N} m_i$ and $\| \lambda \| := \sum_{i=1}^{N} |\lambda_i|$ and $\deg \lambda := \sum_{i=1}^{N} \lambda_i = \mathfrak{a}_0^{\vee} \cdot \beta$.

proof: Clearly $K_{m_1,\ldots,m_N} \ge 0$. Clearly also $2^{-\|m\|} K_{m_1,\ldots,m_N}$ is less than the value of the left hand side at $x_1 = \ldots = x_N = \frac{1}{2}$. Therefore

$$K_{m_1,\dots,m_N} < 2^{\|m\|+S} \cdot \frac{\prod_{\lambda_j < 0} (-\lambda_j)!}{\prod_{\lambda_j > 0} (\lambda_j - 1)!} \le 2^{\|m\|+S} \cdot \frac{P!}{(R-S)!} \cdot S^{R-S}$$

where $P = -\sum_{\lambda_i < 0} \lambda_i$ and $R = \sum_{\lambda_i > 0} \lambda_i$ and $S = \sharp\{i \mid \lambda_i > 0\}$. If $P \le R - S$ then $\frac{P!}{(R-S)!} \le 1$. If P > R - S then $\frac{P!}{(R-S)!} \le 2^P \cdot (P - R + S)!$. Combining these estimates one arrives at (36). \boxtimes

The sum of the series $\sum_{\lambda \in \mathcal{A}^{-1}(\beta)} Q_{\lambda}(\mathsf{c}) \mathsf{e}^{2\pi \mathsf{i} \, \mathsf{z} \cdot \lambda}$ in formula (20) should be computed as a limit for $L \to \infty$ of partial sums Σ_L taking only terms with $\|\lambda\| \leq L$. These sums only involve λ 's with $Q_{\lambda}(\mathsf{c}) \neq 0$. According to lemma 3 such a λ is of the form $\lambda = \tilde{\lambda} + \ell$ with $\ell \in \mathcal{C}_{\mathcal{T}}^{\vee}$ and with $\tilde{\lambda}$ contained in a compact polytope which only depends on β . Therefore $\|\lambda\| \leq \|\ell\| +$ some constant which only depends on β . Since

$$Q_{\lambda}(\mathsf{c}) = (-1)^{\sharp\{i \mid \lambda_i < 0\}} \sum_{m_1, \dots, m_N \ge 0, \, \|m\| \le n} (-1)^{\|m\|} K_{m_1, \dots, m_N} c_1^{m_1} \cdot \dots \cdot c_N^{m_N}$$

lemma 4 shows that the coordinates of $Q_{\lambda}(c)$ with respect to a basis of the vector space $\mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{Q}$ are less than $N^{\|\ell\|}$ times some constant which only depends on β . Thus one sees that the limit of the partial sums exists if the imaginary part $\Im z$ of z satisfies

$$\Im \mathbf{z} \cdot \ell > \frac{\log N}{2\pi} \parallel \ell \parallel \quad \text{for all } \ell \in \mathcal{C}_T^{\vee}$$
 (37)

Let $p: \mathbb{R}^{N\vee} \to \mathbb{L}_{\mathbb{R}}^{\vee}$ denote the canonical projection. If $b \in \mathbb{L}_{\mathbb{R}}^{\vee}$ is any vector which satisfies

$$b \cdot \ell > \frac{\log N}{2\pi} \parallel \ell \parallel \quad \text{for all } \ell \in \mathcal{C}_{\mathcal{I}}^{\vee},$$
(38)

then $b \in \mathcal{C}_{\mathcal{T}}$ and every z with the property $p(\Im z) \in b + \mathcal{C}_{\mathcal{T}}$ satisfies (37). Let us therefore define

$$\mathcal{B}_{\mathcal{T}} := \bigcup_{b \text{ s.t. } (38)} (b + \mathcal{C}_{\mathcal{T}})$$
(39)

The above discussion proves:

Theorem 4 Formula (20):

$$\Psi_{\mathcal{T},\beta}(\mathsf{z}) \ := \ \sum_{\lambda \in \mathcal{A}^{-1}(\beta)} \ Q_{\lambda}(\mathsf{c}) \mathsf{e}^{2\pi \mathsf{i} \, \mathsf{z} \cdot \lambda} \cdot \mathsf{e}^{2\pi \mathsf{i} \, \mathsf{z} \cdot \mathsf{c}}$$

defines a function with values in $\mathcal{R}_{A.T} \otimes \mathbb{C}$ on the domain

$$\mathcal{V}_{\mathcal{T}} := \left\{ \mathbf{z} \in \mathbb{C}^{N \vee} \mid p(\Im \, \mathbf{z}) \in \mathcal{B}_{\mathcal{T}} \right\}.$$

$$(40)$$

 \boxtimes

In order to have a more global geometric picture of where the domain of definition of the function $\Psi_{\mathcal{T},\beta}$ is situated we give a brief description of the toric variety associated with the pointed secondary fan.

The pointed secondary fan is a complete fan of strongly convex polyhedral cones which are generated by vectors from the lattice $\mathbb{L}_{\mathbb{Z}}^{\vee}$. By the general theory of toric varieties [10, 21] this lattice-fan pair gives rise to a toric variety. In the case of $\mathbb{L}^{\vee}_{\mathbb{Z}}$ and the pointed secondary fan the general construction reads as follows.

For each regular triangulation \mathcal{T} one has the cone $\mathcal{C}_{\mathcal{T}}$ in the secondary fan and one considers the monoid ring $\mathbb{Z}[\mathbb{L}_{\mathcal{T}}]$ of the sub-monoid $\mathbb{L}_{\mathcal{T}}$ of \mathbb{L} :

$$\mathbb{L}_{\mathcal{T}} := \mathbb{L} \cap \mathcal{C}_{\mathcal{T}}^{\vee} = \left\{ \ell \in \mathbb{L} \mid \omega \cdot \ell \ge 0 \quad \text{for all } \omega \in \mathcal{C}_{\mathcal{T}} \right\}.$$
(41)

The affine schemes $\mathcal{U}_{\mathcal{T}} := \text{spec } \mathbb{Z}[\mathbb{L}_{\mathcal{T}}]$ for the various triangulations naturally glue together to form the toric variety for the pointed secondary fan.

A complex point of $\mathcal{U}_{\mathcal{T}}$ is just a homomorphism from the additive monoid $\mathbb{L}_{\mathcal{T}}$ to the multiplicative monoid \mathbb{C} . There is a special point in $\mathcal{U}_{\mathcal{T}}$, namely the homomorphism sending $0 \in \mathbb{L}_{\mathcal{T}}$ to 1 and all other elements of $\mathbb{L}_{\mathcal{T}}$ to 0. A disc of radius r, 0 < r < 1, about this special point consists of homomorphisms
$$\begin{split} \mathbb{L}_{\mathcal{T}} & \to \mathbb{C} \text{ with image contained in the disc of radius } r \text{ in } \mathbb{C} \text{ .} \\ & \text{A vector } \mathbf{z} \in \mathbb{C}^{N \vee} \text{ defines the homomorphism} \end{split}$$

$$\mathbb{L} \to \mathbb{C}^*, \ \ell \mapsto e^{2\pi i \mathbf{z} \cdot \ell}$$

and hence a point of the toric variety. The point lies in the disc of radius r < 1 about the special point corresponding to a regular triangulation \mathcal{T} iff $\Im \mathbf{z} \cdot \ell > -\frac{\log r}{2\pi}$ holds for every $\ell \in \mathbb{L}_T$. It suffices of course to require this only for a set of generators of \mathbb{L}_T . If b is in $C_{\mathcal{T}}$ and K is such that $K > b \cdot \ell$ for all ℓ from a set of generators of $\mathbb{L}_{\mathcal{T}}$, then the set $\{ \mathbf{z} \in \mathbb{C}^{N \vee} \mid p(\Im \mathbf{z}) \in b + C_{\mathcal{T}} \}$ contains the intersection of the disc of radius $\exp(-2\pi K)$ with the torus $\operatorname{Hom}(\mathbb{L}, \mathbb{C}^*)$.

This shows that the domain of definition of the function $\Psi_{\mathcal{T},\beta}$ is situated about the special point associated with \mathcal{T} in the toric variety of the pointed secondary fan.

4 The special case $\beta = 0$

r

The function $\Psi_{\mathcal{T},0}$ is invariant under the action of $\mathbb{M}_{\mathbb{C}}^{\vee}$; see (22). So it is in fact a function on the domain $\mathbb{L}_{\mathbb{R}}^{\vee} + \sqrt{-1}\mathcal{B}_{\mathcal{T}}$ in $\mathbb{L}_{\mathbb{C}}^{\vee}$. For $F \in \operatorname{Hom}(\mathcal{R}_{\mathsf{A},\mathcal{T}},\mathbb{C})$ we have the \mathbb{C} -valued function $F\Psi_{\mathcal{T},0}$ on $\mathbb{L}_{\mathbb{R}}^{\vee} + \sqrt{-1}\mathcal{B}_{\mathcal{T}}$.

Lemma 5 If $F\Psi_{\mathcal{T},0}$ is the 0-function on $\mathbb{L}_{\mathbb{R}}^{\vee} + \sqrt{-1}\mathcal{B}_{\mathcal{T}}$ then F = 0.

proof: By lemma 3 the series $\Psi_{\mathcal{T},0}$ involves only λ 's in $\mathbb{L} \cap \mathcal{C}_{\mathcal{T}}^{\vee}$ and $\lambda = 0$ is really present with $Q_0(\mathbf{c}) = 1$. Moreover $\mathcal{B}_{\mathcal{T}}$ is contained in the interior of $\mathcal{C}_{\mathcal{T}}$. Therefore, if $F\Psi_{\mathcal{T},0} = 0$, then the polynomial function

$$\sum_{n_1,\dots,m_N \ge 0} \frac{(2\pi i)^{m_1 + \dots + m_N}}{m_1! \cdot \dots \cdot m_N!} \cdot F(c_1^{m_1} \cdot \dots \cdot c_N^{m_N}) \cdot z_1^{m_1} \cdot \dots \cdot z_N^{m_N}$$

is bounded on an unbounded open domain in \mathbb{C}^N . So, this is the zero polynomial. Therefore $F(c_1^{m_1} \cdot \ldots \cdot c_N^{m_N}) = 0$ for all $m_1, \ldots, m_N \ge 0$.

Theorem 5 If $\beta = 0$ and T is unimodular, then there is an isomorphism:

 $\operatorname{Hom}(\mathcal{R}_{\mathsf{A},\mathcal{T}},\mathbb{C})\xrightarrow{\sim} solution \ space \ of \ (3)-(4) \ , \quad F\mapsto F\Phi_{\mathcal{T},0} \ .$

proof: Lemma 5 shows that the map is injective. From corollary 1 we know dim Hom($\mathcal{R}_{A,\mathcal{T}}$, \mathbb{C}) = vol Δ . Since the triangulation \mathcal{T} is unimodular, the proof of [24] prop.13.15 shows that the normality condition for the correction in [12] to [11] thm. 5 is satisfied. Therefore the number of linearly independent solutions of the GKZ system (3)-(4) at a generic point equals vol Δ .

5 Triangulations with non-empty core

The intersection of all maximal simplices in a regular triangulation \mathcal{T} of Δ is a remarkable structure. We call it the core of \mathcal{T} . It is a simplex in the triangulation \mathcal{T} . Since we identify simplices with their index sets, we view core \mathcal{T} also as a subset of $\{1, \ldots, N\}$.

Definition 3 core $\mathcal{T} := \bigcap_{I \in \mathcal{T}^n} I$

Lemma 6 A simplex which does not contain core \mathcal{T} lies in the boundary of Δ .

proof: It suffices to prove this for simplices of the form $I \setminus \{j\}$ with $I \in \mathcal{T}^n$ and $j \in \operatorname{core} \mathcal{T}$. Since every maximal simplex contains j, I is the only maximal simplex which contains $I \setminus \{j\}$. Therefore $I \setminus \{j\}$ lies in the boundary of Δ .

Lemma 7 core $\mathcal{T} = \{j \mid \ell_j \leq 0 \text{ for all } \ell \in \mathcal{C}_{\mathcal{T}}^{\vee}\}$

proof: \supset : assume $j \notin \operatorname{core} \mathcal{T}$, say $j \notin I$ for some $I \in \mathcal{T}^n$. Then there is a relation $\mathfrak{a}_j - \sum_{i \in I} x_i \mathfrak{a}_i = 0$; whence an $\ell \in \mathbb{L}$ with $\ell_j > 0$ and $\{i \mid \ell_i < 0\} \subset I$. As in the proof of lemma 3 this implies $\ell \in C_T^{\vee}$.

 \subset : assume $j \in \operatorname{core} \mathcal{T}$. First consider an $\ell \in \mathbb{L}_{\mathbb{R}}$ such that $\{i \mid \ell_i < 0\}$ is a simplex. Let $L = \sum_{\ell_i > 0} \ell_i = \sum_{\ell_i < 0} -\ell_i$. The relation in (5) can be rewritten as

$$\sum_{\ell_i > 0} \frac{\ell_i}{L} \mathfrak{a}_i = \sum_{\ell_i < 0} \frac{-\ell_i}{L} \mathfrak{a}_i \tag{42}$$

Suppose $\ell_j > 0$. Then the simplex $\{i \mid \ell_i < 0\}$ lies in a boundary face of Δ . Take a linear functional F whose restriction to Δ attains its maximum exactly on this face. Evaluate F on both sides of (42). The value on the right hand side is max F, but on the left hand side it is $< \max F$, because $F(\mathfrak{a}_j) < \max F$ and $\ell_j > 0$. Contradiction! Therefore we conclude: $\ell_j \leq 0$ if ℓ is such that $\{i \mid \ell_i < 0\}$ is a simplex. From the constructions in section 1.2 one sees that $\{i \mid \ell_i < 0\}$ is a simplex if and only if $\ell \in C_{I^*}^{\vee}$ for some $I \in \mathcal{T}^n$; note: $\ell_j = \mathfrak{b}_j \cdot \ell$. Since \mathcal{C}_T^{\vee} is the Minkowski sum of the cones $\mathcal{C}_{I^*}^{\vee}$ with $I \in \mathcal{T}^n$ we finally get: $\ell_j \leq 0$ for every $\ell \in \mathcal{C}_T^{\vee}$.

Definition 4

$$c_{\text{core}} := \prod_{i \in \text{core } \mathcal{T}} c_i \tag{43}$$

Corollary 2 If λ is such that $A\lambda = \sum_{i \in \operatorname{core} \mathcal{T}} m_i \mathfrak{a}_i$ with all $m_i < 0$ then $\lambda_i < 0$ for every $i \in \operatorname{core} \mathcal{T}$ and hence

$$Q_{\lambda}(\mathsf{c}) \in c_{\operatorname{core}} \mathcal{R}_{\mathsf{A},\mathcal{T}}$$

proof: Let $\mu = (\mu_1, \ldots, \mu_N)$ be defined by $\mu_i = m_i$ for $i \in \operatorname{core} \mathcal{T}$ and $\mu_i = 0$ for $i \notin \operatorname{core} \mathcal{T}$. Then $\mathfrak{P}_{\mathcal{T}}(\lambda) = \mathfrak{P}_{\mathcal{T}}(\mu)$ in lemma 3. From the definitions one sees immediately that $\mathfrak{P}_{\mathcal{T}}(\mu) = \{\mu\}$. The result now follows from lemmas 3 and 7.

 \boxtimes

Corollary 3 If core \mathcal{T} is not empty and $\beta = \sum_{i \in \operatorname{core} \mathcal{T}} m_i \mathfrak{a}_i$ with all $m_i < 0$ then the function $\Psi_{\mathcal{T},\beta}$ takes values in the ideal $c_{\operatorname{core}} \mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{C}$.

Theorem 6 If core \mathcal{T} is not empty and $\beta = \sum_{i \in \text{core } \mathcal{T}} m_i \mathfrak{a}_i$ with all $m_i < 0$ then the linear map

$$\operatorname{Hom}(c_{\operatorname{core}} \mathcal{R}_{\mathsf{A},\mathcal{T}}, \mathbb{C}) \longrightarrow solution \ space \ of \ (3)-(4) \ , \quad F \mapsto F \Phi_{\mathcal{T},\beta}$$

is injective.

proof: From lemma 3 and the proof of corollary 2 one sees that the series $\Psi_{\mathcal{T},\beta}$ involves only λ 's in $\mu + (\mathbb{L} \cap \mathcal{C}_{\mathcal{T}}^{\vee})$ and that $\lambda = \mu$ is really present:

$$Q_{\mu}(\mathsf{c}) = c_{\text{core}} \cdot U$$
 with $U := \prod_{i \in \text{core } \mathcal{T}} \prod_{k=1}^{-m_i - 1} (c_i - k)$

The rest of the proof is analogous to the proof of lemma 5. In particular, if $F\Psi_{\mathcal{T},\beta}$ is the 0-function on $\mathcal{V}_{\mathcal{T}}$, then $F(c_{\text{core}} \cdot U \cdot c_1^{n_1} \cdot \ldots \cdot c_N^{n_N}) = 0$ for all $n_1, \ldots, n_N \geq 0$. The desired result now follows because U is invertible in the ring $\mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathbb{Q}$.

PART II

Introduction II

One aspect of the mirror symmetry phenomenon (cf. [25, 15]) is that (generalized) Calabi-Yau manifolds seem to come in pairs (X, Y) with the geometries of X and Y related in a beautifully intricate way. On one side of the mirror usually called *the B-side* - it is the geometry of complex structure, of periods of a holomorphic differential form, of variations of Hodge structure. On the other side - *the A-side* - it is the geometry of symplectic structure, of algebraic cycles and of enumerative questions about curves on the manifold.

Batyrev [1] showed that behind many examples of the mirror symmetry phenomenon one can see a simple combinatorial duality. Batyrev and Borisov gave a generalization of this combinatorial duality and formulated a *mirror symme*try conjecture for generalized Calabi-Yau manifolds in arbitrary dimension ([3] 2.17). The fundamental combinatorial structure is a reflexive Gorenstein cone.

Definition 5 ([3] definitions 2.1-2.8.) A cone Λ in \mathbb{R}^n is called a Gorenstein cone if it is generated, *i.e.*

$$\Lambda = \mathbb{R}_{\geq 0} \mathfrak{a}_1 + \ldots + \mathbb{R}_{\geq 0} \mathfrak{a}_N \,, \tag{44}$$

by a finite set $\{\mathfrak{a}_1, \ldots, \mathfrak{a}_N\} \subset \mathbb{Z}^n$ which satisfies condition 1. It is called a reflexive Gorenstein cone if both Λ and its dual Λ^{\vee} are Gorenstein cones,

$$\Lambda^{\vee} := \left\{ \mathbf{y} \in \mathbb{R}^{n \vee} \, | \, \forall \mathbf{x} \in \Lambda \, : \, \mathbf{y} \cdot \mathbf{x} \ge 0 \, \right\},\tag{45}$$

i.e. there should also exist a vector $\mathbf{a}_0 \in \mathbb{Z}^n$ and a set $\{\mathbf{a}_1^{\vee}, \ldots, \mathbf{a}_{N'}^{\vee}\} \subset \mathbb{Z}^{n^{\vee}}$ of generators for Λ^{\vee} such that $\mathbf{a}_i^{\vee} \cdot \mathbf{a}_0 = 1$ for $i = 1, \ldots, N'$. The vectors \mathbf{a}_0^{\vee} and \mathbf{a}_0 are uniquely determined by Λ . The integer $\mathbf{a}_0^{\vee} \cdot \mathbf{a}_0$ is called the index of Λ .

For a reflexive Gorenstein cone one has one new datum in addition to the data for GKZ systems; namely a_0 . It has the very important property

$$\operatorname{interior}(\Lambda) \cap \mathbb{Z}^n = \mathfrak{a}_0 + \Lambda.$$
(46)

Our aim is to show that in the case of a mirror pair (X, Y) associated with a reflexive Gorenstein cone Λ and a unimodular regular triangulation \mathcal{T} whose core is not empty and is not contained in the boundary of Δ , the periods of a holomorphic differential form on X are given by the function $\Phi_{\mathcal{T},-\mathfrak{a}_0}$ which takes values in the ring $\mathcal{R}_{A,\mathcal{T}}/\operatorname{Ann} c_{\operatorname{core}} \otimes \mathbb{C}$ and that the ring $\mathcal{R}_{A,\mathcal{T}}/\operatorname{Ann} c_{\operatorname{core}}$ is isomorphic with a subring of the Chow ring of Y.

This project naturally has a B-side and an A-side which we develop separately in Part II B and Part II A. Our method puts some natural restrictions on the generality. For Part II B we must eventually assume that there is a unimodular triangulation \mathcal{T} of the polytope

$$\Delta := \operatorname{conv} \{\mathfrak{a}_1, \dots, \mathfrak{a}_N\} = \{ \mathsf{x} \in \Lambda \mid \mathfrak{a}_0^{\vee} \cdot \mathsf{x} = 1 \}.$$
(47)

This restriction which comes from the use of theorem 5, also implies

$$\mathfrak{a}_0 \in \mathbb{Z}_{\geq 0}\mathfrak{a}_1 + \ldots + \mathbb{Z}_{\geq 0}\mathfrak{a}_N \,. \tag{48}$$

So, $\Phi_{\mathcal{T},-\mathfrak{a}_0}$ is defined in Part I. For Part II A we must additionally assume that the core of \mathcal{T} is not empty and is not contained in the boundary of Δ .

PART II B

Introduction II B

For a Gorenstein cone Λ we denote the monoid algebra $\mathbb{C}[\Lambda \cap \mathbb{Z}^n]$ by \mathcal{S}_{Λ} and view it as a subalgebra of the algebra $\mathbb{C}[u_1^{\pm 1}, \ldots, u_n^{\pm 1}]$ by identifying $\mathsf{m} = (m_1, \ldots, m_n)^t \in \Lambda \cap \mathbb{Z}^n$ with the Laurent monomial $\mathsf{u}^{\mathsf{m}} := u_1^{m_1} \cdot \ldots \cdot u_n^{m_n}$. For $\mathsf{m} \in \mathbb{Z}^n$ we put deg $\mathsf{u}^{\mathsf{m}} := \deg \mathsf{m} := \mathfrak{a}_0^{\vee} \cdot \mathsf{m}$. Thus \mathcal{S}_{Λ} becomes a graded ring. The scheme $\mathbb{P}_{\Lambda} := \operatorname{Proj} \mathcal{S}_{\Lambda}$ is a projective toric variety. If Λ is a reflexive Gorenstein cone, the zero set in \mathbb{P}_{Λ} of a global section of $\mathcal{O}_{\mathbb{P}_{\Lambda}}(1)$ is called a generalized Calabi-Yau manifold of dimension n - 2 ([3] 2.15).

The toric variety \mathbb{P}_{Λ} is a compactification of the n-1-dimensional torus

$$\mathbb{T} := \mathbb{T}/(\mathbb{Z}\mathfrak{a}_0^{\vee} \otimes \mathbb{C}^*) \tag{49}$$

where

$$\widetilde{\mathbb{T}} := \operatorname{Hom}(\mathbb{Z}^n, \mathbb{C}^*) = \mathbb{Z}^{n \vee} \otimes \mathbb{C}^*$$
(50)

is the *n*-dimensional torus of \mathbb{C} -points of Spec $\mathbb{C}[u_1^{\pm 1}, \ldots, u_n^{\pm 1}]$. A global section of $\mathcal{O}_{\mathbb{P}_{\Lambda}}(1)$ is given by a Laurent polynomial

$$\mathbf{s} = \sum_{\mathbf{m} \in \Delta \cap \mathbb{Z}^n} v_{\mathbf{m}} \mathbf{u}^{\mathbf{m}} \,. \tag{51}$$

with Δ as in (47). As in [2] we assume from now on

Condition 2 $\{\mathfrak{a}_1,\ldots,\mathfrak{a}_N\}=\Delta\cap\mathbb{Z}^n$

The Laurent polynomial s gives a function on $\widetilde{\mathbb{T}}$ which is homogeneous of degree 1 for the action of $\mathbb{Z}\mathfrak{a}_0^{\vee} \otimes \mathbb{C}^*$. Let

$$\mathsf{Z}_{\mathsf{s}} := \{ \text{ zero locus of } \mathsf{s} \} \subset \mathbb{T}$$

$$(52)$$

Over the complementary set $\mathbb{T} \setminus Z_s$ there is a section of $\widetilde{\mathbb{T}} \to \mathbb{T}$ which identifies $\mathbb{T} \setminus Z_s$ with the zero set \widetilde{Z}_{s-1} of s-1 in $\widetilde{\mathbb{T}}$:

$$\mathbb{T} \setminus \mathsf{Z}_{\mathsf{s}} \simeq \widetilde{\mathsf{Z}}_{\mathsf{s}-1} \subset \widetilde{\mathbb{T}}$$
(53)

One may say that according to Batyrev [2] the geometry on the B-side of mirror symmetry is encoded in the weight n part $W_n H^{n-1}(\mathbb{T} \setminus \mathsf{Z}_s)$ of the Variation of Mixed Hodge Structure of $H^{n-1}(\mathbb{T} \setminus \mathsf{Z}_s)$; the variation comes from varying the coefficients $v_{\mathfrak{m}}$ in (51).

Remark 5 One usually formulates Mirror Symmetry with on the B-side the Variation of Hodge Structure on the *d*-th cohomology of a *d*-dimensional Calabi-Yau manifold. For a CY hypersurface in a toric variety the Poincaré residue mapping gives an isomorphism with the d + 1-st cohomology of the hypersurface complement, at least on the primitive parts (see [2] prop.5.3). For a CY complete intersection of codimension > 1 in a toric variety one needs besides the Poincaré residue mapping also corollary 3.4 and remark 3.5 in [3] to relate the CYCI's cohomology to the cohomology of the complement of a generalized Calabi-Yau hypersurface in a toric variety, i.e. to the situation we are studying in this paper. Our investigations do however also allow on this B-side of the mirror generalized Calabi-Yau hypersurfaces which are not related to CY complete intersections, although on the other A-side we do eventually want a Calabi-Yau complete intersection (see [3] §5 for an example of mirror symmetry with such an asymmetry between the two sides).

In [2] Batyrev described the weight and Hodge filtrations of this Variation of Mixed Hodge Structure (VMHS) in terms of the combinatorics of Λ . In

particular, $\mathcal{W}_n H^{n-1}(\mathbb{T} \setminus \mathsf{Z}_{\mathsf{s}})$ corresponds with the ideal $\mathbb{C}[\operatorname{interior}(\Lambda) \cap \mathbb{Z}^n]$ in \mathcal{S}_{Λ} . If Λ is a reflexive Gorenstein cone of index κ , this ideal is the principal ideal generated by $\mathfrak{u}^{\mathfrak{a}_0}$ (cf. (46)) and the part of weight n and Hodge type $(n - \kappa, \kappa)$ has dimension 1.

Batyrev [2] also showed that the periods of the rational (n-1)-form

$$\omega_{\mu} := \frac{\mathbf{u}^{\mu}}{\mathbf{s}^{\deg \mu}} \frac{dt_2}{t_2} \wedge \ldots \wedge \frac{dt_n}{t_n}$$
(54)

 $(\mu \in \Lambda \cap \mathbb{Z}^n, t_2, \ldots, t_n \text{ coordinates on } \mathbb{T})$ as functions of the coefficients v_m satisfy a GKZ system of differential equations (3)-(4) with parameters $\{\mathbf{a}_1, \ldots, \mathbf{a}_N\}$ and $\beta = -\mu$. However, not all solutions of this system are \mathbb{C} -linear combinations of the periods of ω_{μ} . Theorem 10 shows precisely which solutions of this system are \mathbb{C} -linear combinations of the periods of ω_{μ} in case $\mu \in \mathbb{Z}_{\geq 0} \mathbf{a}_1 + \ldots + \mathbb{Z}_{\geq 0} \mathbf{a}_N$.

The key point of our method is to study the VMHS on $H^n(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{\mathsf{s}-1})$. This has the advantage that if $\mathfrak{a}_1, \ldots, \mathfrak{a}_N$ generate \mathbb{Z}^n , then $H^n(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{\mathsf{s}-1})$ is a hypergeometric \mathcal{D} -module as in [11] with parameters $\{\mathfrak{a}_1, \ldots, \mathfrak{a}_N\}$ and $\beta = 0$; see theorem 8.

If **s** is Λ -regular (cf. definition 6) there is an exact sequence of mixed Hodge structures

$$0 \to H^{n-1}(\widetilde{\mathbb{T}}) \to H^{n-1}(\widetilde{\mathsf{Z}}_{\mathsf{s}-1}) \to H^n(\widetilde{\mathbb{T}}\operatorname{rel}\widetilde{\mathsf{Z}}_{\mathsf{s}-1}) \to H^n(\widetilde{\mathbb{T}}) \to 0$$
(55)

The left hand 0 results from a theorem of Bernstein-Danilov-Khovanskii [8, 2]. On the right we used $H^n(\tilde{Z}_{s-1}) = 0$ because \tilde{Z}_{s-1} is an affine variety of dimension n-1. Writing as usual $\mathbb{Q}(m)$ for the 1-dimensional \mathbb{Q} -Hodge structure which is purely of weight -2m and Hodge type (-m, -m) one has

$$H^{n-1}(\widetilde{\mathbb{T}}) \simeq \mathbb{Q}^n \otimes \mathbb{Q}(1-n), \quad H^n(\widetilde{\mathbb{T}}) \simeq \mathbb{Q}(-n).$$
 (56)

Morphisms of mixed Hodge structures are strictly compatible with the weight filtrations ([6] thm. 2.3.5). Thus the sequence (55) in combination with (53) gives the isomorphisms

$$\mathcal{W}_{i}H^{n-1}(\mathbb{T}\setminus\mathsf{Z}_{\mathsf{s}})\xrightarrow{\simeq}\mathcal{W}_{i}H^{n-1}(\widetilde{\mathsf{Z}}_{\mathsf{s}-1})\xrightarrow{\simeq}\mathcal{W}_{i}H^{n}(\widetilde{\mathbb{T}}\operatorname{rel}\widetilde{\mathsf{Z}}_{\mathsf{s}-1})$$
(57)

for $i \leq 2n-3$. In particular if $n \geq 3$, the weight n part relevant for the geometry on the B-side of mirror symmetry will get a complete and simple description by our analysis of the GKZ hypergeometric \mathcal{D} -module $H^n(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{\mathsf{s}-1})$.

Remark 6 Though it plays no role in this paper I want to point out that there is an interesting relation with recent work of Deninger [7]. The group Gof diagonal $n \times n$ -matrices with entries ± 1 acts naturally on $\widetilde{\mathbb{T}} = \text{Hom}(\mathbb{Z}^n, \mathbb{C}^*)$. From the inclusion $i: \widetilde{\mathsf{Z}}_{\mathsf{s}-1} \hookrightarrow \widetilde{\mathbb{T}}$ one gets the G-equivariant map $G \times \widetilde{\mathsf{Z}}_{\mathsf{s}-1} \to \widetilde{\mathbb{T}}$, $(g, z) \mapsto g \cdot i(z)$. Corresponding to this map there is an exact sequence of mixed Hodge structures with *G*-action analogous to (55). Taking isotypical parts for the character det : $G \to \{\pm 1\}$ and using $H^{n-1}(\widetilde{\mathbb{T}})(\det) = 0$, $H^n(\widetilde{\mathbb{T}})(\det) \xrightarrow{\simeq} H^n(\widetilde{\mathbb{T}})$ and $H^{n-1}(G \times \widetilde{\mathsf{Z}}_{\mathsf{s}-1})(\det) \xrightarrow{\simeq} H^{n-1}(\widetilde{\mathsf{Z}}_{\mathsf{s}-1})$ one finds the short exact sequence

$$0 \to H^{n-1}(\widetilde{\mathsf{Z}}_{\mathsf{s}-1}) \to H^n(\widetilde{\mathbb{T}}\operatorname{rel}(G \times \widetilde{\mathsf{Z}}_{\mathsf{s}-1}))(\det) \to H^n(\widetilde{\mathbb{T}}) \to 0$$
(58)

see [7] (12). In [7] remark 2.4 Deninger sketches how the extension (58) comes from a Steinberg symbol in the group $K_n(\tilde{Z}_{s-1})$ in the algebraic K-theory of \tilde{Z}_{s-1} ; in our coordinates (see remark 8) this Steinberg symbol reads

$$\{u_1, u_2, \dots, u_n\} \in K_n\left(\mathbb{C}[u_1^{\pm 1}, \dots, u_n^{\pm 1}]/(\mathsf{s}-1)\right)$$
 (59)

The exact sequence (55) decomposes into two short exact sequences

$$0 \to H^{n-1}(\widetilde{\mathbb{T}}) \to H^{n-1}(\widetilde{\mathsf{Z}}_{\mathsf{s}-1}) \to PH^{n-1}(\widetilde{\mathsf{Z}}_{\mathsf{s}-1}) \to 0 \tag{60}$$

$$0 \to PH^{n-1}(\widetilde{\mathsf{Z}}_{\mathsf{s}-1}) \to H^n(\widetilde{\mathbb{T}}\operatorname{rel}\widetilde{\mathsf{Z}}_{\mathsf{s}-1}) \to H^n(\widetilde{\mathbb{T}}) \to 0$$
(61)

which define the *primitive part* of cohomology ([2] def. 3.13). The relation between the various cohomology groups is best displayed in the following commutative diagram with injective horizontal and surjective vertical arrows:

With varying coefficients v_m the story plays in the category of Variations of Mixed Hodge Structures. With coefficients v_m fixed in some number field the story plays in a category of Mixed Motives. A challenge for further research is to combine these stories and our results on hypergeometric systems.

6 VMHS associated with a Gorenstein cone

In this section we prove theorem 8. This result is essentially implicitly contained in [2]. Our proof is mainly a review of constructions and results in [2].

Shifting emphasis from the polytope Δ to the cone Λ we write \mathcal{S}_{Λ} (instead of S_{Δ} as in [2]) for the monoid algebra $\mathbb{C}[\Lambda \cap \mathbb{Z}^n]$ viewed as a subalgebra of $\mathbb{C}[u_1^{\pm 1}, \ldots, u_n^{\pm 1}]$. The grading is given by deg $u^{\mathsf{m}} = \mathfrak{a}_0^{\vee} \cdot \mathsf{m}$ for $\mathsf{m} \in \mathbb{Z}^n$. A homogeneous element s of degree 1 in \mathcal{S}_{Λ} is a Laurent polynomial as in (51):

$$\mathsf{s} = \sum_{i=1}^{N} v_i \, \mathsf{u}^{\mathfrak{a}_i} \tag{63}$$

with coefficients $v_i \in \mathbb{C}$. Let $\widetilde{\mathbb{T}}$, \mathbb{T} , Z_{s} and $\widetilde{\mathsf{Z}}_{\mathsf{s}-1}$ be as in (49)-(53).

Remark 7 When comparing with [2] one should keep in mind that in op.cit. n is the dimension of the polytope Δ whereas here n is the dimension of the cone Λ and the polytope Δ has dimension n - 1. Also one has to make the following change of coordinates on \mathbb{Z}^n and $\mathbb{Z}^{n\vee}$. The idempotent $n \times n$ -matrix $\mathfrak{a}_1 \cdot \mathfrak{a}_0^{\vee}$ gives rise to a direct sum decomposition $\mathbb{Z}^{n\vee} = \mathbb{Z}\mathfrak{a}_0^{\vee} \oplus \Xi$ and thus to a basis $\{\mathfrak{a}_0^{\vee}, \alpha_2, \ldots, \alpha_n\}$ for $\mathbb{Z}^{n\vee}$. The coordinate change on \mathbb{Z}^n amounts to multiplying vectors in \mathbb{Z}^n by the matrix $M = (m_{ij})$ with rows $\mathfrak{a}_0^{\vee}, \alpha_2, \ldots, \alpha_n$. In particular, in the new coordinates $\mathfrak{a}_1, \ldots, \mathfrak{a}_N$ all have first coordinate 1.

The above coordinate change also induces a change of coordinates on $\widetilde{\mathbb{T}}$: $u_j = \prod_{i=1}^n t_i^{m_{ij}}$. The map $\widetilde{\mathbb{T}} \to \mathbb{T}$ is then just omitting the coordinate t_1 . In *t*-coordinates **s** takes the form $t_1 \cdot f$ where *f* is a Laurent polynomial in the variables t_2, \ldots, t_n . Thus **s** corresponds with F_0 and $\mathbf{s} - 1$ with *F* in [2] def. 4.1.

Remark 8 When comparing with [7] one sees again a shift of dimensions from n in op. cit. to n-1 here; T^n with coordinates t_1, \ldots, t_n in op. cit. is our \mathbb{T} with coordinates t_2, \ldots, t_n . The polynomial P of op. cit. and our s are related by $s = t_1 \cdot P$. The identification of $\mathbb{T} \setminus Z_s$ with \widetilde{Z}_{s-1} now gives for the Steinberg symbols $\{P, t_2, \ldots, t_n\} = -\{t_1, t_2, \ldots, t_n\} = \{u_1, u_2, \ldots, u_n\}$ if the coordinates are ordered such that det M = -1.

Before we can state Batyrev's results we need some definitions/notations. [2] def. 2.8 defines an ascending sequence of homogeneous ideals in S_{Λ} :

$$I_{\Delta}^{(0)} \subset I_{\Delta}^{(1)} \subset \ldots \subset I_{\Delta}^{(n)} \subset I_{\Delta}^{(n+1)}$$
(64)

where $I_{\Delta}^{(k)}$ is generated by the elements u^{m} with m in $\Lambda \cap \mathbb{Z}^n$ but not in any codimension k face of Λ ; in particular

$$I_{\Delta}^{(0)} = 0 , \quad I_{\Delta}^{(1)} = \mathbb{C}[\operatorname{interior}(\Lambda) \cap \mathbb{Z}^n] , \quad I_{\Delta}^{(n)} = \mathcal{S}_{\Lambda}^+ , \quad I_{\Delta}^{(n+1)} = \mathcal{S}_{\Lambda}$$
(65)

 S^+_{Λ} is the ideal in S_{Λ} generated by the monomials of degree > 0. [2] p.379 defines a descending sequence of \mathbb{C} -vector spaces in S_{Λ} :

$$\dots \supset \mathcal{E}^{-k} \supset \mathcal{E}^{-k+1} \supset \dots \supset \mathcal{E}^{-1} \supset \mathcal{E}^0 \supset \mathcal{E}^1 = 0$$
 (66)

where \mathcal{E}^{-k} is spanned by the monomials u^{m} with deg $u^{\mathsf{m}} \leq k$. [2] def. 7.2 defines the differential operators

$$D_i := u_i \frac{\partial}{\partial u_i} + u_i \frac{\partial \mathbf{s}}{\partial u_i} , \quad (i = 1, \dots, n)$$
(67)

These operate on $\mathbb{C}[u_1^{\pm 1}, \ldots, u_n^{\pm 1}]$, preserving \mathcal{S}_{Λ} and \mathcal{S}_{Λ}^+ . [2] thm. 4.8 can be used as a definition: **Definition 6** s is said to be Λ -regular if $u_1 \frac{\partial s}{\partial u_1}$, $u_2 \frac{\partial s}{\partial u_2} \dots$, $u_n \frac{\partial s}{\partial u_n}$ is a regular sequence in S_{Λ} .

Theorem 7 (summary of results in [2]) If s is Λ -regular, then there is a commutative diagram

$$\begin{aligned}
\mathcal{S}^{+}_{\Lambda} / \sum_{i=1}^{n} D_{i} \mathcal{S}^{+}_{\Lambda} &\xrightarrow{\simeq} & H^{n-1}(\widetilde{\mathsf{Z}}_{\mathsf{s}-1}) &\xrightarrow{\simeq} & H^{n-1}(\mathbb{T} \setminus \mathsf{Z}_{\mathsf{s}}) \\
\downarrow & \downarrow & \downarrow \\
\mathcal{S}_{\Lambda} / \sum_{i=1}^{n} D_{i} \mathcal{S}_{\Lambda} &\xrightarrow{\simeq} & H^{n}(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{\mathsf{s}-1})
\end{aligned} \tag{68}$$

in which the horizontal arrows are isomorphisms. These isomorphisms restrict to the following isomorphisms relating (65) and (66) with the weight and Hodge filtrations on $H^{n-1}(\mathbb{T} \setminus \mathsf{Z}_{\mathsf{s}})$ and $H^n(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{\mathsf{s}-1})$. For $k = -1, 0, 1, \ldots, n, n+1$:

$$\begin{array}{rcl} \operatorname{image} \ I_{\Delta}^{(k)} \ \operatorname{in} \ \mathcal{S}_{\Lambda}^{+} / \sum_{i=1}^{n} D_{i} \mathcal{S}_{\Lambda}^{+} & \xrightarrow{\simeq} & \mathcal{W}_{k+n-1} H^{n-1}(\mathbb{T} \setminus \mathsf{Z}_{\mathsf{s}}) \\ \operatorname{image} \ \mathcal{E}^{-k} \cap \mathcal{S}_{\Lambda}^{+} \ \operatorname{in} \ \mathcal{S}_{\Lambda}^{+} / \sum_{i=1}^{n} D_{i} \mathcal{S}_{\Lambda}^{+} & \xrightarrow{\simeq} & \mathcal{F}^{n-k} H^{n-1}(\mathbb{T} \setminus \mathsf{Z}_{\mathsf{s}}) \\ \operatorname{image} \ I_{\Delta}^{(k)} \ \operatorname{in} \ \mathcal{S}_{\Lambda} / \sum_{i=1}^{n} D_{i} \mathcal{S}_{\Lambda} & \xrightarrow{\simeq} & \mathcal{W}_{k+n-1} H^{n}(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{\mathsf{s}-1}) \\ \operatorname{image} \ \mathcal{E}^{-k} \ \operatorname{in} \ \mathcal{S}_{\Lambda} / \sum_{i=1}^{n} D_{i} \mathcal{S}_{\Lambda} & \xrightarrow{\simeq} & \mathcal{F}^{n-k} H^{n}(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{\mathsf{s}-1}) \end{array}$$

proof: The statements for $H^{n-1}(\mathbb{T} \setminus \mathsf{Z}_s)$ are theorems 7.13, 8.1 and 8.2 in [2]. The statements about $H^n(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{s-1})$ can also be derived with the methods of op. cit., as follows. Recall that $H^*(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{s-1})$ is the cohomology of the cone of the natural map of DeRham complexes $\Omega^{\bullet}_{\widetilde{\mathbb{T}}} \to \Omega^{\bullet}_{\widetilde{\mathsf{Z}}_{s-1}}$ and that this cone complex is in degrees i and i+1

$$\dots \to \Omega^{i}_{\widetilde{\mathbb{T}}} \oplus \Omega^{i-1}_{\widetilde{\mathsf{Z}}_{\mathsf{s}^{-1}}} \longrightarrow \Omega^{i+1}_{\widetilde{\mathbb{T}}} \oplus \Omega^{i}_{\widetilde{\mathsf{Z}}_{\mathsf{s}^{-1}}} \to \dots$$

$$(\omega_{1}, \omega_{2}) \mapsto (-d\omega_{1}, d\omega_{2} + \omega_{1}|_{\widetilde{\mathsf{Z}}_{\mathsf{s}^{-1}}})$$

$$(69)$$

A basis for the $\mathbb{C}[u_1^{\pm 1}, \ldots, u_n^{\pm 1}]$ -module $\Omega^{\bullet}_{\widetilde{\mathbb{T}}}$ is given by the forms $\frac{du_{i_1}}{u_{i_1}} \wedge \ldots \wedge \frac{du_{i_r}}{u_{i_r}}$. Let $\Omega^{\bullet}_{\widetilde{\mathbb{T}},0}$ denote the subgroup of $\Omega^{\bullet}_{\widetilde{\mathbb{T}}}$ consisting of the linear combinations of the basic forms with coefficients in \mathbb{C} . The standard differential d on $\Omega^{\bullet}_{\widetilde{\mathbb{T}}}$ is 0 on $\Omega^{\bullet}_{\widetilde{\mathbb{T}},0}$. The inclusion of complexes $\Omega^{\bullet}_{\widetilde{\mathbb{T}},0} \hookrightarrow \Omega^{\bullet}_{\widetilde{\mathbb{T}}}$ is a quasi-isomorphism. So in (69) we may replace $\Omega^{\bullet}_{\widetilde{\mathbb{T}}}$ by $\Omega^{\bullet}_{\widetilde{\mathbb{T}},0}$.

For the proof of [2] thm.7.13 Batyrev uses the \mathbb{C} -linear map $\mathcal{R} : \mathcal{S}^+_{\Lambda} \to \Omega^{n-1}_{\tilde{\mathsf{Z}}_{s-1}}$, $\mathcal{R}(\mathsf{u}^{\mathsf{m}}) := (-1)^{\deg \mathsf{m}-1} (\deg \mathsf{m}-1)! \, \mathsf{u}^{\mathsf{m}} \frac{dt_2}{t_2} \wedge \ldots \wedge \frac{dt_n}{t_n}$ (cf. remark 7 for the *t*-coordinates). Let us extend this to a \mathbb{C} -linear map $\mathcal{R} : \mathcal{S}_{\Lambda} \to \Omega^n_{\tilde{\mathbb{T}},0} \oplus \Omega^{n-1}_{\tilde{\mathsf{Z}}_{s-1}}$ by setting $\mathcal{R}(1) = \left(\frac{dt_1}{t_1} \wedge \ldots \wedge \frac{dt_n}{t_n}, 0\right)$. This induces a surjective linear map $S_{\Lambda} \longrightarrow H^{n}(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{\mathsf{s}-1})$ with $\sum_{i=1}^{n} D_{i} S_{\Lambda}^{+}$ in its kernel. Note $D_{i}(1) = u_{i} \frac{\partial \mathsf{s}}{\partial u_{i}}$. A direct calculation shows for $i = 1, \ldots, n$:

$$(-1)^{i-1}\mathcal{R}(t_i\frac{\partial \mathbf{s}}{\partial t_i}) = d\left(\frac{dt_1}{t_1}\wedge\ldots\wedge\frac{\widehat{dt_i}}{t_i}\wedge\ldots\wedge\frac{dt_n}{t_n}, 0\right)$$

in $\Omega^n_{\widetilde{\mathbb{T}},0}\oplus\Omega^{n-1}_{\widetilde{\mathsf{Z}}_{s-1}}$. Therefore $\mathcal R$ induces a surjective linear map

$$\mathcal{S}_{\Lambda} / \sum_{i=1}^{n} D_i \mathcal{S}_{\Lambda} \to H^n(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{\mathsf{s}-1})$$

A simple dimension count now shows that this is in fact an isomorphism.

The statements about the Hodge filtration and the weight filtration on $H^n(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{\mathsf{s}-1})$ follow from the corresponding statements for $H^{n-1}(\mathbb{T} \setminus \mathsf{Z}_{\mathsf{s}})$ and from (56).

The principal A-determinant of Gel'fand-Kapranov-Zelevinskii [13] is a polynomial $E_{\mathsf{A}}(v_1, \ldots, v_N) \in \mathbb{Z}[v_1, \ldots, v_N]$ such that (see [2] prop. 4.16):

s is
$$\Lambda$$
-regular $\iff E_{\mathsf{A}}(v_1, \dots, v_N) \neq 0$ (70)

Now we want to vary the coefficients v_i in (63) and work over the ring

$$\mathbb{C}[\mathsf{v}] := \mathbb{C}[v_1, \dots, v_N, E_\mathsf{A}^{-1}].$$
(71)

Let Ω^{\bullet} resp. $\widetilde{\Omega}^{\bullet}$ denote the DeRham complex of $\mathbb{C}[u_1^{\pm 1}, \ldots, u_n^{\pm 1}] \otimes \mathbb{C}[v]$ relative to $\mathbb{C}[v]$ resp. relative to \mathbb{C} . Define on these complexes a new differential

$$\delta : \Omega^{i} \to \Omega^{i+1} \text{ resp. } \widetilde{\Omega}^{i} \to \widetilde{\Omega}^{i+1}$$
$$\delta \omega := d\omega + d\mathbf{s} \wedge \omega$$
(72)

where d is the ordinary differential on DeRham complexes.

As a basis for the $\mathbb{C}[u_1^{\pm 1}, \ldots, u_n^{\pm 1}] \otimes \mathbb{C}[v]$ -module Ω^1 (resp. $\widetilde{\Omega}^1$) we take $\frac{du_1}{u_1}, \ldots, \frac{du_n}{u_n}$ (resp. $\frac{du_1}{u_1}, \ldots, \frac{du_n}{u_n}, dv_1, \ldots, dv_N$) and extend it by taking wedge products to a basis for Ω^{\bullet} (resp. $\widetilde{\Omega}^{\bullet}$). Let $\Omega^{\bullet}_{\Lambda}$ (resp. $\Omega^{\bullet}_{\Lambda^+}$) denote the subgroups of Ω^{\bullet} consisting of the linear combinations of the given basic forms with coefficients in $S_{\Lambda} \otimes \mathbb{C}[v]$ (resp. $S^+_{\Lambda} \otimes \mathbb{C}[v]$). Define $\widetilde{\Omega}^{\bullet}_{\Lambda}$ (resp. $\widetilde{\Omega}^{\bullet}_{\Lambda^+}$) in the same way as subgroups of $\widetilde{\Omega}^{\bullet}$. The differential δ (72) preserves these subgroups. Thus we get the two complexes

$$\begin{array}{lll} (\Omega_{\Lambda}^{\bullet}, \delta) & : & \Omega_{\Lambda}^{0} \xrightarrow{\delta} \Omega_{\Lambda}^{1} \xrightarrow{\delta} \dots \xrightarrow{\delta} \Omega_{\Lambda}^{n-1} \xrightarrow{\delta} \Omega_{\Lambda}^{n} \\ (\widetilde{\Omega}_{\Lambda}^{\bullet}, \delta) & : & \widetilde{\Omega}_{\Lambda}^{0} \xrightarrow{\delta} \widetilde{\Omega}_{\Lambda}^{1} \xrightarrow{\delta} \dots \xrightarrow{\delta} \widetilde{\Omega}_{\Lambda}^{n-1} \xrightarrow{\delta} \widetilde{\Omega}_{\Lambda}^{n} \xrightarrow{\delta} \widetilde{\Omega}_{\Lambda}^{n+1} \xrightarrow{\delta} \dots \xrightarrow{\delta} \widetilde{\Omega}_{\Lambda}^{N+n} \end{array}$$

Then

$$H^{n}(\Omega^{\bullet}_{\Lambda}, \delta) = \left(\mathcal{S}_{\Lambda} / \sum_{i=1}^{n} D_{i} \mathcal{S}_{\Lambda} \right) \otimes \mathbb{C}[\mathsf{v}]$$
(73)

The Gauss-Manin connection

$$\nabla : H^n(\Omega^{\bullet}_{\Lambda}, \delta) \to H^n(\Omega^{\bullet}_{\Lambda}, \delta) \otimes \Omega^1_{\mathbb{C}[\mathbf{v}]/\mathbb{C}}$$
(74)

on this module is described by the Katz-Oda construction (cf. [18] §1.4) as follows. Lift the given $\xi \in H^n(\Omega^{\bullet}_{\Lambda}, \delta)$ to an element $\tilde{\xi}$ in $\tilde{\Omega}^n_{\Lambda}$. Then $\nabla \xi$ is the cohomology class of $\delta \tilde{\xi} \in \tilde{\Omega}^{n+1}_{\Lambda}$ in $H^n(\Omega^{\bullet}_{\Lambda}, \delta) \otimes \Omega^1_{\mathbb{C}[v]/\mathbb{C}}$. Having $\nabla \xi$ one defines $\frac{\partial}{\partial v_j} \xi \in H^n(\Omega^{\bullet}_{\Lambda}, \delta)$ by

$$\nabla \xi = \sum_{j=1}^{N} \left(\frac{\partial}{\partial v_j} \xi \right) \otimes dv_j \tag{75}$$

In particular for $\mu \in \Lambda \cap \mathbb{Z}^n$ and

$$\xi_{\mu} := \text{ cohomology class of } \mathbf{u}^{\mu} \cdot \frac{du_1}{u_1} \wedge \ldots \wedge \frac{du_n}{u_n} \in H^n(\Omega^{\bullet}_{\Lambda}, \delta)$$
(76)

we find

$$\frac{\partial}{\partial v_j}\xi_{\mu} = \text{ cohomology class of } \mathbf{u}^{\mathfrak{a}_j+\mu} \cdot \frac{du_1}{u_1} \wedge \ldots \wedge \frac{du_n}{u_n}$$
(77)

$$= \xi_{\mu+\mathfrak{a}_j} \tag{78}$$

The form ξ_{μ} for $\mu \neq 0$ corresponds via (73) and [2] thm.7.13 with the form ω_{μ} in (54); more precisely ξ_{μ} is the cohomology class of ω_{μ} modulo $H^{n-1}(\widetilde{\mathbb{T}})$.

Corollary 4

$$\left(\mu + \sum_{j=1}^{N} \mathfrak{a}_{j} v_{j} \frac{\partial}{\partial v_{j}}\right) \xi_{\mu} = 0$$
(79)

$$\left(\prod_{\ell_j>0} \left[\frac{\partial}{\partial v_j}\right]^{\ell_j} - \prod_{\ell_j<0} \left[\frac{\partial}{\partial v_j}\right]^{-\ell_j}\right) \xi_\mu = 0 \quad \text{for } \ell \in \mathbb{L}$$
(80)

proof: On the level of differential forms in the complex $(\Omega^{\bullet}_{\Lambda}, \delta)$ the *i*-th equation of (79) reads

$$\left(\mu_i + \sum_{j=1}^N a_{ij} v_j \frac{\partial}{\partial v_j}\right) \mathbf{u}^{\mu} \cdot \frac{du_1}{u_1} \wedge \ldots \wedge \frac{du_n}{u_n} = \\ = \delta \left((-1)^{i-1} \mathbf{u}^{\mu} \frac{du_1}{u_1} \wedge \ldots \wedge \frac{du_{i-1}}{u_{i-1}} \wedge \frac{du_{i+1}}{u_{i+1}} \wedge \ldots \wedge \frac{du_n}{u_n} \right)$$

(80) follows immediately from (77).

 \boxtimes

Remark 9 We have essentially repeated the proof of [2] thm. 14.2. There is however a small difference: Batyrev uses coefficients in S^+_{Λ} where we are using coefficients in S_{Λ} . His differential equations hold for $H^{n-1}(\mathbb{T} \setminus \mathsf{Z}_{\mathsf{s}}) = H^n(\Omega^{\bullet}_{\Lambda^+}, \delta)$ whereas ours only hold in the primitive part $PH^{n-1}(\mathbb{T} \setminus \mathsf{Z}_{\mathsf{s}})$. On the other hand we can also treat ξ_0 . The following theorem shows that this gives an important advantage.

Theorem 8 If $\Lambda \cap \mathbb{Z}^n = \mathbb{Z}_{\geq 0} \mathfrak{a}_1 + \ldots + \mathbb{Z}_{\geq 0} \mathfrak{a}_N$, then ξ_0 generates $H^n(\Omega^{\bullet}_{\Lambda}, \delta)$ as a module over the ring $\mathcal{D} := \mathbb{C}[v_1, \ldots, v_N, E_{\mathsf{A}}^{-1}, \frac{\partial}{\partial v_1}, \ldots, \frac{\partial}{\partial v_N}]$. The annihilator of ξ_0 in \mathcal{D} is the left ideal generated by the differential operators

$$\sum_{j=1}^{N} a_{ij} v_j \frac{\partial}{\partial v_j} \quad and \quad \prod_{\ell_j > 0} \left[\frac{\partial}{\partial v_j} \right]^{\ell_j} - \prod_{\ell_j < 0} \left[\frac{\partial}{\partial v_j} \right]^{-\ell_j}$$

with $1 \leq i \leq n$ and $\ell \in \mathbb{L}$.

In other words, $H^n(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{\mathsf{s}-1}) = H^n(\Omega^{\bullet}_{\Lambda}, \delta)$ is the hypergeometric \mathcal{D} -module in the sense of [11] §2.1 with parameters $\{\mathfrak{a}_1, \ldots, \mathfrak{a}_N\}$ and $\beta = 0$.

proof: Let \mathcal{M}_0 denote the hypergeometric \mathcal{D} -module with parameters $\beta = 0$ and $\{\mathfrak{a}_1, \ldots, \mathfrak{a}_N\}$ as in [11] section 2.1. By corollary 4 and formula (78) we have a surjective homomorphism of \mathcal{D} -modules $\mathcal{M}_0 \to H^n(\Omega^{\bullet}_{\Lambda}, \delta)$. The filtration of \mathcal{D} by the order of differential operators induces an ascending filtration on \mathcal{M}_0 and $H^n(\Omega^{\bullet}_{\Lambda}, \delta)$. It suffices to prove that the above surjection induces an isomorphism for the associated graded modules. According to [11] prop.3 $gr \mathcal{M}_0$ is isomorphic to the quotient of the ring $\mathbb{C}[x_1, \ldots, x_N] \otimes \mathbb{C}[\mathsf{v}]$ by the ideal generated by the linear forms $\sum_{j=1}^N a_{ij}x_j$ for $i = 1, \ldots, n$ and by the polynomials $\prod_{\ell_j>0} x_j^{\ell_j} - \prod_{\ell_j<0} x_j^{-\ell_j}$ with $\ell \in \mathbb{L}$. Via the substitution homorphism $x_j \mapsto \mathsf{u}^{\mathfrak{a}_j}$ this quotient ring is isomorphic to the quotient of the ring $\mathcal{S}_{\Lambda} \otimes \mathbb{C}[\mathsf{v}]$ by the ideal generated by $u_1 \frac{\partial \mathsf{s}}{\partial u_1}, u_2 \frac{\partial \mathsf{s}}{\partial u_2}, \ldots, u_n \frac{\partial \mathsf{s}}{\partial u_n}$. Using (77), (73) and (67) one checks that the latter quotient ring is isomorphic to $gr H^n(\Omega^{\bullet}_{\Lambda}, \delta)$.

PART II A

Introduction II A

In this Part II A we give our results the flavor of Mirror Symmetry by showing that for a regular triangulation \mathcal{T} which satisfies conditions (81), (82), (83), the ring $\mathcal{R}_{\mathsf{A},\mathcal{T}}$ is the cohomology ring of a toric variety constructed somehow from the dual Gorenstein cone Λ^{\vee} and that the ring $\mathcal{R}_{\mathsf{A},\mathcal{T}}/\operatorname{Ann} c_{\operatorname{core}}$ is a subring of the Chow ring of a Calabi-Yau complete intersection in that toric variety; more precisely the subring is the image of the Chow ring of the ambient toric variety.

We construct several toric varieties which are also used in [3]. As we want to promote the use of triangulations we give a construction of these toric varieties as a quotient of an open part of \mathbb{C}^d (d an appropriate dimension) by a torus. The torus is related to \mathbb{L} and the open part is given by the triangulation \mathcal{T} . Such a construction of toric varieties is well known (see for instance [16]).

7 Triangulations with non-empty core and completely split reflexive Gorenstein cones.

Proposition 3 Assume that \mathcal{T} satisfies the following three conditions

core
$$\mathcal{T}$$
 is not empty and core $\mathcal{T} = \{1, \dots, \kappa\}$ (81)

- core \mathcal{T} is not contained in the boundary of Δ (82)
- T is unimodular (83)

Then $\Lambda := \mathbb{R}_{\geq 0}\mathfrak{a}_1 + \ldots + \mathbb{R}_{\geq 0}\mathfrak{a}_N$ is a reflexive Gorenstein cone of index κ and the dual cone Λ^{\vee} is completely split in the sense of [3] definition 3.9.

proof: By lemma 6 and hypotheses (81) and (82) the (n-2)-dimensional simplices in the boundary of Δ are precisely the simplices $I \setminus \{i\}$ with $I \in \mathcal{T}^n$ and $i = 1, \ldots, \kappa$. It follows that the dual cone Λ^{\vee} is generated by the set of row vectors $\{\mathfrak{a}_{I,i}^{\vee} \mid I \in T^n, i = 1, \dots, \kappa\}$ where

 $\mathfrak{a}_{I,i}^{\vee} := \text{ the } i\text{-th row of the matrix } \mathsf{A}_{I}^{-1}$

Hypothesis (83) implies $\mathfrak{a}_{I,i}^{\vee} \in \mathbb{Z}^{n^{\vee}}$ for all I, i. By construction

$$\mathbf{a}_{I,i}^{\vee} \cdot \mathbf{a}_j = \begin{cases} \geq 0 & \text{for } j = 1, \dots, N \\ 1 & \text{if } j = i \\ 0 & \text{if } 1 \leq j \leq \kappa, \ j \neq i \end{cases}$$
(84)

So if we take

$$\mathfrak{a}_0 := \mathfrak{a}_1 + \ldots + \mathfrak{a}_\kappa \in \mathbb{R}^n \tag{85}$$

then

$$\mathfrak{a}_{I,i}^{\vee} \cdot \mathfrak{a}_0 = 1 \quad \text{for} \quad I \in \mathcal{T}^n, \ i = 1, \dots, \kappa.$$

This shows that Λ^{\vee} is a Gorenstein cone. Hence Λ is a reflexive Gorenstein cone

with index $\mathfrak{a}_0^{\vee} \cdot \mathfrak{a}_0 = \kappa$. Every element of Λ^{\vee} can be written as $\sum_{I,i} s_{I,i} \mathfrak{a}_{I,i}^{\vee}$ with all $s_{I,i} \in \mathbb{R}_{\geq 0}$. Such a sum can be rearranged as $\sum_{i=1}^{\kappa} t_i \alpha_i$ with $t_i = \sum_I s_{I,i}$ and $\alpha_i \in \Box_i$ where

$$\Box_i := \operatorname{conv} \left\{ \mathfrak{a}_{I,i}^{\vee} \, | \, I \in T^n \right\}.$$
(86)

 \Box_i is a lattice polytope in the $(n-\kappa)$ -dimensional affine subspace of $\mathbb{R}^{n\vee}$ given by the equations $\xi \cdot \mathfrak{a}_i = 1$ and $\xi \cdot \mathfrak{a}_j = 0$ if $1 \leq j \leq \kappa$, $j \neq i$ (cf. (84)). This shows that Λ^{\vee} is a *completely split* reflexive Gorenstein cone of index κ in the sense of [3] definition 3.9.

Note that the dimension of \Box_i equals n-2 minus the dimension of the minimal face of Δ which contains $\{\mathfrak{a}_i \mid j \in \operatorname{core} \mathcal{T} \setminus \{i\}\}$. \boxtimes

8 Triangulations and toric varieties

We assume from now on that T satisfies the conditions (81), (82), (83).

Take some $I_0 \in \mathcal{T}^n$ and consider the matrix $(u_{ij}) := A_{I_0}^{-1} A$. Then in definition 2 the linear forms

$$u_{i1}C_1 + u_{i2}C_2 + \ldots + u_{iN}C_N \quad (i = 1, \ldots, n)$$
(87)

together with the monomials in (14) give another system of generators for the ideal \mathcal{J} . The corresponding relations in $\mathcal{R}_{\mathsf{A},\mathcal{T}}$ for $i = 1, \ldots, \kappa$ express c_1, \ldots, c_{κ} as linear combinations of $c_{\kappa+1}, \ldots, c_N$. The relations for $i = \kappa + 1, \ldots, n$ do not involve c_1, \ldots, c_{κ} . Also the monomials in (14) do not involve C_1, \ldots, C_{κ} .

Let $\mathfrak{u}_{\kappa+1},\ldots,\mathfrak{u}_N \in \mathbb{R}^{n-\kappa}$ be the columns of the matrix $(u_{ij})_{\kappa < i \leq n, \kappa < j \leq N}$. There is a simplicial fan \mathcal{F}' in $\mathbb{R}^{n-\kappa}$ given by the cones

$$\mathbb{R}_{\geq 0}\mathfrak{u}_{i_1} + \ldots + \mathbb{R}_{\geq 0}\mathfrak{u}_{i_s} \quad \text{with } i_1, \ldots, i_s > \kappa \text{ and } \{i_1, \ldots, i_s\} \in \mathcal{T}$$
(88)

i.e. the index set is a simplex in the triangulation \mathcal{T} .

The fan \mathcal{F}' is complete iff $0 \in \mathbb{R}^{n-\kappa}$ is a linear combination with positive coefficients of the vectors $\mathfrak{u}_{\kappa+1}, \ldots, \mathfrak{u}_N$. This is equivalent to condition (82). Condition (83) implies that \mathcal{F}' is a fan of regular simplicial cones, i.e. its maximal cones are spanned by a basis of $\mathbb{Z}^{n-\kappa}$.

Combining these considerations with [5] thm.10.8 or [10] prop.p.106 we find:

Theorem 9 If the triangulation \mathcal{T} satisfies conditions (81), (82), (83), then $\mathcal{R}_{\mathsf{A},\mathcal{T}}$ is isomorphic to the cohomology ring $H^*(\mathbb{P}_{\mathcal{T}},\mathbb{Z})$ of the $(n-\kappa)$ -dimensional smooth projective toric variety $\mathbb{P}_{\mathcal{T}}$ associated with the fan \mathcal{F}' (see definition 8); more precisely:

$$\mathcal{R}_{\mathsf{A},\mathcal{T}}^{(m)} \simeq H^{2m}(\mathbb{P}_{\mathcal{T}},\mathbb{Z}) , \qquad m = 0, 1, \dots, n - \kappa .$$

and $\mathcal{R}_{\mathsf{A},\mathcal{T}}^{(m)} = 0$ for $m > n - \kappa$.

There is much more geometry in those three conditions than was used for theorem 9. Consider in \mathbb{R}^n the fan \mathcal{F} consisting of the cones

$$\mathbb{R}_{>0}\mathfrak{a}_{i_1} + \ldots + \mathbb{R}_{>0}\mathfrak{a}_{i_s} , \quad \{i_1, \ldots, i_s\} \in \mathcal{T}.$$

$$(89)$$

 \boxtimes

The standard constructions produce a toric variety $\mathbb{E}_{\mathcal{T}}$ from this fan. We recall the construction of the toric variety $\mathbb{E}_{\mathcal{T}}$ as a quotient of an open part of \mathbb{C}^N by the torus $\mathbb{L} \otimes \mathbb{C}^*$. This torus appears here because \mathbb{L} is the lattice of linear relations between the vectors $\mathfrak{a}_1, \ldots, \mathfrak{a}_N$; by condition (83) and corollary 1 these are exactly the generators of the 1-dim cones of the fan \mathcal{F} .

Take \mathbb{C}^N with coordinates x_1, \ldots, x_N and define

$$\mathbb{C}_{I}^{N} := \{ (x_{1}, \dots, x_{N}) \in \mathbb{C}^{N} \mid x_{j} \neq 0 \text{ if } j \notin I \} \text{ for } I \in \mathcal{T}^{n} \\
\mathbb{C}_{T}^{N} := \bigcup_{I \in \mathcal{T}^{n}} \mathbb{C}_{I}^{N}$$
(90)

The torus \mathbb{C}^{*N} acts on \mathbb{C}^N via coordinatewise multiplication. The inclusion $\mathbb{L} \subset \mathbb{Z}^N$ induces an inclusion of tori $\mathbb{L} \otimes \mathbb{C}^* \subset \mathbb{C}^{*N}$. Thus $\mathbb{L} \otimes \mathbb{C}^*$ acts on \mathbb{C}^N . For $\ell = (\ell_1, \ldots, \ell_N) \in \mathbb{L}$, $t \in \mathbb{C}^*$ the element $\ell \otimes t$ acts as

$$(\ell \otimes t) \cdot (x_1, \dots, x_N) := (t^{\ell_1} x_1, \dots, t^{\ell_N} x_N) \tag{91}$$

Definition 7 $\mathbb{E}_{\mathcal{T}} := \mathbb{C}_{\mathcal{T}}^N / \mathbb{L} \otimes \mathbb{C}^*$.

Take an $(N-n) \times N$ -matrix B with entries in \mathbb{Z} such that the columns of B^t constitute a basis for L. For $I \subset \{1, \ldots, N\}$ we denote by A_I (resp. B_{I*}) the submatrix of A (resp. B) composed of the entries with column index in I (resp. in $I^* := \{1, \ldots, N\} \setminus I$). Consider $I = \{i_1, \ldots, i_n\} \in T^n$. Then $\det(B_{I^*}) = \pm \det(A_I) = \pm 1$ by condition (83). So B_{I*} is invertible over \mathbb{Z} . From this one easily sees that there is an isomorphism

Hence $\mathbb{E}_{\mathcal{T}}$ is a smooth toric variety. The torus $\mathbb{C}^{*N} / \mathbb{L} \otimes \mathbb{C}^* = \mathbb{M} \otimes \mathbb{C}^*$ acts on $\mathbb{E}_{\mathcal{T}}$ and the variety $\mathbb{E}_{\mathcal{T}}$ contains $\mathbb{M} \otimes \mathbb{C}^*$ as a dense open subset.

One constructs in the same way the toric variety $\mathbb{P}_{\mathcal{T}}$ from the fan \mathcal{F}' (see (88)). Now the lattice of linear relations between the generators $\mathfrak{u}_{\kappa+1},\ldots,\mathfrak{u}_N$ of the 1-dimensional cones of the fan \mathcal{F}' is the image of the composite map $\mathbb{L} \hookrightarrow \mathbb{Z}^N \twoheadrightarrow \mathbb{Z}^{N-\kappa}$. This map $\mathbb{L} \to \mathbb{Z}^{N-\kappa}$ is also injective. Take $\mathbb{C}^{N-\kappa}$ with coordinates $x_{\kappa+1},\ldots,x_N$ and define

$$\mathbb{C}_{I}^{N-\kappa} := \{ (x_{\kappa+1}, \dots, x_{N}) \in \mathbb{C}^{N} \mid x_{j} \neq 0 \text{ if } j \notin I \} \text{ for } I \in \mathcal{T}^{n} \\
\mathbb{C}_{T}^{N-\kappa} := \bigcup_{I \in \mathcal{T}^{n}} \mathbb{C}_{I}^{N-\kappa}$$
(93)

 $\mathbb{L} \otimes \mathbb{C}^*$ is a subtorus of $\mathbb{C}^{*N-\kappa}$ and acts accordingly; i.e. as in (91) using only the coordinates with index $> \kappa$.

$\textbf{Definition 8} \qquad \mathbb{P}_{\mathcal{T}} := \ \mathbb{C}_{\mathcal{T}}^{N-\kappa} / \mathbb{L} \otimes \mathbb{C}^{\, \ast} \, .$

 $\mathbb{P}_{\mathcal{T}}$ is a smooth projective toric variety: smooth for the same reason as $\mathbb{E}_{\mathcal{T}}$ and projective because the fan \mathcal{F}' is complete. Projection onto the last $N - \kappa$ coordinates induces a surjective morphism

$$\pi : \mathbb{E}_{\mathcal{T}} \to \mathbb{P}_{\mathcal{T}} \tag{94}$$

As (90) puts no restriction on the coordinates x_1, \ldots, x_{κ} , the fibers of π are complex vector spaces of dimension κ ; more precisely, (92) gives a trivialization

$$\mathbb{C}_{I}^{N}/\mathbb{L}\otimes\mathbb{C}^{*}\simeq\mathbb{C}^{n}\simeq\mathbb{C}^{\kappa}\times\mathbb{C}^{n-\kappa}\simeq\mathbb{C}^{\kappa}\times\left(\mathbb{C}_{I}^{N-\kappa}/\mathbb{L}\otimes\mathbb{C}^{*}\right)$$

Thus:

Proposition 4 $\mathbb{E}_{\mathcal{T}}$ has the structure of a vector bundle of rank κ over $\mathbb{P}_{\mathcal{T}}$.

The dual vector bundle $\mathbb{E}_{\mathcal{T}}^{\vee} \to \mathbb{P}_{\mathcal{T}}$ can be constructed as

$$\mathbb{E}_{\mathcal{T}}^{\vee} := \mathbb{C}_{\mathcal{T}}^{N} / (\mathbb{L} \otimes \mathbb{C}^{*})'$$
(95)

with $\mathbb{C}^N_{\mathcal{T}}$ as in definition 7, but with the action of $\mathbb{L} \otimes \mathbb{C}^*$ slightly modified from (91): the element $\ell \otimes t$ now acts as

$$(\ell \otimes t) \cdot' (x_1, \dots, x_N) := (t^{-\ell_1} x_1, \dots, t^{-\ell_\kappa} x_\kappa, t^{\ell_{\kappa+1}} x_{\kappa+1}, \dots, t^{\ell_N} x_N)$$
(96)

For the sake of completeness we also describe the construction of the bundle of projective spaces $\mathbb{PE}_{\mathcal{T}} \to \mathbb{P}_{\mathcal{T}}$ associated with the vector bundle $\mathbb{E}_{\mathcal{T}} \to \mathbb{P}_{\mathcal{T}}$. Take as before \mathbb{C}^N with coordinates x_1, \ldots, x_N . Define for $i \in \operatorname{core} \mathcal{T}$ and $I \in \mathcal{T}^n$

$$\mathbb{C}_{i,I}^{N} := \{ (x_{1}, \dots, x_{N}) \in \mathbb{C}^{N} \mid x_{i} \neq 0 \text{ and } x_{j} \neq 0 \text{ if } j \notin I \}$$

$$\mathbb{C}_{T_{0}}^{N} := \bigcup_{i \in \operatorname{core} \mathcal{T}, \ I \in \mathcal{T}^{n}} \mathbb{C}_{i,I}^{N}$$
(97)

Write $\mathbf{k} := (k_1, \ldots, k_N)^t$ with $k_j = 1$ if $j \in \operatorname{core} \mathcal{T}$ resp. $k_j = 0$ if $j \notin \operatorname{core} \mathcal{T}$, i.e. $\mathbf{k} = (1, \ldots, 1, 0, \ldots, 0)^t$. Clearly $\mathbf{k} \notin \mathbb{L}$. Hence $\mathbb{Z} \cdot \mathbf{k} \oplus \mathbb{L} \subset \mathbb{Z}^N$ and $(\mathbb{Z} \cdot \mathbf{k} \oplus \mathbb{L}) \otimes \mathbb{C}^* \subset \mathbb{C}^{*N}$. Then

$$\mathbb{PE}_{\mathcal{T}} := \mathbb{C}^{N}_{\mathcal{T}\circ} / (\mathbb{Z} \cdot \mathsf{k} \oplus \mathbb{L}) \otimes \mathbb{C}^{*}.$$
⁽⁹⁸⁾

with the morphism $\mathbb{PE}_{\mathcal{T}} \to \mathbb{P}_{\mathcal{T}}$ induced from projection onto the last $N - \kappa$ coordinates.

There are two kinds of codim 1 simplices in the triangulation \mathcal{T} : those which do contain core \mathcal{T} and those which do not. Those which do not contain core \mathcal{T} are precisely the ones of the form $I \setminus \{i\}$ with $I \in \mathcal{T}^n$ and $i \in \operatorname{core} \mathcal{T}$. Notice the relation with (97). The codim 1 simplices which do not contain core \mathcal{T} constitute a triangulation of the boundary of Δ . Let as in (85)

$$\mathfrak{a}_0 := \mathfrak{a}_1 + \ldots + \mathfrak{a}_\kappa$$

Then $\mathbb{Z} \cdot \mathbf{k} \oplus \mathbb{L} \subset \mathbb{Z}^N$ is precisely the lattice of linear relations between the vectors $\mathfrak{a}_1 - \frac{1}{\kappa} \mathfrak{a}_0, \ \mathfrak{a}_2 - \frac{1}{\kappa} \mathfrak{a}_0, \ldots, \mathfrak{a}_N - \frac{1}{\kappa} \mathfrak{a}_0$. Thus we see:

Proposition 5 $\mathbb{PE}_{\mathcal{T}}$ is the (n-1)-dimensional smooth projective toric variety associated with the lattice $\mathbb{Z}(\mathfrak{a}_1 - \frac{1}{\kappa}\mathfrak{a}_0) + \ldots + \mathbb{Z}(\mathfrak{a}_N - \frac{1}{\kappa}\mathfrak{a}_0)$ and the fan consisting the cones with apex 0 over the simplices of the triangulation of the boundary of $-\frac{1}{\kappa}\mathfrak{a}_0 + \Delta$ induced by \mathcal{T} .

9 Calabi-Yau complete intersections in toric varieties

According to proposition 3 conditions (81), (82), (83) imply that Λ^{\vee} is a completely split reflexive Gorenstein cone. In [3] Batyrev and Borisov relate this

splitting property to complete intersections in toric varieties. Formulated in our present context this relation is as follows.

A (global) section of $\mathbb{E}_{\mathcal{T}}^{\vee} \to \mathbb{P}_{\mathcal{T}}$ is given by polynomials $P_i(x_{\kappa+1},\ldots,x_N)$ $(i=1,\ldots,\kappa)$ which satisfy the homogeneity condition

$$P_i(t^{\ell_{\kappa+1}} \cdot x_{\kappa+1}, \dots, t^{\ell_N} \cdot x_N) = t^{-\ell_i} \cdot P_i(x_{\kappa+1}, \dots, x_N)$$
(99)

for every $t \in \mathbb{C}^*$ and $\ell = (\ell_1, \ldots, \ell_N)^t \in \mathbb{L}$. The vector bundle is a direct sum of line bundles and the polynomial P_i gives a section of the *i*-th line bundle.

The polynomial P_i is a linear combination of monomials $x_{\kappa+1}^{m_{\kappa+1}} \cdot \ldots \cdot x_N^{m_N}$ such that

$$\ell_{\kappa+1}m_{\kappa+1} + \ldots + \ell_N m_N = -\ell_i \quad \text{for all } \ell = (\ell_1, \ldots, \ell_N) \in \mathbb{L}.$$

These monomials correspond bijectively to the elements (m_1, \ldots, m_N) in the row space of matrix A which satisfy $m_i = 1$, $m_j = 0$ if $1 \le j \le \kappa, j \ne i$ and $m_j \ge 0$ if $j > \kappa$. Equivalently, these monomials correspond bijectively to the elements $\mathbf{w} \in \mathbb{Z}^{n\vee}$ which satisfy

$$\mathbf{w} \cdot \mathbf{a}_{j} = \begin{cases} \geq 0 & \text{for } j = 1, \dots, N \\ 1 & \text{if } j = i \\ 0 & \text{if } 1 \leq j \leq \kappa, \ j \neq i \end{cases}$$
(100)

So the monomials in the polynomial P_i correspond bijectively to the integral lattice points in the polytope \Box_i ; see (86).

The zero locus of the section of $\mathbb{E}_{\mathcal{T}}^{\vee} \to \mathbb{P}_{\mathcal{T}}$ corresponding to the polynomials $P_i(x_{\kappa+1},\ldots,x_N)$ $(i=1,\ldots,\kappa)$ is clearly the complete intersection in $\mathbb{P}_{\mathcal{T}}$ with (homogeneous) equations

$$P_i(x_{\kappa+1},...,x_N) = 0$$
 $(i = 1,...,\kappa)$ (101)

If the coefficients of these polynomials satisfy a Λ^{\vee} -regularity condition, then this complete intersection is a Calabi-Yau variety Y of dimension $n - 2\kappa$.

The ring $\mathcal{R}_{\mathsf{A},\mathcal{T}}$ is isomorphic to the cohomology ring of the toric variety $\mathbb{P}_{\mathcal{T}}$. The elements $-c_1, \ldots, -c_{\kappa}$ are the Chern classes of the hypersurfaces associated with the polynomials P_1, \ldots, P_{κ} . With as before $c_{\text{core}} = c_1 \cdot \ldots \cdot c_{\kappa}$, the ring $\mathcal{R}_{\mathsf{A},\mathcal{T}}/\operatorname{Ann} c_{\text{core}}$ is isomorphic to the image of $H^*(\mathbb{P}_{\mathcal{T}},\mathbb{Z})$ in $H^*(Y,\mathbb{Z})$.

Conclusions

Consider the map $\mathbf{v} : \mathbb{C}^{N\vee} \to \mathbb{C}^{N\vee}$, $\mathbf{v}(z_1, \ldots, z_N) := (\mathbf{e}^{2\pi i z_1}, \ldots, \mathbf{e}^{2\pi i z_N})$. According to [13] p.304 cor.1.7 there is a vector $b \in \mathcal{C}_T$ such that

$$E_{\mathsf{A}}(\mathsf{v}(\mathsf{z})) \neq 0 \quad \text{for all} \quad \mathsf{z} \in \mathbb{C}^{N \vee} \quad \text{such that} \quad p(\Im \mathsf{z}) \in b + \mathcal{C}_{\mathcal{T}};$$
(102)

here $p : \mathbb{R}^{N \vee} \to \mathbb{L}_{\mathbb{R}}^{\vee}$ denotes the surjection dual to the inclusion $\mathbb{L} \hookrightarrow \mathbb{Z}^n$. This shows how one can replace the domain of definition $\mathcal{V}_{\mathcal{T}}$ of the functions $\Psi_{\mathcal{T},\beta}$ (cf. (40)) by a slightly smaller domain $\mathcal{V}'_{\mathcal{T}}$ such that on $\mathsf{v}(\mathcal{V}'_{\mathcal{T}})$ the function E_{A} is nowhere zero. The \mathcal{D} -module $H^n(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{\mathsf{s}-1})$ is therefore defined on $\mathsf{v}(\mathcal{V}'_{\mathcal{T}})$; cf. theorem 8. Its pullback to $\mathcal{V}'_{\mathcal{T}}$ is the $\mathcal{D}_{\mathcal{T}}$ -module $H^n(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{\mathsf{s}-1}) \otimes \mathcal{O}_{\mathcal{T}}$, where $\mathcal{O}_{\mathcal{T}}$ denotes the ring of holomorphic functions on $\mathcal{V}'_{\mathcal{T}}$ and $\mathcal{D}_{\mathcal{T}}$ denotes the corresponding ring of differential operators.

The functions $\Psi_{\mathcal{T},\beta}$ are also defined on the domain $\mathcal{V}'_{\mathcal{T}}$ and

$$\Psi_{\mathcal{T},\beta} \in \mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathcal{O}_{\mathcal{T}}.$$

 $\mathcal{R}_{A,\mathcal{T}} \otimes \mathcal{O}_{\mathcal{T}}$ is a $\mathcal{D}_{\mathcal{T}}$ -module with $\mathcal{R}_{A,\mathcal{T}}$ as its group of horizontal sections. The following theorem summarizes the results of this paper:

Theorem 10 Let $\{\mathfrak{a}_1, \ldots, \mathfrak{a}_N\}$ be a finite subset of \mathbb{Z}^n which satisfies condition 1. Let $\Lambda := \mathbb{R}_{\geq 0}\mathfrak{a}_1 + \ldots + \mathbb{R}_{\geq 0}\mathfrak{a}_N$ be the associated Gorenstein cone and $\Delta := \operatorname{conv} \{\mathfrak{a}_1, \ldots, \mathfrak{a}_N\}$.

(i). If there exists a unimodular regular triangulation of Δ , then condition 2 is satisfied and $\mathfrak{a}_1, \ldots, \mathfrak{a}_N$ generate \mathbb{Z}^n , i.e.

$$\Delta \cap \mathbb{Z}^n = \{\mathfrak{a}_1, \dots, \mathfrak{a}_N\} \quad and \quad \mathbb{M} = \mathbb{Z}^n \,. \tag{103}$$

 (ii). For every unimodular regular triangulation T there is an isomorphism of D_T-modules on V'_T:

$$H^{n}(\widetilde{\mathbb{T}}\operatorname{rel}\widetilde{\mathsf{Z}}_{\mathsf{s}-1})\otimes\mathcal{O}_{\mathcal{T}}\simeq\mathcal{R}_{\mathsf{A},\mathcal{T}}\otimes\mathcal{O}_{\mathcal{T}}$$
(104)

through which ξ_0 corresponds with $\Psi_{\mathcal{T},0}$. More generally ξ_{μ} corresponds with $\Psi_{\mathcal{T},-\mu}$ if $\mu \in \Lambda \cap \mathbb{Z}^n$.

(iii). In particular if Λ is a reflexive Gorenstein cone of index κ and \mathcal{T} is a unimodular regular triangulation, then $\mathcal{W}_n H^n(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{\mathsf{s}-1}) \otimes \mathcal{O}_{\mathcal{T}}$ is generated as a $\mathcal{D}_{\mathcal{T}}$ -module by $\xi_{\mathfrak{a}_0}$ and corresponds via (104) with the sub- $\mathcal{D}_{\mathcal{T}}$ -module of $\mathcal{R}_{\mathsf{A},\mathcal{T}} \otimes \mathcal{O}_{\mathcal{T}}$ generated by $\Psi_{\mathcal{T},-\mathfrak{a}_0}$.

Moreover $\xi_{\mathfrak{a}_0}$ has weight n and Hodge type $(n - \kappa, \kappa)$.

(iv). If Λ is a reflexive Gorenstein cone and \mathcal{T} is a unimodular regular triangulation with non-empty core, then (104) induces an isomorphism

$$\mathcal{W}_{n}H^{n}(\bar{\mathbb{T}}\operatorname{rel}\bar{\mathsf{Z}}_{\mathsf{s}-1})\otimes\mathcal{O}_{\mathcal{T}} \simeq c_{\operatorname{core}}\mathcal{R}_{\mathsf{A},\mathcal{T}}\otimes\mathcal{O}_{\mathcal{T}}$$

$$\simeq \mathcal{R}_{\mathsf{A},\mathcal{T}}/\operatorname{Ann}c_{\operatorname{core}}\otimes\mathcal{O}_{\mathcal{T}}$$
(105)

- (v). Now assume T satisfies conditions (81), (82), (83), i.e. T is a unimodular regular triangulation whose core is not empty and is not contained in the boundary of Δ. Then
 - (a) Λ is a reflexive Gorenstein cone.

(b) $\mathcal{R}_{\mathsf{A},\mathcal{T}}$ is isomorphic to the cohomology ring $H^*(\mathbb{P}_{\mathcal{T}},\mathbb{Z})$ of the $(n-\kappa)$ -dimensional smooth projective toric variety $\mathbb{P}_{\mathcal{T}}$:

 $\mathcal{R}^{(m)}_{\mathbf{A}\mathcal{T}} \simeq H^{2m}(\mathbb{P}_{\mathcal{T}}, \mathbb{Z}) , \qquad m = 0, 1, \dots, n - \kappa$ (106)

and in particular for m = 1: $\mathbb{L}_{\mathbb{Z}}^{\vee} \simeq Pic(\mathbb{P}_{\mathcal{T}})$.

- (c) $c_{\text{core}} = c_{\kappa}(\mathbb{E}_{\mathcal{T}})$, the top Chern class of the vectorbundle $\mathbb{E}_{\mathcal{T}}$.
- (d) The zero locus of a general section of the dual vector bundle $\mathbb{E}_{\mathcal{T}}^{\vee}$ is an $n 2\kappa$ -dimensional Calabi-Yau complete intersection in $\mathbb{P}_{\mathcal{T}}$.
- (e)

$$H^{n}(\mathbb{T}\operatorname{rel} \mathsf{Z}_{\mathsf{s}-1}) \otimes \mathcal{O}_{\mathcal{T}} \simeq H^{*}(\mathbb{P}_{\mathcal{T}}, \mathbb{Z}) \otimes \mathcal{O}_{\mathcal{T}}$$
(107)

$$\mathcal{W}_n H^n(\widetilde{\mathbb{T}} \operatorname{rel} \widetilde{\mathsf{Z}}_{\mathsf{s}-1}) \otimes \mathcal{O}_{\mathcal{T}} \simeq c_\kappa(\mathbb{E}_{\mathcal{T}}) H^*(\mathbb{P}_{\mathcal{T}}, \mathbb{Z}) \otimes \mathcal{O}_{\mathcal{T}}$$
 (108)

(f) The monodromy representation is isomorphic to the representation of $Pic(\mathbb{P}_{\mathcal{T}})$ on $H^*(\mathbb{P}_{\mathcal{T}},\mathbb{Z})$ (resp. on $c_{\kappa}(\mathbb{E}_{\mathcal{T}}) H^*(\mathbb{P}_{\mathcal{T}},\mathbb{Z})$) in which the Chern class $c_1(\mathcal{L})$ of a line bundle \mathcal{L} acts as multiplication by $\exp(c_1(\mathcal{L}))$.

Proof: (i): corollary 1. (ii): theorems 5 and 8, formulas (18) and (78). (iii): formulas (46), (48), (65) and theorem 7. (iv): corollary 3 and theorem 6. (va): proposition 3. (vb): theorem 9 and corollary 1. (vc): section 9. (vd): section 9. (ve): (104) and (105). (vf): formula (21).

All cases which have on the A-side of mirror symmetry a smooth complete intersection Calabi-Yau variety in a smooth projective toric variety, are covered by this theorem. Indeed, a smooth projective toric variety \mathbb{P} of dimension d can be constructed from a complete simplicial fan in which every maximal cone is generated by a basis of the lattice \mathbb{Z}^d . Let $u_1, \ldots, u_p \in \mathbb{Z}^d$ be the generators of the 1-dimensional cones in the fan and let

$$\overline{\mathbb{L}} := \{ (m_1, \ldots, m_p) \in \mathbb{Z}^p \mid m_1 \mathsf{u}_1 + \ldots m_p \mathsf{u}_p = 0 \}$$

The toric variety \mathbb{P} can also be obtained as the quotient of a certain open part of \mathbb{C}^p by the action of the subtorus $\overline{\mathbb{L}} \otimes \mathbb{C}^*$ of $(\mathbb{C}^*)^p$. The Calabi-Yau complete intersection Y of codimension κ in \mathbb{P} is the common zero locus of polynomials P_1, \ldots, P_{κ} which are homogeneous for the action of $\overline{\mathbb{L}} \otimes \mathbb{C}^*$. The homogeneity of P_i is given by a character of this torus, i.e. by a linear map $\chi_i : \overline{\mathbb{L}} \to \mathbb{Z}$. Now set $N = p + \kappa$ and $n = d + \kappa$. Let

$$\mathbb{L} := \{ (-\chi_1(\mathsf{m}), \dots, -\chi_{\kappa}(\mathsf{m}), m_1, \dots, m_p) \in \mathbb{Z}^N \mid \mathsf{m} = (m_1, \dots, m_p) \in \overline{\mathbb{L}} \}.$$

Then \mathbb{L} has rank N-n. The Calabi-Yau condition for Y implies $\ell_1 + \ldots + \ell_N = 0$ for every $\ell = (\ell_1, \ldots, \ell_N) \in \mathbb{L}$.

Let B be an $(N - n) \times N$ -matrix with entries in \mathbb{Z} such that the columns of B^t constitute a basis for \mathbb{L} . Let A be an $n \times N$ -matrix of rank n with entries

in \mathbb{Z} such that $\mathsf{A} \cdot \mathsf{B}^t = 0$. Then the columns $\mathfrak{a}_1, \ldots, \mathfrak{a}_N$ of A satisfy condition 1. One obtains a regular triangulation of $\Delta := \operatorname{conv} \{\mathfrak{a}_1, \ldots, \mathfrak{a}_N\}$ which satisfies the three conditions (81), (82), (83), by taking as its maximal simplices all $\operatorname{conv} \{\mathfrak{a}_1, \ldots, \mathfrak{a}_{\kappa}, \mathfrak{a}_{\kappa+i_1}, \ldots, \mathfrak{a}_{\kappa+i_d}\}$ for which $\mathsf{u}_{i_1}, \ldots, \mathsf{u}_{i_d}$ span a maximal cone in the fan defining \mathbb{P} .

Acknowledgments

I want to thank the Taniguchi Foundation and the organizers of the Taniguchi Workshop "Special Differential Equations" 1991 for inviting me to this interesting workshop where I first learnt about GKZ hypergeometric functions and regular triangulations. Special thanks are for Bruce Hunt, who kindly pointed out that the example in my talk [23] at the workshop reminded him very much of the examples in Batyrev's talk a few weeks earlier in Kaiserslautern.

I want to thank the Japan Society for the Promotion of Science for a JSPS Invitation Fellowship in November-December 1996 and Kobe University for support for a visit in July 1997. The stimulating atmosphere I experienced during these two visits to Kobe was very important for finishing this work. I also want to thank the organizers of various workshops - in particular the Taniguchi Symposium "Integrable Systems and Algebraic Geometry" 1997 - to which I was invited during these visits. I am very grateful to Masa-Hiko Saito for arranging as my host both visits and for the pleasant co-operation.

References

- V. Batyrev: Dual polyhedra and the mirror symmetry for for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994) 493-535
- [2] V. Batyrev: Variations of mixed Hodge structure of affine hypersurfaces in algebraic tori, Duke Math. J. 69 (1993) 349-409
- [3] V. Batyrev, L. Borisov: Dual Cones and Mirror Symmetry for Generalized Calabi-Yau Manifolds, in [15]
- [4] L.J. Billera, P. Filliman, B. Sturmfels: Constructions and Complexity of Secondary Polytopes, Advances in Math. 83 (1990) 155-179
- [5] V.I. Danilov: The Geometry of Toric Varieties, Russian Math. Surveys 33:2 (1978) 97-154
- [6] P. Deligne: Theorie de Hodge, II, Publ. Math. IHES 40 (1971) 5-58
- [7] C. Deninger: Deligne Periods of Mixed Motives, K-theory and the Entropy of certain Zⁿ-actions, J. Amer. Math. Soc. 10 (1997) 259-281
- [8] V.I. Danilov, A.G. Khovanskii: Newton polyhedra and an algorithm for computing Hodge-Deligne numbers, Math. USSR Izvestiya 29 (1987) 279-298

- [9] F.G. Frobenius: Über die Integration der linearen Differentialgleichungen durch Reihen, J.f.d.reine u. angewandte Math. 76 (1873) 214-235; reprinted in Frobenius' Gesammelte Abhandlungen, Band I, Springer Verlag, Berlin, 1968
- [10] W. Fulton: Introduction to Toric Varieties, Annals of Mathematics Studies, Study 131, Princeton University Press, 1993
- [11] I.M. Gel'fand, A.V. Zelevinskii, M.M. Kapranov: Hypergeometric functions and toral varieties, Funct. Analysis and its Appl. 23 (1989) 94-106
- [12] correction to [11], Funct. Analysis and its Appl. 27 (1993) 295
- [13] I.M. Gel'fand, M.M. Kapranov, A.V. Zelevinsky: Discriminants, Resultants and Multidimensional Determinants, Birkhäuser Boston, 1994
- [14] A.B. Givental: Homological Geometry and Mirror Symmetry, Proceedings ICM Zürich 1994 p.472-480; Birkhauser, Basel, 1995
- [15] B. Greene, S.-T. Yau (eds.): Mirror Symmetry II, Studies in Avanced mathematics vol. 1 American Math. Soc. / International Press (1997)
- [16] V. Guillemin: Moment Maps and Combinatorial Invariants of Hamiltonian Tⁿ-spaces, Progress in Math. vol. 22 Birkhäuser Boston, 1994
- [17] S. Hosono, A. Klemm, S. Theisen, S.-T. Yau: Mirror Symmetry, Mirror Map and Applications to Complete Intersection Calabi-Yau Spaces, in [15]
- [18] N. Katz: Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Inventiones Math. 18 (1972) 1-118
- [19] H. Matsumura: Commutative Algebra (2nd edition), Benjamin/ Cummings Publ. Comp., 1980
- [20] J. Munkres: Topological results in combinatorics, Michigan Math. J. 31 (1984) 113-128
- [21] T. Oda: Convex Bodies and Algebraic Geometry, Ergebnisse der Math. 3. Folge Band 15, Springer Verlag, Berlin, 1988
- [22] R.P. Stanley: Combinatorics and Commutative Algebra (second edition), Progress in Math. 41, Birkhäuser, Boston, 1996
- [23] J. Stienstra: A variation of mixed Hodge structure for a special case of Appell's F_4 , in the informal proceedings of the Taniguchi Workshop 1991 "Special differential equations" M. Yoshida (ed.), published by the Department of Mathematics Kyushu University, Fukuoka, Japan
- [24] B. Sturmfels: Gröbner Bases and Convex Polytopes, University Lecture Series vol. 8, American Math. Soc., 1996
- [25] S.-T. Yau (ed.): Essays on Mirror Manifolds, Hong Kong: International Press (1992)