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Resonant inerter based vibration absorbers

on flexible structures

Steen Krenk

Department of Mechanical Engineering,

Technical University of Denmark, DK-2800 Lyngby, Denmark

Abstract

The paper presents an explicit two-step calibration procedure for tuned inerter based
vibration absorbers on flexible structures. It makes use of a local approximate repre-
sentation of the structural response to the device force, in which the contribution of the
non-resonant modes is represented approximately around the resonance frequency by a
background flexibility and a background inertia term. The calibration procedure then
consists of two steps. The first step calibrates an equivalent vibration absorber includ-
ing the background terms, and the second step subsequently evaluates the parameters of
the actual device by extracting the background flexibility and inertia parameters. The
first step represents the classic idealized single degree of freedom representation of the
structure, whereas the second step leads to an increase of stiffness, inertia and damp-
ing parameters of the actual device due to background flexibility of the structure. The
procedure is illustrated in detail for three inerter based vibration absorbers: parallel
coupling of damper and stiffness, parallel coupling of damper and inerter, and finally a
device with two dampers in parallel with stiffness and inerter elements, respectively. Ex-
plicit expressions for the calibration are obtained for each device, and it is demonstrated
that the procedure leads to a balanced plateau of amplification around the resonance
frequency of the magnitude assumed as the basis for the device parameter calibration.

Keywords: Vibration damping, Inerter absorber, Absorber calibration, Non-resonant
modes, Structural dynamics.

1. Introduction

The basic mechanism of vibration damping is extraction of energy, and if the desired
damping is associated with a particular mode a device in resonance with this mode
enables higher efficiency. The classic example is the tuned mass absorber in which a
vibrating mass is supplemented by an additional device mass that is attached through a
spring and a damper as described e.g. by Den Hartog [1]. The design problem of this ide-
alized structure consists in selecting a suitable tuning frequency and a suitable damper
in the device. The classic design procedure is based on a frequency plot the dynamic
amplification factor, and typically involves frequency tuning to place two characteristic
fixed points at the same level of amplification, and then selecting a suitable level of
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damping to attain a fairly level plateau between the two fixed points, typically by the
procedure proposed by Brock [2]. The tuned mass absorber operates with the absolute
motion of the device mass. Much more recently an alternative form of a mechanical
vibration absorber was proposed by Smith [3] in which the inertial term is generated
from the relative motion of two points through a so-called inerter. The principle as well
as various device configurations have been discussed by Chen et al. [4]. Theoretically
inerter based vibration absorbers have extensive similarities with electromechanical de-
vices, and these can in fact be explored via the classic analogies between the mechanics of
spring, inerter and damping elements, and the electronic properties of inductor, capaci-
tor and resistor components, as discussed in [4], and by Alessandroni et al. [5] and Zhu
et al. [6]. In the present paper all derivations will be presented directly for mechanical
inerter based devices.

The classic design procedure in terms of properties of the dynamic amplification curve
was replaced by a root locus based procedure by Krenk [7], where it was demonstrated
that the classic equal amplification of two fixed points is equivalent to two roots with
equal damping, and the damping ratio was determined by a direct condition of maximum
flatness of the dynamic amplification curve. The ‘equal damping’ calibration procedure
contains the classic three-component mass or inerter based devices as a special case but
also applies to other device configurations as demonstrated e.g. in the present paper.
The key point is the property of equal modal damping – obtained by suitable frequency
tuning – leading to a form of the quartic characteristic equation that can be reformulated
to quadratic form, thereby permitting a fairly simple solution with a direct connection
between the device parameters and the response properties. Further root locus analyses
were presented by Bisegna and Caruso [8].

The classic formulations of the theory for tuned mass or inerter based absorbers
typically assume the main structure is undamped, because including damping in the
structure complicates the harmonic dynamic equations and seems to prevent simple
analytical results for calibration of the device. In the case of random loading the situation
is reversed. Now, it is convenient to include damping of the primary structure, because
the spectral moments of the response in the absence of the device would otherwise not be
available. The basic problem of a single-mass damped structure equipped with a tuned
mass device was treated by Bakre and Jagid [9], Krenk and Høgsberg [10] and Tigli [11]
for white noise base or force excitation of the main system, equivalent to use of the H2-
norm for the response variances. The results for response variances are quite complicated
and the resulting optimal frequency tuning and device damping parameters similarly
involved and quite difficult to obtain. Part of the complication is due to the fact that the
optimal values of the frequency ratio now depends on both structure and device damping
ratios. Additionally, the white noise excitation changes the optimal frequency ratio, even
in the absence of structural damping. This shift of optimal frequency is due to the effect
of the high-frequency spectral components implied by the white-noise assumption. As
demonstrated in [10] the results simplify considerably if neglecting this frequency shift
and tuning the system to the classic harmonic excitation frequency. Furthermore, the
resulting explicit damping approximation fits the numerically computed values quite
well. A similar analysis of an inerter based single-degree-of-freedom system was recently
presented in Pan and Zhang [12]. Hu and Chen [13] extended the basic device format to
four inerter based resonant device configurations and presented results from H2-norm
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optimization. A different angle on the random excitation problem was given by Zilletti
et al. [14], who considered the power input and demonstrated that maximizing the
dissipation rate of the absorber corresponds to minimizing the kinetic energy of the
structure. Finally, the extension to a device with non-linear damping by Shum [15]
should be mentioned.

The potential of the inerter as a replacement of the mass element in a similar tuned
mass configuration has been demonstrated for base excitation of buildings by Lazar et
al. [16] and the extended problem of simultaneous use of multiple inerter based damping
devices on a building by Wen et al. [17]. The damping of a cable by a similar discrete
model with an inerter based damping device was investigated by Lazar et al. [18]. An
alternative formulation of the inerter based damper on a cable was used by Sun et al.
[19] and Shi and Zhu [20], who extended the analytical solution for a viscous damper
[21] to a resonant inerter based device and obtained detailed root locus information of
several modes.

Tuned inerter based devices permit more combinations of the components than the
classic tuned mass absorber. One of these combinations, proposed by Marian and Giar-
alis [22], consists of a classic three-component tuned mass device coupled in series with
an inerter. The combined four-component TMDI device connects two points on the
structure and thereby has the form of a generalized inerter based vibration absorber.
Its efficiency and use have also been investigated by Giaralis and Petrini [23] and De
Domenico and Ricciardi [24]. The series coupling is theoretically closely related to the
background inertia term as discussed in the present paper. More general network vari-
ations of inerter based devices have been proposed by Zhang et al. [25] including the
coupling of two full three-component inerter based devices of which one is parallel with
an inerter. The demonstration example includes a flexible supporting brace – an effect
that can be accounted for by a series coupled flexibility in the procedure discussed here.

The papers mentioned above deal with individual devices or devices interacting with
an idealized structure, represented by a selected resonant mode. In reality the device
represents a local set of forces on the structure and therefore in principle interacts with all
the vibration modes. However, in practice for calibration purposes the deformation of the
structure, corresponding to the relative displacement of the two terminals of the device,
can often be approximated to a fairly high degree of accuracy by a contribution from the
resonant mode plus a contribution from local deformation. The situation to some degree
resembles the classic approximation in which a modal analysis of a structure is limited
to a set of the lower modes, while the higher modes are represented by their quasi-static
contributions, see e.g. Maddox [26] and Hansteen and Bell [27]. This formulation was
recast into the representation of the local deformation at the terminal of a tuned mass
absorber as the sum of a modal and a local quasi-static contribution, Krenk and Høgsberg
[28]. The quasi-static representation of the deformation from non-resonant modes limits
this formulation to cases where the resonant mode is the lowest, or with only lower
modes orthogonal to the device forces. A more general quasi-dynamic representation
was developed in Krenk and Høgsberg [29] and presented for tuned mass and inerter
absorbers. This procedure was developed for passive shunt damping in Høgsberg and
Krenk [30].

The present paper presents a two step method for calibration of some basic resonant
inerter based vibration absorbers mounted on a flexible structure. In the first step a
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preliminary determination of the device parameters is made, based on the ‘equal modal
damping’ procedure for the complex characteristic equation of a device interacting with
a single-degree-of-freedom system. These parameters are then modified to account for
additional deformation at the location of the device due to the effect of non-resonant
modes. It is demonstrated that this procedure effectively leads to equal amplification at
the two peaks around resonance and a simple design procedure permitting prescribing
the target amplification is described. The key steps in this procedure are presented in
tabular format for three inerter based devices.

2. Flexible structure with vibration absorber

The structure is defined by its stiffness, mass and viscous damping matrices K, M
and C, respectively. The motion of the structure is described by the displacement vector
u, satisfying the equation of motion

Mü + Cu̇ + Ku + fd = fe, (1)

where fe is the external load, and −fd is the load exerted on the structure by the local
device. This corresponds to a total load f = fe − fd on the structure. While analysis of
response of the structure and the device is conveniently based directly on the equation
of motion (1) the calibration of the device depends on the frequency response around
the targeted resonance frequency and is carried out via a modal analysis.

2.1. Modal response representation

The calibration of the device is based on a modal analysis of the undamped structure
in which the response and forces are assumed implicitly to contain the time variation
factor exp(iωt). Hereby u and f represent the corresponding amplitudes, related by the
frequency equation

[K− ω2M ]u = f . (2)

The eigenfrequencies ωj and the corresponding mode shape vectors uj are determined
from the corresponding homogeneous equation

[K− ω2
jM ]uj = 0 , j = 1, · · · , n (3)

where n is the number of degrees-of-freedom of the structural system. When introducing
a representation of the response u in terms of the mode shape vectors uj the solution
to (2) is found in the form

u =
[ n∑

j=1

ω2
j

ω2
j − ω2

uju
T
j

uT
j Kuj

]

f . (4)

This formula contains n terms and a central part of the calibration procedure is to
use a simplified approximate form that permits analytical solution of the corresponding
characteristic equation.

The calibration procedure considers a load corresponding to the forces from the
device acting on the structure. As illustrated in Fig. 1 the device connects two degrees
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Figure 1: Structure with resonant inerter device.

of freedom of the structure and the corresponding displacement and force can therefore
be expressed in terms of an integer array of the form w = [ 0, 0,−1, · · · , 1, 0 ] by the
relations

u = wTu , f = w f. (5)

When using these relations in (4), the local response relation takes the form

u = −
[ n∑

j=1

ω2
j

ω2
j − ω2

1

kj

]

f , (6)

where 1/kj is the modal flexibility

1

kj
=

(wTuj)
2

uT
j Kuj

, (7)

corresponding to the mode shape vector uj/(w
Tuj), normalized to unity at the device.

2.2. Single resonant mode representation with stiffness and inertia terms

In the calibration of the device for damping vibrations around a selected resonant
frequency ωr it is desirable to represent the structural response around the resonant
frequency as the sum of the resonant response of mode r, plus a suitable simplified
representation of the response from the non-resonant modes, j 6= r,

u =
[ ω2

r

ω2
r − ω2

1

kr
+

∑

j 6=r

ω2
j

ω2
j − ω2

1

kj

]

f. (8)

The task is to find an approximate representation of sum of the non-resonant terms
that permits explicit calibration of the device parameters. The simplest procedure is
to neglect the non-resonant terms in the calibration. This is the classic single-mode
representation. Its accuracy depends on the location of the device, and in many cases
it may be difficult, or undesirable, to mount the device at points at which the response
contributions from the non-resonant modes are negligible. If the resonant mode is the
lowest, corresponding to r = 1, the non-resonant modes will have higher frequencies,
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and it may be sufficient to replace the summation by a constant 1/k0r , corresponding to a
background stiffness, [28]. Recently, an improved representation of the effect of the non-
resonant modes has been derived [29], in which sum of the non-resonant contributions
is represented by a stiffness term plus an inertia term, resulting in the approximate
response relation

u ≃
[ ω2

r

ω2
r − ω2

1

kr
+

1

k′r
− 1

m′
r

1

ω2

]

f. (9)

The parameters k′r and m′
r are determined to give the correct full response and the

correct frequency derivative at ω = ωr. It is an important point of this representation,
that it provides an accurate description of the response in a frequency range around the
resonant frequency ωr, used in the device calibration procedure, and that the stiffness
and inertia parameters k′r and m′

r can be evaluated from the structure stiffness and
mass matrices K and M without a complete eigenvalue analysis as outlined below. The
coefficients k′r and m′

r are properties of the structure and independent of any particular
properties of the device apart from the points of attachment. It is interesting to note
that the isolated effect of the flexibility of a connecting brace considered in [25] can be
included directly as an additive contribution to the flexibility 1/k′r, and the extra series-
coupled inerter element in the four-component resonant vibration absorber considered
in [22, 23, 24] can be included in the present analysis as an additive contribution to
1/m′

r.
The first step is to represent each term in the summation in (8) by an approximate

expression of the form Aj+Bj/ω
2, and then to determine the coefficients Aj and Bj from

the conditions of value and slope at ω = ωr. The result is the approximate representation

ω2
j

ω2
j − ω2

≃
ω4
j

(ω2
j − ω2

r)
2
−

ω2
jω

2
r

(ω2
j − ω2

r)
2

ω2
r

ω2
, (10)

for j 6= r. With this expression the background stiffness and inertia parameters k′r and
m′

r are determined by the sums

1

k′r
=

∑

j 6=r

ω4
j

(ω2
j − ω2

r)
2

1

kj
,

1

ω2
rm

′
r

=
∑

j 6=r

ω2
jω

2
r

(ω2
j − ω2

r)
2

1

kj
. (11)

It follows from these expressions that both the background stiffness k′r and the back-
ground inertiam′

r are positive. Direct relations, avoiding evaluation of modal properties,
apart from the resonant frequency ωr and mode shape ur, are obtained by appropriate
series representation of the system matrices.

It is easily verified that the stiffness matrix K can be expanded in terms of the
eigenvectors uj as

K =

n∑

j=1

(Kuj)(u
T
j K)

uT
j Kuj

. (12)

A modified mass matrix Mr is then introduced, in which the contribution corresponding
the mass of the resonant mode has been removed,

Mr = M − (Mur)(u
T
r M)

uT
r Mur

=
∑

j 6=r

(Muj)(u
T
j M)

uT
j Muj

. (13)
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This mass matrix is used to define a ‘frequency shifted’ stiffness matrix

Kr = K − ω2
rMr, (14)

in which the resonant mode is left unaffected by the frequency shift. The eigenvector
expansion of the inverse of this matrix is

K−1
r =

uru
T
r

uT
r Kur

+
∑

j 6=r

ω2
j

ω2
j − ω2

r

uju
T
j

uT
j Kuj

, (15)

in which the term corresponding to the resonant frequency ωr is left as in the expansion
of the inverse stiffness matrix, while the remaining terms are corrected corresponding to
the frequency shift.

It now follows from direct multiplication, using the eigenvector expansions (12) and
(15) and orthogonality of the eigenvectors, that

K−1
r KK−1

r =
uru

T
r

uT
r Kur

+
∑

j 6=r

ω4
j

(ω2
j − ω2

r)
2

uju
T
j

uT
j Kuj

, (16)

Pre- and post-multiplication of this relation with wT and w, respectively, then leads to
the following expression for the background flexibility

1

k′r
=

∑

j 6=r

ω4
j

(ω2
j − ω2

r)
2

1

kj
= (wTK−1

r )K (K−1
r w) − 1

kr
, (17)

where 1/kr is the modal flexibility of the resonant mode given by (7). The background
inertia term follows in a similar way from the modified mass matrix Mr by forming the
product

K−1
r Mr K

−1
r =

∑

j 6=r

ω2
j

(ω2
j − ω2

r)
2

uju
T
j

uT
j Kuj

, (18)

where a factor ω2
j has been eliminated, when substituting Kuj = ω2

jMuj in the expan-

sion (12). Pre- and post-multiplication of this relation with wT and w, respectively,
then leads to the following expression for the background inertia

1

ω2
rm

′
r

=
∑

j 6=r

ω2
jω

2
r

(ω2
j − ω2

r)
2

1

kj
= ω2

r(w
TK−1

r )Mr (K
−1
r w). (19)

The similarity between the expressions for the background coefficients k′r and m′
r is

noted.
The background flexibility and inertia coefficients can be evaluated without matrix

inversion by the following procedure. First the modified mass matrix Mr and the mod-
ified stiffness matrix Kr are evaluated from the first expression in (13) and from (14),
respectively. Then the vector ũ = K−1

r w is found by solving the equation

Krũ = w. (20)
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In terms of this displacement vector the background flexibility and mass coefficients take
the simple form

1

k′r
+

1

kr
= ũTKũ ,

1

m′
r

= ω4
r ũ

TMr ũ (21)

It is clear from the expression (20) that ũ is the displacement vector corresponding to a
normalized force w, acting on a modified system with stiffness matrix Kr.

The classic case of quasi-static background flexibility without inertia effects follow
from setting ω = 0 in the summation of the non-resonant terms in (6), whereby the
corresponding background flexibility 1/k0r is found as

1

k0r
+

1

kr
= wTK−1w . (22)

Clearly, the product of the last two factors can be evaluated by solving a corresponding
equation system, thereby avoiding the need for a matrix inversion. The quasi-static
background flexibility 1/k0r is the sum of the non-resonant modal flexibilities, and there-
fore positive. Quasi-static background flexibility is typically used to represent higher
modes in a truncated modal analysis, in which only the lower modes are retained as
dynamic, [26, 27].

2.3. Characteristic equation of structure with device

The device frequency properties are given by a relation between the displacement ud

over the device and the corresponding force fd = −f ,

ud = H ′
d(ω) fd , (23)

where H ′
d(ω) is the frequency response function of the device. When the device is

mounted on the structure the device displacement ud equals the structure displacement
u. Substitution of the device displacement ud from (23) and the structure displacement
us from (9) then gives the characteristic equation

ω2
r

ω2
r − ω2

1

kr
+

1

k′r
− 1

m′
r

1

ω2

︸ ︷︷ ︸

structure with background terms

+ H ′
d(ω)

︸ ︷︷ ︸

absorber

= 0 . (24)

The solution of this equation provides the damped natural frequencies of the combined
structure/absorber system, and imposing desired properties on the complex frequencies
in turn determines desirable absorber parameters.

In the following three resonant absorber configurations containing the three com-
ponents stiffness, damping and inertia are analyzed and calibrated. The calibration
procedure is derived in two steps. The first step considers an equivalent device with
frequency response function Hd(ω) mounted on a single-mode system, corresponding to
the characteristic equation

ω2
r

ω2
r − ω2

1

kr
︸ ︷︷ ︸

modal response

+ Hd(ω)
︸ ︷︷ ︸

equivalent
absorber

= 0 . (25)
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This determines a set of parameters of the equivalent device.
The second step then consists in deducing the parameters of the original device from

the equivalent device parameters by equating the non-resonant terms in (24) and (25),
leading to the equivalence relation

Hd(ω) ≃ 1

k′r
− 1

m′
r

1

ω2
+ H ′

d(ω) . (26)

If the effect of the non-resonant background modes is disregarded, the first step gives
the device parameters directly.

According to the adopted notation the device response function Hd(ω) corresponds
to a direct calibration based on a single mode, whereas the response function H ′

d(ω)
corresponds to a device on a structure represented by the modal response plus the
background terms with parameters 1/k′r and 1/m′

r. In the design computations the
relative effect of the background flexibility and the background inertia will be represented
via the non-dimensional parameters

κ′
r =

kr
k′r

, µ′
r =

mr

m′
r

, (27)

where mr = kr/ω
2
r is the resonant modal mass. Note, that by the definition of the non-

dimensional background parameters in terms of the reciprocals, the absence of these
effects corresponds to κ′

r = 0 and µ′
r = 0, respectively.

3. Absorber with parallel stiffness and damper elements

In the resonant inerter based absorber shown in Fig. 2 a spring and a damping
element are coupled in parallel. The device parameters are the stiffness kd, the equivalent
inerter mass md and the damping coefficient cd. This device is analogous to the tuned
mass absorber apart from the fact that the inerter based device has two points of fixture
and operates on the relative motion of these points, whereas the tuned mass absorber
operates on the absolute motion of a single point of fixture. The similarity of the
calibration procedure for these two devices was discussed in [29]. Here the procedure is
summarized in a self-contained form that permits generalization to other inerter based
devices as demonstrated in the subsequent sections. The calibration of the device on
an idealized structure, neglecting the influence of non-resonant modes, is presented in
Section 3.1, and subsequently generalized to account for the effect of the non-resonant
modes in Section 3.2.

3.1. Single-mode calibration

The force fd in the device can be given both in terms of the relative displacement
u1 over the parallel stiffness and damper elements and in terms of the displacement u2

over the inerter element,

fd = (kd + iωcd)u1 = −ω2md u2. (28)
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uj uk

md

kd

cd

fdfd

Figure 2: Resonant absorber with parallel spring and damper.

This gives the total displacement over the device ud = u1 + u2 as

ud =
( 1

kd + iωcd
− 1

ω2md

)

fd = Hd(ω)fd. (29)

In the following it is convenient to introduce the undamped natural frequency ωd of the
device with locked points of fixture and the corresponding device damping ratio ζd by
the relations

ω2
d =

kd
md

, ζd =
cd

2
√
kdmd

. (30)

The size of the device is defined via the mass ratio

µ =
md

mr
, (31)

giving the equivalent inerter mass relative to the resonant modal mass mr = kr/ω
2
r .

When inserting the device frequency response function Hd(ω) from (29) into (25),
the following characteristic equation is found,

ω4 −
[
(1 + µ)ω2

d + ω2
r

]
ω2 + ω2

rω
2
d − 2iζdωωd

[
(1 + µ)ω2 − ω2

r

]
= 0 . (32)

This equation is completely analogous to the characteristic equation for a tuned mass
damper on an idealized single-mass structure, apart from the fact that the present
equation refers to the relative motion of two points on the structure as reflected by the
two entries in the integer arrayw used to define the scalar representation of the structure
in (5)–(7). The design, prescribing an optimal combination of device parameters, can
be obtained by a simple pole placement procedure [7, 28], which for the present device
reproduces the classic frequency tuning of the tuned mass damper, [1]. The advantage
of the present form of pole placement procedure is that the parameters can be identified
directly from the coefficients of the characteristic equation for a family of inerter based
devices.

First a reference frequency ω0 is introduced such that the constant term is ω4
0 . This

gives
ω2
0 = ωrωd. (33)

Then the coefficients of the linear and the cubic term are balanced such that the ratio
of their coefficients is ω2

0 . For device damping ratio ζd below a certain limit this leads
to natural frequencies of the two modes that are inverse points in the circle |ω| = ω0,
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Figure 3: (a) Complex roots ω1, ω2 and ω3, ω4 as inverse points of circle |ω| = ω0, (b) Root-locus
diagram with bifurcation point ωbif.

corresponding to ω1ω̄2 = ω2
0 , illustrated in Fig. 3. Frequencies represented by inverse

points correspond to equal damping ratio, whereby

ω1,2 = |ω1,2|
(√

1− ζ2 + iζ
)
. (34)

Balancing the coefficients of the linear and cubic terms gives the relation

ω2
0 =

ω2
r

1 + µ
, (35)

and combination with the relation (33) then leads to the device frequency

ωd =
ωr

1 + µ
, (36)

whereby the device frequency ωd is tuned below the resonant modal frequency ωr. This
result leads to the device stiffness ratio

κ =
kd
kr

=
(ωd

ωr

)2

µ =
µ

(1 + µ)2
, (37)

where the denominator is due to the frequency tuning, and implies that κ < µ.
With the device frequency (36) the characteristic equation (32) takes a simplified

form in terms of the reference frequency ω0,

ω4 − (2 + µ)ω2
0ω

2 + ω4
0 − 2iζd

√

1 + µω0ω(ω
2 − ω2

0) = 0 . (38)

After division by ω2
0ω

2 the equation can be recast in the following quadratic format

( ω

ω0
− ω0

ω

)2

− 2iζd
√

1 + µ
( ω

ω0
− ω0

ω

)

− µ = 0 . (39)

that permits a direct solution as well as a detailed analysis of the root-locus curve, [7].
Note, that this quadratic format is a direct consequence of adjusting the balance between
the linear and cubic terms in the characteristic equation such that they contain the factor
ωω0(ω

2 −ω2
0). This is a general procedure for determining the device frequency ωd that

also applies to different resonant absorber configurations as discussed later.
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At zero damping the frequencies ω1 and ω2 are located at the positive real axis.
When increasing the damping the frequencies move up into the imaginary part of the
plane along curves that correspond closely to a semi-circle for a mass ratio µ . 0.1, well
within the magnitude encountered in most practical applications. The equation (39) is
quadratic in the combined term in the parentheses. A bifurcation is encountered when
the damping ratio leads to a double root of this equation at ζ2bif = µ/(1 + µ). The
device damping ratio essentially acts as an arc-length parameter on the semi-circle in
the complex point with the bifurcation value marking the top point. The calibration
value should reflect a balance between zero damping at the real axis and a double root
at the bifurcation point. It was found in [7] that an optimal balance corresponds to
roots located about 45◦ up the semicircle from the real axis, whereby

ζ2d =
ζ2bif
2

=
1

2

µ

1 + µ
. (40)

This value is slightly larger than the classic value for the tuned mass damper with
coefficient 3/8, [1, 2], but gives a more flat plateau of the response as well as minimum
local amplitude of the device as illustrated in Fig. 4, showing the structural amplification
and the device response for the classic damping with factor 3/8, for the present ‘optimal’
damping with factor 1/2, and for bifurcation damping with factor 1.
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Figure 4: Dynamic amplification for µ = 0.05. (a) structure motion ur and (b) relative device motion ud.
Damping parameter: - - ζclassic, — ζopt, - · - ζbif.

The typical single-mode design procedure is outlined in Table 1 for both the present
device with parallel spring–damper elements as well as for the alternative configura-
tion of parallel inerter–damper described in section 4.1. A very simple and direct design
procedure follows from the parameter expressions derived above together with the struc-
tural amplification illustrated in Fig. 4. It follows from the complex root locus analysis
that the device damping ratio contributes 1

2 ζd to the damping of each of the modes,
in which the resonant absorber splits the original resonant mode, [7, 28]. Furthermore,
these modes typically retain the original structural damping ζstruc, [28, 29], whereby the
representative resulting damping ratio of these modes is determined by

ζmode ≃ ζstruc + 1
2ζd (41)
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Table 1: Single-mode design procedure for single damper devices.

Parallel stiffness-damper Parallel inerter-damper

Modal damping: 2ζmode =
1

DAF

Device damping: ζd = 2(ζmode − ζstruc)

µ =
2ζ2

d

1− 2ζ2
d

κ =
2ζ2

d

1− 2ζ2
dMass/stifness ratio:

κ =
µ

(1 + µ)2
µ =

κ

(1 + κ)2

Device parameters: md = µmr , kd = κ kr, cd = 2ζd
√
mdkd

This modal damping ratio is closely related to the modal amplification as illustrated in
Fig. 4, showing that the dynamic amplification factor is closely represented by DAF =
1/2ζmode. Thus, a typical first step in the design of the device is to determine the modal
damping ratio including the effect of the device from the design value of the dynamic
amplification factor. This is the first step shown in Table 1. The second step is to
calculate the device damping ratio from (41). For the parallel spring–damper device the
mass ratio then follows from (40). The stiffness ratio is then given by (37), and the actual
parameters are evaluated from the non-dimensional parameters as shown in the table.
This procedure applies to an idealized structure, represented by a concentrated mass.
In most applications of inerter based devices the relative motion of the two points of
attachment of the device also depends on deformation associated with the non-resonant
background modes, and thus a full design also includes evaluation of the effect of this
contribution as described in the next section.

3.2. Accounting for background deformation

The effect of background flexibility and inertia is included in the design of the device
by an equivalence between the response relation (24) in terms of the actual device
frequency function H ′

d(ω) with parameters k′d, m
′
d and c′d and the background stiffness

k′r and mass m′
r, and the idealized single-mode response relation (25) in terms of the

equivalent device frequency function Hd(ω) with parameters kd, md and cd. The present
task is to determine optimal parameters k′d, m

′
d and c′d in the frequency response function

H ′
d(ω). The background correction terms are therefore moved to the other side of the

equivalence relation (26), whereby

H ′
d(ω) ≃ Hd(ω) − 1

k′r
+

1

ω2

1

m′
r

. (42)

The particular format (29) for the parallel spring-damper configuration then gives the
equation

1

k′d + iωc′d
− 1

ω2m′
d

≃
( 1

kd + iωcd
− 1

k′r

)

− 1

ω2

( 1

md
− 1

m′
r

)

. (43)
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Table 2: Background mode correction for basic three-component devices.

Parallel stiffness-damper Parallel inerter-damper

Background parameters: κ′

r =
kr

k′r
, µ′

r =
mr

m′

r

Device stiffness: k′
d

=
kd

1− κ′

r κ

Device mass: m′

d
=

md

1− µ′

r µ

Device damping: c′
d

=
cd

(1 − κ′

r κ)
2

c′
d

=
cd

(1− µ′

r µ)
2

The device mass m′
d follows directly from the second term on the right side as

m′
d =

m′
r md

m′
r −md

. (44)

Division by the equivalent background mass m′
r then gives the result in the form

m′
d =

md

1− µ′
r µ

, (45)

where µ is the single-mode design mass ratio and µ′
r is the background mass coefficient

defined in (27b) as µ′
r = mr/m

′
r. The formula provides a correction to the device mass

md obtained by single-mode calibration. It is seen that the device mass m′
d determined

by including the effect of the background modes is larger than md determined from the
classic single-mode design. In spite of a theoretical singularity of the background mode
correction in (45) a mass ratio used in practice will usually lead to results well removed
from this singularity.

The design values of the device stiffness k′d and damping c′d, when accounting for the
background modes, are now found from the remaining terms in the equivalence relation
(43),

k′d + iωc′d ≃ (kd + iωcd)k
′
r

k′r − (kd + iωcd)
(46)

The right hand side is reduced to real and imaginary parts by multiplication with the
conjugate of the denominator, whereby

k′d + iωc′d ≃
kd

(

1− kd
k′r

)

− ω2 c
2
d

k′r
+ iωcd

(

1− kd
k′r

)2

+ ω2
( cd
k′r

)2
(47)

It is easily established, see e.g. [29], that in the relevant frequency interval around
resonance the terms containing (ωcd)

2 will be fairly small, and when discarding these
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terms the following design parameters are obtained for including background effects,

k′d =
kd

1− κ′
r κ

, c′d =
cd

(1− κ′
r κ)

2
, (48)

where κ is the single-mode design stiffness ratio and κ′
r is the background mass coefficient

defined in (27a) as κ′
r = kr/k

′
r. It is seen that including the effect of the background

modes leads to larger design values of both device stiffness and device damping. In
practice, the device has much less mass than the structure and thus µ ≪ 1, whereby
κ ≪ 1. Thus, even a rather large background stiffness coefficient κ′

r will generally lead to
representative values of k′d and c′d in spite of the theoretical singularity of the background
correction formulae (48). The correction of device parameters for flexibility and inertia
of background modes of the device with parallel stiffness and damper elements is shown
in the left side of Table 2. It is noted that for the present device the background
correction of the damping coefficient is given in terms of the device and background
stiffness parameters.

4. Absorber with parallel inerter and damper elements

An alternative form of a resonant inerter based vibration absorber device is shown in
Fig. 5. In this device the damper is in parallel with the inerter, and thus the important
phase change in the spring force of the previous device is now changed to a phase change
of the force component in the inerter. The device has two points of fixture, and thus
reacts to relative motion of these points.

ud

uj uk

md
kd

cd

fdfd

Figure 5: Resonant absorber with parallel inerter and damper.

4.1. Single-mode calibration

For the device in Fig. 5 the device force fd can be expressed either as the relative
displacement u1 over the spring or the relative displacement u2 over the parallel inerter
and damper elements,

fd = kdu1 = (iωcd − ω2md)u2. (49)

This gives the total displacement over the device ud = u1 + u2 as

ud =
( 1

kd
+

1

iωcd − ω2md

)

fd = Hd(ω)f. (50)
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The natural frequency of the undamped device ωd and the inerter damping ratio ζd are
given by (30). For the present device the mass ratio µ given in (31) is supplemented by
the stiffness ratio

κ =
kd
kr

, (51)

giving the device stiffness relative to the resonant modal stiffness. In terms of these
parameters the characteristic equation of (25) takes the form

ω4 −
[
ω2
d + (1 + κ)ω2

r

]
ω2 + ω2

rω
2
d − 2iζdωωd

[
ω2 − (1 + κ)ω2

r

]
= 0 . (52)

It is noted that this equation looks rather similar to the characteristic equation (32) for
the previous device.

The design parameters can now be determined by the procedure described in Sec-
tion 3.1. The reference frequency ω0 defined by the constant term is given by (33) also
in the present case. Balancing the ratio of the coefficients of the linear and the cubic
terms to obtain equal modal damping takes the form

ω2
0 = (1 + κ)ω2

r , (53)

and combination with the relation (33) then leads to the device frequency

ωd = (1 + κ)ωr, (54)

whereby the present device frequency ωd is tuned above the resonant modal frequency
ωr. This result leads to the device mass ratio

µ =
md

mr
=

(ωr

ωd

)2

κ =
κ

(1 + κ)2
, (55)

where the denominator is due to the frequency tuning, and µ < κ.
With the device frequency (54) the present characteristic equation (52) takes a sim-

plified form in terms of the reference frequency ω0,

ω4 − (2 + κ)ω2
0ω

2 + ω2
0 − 2iζd

√
1 + κω0ω(ω

2 − ω2
0) = 0 . (56)

It is observed that this characteristic equation becomes identical to the characteristic
equation (38) for the parallel spring–damper device, when the mass ratio µ is replaced
by the stiffness ratio κ. This implies that the root locus analysis can be transferred
directly when substituting the stiffness ratio κ for the mass ratio µ in the previous
analysis/argument. Thus, in the present case the bifurcation point is attained for a
device damping ratio where ζ2bif = κ/(1 + κ), and the appropriate balanced design is
attained for the device damping ratio

ζ2d =
ζ2bif
2

=
1

2

κ

1 + κ
. (57)

It is seen that this formula is similar to (40) for the parallel stiffness–inerter device. In
fact, the design procedures of the two devices, shown in Table 1 are identical, apart from
interchange of the roles of mass and stiffness ratio parameters µ and κ.
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4.2. Accounting for background deformation

The principle of the correction for background modes is the same as for the previous
device, and thus the actual device frequency response function H ′(ω) is determined by
introducing the device response format (50) into the equivalence relation (42), whereby

1

k′d
− 1

ω2m′
d − iωc′d

=
( 1

kd
− 1

k′r

)

−
( 1

ω2md − iωcd
− 1

ω2m′
r

)

. (58)

For this device the equivalence relation (58) determines the device stiffness k′r from the
first term on the right side as

k′d =
k′r kd

k′r − kd
. (59)

Division by the equivalent background stiffness k′r then gives the device stiffness modi-
fication due to background effects in the compact form

k′d =
kd

1− κ′
r κ

, (60)

where κ is the single-mode design stiffness ratio and κ′
r is the background flexibility

coefficient defined in (27a) as κ′
r = kr/k

′
r. Note the complete similarity between the

modification of the device stiffness for the present parallel inerter-damper device and
the relation (63) for the modification of the device mass in the case of the parallel
stiffness-damper device.

The design values of the device mass m′
d and the damping c′d are determined from

the remaining part of the equivalence equation (58), whereby

ω2m′
d − iωc′d =

(ω2md − iωcd)ω
2m′

r

ω2m′
r − (ω2md − iωcd)

(61)

The right hand side is reduced to real and imaginary parts by multiplication with the
conjugate of the denominator, whereby

m′
d −

i

ω
c′d =

md

(

1− md

m′
r

)

− c2d
ω2m′

r

− i

ω
cd

(

1− md

m′
r

)2

+
( cd
ωm′

r

)2 . (62)

Also in this case the terms containing c2d/ω
2 will be fairly small in the resonance fre-

quency interval. When discarding these terms the following design parameters are ob-
tained for including background effects,

m′
d =

md

1− µ′
r µ

, c′d =
cd

(1− µ′
r µ)

2
, (63)

where µ is the single-mode design mass ratio and µ′
r is the background mass coefficient

defined in (27b) as µ′
r = mr/m

′
r. As for the previous device including the background

modes increases the design mass and damping. The correction of device parameters
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for flexibility and inertia of background modes of the device with parallel inerter and
damper elements is shown in the right side of Table 2.

It is observed that for the present and the previous device the design mass is increased
by the factor (1 − µ′

r µ)
−1 as function of single mode mass ratio and the background

mass coefficient, while the design stiffness is increased by a similar factor (1 − κ′
r κ)

−1

in terms of the single mode stiffness ratio and the background flexibility coefficient. In
contrast, the damper coefficient is modified by the square of the stiffness coefficient,
when acting in parallel with the spring, and by the square of the mass coefficient when
acting in parallel with the inerter.

5. Absorber with dampers in parallel with inerter and stiffness elements

In the two resonant inerter based vibration absorbers analyzed in the previous sec-
tions a single damper was placed in parallel with a spring or the inerter, respectively.
As demonstrated that leads to tuning of the device frequency ωd below or above the
original resonant frequency ωr of the structure. Figure 6 shows a device with identical
dampers cdk = cdm in parallel with the spring and the inerter, respectively. It is now
demonstrated that this combined device leads to an optimal tuning frequency ωd that is
identical to the original structure resonant frequency ωr. Hereby the mass ratio µ and
stiffness ratio κ also become identical.

ud

uj uk

mdkd

cdk cdm

fd fd

Figure 6: Resonant absorber with identical dampers in parallel with spring and inerter elements.

5.1. Single-mode calibration

The force fd in the device can be given both in terms of the relative displacement
u1 over the parallel stiffness and damper elements and in terms of the displacement u2

over the inerter element and damper element,

fd = (kd + iωcdk)u1 = (−ω2md + iωcdm)u2. (64)

The total displacement over the device ud = u1 + u2 then follows as

ud =
( 1

kd + iωcdk
− 1

ω2md − iωcdm

)

fd = Hd(ω)fd. (65)

The undamped device frequency is given as before by (30a), and the device damping
ratio is defined to describe the effect of both dampers cd = cdk + cdm,

ζd =
cd

2
√
kdmd

. (66)
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The size of the device is here defined via the mass ratio

µ =
md

mr
, (67)

giving the equivalent inerter mass relative to the resonant modal mass mr.
When inserting the device frequency response function Hd(ω) from (65) into (25),

the following characteristic equation is found,

ω4 −
[
ω2
r +

(
(1+µ(1+ ζ2d)

)
ω2
d

]
ω2 + ω2

rω
2
d + iζdωdω

[
2ω2

r +µω2
d− (2+µ)ω2

]
= 0 . (68)

As before, a reference frequency ω0 is introduced such that the constant term is ω4
0 .

This gives
ω2
0 = ωrωd. (69)

Now, the coefficients of the linear and the cubic term are balanced such that the ratio
of their coefficients is ω2

0 , whereby

2ω2
r + µω2

d = (2 + µ)ω2
0 = (2 + µ)ωrωd. (70)

Balancing the coefficients of the linear and cubic terms gives the relation

ωd = ωr = ω0 . (71)

Thus, the optimal frequency tuning of the present double-damper device is at the res-
onant frequency. It is seen that this frequency tuning determines the device stiffness
ratio as

κ =
kd
kr

=
(ωd

ωr

)2

µ = µ, (72)

and thus the device mass ratio and stiffness ratio are equal for the optimally tuned
double-damper device.

With the device frequency tuning given by (71) the characteristic equation (68) takes
a simplified form, here given in terms of the reference frequency ω0,

ω4 −
(
2 + µ(1 + ζ2d)

)
ω2
0ω

2 + ω4
0 + 2iζd(1 +

1
2µ)ω0ω(ω

2 − ω2
0) = 0 . (73)

This equation is similar but not identical to the two previous expressions (39) and (56)
for the reduced characteristic equation. In order to identify the damping ratio ζbif ,
corresponding to the bifurcation point in the root locus graph, the equation is divided
by ω2

0ω
2, leading to the quadratic format

( ω

ω0
− ω0

ω

)2

− 2iζd(1 +
1
2µ)

( ω

ω0
− ω0

ω

)

− µ(1 + ζ2d) = 0 . (74)

The bifurcation point corresponds to a double root, identified by vanishing of the dis-
criminant,

[
ζbif(1 +

1
2µ)

]2
= µ(1 + ζ2bif). (75)

This equation determines the bifurcation value of the device damping ratio as

ζ2bif =
µ

1 + (µ/2)2
≃ µ. (76)
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Table 3: Single-mode design procedure for double damper device.

Dampers in parallel with both stiffness and inerter

Modal damping: 2ζmode =
1

DAF

Device damping: ζd = 2(ζmode − ζstruc)

Mass/stifness ratio: µ = κ = 2ζ2
d

Device parameters: md = µmr , kd = κ kr, cd = cdk + cdm = 2ζd
√
mdkd

The last approximation follows from the observation that the mass ratio is most often
in the order of a few percent. The root locus curve corresponding to the characteristic
equation (73) is identical to those of the two other resonant devices apart from a slightly
different parametrization. Also in this case the device damping ratio ζd acts as an arc
length parameter on the initial part of the root locus curve, leading to the design value

ζ2d =
ζ2bif
2

=
µ/2

1 + (µ/2)2
≃ µ

2
, (77)

slightly larger than for the two other resonant absorbers. The design procedure for the
double-damper device on an idealized structure is summarized in Table 3.

5.2. Accounting for background deformation

As in the previous two cases the background effects are included in the design by
assuming that the actual device frequency response function H ′(ω), when combined with
the background flexibility and inertia, provides a close approximation to the ideal device
frequency response function H(ω) determined above. When using the device frequency
response format defined by (65) in the equivalence relation (42), this gives

1

k′d + iωc′dk
− 1

ω2m′
d − iωc′dm

≃
( 1

kd + iωcdk
− 1

k′r

)

−
( 1

ω2md − iωcdm
− 1

ω2m′
r

)

. (78)

where the two damping parameters cdk = cdm = cd/2 have been used for clarity. The
stiffness and mass relations are obtained from the coefficients to ω0 and ω−2 in the limit
of no damping, whereby

1

k′d
=

1

kd
− 1

k′r
,

1

m′
d

=
1

md
− 1

m′
r

. (79)

When introducing the background flexibility and inertia factors κ′
r = kr/k

′
r and µ′

r =
mr/m

′
r, the actual parameters are determined as

k′d =
kd

1− κ′
r κ

, m′
d =

md

1− µ′
r µ

. (80)
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Table 4: Background mode correction for double damper device.

Dampers in parallel with both stiffness and inerter

Background parameters: κ′

r =
kr

k′r
, µ′

r =
mr

m′

r

Device stiffness: k′
d

=
kd

1− κ′

r κ

Device mass: m′

d
=

md

1− µ′

r µ

Device damping: c′
d

=

(

1

(1 − κ′

r κ)
2

+
1

(1− µ′

r µ)
2

)

cd

2

The background correction of these parameters is seen to be identical to that in the two
other resonant devices.

The background correction of the damping parameters is determined from the first
term of a Taylor expansion of the real part, giving

ω c′dk
(k′d)

2
+

ω c′dm
(ω2m′

d)
2

≃ ω cdk
(kd)2

+
ω cdm

(ω2md)2
. (81)

When removing the common factor ω and multiplying the equation by (k′d)
2 the following

form is obtained

c′dk +
( k′d
ω2m′

d

)2

c′dm ≃
(k′d
kd

)2

cdk +
( k′d
ω2md

)2

cdm . (82)

The frequency of the actual device is determined as (ω′
d)

2 = k′d/m
′
d. When the equation

is satisfied at this frequency, the following simplified form is obtained

c′dk + c′dm =
(k′d
kd

)2

cdk +
(m′

d

md

)2

cdm . (83)

The background correction of the damping is found from substitution of the stiffness
and mass correction factors (80) into this equation. In the ideal device the damping
constants were taken to be equal, cdk = cdm = cd/2. For practical design purposes
a similar condition is imposed on the actual damping parameters, c′dk = c′dm = c′d/2,
whereby the background correction of the damping parameter(s) is found as

c′d =

(
1

(1− κ′
r κ)

2
+

1

(1− µ′
r µ)

2

)
cd
2
. (84)

In the present calibration procedure the mass ratio and the stiffness ratio of the ideal
device were found to be equal, µ = κ, whereas the background inertia and flexibility
coefficients µ′

r and κ′
r are typically different.

The non-resonant background mode corrections for the double damper device are
summarized in Table 4. It is seen that the correction factors on the device stiffness
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and inertia are identical to those of the basic three-component device sown in Table 2,
whereas the correction of the device damping coefficient cd corresponds to application
of the mean value of the two factors given in Table 2.

6. Example

The following example illustrates the straightforward implementation of the inerter
based devices in a standard finite element model and makes a brief comparison of the
three devices when calibrated as described in detail in the previous sections.

6.1. Implementation of resonant inerter based damping devices

Let the equation of motion of the original structure without a damping device be
expressed by the following standard equation of linear dynamics,

Mü + Cu̇ + Ku = f , (85)

with mass, damping and stiffness matricesM, C, and K, respectively. The displacement
vector of the original structure is denoted u and the corresponding external load vector f .
When evaluating the performance of the resonant absorbers presented in the previous
sections, it is advantageous to introduce an additional degree of freedom u∗, expressing
e.g. the extension of the inerter element of the resonant device. The spring element and
the inerter element are placed in series in each of the devices discussed here, and the
extension of the spring element therefore takes the form

ud − u∗ = wTu − u∗ . (86)

The extended displacement and load vectors to be used for the structure including the
resonant device are introduced as

uT
∗ = [uT , u∗ ] , fT∗ = [ fT , 0 ] . (87)

The extended equation of motion then takes the form

M∗ü∗ + C∗u̇∗ + K∗u∗ = f∗, (88)

where the extended stiffness matrix and the extended mass matrix take the form

K∗ =

[

K+ kdwwT −kdw

−kdw
T kd

]

, M∗ =

[

M 0

0T md

]

(89)

for all three absorber types. The damping matrix of the type 1 absorber from Fig. 2
with the damping element in parallel with the stiffness element is augmented like the
stiffness matrix, whereas the damping matrix of the type 2 absorber from Fig. 5 with
the damping element in parallel with the stiffness element is augmented like the mass
matrix,

C
(1)
∗ =

[

C+ cdwwT −cdw

−cdw
T cd

]

, C
(2)
∗ =

[

C 0

0T cd

]

(90)
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Finally, the absorber of type 3 with two damper elements of magnitude 1
2cd shown in

Fig. 6 leads to

C
(3)
∗ = 1

2C
(1)
∗ + 1

2C
(2)
∗ =

[

C+ 1
2cdwwT − 1

2cdw

− 1
2cdw

T cd

]

(91)

With these expressions and the parameter values obtained by the calibration procedure
described in the previous sections the finite element equations of the augmented system
including the resonant damping device can be set up directly.

6.2. Single vibration absorber on simple shear building

1 2 3 4 5
0

2

4

6

8

10

12

14

uj

n

Figure 7: First five natural modes uj of a 15-story shear building.

The performance and relative merits of the three resonant inerter based devices
treated in this paper are illustrated by the following simple example consisting of a
so-called shear building, illustrated in Fig. 1. In the example the building has n = 15
storeys each with mass m0 and separated by connections with stiffness k0. The 15
vibration modes have normalized natural angular frequencies given by

ωj

(k0/m0)1/2
= 2 sin

(π

2

2j − 1

2n+ 1

)

= 0.1013, 0.3029, 0.5013, 0.6946, 0.8808, · · ·

The first five mode shapes are shown in Fig. 7. If the figure were extended symmetrically
above the upper floor n = 15 the extended mode shapes would correspond to a discrete
form of 1, 3, 5, 7, 9 half-wavelengths of a sine-function. The shape functions are here
normalized with respect to the maximum displacement, occurring at the top floor.

A single vibration absorber of any of the three types considered above is mounted
between the base and the first floor. Thus, the device is activated by any of the vibration
modes of the building, but will only be in resonance for one selected mode. The design
objective is to generate equal modal damping in the two coupled modes generated by
the interaction with the resonant device and to attain a specified level of the resulting
damping ratio of these two modes. The level ζmode = 0.05 is selected corresponding to
an equivalent dynamic amplification of 10 at the resonant frequency. Details are given in
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Tables 5 and 6 and for modes 1 and 3 respectively, with normalized natural frequencies
ω1 = 0.1013 and ω3 = 0.5013.

Table 5: 15-story shear building, na = 1, resonant mode r = 1.

Background parameters κ′

r = 7.212, µ′

r = 0.230. Equivalent damping ζmode = 0.05.

Type µ κ m′

d
/md k′

d
/kd c′

d
/cd ωd/ωr ζr1 ζr2

1 0.0204 0.0196
1

1.005

1

1.165

1

1.356

0.980

1.055

0.0599

0.0490

0.0233

0.0523

2 0.0196 0.0204
1

1.005

1

1.173

1

1.009

1.020

1.103

0.0841

0.0504

0.0234

0.0505

3 0.0200 0.0200
1

1.005

1

1.169

1

1.187

1.000

1.079

0.0720

0.0530

0.0230

0.0504

Table 6: 15-story shear building, na = 1, resonant mode r = 3.

Background parameters κ′

r = 10.959, µ′

r = 4.429. Equivalent damping ζmode = 0.05.

Type µ κ m′

d
/md k′

d
/kd c′

d
/cd ωd/ωr ζr1 ζr2

1 0.0204 0.0196
1

1.099

1

1.274

1

1.622

0.980

1.055

0.0566

0.0486

0.0235

0.0533

2 0.0196 0.0204
1

1.095

1

1.288

1

1.199

1.020

1.107

0.0766

0.0518

0.0234

0.0485

3 0.0200 0.0200
1

1.097

1

1.281

1

1.422

1.000

1.080

0.0666

0.0537

0.0231

0.0498

First the ideal mass ratio µ and stiffness ratio κ are determined without including the
effect of the background modes. These are given in columns 2 and 3, and are identical
for the different modes. It is seen that the roles of µ and κ are interchanged for devices
of type 1 and 2. In the following columns the results are split into two rows. The
upper row gives the device tuning frequency ωd, plus the resulting damping ratio for
the two interaction modes, ζr1 and ζr2. It is seen that there is a fairly large difference
between these damping ratios in all cases due to the simplified single-mode procedure.
This indicates an unbalanced design, that is corrected by including the effect of the
background modes as shown in Tables 2 and 4. The modification of device stiffness,
inertia and damping is introduced via the non-dimensional device background flexibility
parameter κ′

r and background mass parameter µ′
r. These parameters represent the

relative effect of the non-resonant background modes for a device with location given
by the integer array w. They depend on the selected resonant mode to be targeted, but
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are independent of the particular device configuration. The values of the background
parameters κ′

r and µ′
r are given for vibration mode 1 in the first row of Table 5 and for

mode 3 in the first row of Table 6. It is seen that for mode 1 the effect of the background
modes on the device mass is very small, corresponding to µ′

1 ≪ 1. This is typical of
the lowest mode of a structure, for which the effect of non-resonant higher modes is
dominated by a quasi-static contribution – see e.g. [28, 29]. For vibration mode 3 the
background effect of the two lower modes is largely in the form of a mass correction,
and thus the background mass factor µ′

r is typically non-negligible for resonant modes
higher than the first. The background flexibility and mass factors κ′

r and µ′
r enter

into the factors for stiffness, mass and damping via the combinations κ′
rκ and µ′

rµ,
respectively. The single-mode mass and stiffness parameters µ and κ only show modest
variation between the three device configurations treated here, and thus the background
mode correction of device stiffness and mass is largely independent of the device type,
but depends considerably on the magnitude of the background coefficients and thereby
on the particular targeted resonant mode. In contrast, the device type has a considerable
effect on the correction of the device damping coefficient.

It is clear from the Tables 5 and 6 that the present correction procedure for non-
resonant background effects improves the balance between the two damping ratios ζr1
and ζr2 for all the combinations of device type and resonant mode number. This sug-
gests an improved balance between the peaks of two interaction generated peaks in a
frequency response analysis, reducing the maximum dynamic amplification factor. This
is illustrated in frequency analyses carried out for a horizontal concentrated load on the
top floor for each of the three device types for both resonant mode r = 1 and resonant
mode r = 3. The dynamic amplification factor of the top floor is illustrated for mode 1
as function of the normalized excitation frequency ω/ω1 for each of three device types in
Figs. 8–10, respectively. The left side of the figure shows the dynamic displacement of
the top floor utop normalized with respect to its static equivalent ustat, and the right side
of the figure shows the internal device displacement udev = u∗ normalized with respect
to the same static top floor displacement ustat. The results for each of the three device
types are remarkably similar. In the absence of background parameter correction all
curves show a strongly dominant left peak. In all three cases the background mode cor-
rection balances the two peaks and reduces the structural response to about half of that
from the unbalanced single-mode calibration. The effect on the internal device motion is
similar, but less dramatic. The resulting response curves correspond closely to an equiv-
alent single-degree-of-freedom model, and it is noted that the response is slightly less
due to the direct normalization with respect to the static deformation instead of a more
detailed normalization via the equivalent modal load and modal response amplitude.

Similar frequency results are presented for each of the three device types in Figs. 11–
13 when calibrated for resonance of mode r = 3. The results are normalized with the
static displacement from a concentrated force at the top floor, and the amplification
curves therefore show considerably lower values that for the previous mode 1 analysis.
Around the structural resonance frequency ω3 the dynamic amplification is similar to
that of the previous case with r = 1. Also for this mode an initial unbalance for the
single-mode calibration with a high single right peak is balanced with two nearly equal
peaks with half the amplification of the original peak. However, in the case of the present
resonant mode r = 3 the dynamic amplification curve for the top floor response exhibit
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Figure 8: Dynamic amplification for mode 1 device type 1. With (—), without (- -) correction.
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Figure 9: Dynamic amplification for mode 1 device type 2. With (—), without (- -) correction.
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Figure 10: Dynamic amplification for mode 1 device type 3. With (—), without (- -) correction.
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Figure 11: Dynamic amplification for mode 3 device type 1. With (—), without (- -) correction.
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Figure 12: Dynamic amplification for mode 3 device type 2. With (—), without (- -) correction.
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Figure 13: Dynamic amplification for mode 3 device type 3. With (—), without (- -) correction.
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an increase towards both the lower frequencies and the higher frequencies in the graphs.
This is due to the closeness of the second mode with relative frequency ω2/ω3 ≃ 0.6 and
the fourth mode with relative frequency ω4/ω3 ≃ 1.4. These natural frequencies are only
slightly outside the frequency interval in the figure, and as seen from the mode shapes
in Fig. 7 the concentrated load at the top floor also excites these modes fairly directly.
It is noted that the internal device displacement udev, which is largely generated by
resonance, does not exhibit this effect to a similar extent.

7. Conclusions

A theoretical framework for resonant inerter based damping devices on flexible struc-
tures has been presented. A central point is that the inerter is activated by the relative
motion of its two terminals, and therefore its use on flexible structures often involves
the relative motion of two points of the structure. In contrast to tuned mass devices,
including the classic tuned mass absorber, a pair of forces acts on two points of a flexible
structure and the resulting dynamic response can rarely be described by the response of
a single mode. In the present paper a procedure is presented by which the local defor-
mation of the two terminals of the inerter is built from a resonant part containing the
relevant resonant mode, plus an additional contribution that lumps the flexibility and
inertial effects of the additional local deformation. This effect is a part of the response
of the structure to a local pair of opposing forces, operating in resonance with a selected
vibration mode, and thus is independent of details of the configuration of the resonant
vibration absorber configuration.

The other component of the theoretical framework for resonant damping devices
is the formulation of a suitable representation of discrete idealized system with only
two degrees-of-freedom. In the present paper three inerter based configurations are
considered: an inerter in series with parallel stiffness and damper elements, a stiffness
element in series with parallel inerter and damper elements, and finally a series coupling
of a stiffness and an inerter element each equipped with a parallel damper element. Each
of these idealized devices, as well as several others, allows a simple explicit root locus
based design procedure where the key element is the observation that optimal damping
properties follow from assuming equal damping ratio of the two modes.

The design procedure for resonant inerter based vibration absorbers on flexible struc-
tures consists of a combination of the simple idealized 2 DOF absorber model and an
explicit procedure for incorporating the effect of the non-resonant local deformation
around the device terminals. The combined procedure is presented in a two-step for-
mat, in which the structural system is first represented solely in terms of the properties
of the selected resonant mode. The parameters obtained from this single-mode proce-
dure, which is specific for each device type, are subsequently modified to account for
the local deformation effects. Examples demonstrate that the performance of the three
simple resonant inerter based vibration absorbers are remarkably similar, but that the
design parameters depend on the device configuration and on the particular resonant
mode. In all the cases considered a nearly optimal balance was attained for the combined
device-structure system.
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