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INTRODUCTION 

Thirty years have passed since Phillips ( 1 960) pioneered a view of weak, 
nonlinear interactions among gravity waves on the surface of deep water. 
His view emphasized the special role of "resonant" interactions, so-called 
because they have the mathematical form of a resonantly forced, linear 
oscillator. Unlike weak nonresonant interactions, wcak resonant inter­
actions can cause significant energy transfer among wave trains and pro­
foundly affect wavefie1d evolution. Early skepticism 1 of Phillips' view was 
dispelled unequivocally by experiments presented in the companion papers 
of Longuet-Higgins & Smith ( 1 966) and McGoldrick et al (1966). This 
experimental confirmation of RIT (resonant interaction theory) and RIT's 
general applicability to a variety of phenomena (Benney 1962) made it one 
of the principle catalysts for the rapid expansion in the understanding of 
nonlinear wave phenomena that has occurred during the last thirty years. 

I See the discussion comments in Section 4, pages 1 63-200, of Ocean Wave Spectra 
Proceedings of a Conference (1963) held in Easton, Maryland, May 1-4, 1 96 1 .  
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56 HAMMACK & HENDERSON 

Ten years have passed since Phillips ( 198 1 a) presented a retrospective 
of resonant interaction theory which noted its maturity and suggested that 
it might be approaching its limits of usefulness. The maturity of RIT then 
and its older age now are evidenced by the plethora of literature which 
include review articles (Phillips 1 967, 1 974, 1 98 1 a; Yuen & Lake 1980, 
1 982) and comprehensive descriptions in monographs (Phillips 1 977, 
LeBlond & Mysak 1978, West 1 98 1 ,  Ablowitz & Segur 1 98 1 ,  Craik 1985) .  
Because of this maturity and the preponderance of readily available survey 
material this review is narrowly focused. In particular, we do not review 
coupling between surface and internal waves, internal waves, planetary 
waves, trapped waves, or waves in shallow water. Our objective is to review 
resonant interaction theories and experiments for waves on the surface of 
a deep layer of water. RIT is more than a framework for unifying wave 
phenomena-RIT is predictive. In fact, it provides one of the few ana­
lytically tractable models (the three-wave equations) of weak interactions 
among wavetrains with arbitrary wavelengths and directions of propa­
gation. Yet, quantitative comparisons between RIT and RIE (resonant 
interaction experiments) are rarer than generally believed. Moreover, the 
success of RIT in quantitatively predicting the outcome of experiments is 
less established than generally believed. The theme of this review is that 
although RIT is mature, RIE is not, and perhaps its maturing will provide 
the basis for further theoretical developments. 

An outline of the review is as follows. First, we review RIT in a variety 
of dynamical settings with an emphasis on the underlying approximations. 
We examine the elementary interactions of three- and four-wave reson­
ances as well as deterministic and stochastic models for wavefields com­
prising either a broad or narrow spectrum of waves interacting in multiple 
and coupled sets. We also review some special settings in which higher­
order resonances have been examined. Second, we review RIE in a variety 
of dynamical settings with an emphasis on those aspects that are predicted. 
We begin with a review of experimental investigations on the applicability 
of Kelvin's dispersion relation. We then review experiments involving 
gravity, gravity-capillary, and capillary wavetrains. We conclude by briefly 
summarizing results from comparisons between RTT and RTE and by 
noting the particularly glaring absence of controlled experiments in some 
appiications. 

RESONANT INTERACTION THEORY 

In order to emphasize the basic notions of RIT and the generality of its 
application, we briefly outline its development for an arbitrary, nonlinear, 
energy conserving dynamical system. This outline, which closely parallels 
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SURFACE-WAVE INTERACTIONS 57 

Segur ( 1984) and Craik ( 1985), leads to necessary kinematical conditions 
for the existence of resonance, which underlie all applications of RIT. We 
then review a variety of dynamical analyses for surface waves in deep 
water that lie within the framework of RIT. 

Basic Notions and Kinematical Considerations 

Consider a nonlinear, energy-conserving dynamical system represented by 

N(¢) = 0, (1)  

in which N is a nonlinear operator, ¢(x, t)  is a solution of (1), x = (x,y, z) 
is a position vector, and t is time. Suppose ¢ = ° is a (neutrally) stable 
equilibrium solution of (1), e.g. the quiescent surface for water waves. 
Infinitesimal deformations from this equilibrium state are found by linear­
izing (1)  to obtain 

(2) 

in which L is a linear operator and ¢, is a solution of (2). If L has constant 
coefficients as it does for water waves, ¢, has the form: 

¢, � exp[i(k'x-wt)], (3) 

in which k = (ki) = (I, m, n) is a wavenumber vector (or simply wavevector) 
and w is the wave frequency. Substituting (3) into (2) yields a dispersion 
relation for the linear problem: 

w = W(k). (4a) 

We require that w exists in the sense that for fixed k there is a countable 
set of possible values for wand that W(k) is real-valued for real-valued k. 
We also require that waves are non trivially dispersive (Whitham 1974, p. 
365), i.e. 

(i,j = 1,2,3). (4b) 

(Hence, in the context of water waves we avoid shallow water.) Now return 
to (1)  and seek small-but-finite deformations from the equilibrium state 
by means of a formal power series: 

00 

¢(x, t; B) = L B'¢,(X, t), O<B«l. (5) 
r== I 

At O(B) of (5), ¢ I satisfies (2) and can be represented by a superposition 
of S linear wavetrains, i.e. 
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58 HAMMACK & HENDERSON 

s 

¢, = L (AseiB,+A;"e-iB,,), 
s= 1 

(6a) 

in which As is the complex amplitude, A: is its complex conjugate, and 

Os = ks·x-wst, (6b) 

is the wave phase. At this order, the S wavetrains interact linearly. The 
first nonlinear interactions appear at 0(e2) for which 

(7) 

where Q is a quadratic operator. For definiteness, suppose we examine the 
nonlinear interactions between two wavetrains (S = 2); then Q yields terms 
like: 

Q(¢,) = A,A?+Ak2B'+A?2e-i2B, 

+A,A2ei(B,+B2)+A,Atei(B,-02)+.... (8) 
The first three terms in (8) represent self-interactions of wavetrain s = 1; 
the first term corresponds to its mean flow while the second and third 
terms correspond to,its second harmonic. The other terms shown in (8), 
and their complex conjugates, correspond to sum and difference wavetrains 
formed by nonlinear interactions between wave trains s = I and s = 2. 
Supposing these quadratic interactions do not vanish identically we can 
examine the terms of (8) to see if any satisfy the dispersion relation of (4), 
i.e. we define 

OdOz = 03 or (kdkz)·x-(wdwz)t = ±k3·x-(±W3)t. (9) 

[The second-harmonic terms in (8) are a special case of (9) with 0, = O2.] 
If (k3, (3) satisfy (4), then (7) is the equation of a resonantly forced, linear 
oscillator. Hence, ¢2 will grow linearly in time so that the underlying 
assumption of small deformations in (5) is violated when et = 0(1). When 
the dispersion relation satisfies W(k) = - W( -k), as in water waves, we 
can write (9) in the form 

(lOa) 

( lOb) 

Equations (10) are necessary conditions for resonant three-wave inter­
actions. The special case of 0, = O2 in (9) is termed second-harmonic (or 
internal) resonance. Phillips (1960) showed that resonant triads are not 
possible for deep-water gravity waves. McGoldrick (1965) showed that 
both second-harmonic and triadic resonances are possible for deep-water 
gravity-capillary waves. Second-harmonic resonance was originally noted 
by Harrison (1909) and investigated by Wilton (1915). Known as Wilton 
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SURFACE-WAVE INTERACTIONS 59 

ripples, second-harmonic resonance occurs for a wavetrain with wave­
number ko = «(}gj2T) liZ, in which (} is the mass density, T is the surface 
tension, and 9 is the gravitational force per unit mass. [Triadic resonances 
also occur in shallow water where waves are nondispersive at leading order 
so that (10) are satisfied somewhat trivially.] 

Proceeding to G(f,3), in which cubic nonlinear interactions occur on the 
right-hand side of (7), we allow three wavetrains (S = 3) in (6a). Then, 
assuming that triadic resonances do not occur, considerations similar to 
those above lead to necessary conditions for four-wave resonances: 

(11 a) 

( lIb) 

in which we have made use of a dynamical result of Hasselmann (1962) to 
eliminate the usual ± signs. If Equations ( 1 1 )  are satisfied, the underly­
ing assumption of small deformations in (5) is violated when s2t = 0(1). 
Equations (11) include the special case of third-harmonic (internal) 
resonance as well as the degenerate case with WI = 012 = 013 = 014 and 
/kl/ = /k2/ = /k3/ = /k4/, i .e. the wavevectors in (11 a) form a rhombus. 
Since a single wavetrain satisfies the latter degenerate case with collinear 
wavevectors, quartic resonances�unlike triadic resonances�are possible 
for any system. Phillips (1 960) first showed that non degenerate quartic 
resonances are the first to occur for gravity waves on deep water. 

The above procedure can be continued for resonant quintets, sextets, 
etc; however, RIT in this general form is typically not exploited beyond 
triadic and quartic resonances. The reasons are twofold. Philosophically, 
it is generally assumed that the lowest-order resonant interactions that 
occur will dominate wavefield evolution; hence, the inevitable existence of 
resonant quartets mitigates interest in higher-order effects. In practice, the 
labor involved in the dynamical calculations of higher-order resonances is 
daunting. Nevertheless, the perturbative approach of RIT has been 
extended to higher-order resonances in some special cases which we discuss 
subsequently. 

Dynamical Considerations 

When the kinematical conditions of ( 1 0) or ( 1 1 )  are satisfied, a separate 
dynamical analysis is required to follow long-time evolution of the wave­
field. Dynamical analyses have branched in several directions depending 
on the number of resonant wave sets possible for the underlying (linear) 
wavefield of (6a). 

ELEMENTARY INTERACTIONS In the simplest cases, which we term elemen­
tary resonant interactions, a single triad or a single quartet of waves is 
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60 HAMMACK & HENDERSON 

studied. Two common methods of analysis are the method of multiple 
scales (e.g. Benney 1962, McGoldrick 1965) and variational techniques 
(e.g. Simmons 1 969). Both methods lead to a set of coupled, nonlinear 
partial differential equations for the complex amplitudes of the interacting 
wavetrains. These equations are similar for all dynamical systems, differing 
only in real-valued interaction coefficients, which depend on the linear 
properties of the underlying wavetrains. The equations for a single res­
onant triad (Ball 1964, Bretherton 1 964, McGoldrick 1 965, Benney & 
Newell 1 967, Simmons 1 969) can be written in the general form 

( 1 2) 

in which s is interpreted modulo 3, Ys are the interaction coefficients, 
and Us = 8W(ks)/8k are the respective (constant) group velocities. The 
interaction coefficients for deep-water gravity-capillary waves are given by 
McGoldrick ( 1 965) and in their most perspicuous form by Simmons ( 1969) 
as 

Jks Ys = - -4 ,(no sum) 
OJs 

3 

J = I OJjOJj+ 1 ( 1 + ej• ej+ 1)' 
j� I 

( 1 3a,b) 

in which ej = k)kj andjis interpreted modulo 3. The three-wave equations 
of ( 12) have a rich structure (see Craik 1 985 for a comprehensive 
discussion). They are an infinite-dimensional Hamiltonian system which 
is completely integrable (i .e. the Hamilton-Jacobi equation is separable), 
and they can be solved exactly for a wide class of initial data by the inverse 
scattering transform (see Kaup 1981  and the references cited there). In the 
absence of spatial gradients, they have exact solutions in terms of Jacobi 
elliptic functions (Ball 1 964, Bretherton 1 964), which exhibit periodic 
exchanges of energy among the three waves as well as the phenomenon of 
recurrence. There are a number of other exact solutions for special cases 
(e.g. see Craik 1 985). Resonant triads occur on a time scale t � to/s, in 
which to is a characteristic waveperiod. 

The equations for a single resonant quartet (Benney 1 962, Bretherton 
1 964, Benney & Newell 1 967) can be written in the compact form 

4 

(81+ Us· V)As = iAs L YSjIAjI2+ irOJsA:HAs+20As+ 30' ( 14) 
j� I 

in which s is interpreted modulo 4; (j = + 1 for's odd; (j = - 1 for s 
even; and Ysj and r are real-valued interaction coefficients. The interaction 
coefficients in the matrix (Ys) with s,j = 1 , 2, 3, 4  are discussed by Phillips 
( 1977, p. 85) for deep-water gravity waves; their form is given by Longuet­
Higgins & Phillips ( 1 962). These coefficients account for the nonlinear 
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SURFACE-WAVE INTERACTIONS 61 

dispersion of the waves with the diagonal terms corresponding to self 
interactions (Stokes 1847) and the off-diagonal terms corresponding to 
mutual interactions between wave pairs. The coefficient r accounts for 
energy exchange among the four waves; it is a complicated function of the 
frequencies and wavevector configuration of the underlying waves. An 
explicit expression for r in the general case has not been presented; 
however, Benney ( 1962) hints at its complexity and Longuet-Higgins 
(1962) gives an explicit result when (11) is satisfied with two coincident 
wavetrains (also see McGoldrick et al 1966). The four-wave equations of 
(14) have many interesting properties (see Craik 1985 for a review). They 
are not known to be integrable (Ab10witz & Segur 1981, p. 312), but exact 
solutions in terms of Jacobi elliptic functions exist when there are no 
spatial gradients (Bretherton 1964, Boyd & Turner 1978). Hence, as in the 
three-wave equations, periodic exchanges of energy among the wave trains 
are possible. Resonant quartets occur on a time scale t ,..., to/f.2. 

The elementary interactions described by the three- and four-wave equa­
tions are the backbone of RIT; their predictions and experimental vali­
dation are the primary basis for RIT's general acceptance. Yet, in many 
practical applications these equations are not sufficiently general, since a 
system that admits one resonant set of waves often admits many resonant 
sets simultaneously, as is the case for water waves. 

MULTIPLE RESONANT INTERACTIONS When the underlying (linear) wave­
field of (6a) comprises many waves-e.g. a discrete spectrum of S waves 
or a continuous spectrum-multiple and coupled resonances are often 
possible. A distinction is usually made between broad spectra and narrow 
spectra, since the latter enable some useful simplifications. In addition, the 
existence of multiple and coupled resonant sets among both broad and 
narrow spectra allows a choice between deterministic or stochastic descrip­
tions. For broad spectra, stochastic descriptions dominate owing to the 
escalating complexity of deterministic descriptions and the absence of 
known initial conditions for systems like ocean waves. It should be noted 
also that the simplifying analyses2 that result from adopting stochastic 
descriptions are purchased with assumptions on the nature of the under­
lying randomness; results can differ markedly with different assumptions. 
[Reviews of stochastic descriptions of water waves can also be found in 
Phillips (1977), West (1981), and Yuen & Lake (1982).] 

2 Simplification is obscured by the burdensome symbolism in many studies. We note the 
importance of symbolism in mathematics, e.g. see Whitehead (1958, p. 39) who cites the 

classical example of arithmetic-progress stalled until the arabic symbolism replaced the 

roman symbolism. 
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62 HAMMACK & HENDERSON 

Broad-spectrum interactions Ablowitz & Haberman ( 1975a,b) used a 
deterministic approach with S large to study a general system with multi­
triad resonances. They used the methods of Ablowitz et al ( 1974) to obtain 
a set of S integrable, nonlinear partial differential equations. These are 
coupled through M interlocked triads in which M � (S -1 )/2. Ablowitz 
& Haberman ( 1975b) also considered the case of multi quartet interactions. 
The special case (M = 2, S = 5) of two resonant triads with one wavetrain 
in common was examined in the context of plasma waves by Wilhelmsson 
& Pavlenko ( 1973) [see also Weiland & Wilhelmsson ( 1977, p. 1 21 )], who 
obtained exact solutions in terms of Jacobi elliptic functions-similar to 
the results for elementary interactions. 

Stochastic descriptions of nonlinearly interacting water waves were 
pioneered by Hasselmann ( 1 962, 1 963a,b, 1 966, 1 967a) who recognized 
the special role of four-wave resonances for surface gravity waves and 
asserted the random-phase approximation or equivalently, asserted that 
wavefields are spatially homogeneous (and Gaussian). The random-phase 
assertion (RPA) is wrong for the multi triad or multi quartet descriptions 
of Ablowitz & Haberman ( 1975a,b). Whether it is right for resonant 
interactions among a broad spectrum of gravity or gravity-capillary water 
waves cannot be answered unequivocally. The RPA is plausible, and it 
appears useful in a practical sense for studying plasma waves (Davidson 
1 972, Section 1 3). In essence, the RPA relegates nonlinearity in four-wave 
resonances to acting on the slow time scale t � to/84 whereas randomness 
acts on the faster time scale t � to/82 (e.g. see Yuen & Lake 1982); hence, 
randomness dominates nonlinearity. The diminished nonlinearity allows 
energy transfers among resonant waves; however, the resonant set contains 
passive waves, which grow to a steady state, rather than active waves, 
which exchange energy periodically as in elementary resonant interactions. 
Thus, energy transfers are irreversible. For a discrete broad spectrum 
of underlying waves, Hasselmann's stochastic model yields an evolution 
(transport) equation for the spectral density of wave action per unit mass 
NI :=N(kJ, t) with the form 

oNI foo foo foo 
at = -00 -00 -00 Q(kJ, k2, k3,k4) [N3N4(NI +N2) -NIN2(N3+N4)] 

x b(kl+ k2-k3-k4)b(wI+ w2-w3-w4)dk2dk3dk4, ( 1 5) 

in which Q(k b k2' k3, k4) is a complicated interaction coefficient (see Webb 
1 978, for a succinct listing) and the Dirac delta functions select con­
tributions only from resonant interactions. Not only is the content of ( 1 5) 
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SURFACE-WAVE INTERACTIONS 63 

difficult to see, it is difficult to calculate. Rough calculations using (1 5) and 
(JONSWAP) oceanic data (Sell & Hasselmann 1 972, Hasselmann et al 
1 973 as referenced by Phillips 1 977, p. 1 39) indicated that energy flows 
toward a broad spectral peak, but the results were inconclusive (Phillips 
1 977, p. 1 38). More well-founded calculations using (1 5) and a broad 
spectrum by Webb (1978), Masuda (198 1 ,  1 986), Hasselmann & Hasse1-
mann (1985), and Hasselmann et al (1985) also showed, among other 
things, that energy flows toward a broad spectral peak from high wave­
numbers. More recent calculations by Resio & Perrie (199 1) affirmed this 
result and examined energy fluxes among spectral regions for a variety of 
spectral parameters. 

Valenzuela & Laing (1972), Holliday (1 977), and van Gastel (1 987a) 
used a stochastic model similar to Hasselmann's to study a broad discrete 
spectrum of gravity-capillary waves, in which resonant triads occur. Van 
Gastel (1 987a) gives an especially perspicuous derivation of the transport 
equations, which she writes in terms of the variance density G according 
to 

[The relation between the variance density G in (16) and wave action 
density per unit mass N in (1 5) is discussed by van Gastel (1987b).] The 
interaction coefficients J2 that appear in the stochastic model of (1 6) are 
proportional to the square of those in the deterministic model of (1 2) and 
(13) for an elementary resonant triad. A similar revealing connection 
between the interaction coefficients for gravity waves in the stochastic 
model of (1 5) with those of the deterministic elementary resonant quartet 
of (14) has not been found. Van Gastel (1987a) also used calculations to 
show that nonlinear interactions caused energy to flow away from a broad 
spectral peak toward wavenumbers larger than that of Wilton ripples 
[ko = (Qg/2T) 1/2] .  In her stochastic model the interactions within a resonant 
triad were independent of other triads. The time scale of randomness was 
I � lo/e, whereas the time scale of nonlinearity was I '" 10/e2• 

The effects of spatial inhomogeneities for a broad spectrum of waves 
were investigated by Wille brand (1975) who cstimated that they are small 
in deep water, but the arguments are subtle. Watson & West (1975) 
developed a stochastic model that included specific external mechanisms 
to account for spatial inhomogeneities ab initio. They showed that non­
resonant interactions between these mechanisms and the wavefie1d were 
important. A general stochastic model for a broad continuous spectrum 
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64 HAMMACK & HENDERSON 

of waves which did not use the RPA W�lS presented by Benney & Saffman 
(1966) and Benney & Newell (1969j:'fheir analyses made essential use of 
the smoothness of the underlying wave spectrum; hence, their results 
cannot be compared directly with the discrete spectral results, in which the 
spectrum is a sum of Dirac delta functions. Segur (1984) suggested that this 
smoothness amounts to enhancing linear dispersion relative to nonlinear 
coupling so that their model applies in a different regime from those of 
elementary resonant interactions and Hasselmann's model. Segur (1984) 
developed a stochastic model-which did not use the RPA-for coupled, 
resonant triads of interacting, localized wave packets. His derivation 
closely paralleled Boltzmann's derivation for a dilute gas of interacting 
molecules (kinetic theory), but important differences arose in consequence 
of fundamental differences between interacting molecules and interacting 
wave packets. In particular, two interacting wave packets generate a third 
ab initio so that the essential assumption of a dilute system was eventually 
violated. Segur's final evolution equation for the probability density of 
finding a particular wave packet at a particular time and location in phase 
space differed considerably from Boltzmann's equation for dilute gases. 
Segur suggested that his model probably does not have stable equilibrium 
solutions, which play a central role in the kinetic theory of gases. 

Narrow-spectrum interactions When the wavefield has a narrow spectrum 
and four-wave resonances are the first to occur, expansions about the 
dominant wavetrain reduce both deterministic and stochastic descriptions 
to simpler forms. [In terms of ( l l a), the wavevectors of a narrow spectrum 
are nearly collinear and nearly equal in magnitudes.] Benney & Roskes 
(1969), Davey & Stewartson (1974), Djordjevic & Redekopp (1977), and 
Ablowitz & Segur (1979; 1981, p. 317) exploited the spectrum's narrowness 
deterministically. They obtained (dimensionless) evolution equations in 
terms of the complex amplitude A with the form 

iA,+(Axx+ flAyy = XIA 12A +Xl<I>xA, 

P<I>xx+<I>yy = -p](IAI2)x, 

(17a) 

(17b) 

in which the coefficients (, fl, X, Xl, p, and p] are functions of the dominant 
wavetrain (see the aforementioned references or Perlin & Hammack 1991), 
<I> is a velocity potential for the mean flow that is induced by the wavefield, 
and the spatial coordinates are referenced to a frame moving with the 
wavetrain at its group velocity. [We also require that ( kh)2 » e to avoid 
shallow water.] Equations (17), which are often termed the Davey­
Stewartson equations, assume that the dominant wavetrain propagates 
mainly in the x-direction, i.e. its wavevector is, say, k = (la, 0). These 
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SURFACE-WAVE INTERACTIONS 65 

equations have many interesting variations. For example, in the deep­
water limit (kh -+ (0) the mean flow disappears yielding 

iAt+ (A xx + I1Ayy = XIAI2A, ( 1 8) 

which was first derived by Zakharov ( 1 968) and, according to Ablowitz & 
Segur ( 1981, p. 322), is probably not solvable by the inverse scattering 
transform. Equation ( 1 8) can also be derived directly from the four-wave 
equations (Phillips 1981a). The mean flow and amplitude equations in ( 1 7) 
decouple when either the transverse (y) variations are neglected to obtain 

iAt+'Axx = XIAI2A, ( 19) 

or when the longitudinal (x) variations are neglected to obtain 

iAt+I1Ayy = XIAI2A. (20) 

Both ( 19) and (20) are nonlinear Schroedinger (NLS) equations, first 
derived for longitudinal modulations by Benney & Newell ( 1967), Zak­
harov ( 1 968), and Hasimoto & Ono ( 1 972). [A comprehensive review of 
NLS equations in the context of water waves is given by Peregrine ( 1 983).] 
These equations are completely integrable and solvable by the inverse 
scattering transform (Zakharov & Shabat 1 972). In particular, ( 19) predicts 
the Benjamin & Feir (B-F, 1 967) instability of a wavetrain to longitudinal, 
modulational (sideband) perturbations and also models the instability's 
long-time evolution. The B-F instability occurs when (tjI < 0; the unstable 
wavenumbers lie in longitudinal sidebands 10 ± M, in which M = 

IAol (-2tj1ml/2 and IAol is the initial amplitude of the underlying 
wavetrain. Comprehensive reviews of ( 1 8) and ( 19), the B-F instability, 
and its long-time behavior, as well as experimental and numerical results 
are presented by Yuen & Lake ( 1980, 1 982), and we discuss them in more 
detail subsequently. In a little noticed paper, Phillips ( 1967) showed that 
the B-F instability could be obtained directly from the four-wave equations 
for gravity waves. Importantly, his results showed that the B-F instability 
of gravity waves is possible for longitudinal and transverse sideband modu­
lation, i.e. for oblique wavetrain perturbations. 

Equation (20) is a nonlinear Schroedinger equation for a wavetrain that 
propagates in the x-direction but is modulated in the transverse y-direction; 
it is commonly used in wave diffraction studies (e.g. Zakharov & Shabat 
1972). Perlin & Hammack (1991)  used (20) to study transverse sideband 
instabilities of gravity-capillary wavetrains. When I1X < 0 in (20), a 
wavetrain with wavevector k = (/0, 0) is unstable to wavevectors 
k = (/o±c5m), in which 15m = IAol (-2X/I1) 1/2. According to this result, 
all wavetrains with wavenumbers k > ko = «(29/2T) 1/2, i .e. wavenumbers 
greater than that of Wilton ripples, have unstable sidebands of transverse 
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66 HAMMACK & HENDERSON 

wavenumbers while those with k < ko, which includes gravity waves, do 
not. Moreover, Perlin & Hammack ( 1991)  showed that, according to ( 19) 
and (20), the growth rates of the most unstable longitudinal and transverse 
modes are equal. A more general result for gravity waves was obtained by 
Hayes ( 1 973), Davey & Stewarts on ( 1974), Alber ( 1978), and Martin & 
Yuen ( 1 980, repeated in Yuen & Lake 1 980, 1 982) who performed a linear 
stability analysis directly on ( 1 7), ( 1 8), or their equivalent. They found an 
unbounded band of oblique wavetrain perturbations with both transverse 
and longitudinal wavenumbers that destabilized the wavetrain. [This result 
is consistent with that of (20) when the longitudinal perturbation wave­
number vanishes.]  However, as noted by Martin & Yuen (1980), this 
unboundedness introduced perturbations which violated the narrow-spec­
trum approximation that underlies ( 1 7) and ( 1 8) .  This violation led Craw­
ford et al ( 1981a) to abandon ( 1 7) and its variations in favor of a less 
restrictive model equation. 

Crawford et al (I98Ia) investigated the Zakharov integral equation 
(Zakharov 1968): 

x eidW dk2 dk3 dk4, (21 )  

in which B(k, t) is a complex envelope spectral function, Tis an interaction 
coefficient, andAw = W]+W2-W3-W4 = 0(e2) accounts for slight detun­
ing of the resonance conditions. Strictly speaking, (21 )  is not restricted to 
a narrow spectrum, rather it requires that the spectrum have dominant 
components that lie within a bandwidth of 0(82) around the resonant 
curves of ( 1 1 ). When the resonance conditions of ( 1 1 )  are satisfied exactly, 
the four-wave equations are recovered. The B-F instability can be studied 
utilizing the detuning in (21) .  Results show that gravity waves are unstable 
to oblique wave perturbations and that the band of unstable wavenumbers 
is bounded. Importantly, the most unstable perturbation occurs when 
the transverse wavenumbers vanish so that the classical longitudinal B-F 
instability is dominant. A comprehensive review of (21 )  and further results 
are given in Yuen & Lake ( 1 980, 1 982). 

Stochastic descriptions for narrow spectra received a major impetus 
from Longuet-Higgins ( 1976) who used Equation ( 1 8) as a starting point, 
assumed a discrete spectrum of waves with uncorrelated phases (i.e. the 
random phase assertion), and averaged and summed over time to obtain 
Hasselmann's Equation ( 1 5) with an explicit expression for the interaction 
coefficient, Q(k, k, k, k) = 4nk6, in which k is the magnitude of the domi­
nant wavevector. Fox (1976) used this result and (JONSWAP) oceanic 
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data to perform computations with ( 1 5). His results differed markedly 
from the earlier computations by Sell & Hasselmann ( 1972); he found that 
energy flows away from, instead of toward, the spectral peak. Dungey & 
Hui ( 1979) improved Longuet-Higgins ( 1976) result by accounting for the 
finite spectral width of the narrow spectrum and showed that the flow of 
energy away from the spectral peak decreases as a consequence of its 
finite width. Masuda ( 198 1 ,  1986) clarified these varying results using ( 1 5) 
without approximating the interaction coefficient Q for spectral shape. His 
well-founded computations showed that although energy does flow away 
from the peak in a broad spectrum, it flows toward a peak in a narrow 
spectrum. Moreover, Masuda found that in a spectrum with both low­
and high-frequency peaks, the energy exchanges occurred such that the 
high-frequency peak was reduced and the low-frequency peak was inten­
sified. Resio & Perrie ( 199 1 )  also examined the effects of spectrum peaked­
ness on energy fluxes within the spectrum. All of these results for gravity 
waves were consistent with van Gastel's ( 1987a) results for gravity-capil­
lary waves. 

Yuen & Lake (1 982) started with the Zakharov integral Equation (2 1 )  
and derived a stochastic model which did not use the RPA. The resulting 
wavefield comprised modulations (spatial inhomogeneity) with a time scale 
t'" to/£2 while nonlinear interactions (energy exchange) occurred on a time 
scale t '" to/84 as in ( 1 5). Crawford et al ( 1980) used this stochastic model 
to test the stability of a narrow, homogeneous spectrum to inhomogeneous 
disturbances. They found a band of perturbation wavenumbers to which 
the narrow homogeneous spectrum was unstable; the bandwidth depended 
inversely on the strength of randomness. As the randomness approached 
zero they recovered the B-F instability; as randomness increased, the B-F 
instability diminished and finally disappeared so that the spectrum was 
stable. Alber ( 1978) obtained similar results beginning with ( 17). Janssen 
( 1983b) studied the long-time behavior of an unstable sideband mode for 
varying degrees of randomness. He found that the sideband's spectral 
amplitude initially overshot and then oscillated in a damped manner to its 
long-time value. Both the overshoot and damped oscillations disappeared 
as the width of the homogeneous spectrum increased. 

IDGHER-ORDER RESONANT INTERACTIONS Dysthe ( 1 979) extended the non­
linear Schroedinger equation (NLS) for gravity waves to 0(£4) and found 
that the mean flow, which is a degenerate wave, varies as a consequence 
to wavetrain modulations. The higher-order NLS equation predicted a 
large but bounded band of unstable oblique wave perturbations, and, 
similar to the results of Crawford et al ( 1 98 1a) for the Zakharov equation, 
it predicted that the most unstable perturbations for gravity waves are 
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68 HAMMACK & HENDERSON 

collinear. Calculations using this model for collinear perturbations by Lo 
& Mei ( 1 985) showed good agreement with Keller's experimental data, 
which is (only) reported there. Further calculations by Lo & Mei ( 1 987) 
using oblique perturbations showed that the higher-order NLS did not 
lead to a basic violation of its narrow-band approximation as ( 1 8) did. 
Janssen ( 1 983a) used Dysthe's higher-order NLS equation to study a 
random field of gravity waves with the random phase approximation and 
recovered the results of Dungey & Hui ( 1979). 

Hogan ( 1985, 1 986) extended the Zakharov equation to 0(84) for a 
narrow spectrum of gravity-capillary waves. Stiassnie ( 1984) showed that 
the higher-order NLS equation could bc obtained as a special case of the 
Zakharov equation. Stiassnie & Shemer ( 1 984) extended the Zakharov 
equation for gravity waves to include quintet interactions. Their cal­
culations for wavetrain stability were qualitatively similar to more exact 
results of McLean ( 1982a,b) who used direct computations of the unap­
proxima ted (Euler) equations. Stiassnie & Shemer ( 1 987) used the higher­
order Zakharov equation to study the coupled evolution of resonant 
quartets and resonant quintets, which lead to the instability of deep-water 
gravity wavetrains. 

SUMMARY COMMENTS ON RIT In summary, we emphasize several aspects of 
RIT whose importance will be clearer in the subsequent comparisons of 
theoretical and experimental results. First, RIT is a perturbative descrip­
tion which supposes wave-wave interactions are weak. Hence, RIT 
depends crucially on the existence of a single small parameter e, regardless 
of the number of wavetrains involved. Second, RIT neglects nonresonant 
interactions, which are those excluded by kinematical considerations, i .e. 
by Equations ( 10) and ( 1 1),  and those that satisfy kinematical conditions 
but are excluded by dynamical considerations. There is experimental evi­
dence to suggest that caution be used before neglecting dynamically non­
resonant interactions (Perlin et al 1990). Third, most of the discussion 
herein has assumed that the wavetrains satisfy the resonance conditions 
exactly. Precise tuning is not necessary and detuning is easily incorporated 
into RIT (e.g. see Craik 1 985) as it was in (2 1) .  Fourth, the RIT presented 
herein neglects water viscosity, although the weak viscous effects that are 
typical of water waves may be significant, especially over the long time 
scales associated with the weak interactions of RIT. Weak viscosity 
accounts for three important effects in experiments: It attenuates wave train 
amplitudes, it detunes resonances, and it imposes a minimum 8 in order 
for the growth of inviscid instabilities to occur. All of these effects are 
easily incorporated into RIT. For example, Miles ( 1984a,b) noted that 
the effects of weak (linear) viscosity are included in nonlinear evolution 
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SURFACE-WAVE INTERACTIONS 69 

equations by letting a/at --+ %t + {3, in which {3 is a viscous damping rate 
which usually varies among wavetrains. A comprehensive discussion of 
resonant interactions in systems that do not conserve energy can be found 
in Craik ( 1985, 1 986); also see Craik & Moroz ( 1 988) and Murakami 
(1 987). 

RESONANT INTERACTION EXPERIMENTS 

In the previous section we reviewed some of the theoretical literature in 
which the special role of resonant interactions provided the framework for 
analysis. In this section we review the experimental literature in which 
there are measurements that allow us to test the predictions of RIT, either 
qualitatively or quantitatively. We begin by reviewing experiments that 
address the applicability of Kelvin's linear dispersion relation for water 
waves on a free surface. This dispersion relation is crucial to all applications 
of RIT, and it has an interesting history of experimental verification which 
illustrates the difficulties of measuring wavevectors on a two-dimensional 
water surface. Then we review resonant interaction experiments for gravity 
waves, gravity-capillary waves, and capillary waves. 

Wave Dispersion on a Water Surface 
DISPERSION RELATION AND WAVE CLASSIFICATION Kelvin3 ( 1 871)  obtained 
the dispersion relation for infinitesimal wavetrains (6 --+ 0) on the free 
surface of an inviscid water layer with constant density g, constant surface 
tension T, quiescent depth h, and gravitational force per unit mass g, i .e.  

WZ g Cz = e = k(l+T) tanhkh . (22) 

Here c is defined as the wave celerity and r ::::: Tkz/Qg measures the relative 
importance of surface tension and gravitation, and resembles a reciprocal 
Bond number. To avoid shallow water we take kh » I so that the relevant 
perturbation parameter is the wave steepness 6 = ak. Wilton ( 19 1 5) showed 
that there is a countably infinite family of internal resonances among 
surface waves corresponding to wavetrains with T = l/n, n = 2,3, . . . .  
With the values T::::: 73 dyn(cm, g ::::: I gm/cm}, andg ::::: 980 cm(s2, second­
harmonic resonance occurs at T ::::: 1 /2 for a wave train with!::::: w/2n ::::: 9.8 
Hz, third-harmonic resonance occurs at T ::::: 1/3 for a wavetrain with 
f = 8 .4 Hz, and so on. It is convenient to use (22) and the theoretical results 
for resonant triads and quartets (modulational instabilities) reviewed in 

3 Kelvin did not consider the effects of finite depth, which we have included in (22), but he 

did include the effects of air density, which we have neglected. 
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70 HAMMACK & HENDERSON 

the previous section to define the following (distinct) frequency ranges for 
classifying surface waves. We define gravity wavetrains as those with 
r < 0. 1 55, which corresponds to / < 6.4 Hz. Wavetrains in this frequency 
range are modulationally unstable with collinear wave perturbations being 
dominant (Djordjevic & Redekopp 1 977, Crawford et al 198 1a) .  (Note 
that the group velocity of water waves is minimum for / = 6.4 Hz.) We 
define capillary wavetrains as those with r > 2.0, which corresponds to 
/ > 1 9.6  Hz; resonant triads are possible in this frequency range (Simmons 
1 969). (Note that /= 1 9.6  Hz is the second harmonic of Wilton ripples.) 
We define gravity-capillary waves (or ripples) as those with 6.4 < /  < 1 9.6  
Hz. Waves in  this frequency band are predicted to  have three types of 
weakly nonlinear behavior. Wavetrains with 6.4 </ < 9.8 Hz are stable to 
modulational instabilities (Hogan 1985, Djordjevic & Redekopp 1 977); 
however, five members of the family of Wilton ripples (n = 2�6) are 
embedded in this band. Wave trains with / >  9.8 Hz are modulationally 
unstable to collinear and oblique wavetrain perturbations (Perlin & Ham­
mack 1 991) .  All of these resonances and wave classifications are sum­
marized in Figure 1 .  

DISPERSION RELATION EXPERIMENTS Fundamental to the application of 
RIT is the accuracy of the linear dispersion relation; yet, experimental 
verification of (22) is deceivingly difficult. Von Matthiessen (1 889) first 
conducted experiments to test the validity of Kelvin's Equation (22) using 
a porcelain basin and a variety of liquids. He used two tuning forks with 
attached dippers to excite two wavetrains with circular wavecrests; the 
frequency range was 8 .4-1 024 Hz for experiments using distilled water. 
Von Matthiessen used two procedures to measure wavelengths. First, he 
counted the number of wave crests in the standing wavefield between the 
two tuning forks, which were separated by a known distance. Second, he 
measured wavelengths of the progressing waves to either side of the tuning 
forks by examining reflections of wavefield images on the polished tuning 
fork. (Presumably, he used an intermittent light source to render the images 
stationary, hut the details are unclear to us.) Von Matthiessen used a 
standard value (73 dynjcm) for surface tension in calculating predicted 
wavelengths with (22). Errors between predicted and measured wave­
lengths ranged between 0-1 2% with a mean error of 3.6%. We note that 
von Matthiessen's lowest measurement frequency (8.4 Hz) corresponds to 
the third-harmonic resonance. He observed that more crests occurred than 
expected for this wavetrain (only), undoubtably resulting from internal 
resonance, which was unknown at his time. 

Rayleigh ( 1 890) indirectly tested the validity of (22) using more refined 
experiments in his efforts to measure surface tension on clean and greasy 
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Figure 1 Surface wave classification in terms of frequency f and dimensionless surface 

tension T based on weakly nonlinear wavetrain instabilities. 

water surfaces. He used a 1 2  in x 1 2  in basin filled with either tap or 
distilled water, and cleaned the surface using an expandable brass hoop 
which pushed impurities aside. Like von Matthiessen, Rayleigh used tuning 
forks to generate waves, but unlike von Matthiessen, he used a 2.5 in glass 
plate as a paddle so as to generate plane waves. His wave amplitudes were 
so small that they could not be seen with the unaided eye. Rayleigh 
observed them using an optical arrangement comprised of a light source 
(a small gas flame) located in the focal plane ofa large (6 in diameter) lens, 
which was located just above and parallel to the water surface. An image 
was formed on a screen by light after double passage through the lens; this 
image was rendered stationary by making the light source intermittent 
with a plate in front of the light which vibrated isoperiodically with the 
tuning fork used to generate waves. Rayleigh calibrated image lengths by 
viewing a bar of known dimension situated in close proximity to the water 
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72 HAMMACK & HENDERSON 

surface. He estimated that his measurements were in error by less than 
1 %. Using wave frequencies of 42. 12  and 1 24.9 Hz, Rayleigh found that 
the mean tension of a clear surface was 74.2 and 73.6 dyn/cm, respectively, 
which indicated a discrepancy of about 1 %. This "method of ripples" 
which Rayleigh used for measuring surface tension (at the suggestion of 
P. G. Tait) remains a standard method today (Freundlich 1922, p. 1 5; 
Adamson 1990, p. 40). 

It is testimony to the difficulty of such experiments, and perhaps Ray­
leigh's influence, that further controlled experiments to verify (22) appar­
ently were not reported until 1 955 by Dobroklonskii. According to Scott 
( 198 1), Dobroklonskii used careful procedures which included continual 
renewal of the water surface in order to keep it clean. Dobroklonskii 
examined waves in the frequency range of 12-200 Hz and obtained good 
agreement with (22). 

Davies & Vose ( 1965) examined the accuracy of (22) for capillary waves 
on water surfaces that were clean and on water surfaces that were covered 
with monomolecular films. They generated waves with frequencies of 50-
920 Hz in a small glass tank (the size was not given) using a glass paddle 
driven horizontally by an electromagnetic mechanism; frequencies were 
carefully monitored. They cleaned the glass with chromic acid followed by 
washings with phosphoric acid, tap water, and distilled water. They cleaned 
water surfaces by spreading talc which was subsequently vacuumed. Sur­
face tcnsion was continually monitored with a du Nouy tensiometer. 
Like Rayleigh, Davies & Vose measured wavelengths using an optical 
arrangement and stroboscopic light source. Their experiments showed 
Kelvin's equation to be accurate to within 1 .5% for clean surfaces over 
the entire frequency range. Unfortunately, they encountered (unspecified) 
experimental difficulties when measuring wavelengths on surfaces with 
insoluble films which precluded definitive results. Nevertheless, they 
described Kelvin's equation as approximately valid when films exist. (We 
note that the dispersion relation depends weakly on the viscoelastic prop­
erties of a surface film, e.g. see Levich 1 962, p. 6 1 3  or Cini & Lombardini 
1 978.) 

Scott ( 1981 )  examincd surface waves with frequencies of 2-1 0  Hz using 
the extraordinary measures of Davies & Vose ( 1965) in a larger 9.5 
cm x 1 00 em basin in whieh the water depth was 2.9 em. Scott used wetted, 
ground glass sidewalls, which were cleaned similarly to the procedures of 
Davies & Vase ( 1965), in order to maintain a static contact angle of zero 
and minimize edge effects. He used doubly distilled water, and vacuumed 
the water surface before each experiment. Scott generated waves at one 
end of the channel using a vertically oscillating wedge whose frequency was 
carefully monitored. He used a nonintrusive proximity gauge to measure 
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passing waves, and measured wavelengths with an accuracy of ±0.4% by 
traversing the wavefield at known distances and number of wavelengths. 
The mean deviation between measured and predicted wavelengths in 
Scott's experiments was 1 .3%; this deviation arose mainly from the higher­
frequency waves. 

Henderson & Lee ( 1986) conducted experiments in a 91 em x 30 em 
wave channel; the water depth was 2.54 cm. They generated wavetrains in 
the range of 6-20 Hz using a vertical plate hinged at the bottom and 
pushed horizontally at the top by an electromagnetic servomechanism. 
They measured wavelengths by traversing the wavefield with an in situ 
gauge at known distances and number of wavelengths. They used doubly 
distilled water and special cleaning procedures but did not employ the 
extreme measures of either Davies & Vose ( 1 965) or Scott ( 198 1 )  to clean 
the water surface. (Undoubtably, films were present on their surfaces.) 
Nevertheless, Henderson & Lee obtained excellent agreement between 
measured and predicted wavelengths using T = 73.0 dyn/cm in (22) when 
the water was filtered of particles with nominal sizes larger than 0.2 Jim. 
When the water was not filtered of particles, a value of T = 54.0 dyn/cm 
in (22) gave similar agreement between predicted and measured data. The 
special role of particulate contamination does not appear to have been 
noticed previously, although it might be responsible for Rayleigh's obser­
vation that on occasion distilled water proved less satisfactory than tap 
water. (Typically, the distilling process does not remove small particles.) 

The experimental difficulties in measuring frequencies and wavelengths 
for simple wavetrains are greatly increased when wavefields comprise many 
wavelengths and directions of propagation. Yet, such measurements are 
crucial in distinguishing between waves that arise from resonant inter­
actions, which satisfy (22), and those that arise from nonresonant inter­
actions, which don't satisfy (22). This measurement difficulty may account 
for the curious and potentially damning (as regards the application of 
RIT) results for wind wavefields obtained by numerous investigators begin­
ning with Ramamonjiarisoa & Coantic (1 976) who used two, in situ, wave 
gauges and filtered space-time correlations to obtain c(k). [See Yuen & 
Lake ( 1982) for a discussion and a list of references; also see Rama­
monjiarisoa & Mollo-Christensen ( 1979, 198 1 )  and discussions by Huang 
(1981) ,  Kamen ( 1980), and Papadimitrakis ( 1986).] Measurements indi­
cated that the phase speeds of waves with frequencies greater than that of 
the dominant wavetrain were constant-departing significantly from the 
predictions of (22). Crawford et al ( 198 1 b) attributed these departures to 
nonlinearity and spectral bandwidth. Huang & Tung ( 1977) and Longuet­
Higgins ( 1977) attributed them to directional effects. Phillips ( 1981  b) 
argued that these departures were due primarily to convection by the 
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74 HAMMACK & HENDERSON 

orbital velocities of the dominant (long) waves, and were thus a mani­
festation of the measurement technique. Plant & Wright ( 1 979) used Dop­
pler radar measurements of a wavefield, which avoid some of the inherent 
problems in two-probe correlation techniques, and found that the high­
frequency waves dispersed according to (22). Gotwols & Irani ( 1980) used 
optical remote sensing measurements of the ocean surface and found 
excellent agreement between (22) and measured phase speeds. Barrick 
( 1 986) examined the role of (22) in radar measurements and concluded 
that (22) and Phillips' ( 1 98 I h) appraisal were correct. Melville ( 1 983) used 
measurements with two in situ gauges and an envelope-detection data 
analysis to find that (22), suitably modified by the Stokes' (1 847) correction 
for large wave steepnesses, was accurate for strongly modulated 
wavetrains. 

Gravity- Wave Experiments 

The first comparisons between the predictions of resonant interaction 
theory and gravity-wave measurements were reported in companion 
papers by Longuet-Higgins & Smith ( 1966) and McGoldrick et al ( 1966). 
Both experiments were designed according to a suggestion by Longuet­
Higgins ( 1962) in which ( 1 1 )  has the form k l  + k2 = 2k3 and 
W I  + w 2 = 2W3' Both Longuet-Higgins & Smith and McGoldrick et al 
generated waves 2 and 3 with two orthogonal wavemakers along adjacent 
basin walls; beaches were located along opposing walls to minimize reflec­
tions. They obtained continuous time signals of the water-surface dis­
placements with in situ wave gauges at different distances from the 
wavemakers. They processed these signals with a sharply tuned, band-pass 
filter with variable center frequency so as to obtain amplitude-frequency 
spectra. They examined the spectral amplitudes at different gauges in 
order to obtain the spatial growth/decay rates of nascent/generated waves. 
According to the four-wave equations ( 14), wave 1 should be generated 
ab initio by resonant energy transfers from waves 2 and 3; theoretical 
predictions of its growth rate which accounted for detuning were obtained 
using the four-wave equations. Their measured spectra contained large 
peak amplitudes at frequencies of the generated waves, and small peak 
amplitudes at frequencies of superharmonics and many sum-and-differ­
ence frequencies that included WI = 2W3 - W2' In each spectrum, the spec­
tral amplitude at W I  exceeded that of superharmonic and other sum-and­
difference frequencies, suggesting that it resulted from a resonant rather 
than nonresonant interaction. More convincingly, comparison of spectral 
amplitudes at different gauge sites showed that, unlike all other spectral 
peak amplitudes, the amplitudes at W I grew linearly with distance as 
predicted by RIT. Moreover, the measured growth rates were 20% higher 
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SURFACE-WAVE INTERACTIONS 75 

than those predicted by RIT, which did not account for viscous attenu­
ation. These experimental results firmly established the special role of 
resonant interactions. 

The discovery of the modulational instability of a Stokes gravity 
wavetrain evolved from theoretical studies by Lighthill ( 1965) and 
Whitham (1967) and culminated with the definitive study by Benjamin & 
Feir ( 1967), who were strongly motivated by Feir's laboratory experiments. 
[Zakharov ( 1968) also discovered this instability theoretically, but his terse 
paper was unnoticed in the West until sometime later.] Unfortunately, 
Benjamin & Feir did not give a detailed report of their experiments as they 
originally intended (Benjamin & Feir 1967), although Benjamin (1 967) did 
give a briefreport. Benjamin & Feir generated wavetrains at one end of a 
long tank using a mechanically operated paddle whose motion was either 
regular or modulated to generate collinear wavetrains at the predicted 
most-unstable sideband frequencies. (The experiments were conducted in 
two facilities.) They used in situ wave gauges along the channel to obtain 
continuous time signals for the vertical motion of the water surface. They 
obtained modulational periods and sideband growth rates directly from 
wave-gauge records and from spectral analyses. Their measured modu­
lational periods agreed well with those predicted. Their measured growth 
rates agreed qualitatively with those predicted; however, even when the 
effects of viscous damping were considered, predicted growth rates were 
nearly twice those measured. Lake & Yuen ( 1 977) reexamined the data of 
Benjamin (1 967) and attributed the large discrepancies to inappropriate 
values for the steepnesses of generated waves, which did not have the 
proper shape of Stokes waves. Lake & Yuen ( 1977) corrected the growth 
rates measured by Benjamin and obtained good agreement with predic­
tions. Longuet-Higgins (l978b) used the original data of Benjamin and 
found better agreement with his theoretical results that accounted for 
finite-amplitude effects on growth rates. Regardless of refinements to 
measurements or theoretical predictions, Benjamin's & Feir's pioneering 
experiments showed unequivocally that deep-water, gravity wavetrains 
are unstable to modulations that result from collinear, resonant-quartet 
interactions with waves of nearly the same (sideband) frequencies. 

In spite of the excitement and interest caused by the discovery of the 
Benjamin-Feir instability, ten years passed before additional laboratory 
experiments on the instability and long-time evolution of a deep-water 
gravity wavetrain were reported by Lake et al ( 1977). Lake et al were 
motivated in part by interest in the nonlinear Schroedinger equation and its 
exact solution for localized initial data by the inverse scattering transform. 
[Related experiments on deep-water wave packets were reported by Feir 
( 1 967) and Yuen & Lake ( 1975).] They generated wavetrains with fre-
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quencies of 1-5 Hz using a wavemaker, driven by a programmable servo­
mechanism, located at one end of a 40 ft tank which contained a beach 
for absorbing wave energy at the opposite end. They used a linear array 
of in situ wave gauges along the wave channel to measure water surface 
motion. The continuous time signals from these gauges were recorded on 
FM tape for subsequent playback to an analog power-spectrum analyzer. 
Most of the experimental wavetrains had steepnesses in the range 
0. 10  � e � 0.35; wave breaking occurred for the steepest wavetrains. As 
expected, the wavetrains were unstable to sideband frequencies, and the 
measured, initial spatial growth rates agreed well with predictions. By 
exploiting the control available in these experiments, Lake et al were able 
to generate wave trains with the same amount of sideband amplification 
that they measured at the gauge site farthest from the wavemaker. In this 
manner they effectively observed wave train evolution over much longer 
distances than their tank length. These long-time measurements showed 
preferential growth of the lower (frequency) sideband; this asymmetry 
is not predicted by either the Benjamin-Feir analysis or the nonlinear 
Schroedinger equation. Lake et al also found that the growth of modu­
lations eventually ceased, followed by a period of demodulation and near 
recurrence of the original wavetrain. However, at recurrence, most of 
the energy resided in a wavetrain at the lower sideband frequency. An 
unequivocal explanation for this frequency downshift has not been estab­
lished, but it seems to be related to strongly nonlinear effects such as wave 
breaking. (For example, see Melville 1982, 1983; Su et al 1982; Janssen 
1983a; Hatori & Toba 1983; Trulsen & Dysthe 1 990; Hara & Mei 199 1 .) 

Melville (1983) conducted experiments in a wave channel that was 28 m 
x 50 cm and filled with water to a depth of 60 cm. He generated 2-Hz 
wavetrains with large steepnesses (0.23 ::0:;; s ::0:;; 0.29) using a paddle driven 
by a hydraulic servomechanism. A beach, which began 16 m from the 
paddle, was used to dissipate wave energy. Melville measured the motion 
of the water surface using two in situ wave gauges located 8 cm apart and 
obtained discrete time signals at frequencies of 1 00- and 200-Hz. He used 
a Hilbert transform (envelope detection) technique to process these signals 
which, unlike spectral techniques, rendered temporal information on fre­
quency, wavenumber, and phase-speed modulation. Melville found that 
the dispersion relation (22) was accurate for gravity waves when modified 
to account for weak nonlinearity (Stokes 1 847). He also found that very 
rapid variations in wave phase occurred near minima in the wavetrain's 
envelope; these phase jumps were similar to the "crest pairing" described 
by Ramamonjiarisoa & Mollo-Christensen (1979). (Coalescence of wave 
crests is a possible explanation for the frequency downshift mentioned 
above.) Melville (1982) examined large-amplitude wavetrains and found 
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two distinct regions of behavior. For e ::;  0.29 wavetrain evolution 
remained (sensibly) two-dimensional and the Benjamin-Feir instability 
was dominant; asymmetric sideband growth occurred subsequent to wave 
breaking. For e 2: 0.3 1 ,  the wave trains became three-dimensional and the 
Benjamin-Feir instability was no longer dominant. Melville's experiments 
and his nontraditional data analysis provided new insight into the richness 
of the Benjamin-Feir instability whose qualitative features persisted for 
wave amplitudes well outside the putative range of validity of four-wave 
interaction theory. 

Su et al (1982), Su ( 1982), and Su & Green (1 984) reported experiments 
on deep-water gravity waves performed in two large experimental facilities: 
a 1 37.2 m x 3.7 m x 3 .7  m tank and a 340 m x 100 m x l  m (outdoor) basin. 
They used mechanical, plunger-type wavemakers, one that spanned the 
3 .7  m tank width and one that spanned 1 5 .8 m of the 100 m basin width. 
Su et al (1982) and Su ( 1982) generated wavetrains with frequencies of 
1 .05-1 .55  Hz and large steepnesses of 0. 1 6  ::; e ::;  0.34 which led to break­
ing. They observed a fascinating sequence of instabilities in these large­
amplitude, long-crested deep-water wavetrains which were measured with 
in situ wave gauges and photographic records. They interpreted their 
measurements within the framework of normal-mode instabilities cal­
culated by Longuet-Higgins ( 1978a,b) and McLean ( 1982a) and within the 
framework of wave train bifurcations calculated by Meiron et al (1 982). 
These calculations were based on the unapproximated (Euler) equations; 
hence, their results are not directly within the purview ofRIT; nevertheless, 
the qualitative features of McLean's calculations were obtained by Stiass­
nie & Shemer ( 1984, 1987), who used a perturbative approach to extend 
the Zakharov equation to include resonant quintets. RIT supposes a time­
scale separation between resonant quartets and quintets which was not 
evident in the measurements of Su and coworkers for large-amplitude 
wavetrains. Instead, they observed that a two-dimensional wave train near 
the wavemaker evolved quickly into a three-dimensional wave train of 
spilling breakers followed by another transition to a modulated two­
dimensional wave train with a lower steepness and frequency. Although 
these results are only tenuously interpreted in terms of RIT, it is note­
worthy that Su and coworkers found that large-amplitude bifurcated 
wavetrains exhibited the Benjamin-Feir instability. 

Su & Green ( 1984) conducted experiments on deep-water gravity 
wavetrains with a single frequency of 1 .23 Hz and steepnesses of 
0.09 ::; e ::; 0.20 using the tank described above and a linear array of ten 
in situ wave gauges along the tank. They observed the following pattern 
of wavetrain evolution. The Benjamin-Feir instability [resonant quartets 
or the "Type I" instability of McLean (1982a,b)] developed gradually 
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at first, but then grew more rapidly causing intense modulations of the 
wavetrain. When the spectral amplitude of the lower sideband was about 
one-half that of the original wavetrain, the modulations produced distinct 
wave packets whose amplitudes were as much as 50% greater than those 
of the original wavetrains. [Bonmarin & Ramamonjiarisoa (1985) found 
a similar fast-growing modulation leading to significant amplification of 
wave amplitudes in their experimental studies of breaking waves.] At this 
stage three-dimensional, resonant quintets (the "Type II" instability of 
McLean) grew rapidly, then subsided leaving a two-dimensional wavetrain 
that exhibited modest modulations and had a frequency that was down­
shifted from the original sideband growth. Su & Green suggested that the 
Type I instability triggered the growth of Type II instabilities. They also 
noted that the coexistence and interactions between these two types of 
instabilities depended crucially on the tank's width exceeding twice the 
wavelength of the generated wavetrain. Stiassnie & Shemer (1987) exam­
ined the coupled behavior between Type I and Type II instabilities 
observed in Su's & Green's experiments using their extended Zakharov 
equation. Their theoretical predictions were qualitatively similar to the 
measurements of Su & Green; however, Stiassnie & Shemeniisagreed with 
the causality of Type II instabilities by Type I instabilities. Instead, their 
results suggested that whenever the level of Type I instabilities was 
substantially greater than that of Type II, the Type II instability was 
suppressed. 

. 

Wu et al (1979) conducted laboratory experiments to investigate the 
applicability of Hasselmann's stochastic model of wave-wave interactions. 
They used a wind-wave tank comprising a closed channel, which was 37.7 m 
long, 2 m high, and 1 m wide; a fan that drew air over a layer of water 
1 m deep; and five in situ wave gauges located at 3 m intervals along the 
23 m long, glass-walled test section of the tank. They also measured 
pressure fluctuations in the air channel using crystal pressure transducers 
placed near each wave gauge. They performed three experiments at wind 
speeds of 7 . 1 ,  8 .0, and 8.9 mis, and obtained continuous time signals from 
wave gauges and pressure transducers which were amplified, low-pass 
filtered, and digitized to obtain 40-Hz discrete time signals. They used ten­
minute records and partitioned them to form 50 records with which they 
calculated one-dimensional energy spectra and cross-spectra between the 
fluctuating pressure and wave heights. These spectra were then ensemble 
averaged at each gauge site. They used the averaged energy spectra to find 
the net energy change at each spectral frequency (2-9 Hz) between two 
gauge sites. The net energy change comprised three processes: energy 
transferred from the wind to the waves, energy transferred among waves 
by nonlinear interactions, and energy dissipated by wave breaking and 
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viscous effects. In order to investigate energy transfer by resonant inter­
actions, it is necessary to isolate each of these three processes, which, as 
Wu et al note, is extremely difficult to do experimentally. To this end they 
adopted parametric models for each process. In particular, they replaced 
the nonlinear wave-wave interactions in Hasselmann's model (14) by a 
model due to Barnett ( 1968), in which the measured energy spectra were 
used as input. Their adopted models for energy dissipation and energy 
transfer from the wind used the measured energy spectra and cross-spectra 
as inputs, respectively. They computed theoretical predictions for energy 
transfer by nonlinear wave-wave interactions using Barnett's model. They 
computed "experimental" (sic) values for energy transfer by nonlinear 
wave-wave interactions by subtracting predicted values for energy transfer 
from the wind and energy dissipation from the measured net energy 
change. Their comparisons between theoretical and experimental values 
at four measurement sites showed satisfactory agreement for low 
and intermediate frequencies, but unsatisfactory agreement at higher 
frequencies. 

Gravity-Capillary and Capillary Wave Experiments 

Simmons ( 1969) derived the governing equations for a degenerate resonant 
triad of gravity-capillary waves corresponding to second-harmonic res­
onance, i.e. in Equation ( 10) k1 = 2ko, W1 = 2wo, and (ko, "wo) correspond 
to Wilton ripples with 10 = 9.8 Hz. McGoldrick ( l970a) elaborated on 
Simmons' analysis and showed that the permanent-form solution obtained 
by Wilton ( 1 9 1 5) is not expected to occur in a viscous fluid owing to 
its special choice of initial conditions. McGoldrick ( l970b) performed 
experiments on second-harmonic resonance in which Wilton ripples were 
generated by a wedge-shaped paddle which was partially immersed in a 
water surface and oscillated vertically by an electromagnetic servo­
mechanism. The paddle, which had a glass-covered front face, spanned the 
6 1  cm width of a 3 m-long basin. McGoldrick used an in situ wave gauge, 
capable of detecting wave amplitudes as small as 10-3 mm and made 
measurements at 1 cm intervals away from the paddle. As in previous 
experiments (McGoldrick et a1 1966), he processed the continuous time 
signals from the wave gauge using a sharply tuned, band-pass filter which 
enabled him to measure the spectral amplitudes at the wavetrain's fun­
damental and superharmonic frequencies. McGoldrick used tap water in 
the experiments and found to his consternation that a surface film was 
present, requiring him to lower the surface tension value in (22) by about 
30% from its clean-surface value. In fact, this lowering of surface tension 
could not be detected by a du Nouy tensiometer, so McGoldrick used 
Kelvin's Equation (22) as Rayleigh ( 1 890) had done to measure T. This 
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film also led to enhanced viscous attenuation of the waves, which were 
extinguished before they reached the end of the basin. Nevertheless, 
McGoldrick's experiments clearly showed the strength of second-harmonic 
resonance; he notes: " . . .  the interaction process is so dramatic that it can 
be seen by eye!" The measured data showed significant growth of the 
superharmonic amplitude at the expense of the fundamental prior to both 
waves being extinguished by viscosity. In addition, the relative phase 
between the two waves remained near its predicted value of n/2. These 
striking results occurred in spite of the exceedingly small wave steepnesses 
(e < 0.05) used in the experiments. Henderson & Hammack ( 1987) also 
performed experiments on Wilton ripples and its second harmonic. When 
they generated a wavetrain of Wilton ripples, it rapidly transferred a 
significant portion of its energy to its 19.6-Hz superharmonic, and there 
was a proliferation of higher-frequency superharmonics in the measured 
spectra. When they generated a 19.6-Hz wavetrain, it slowly transferred 
an insignificant portion of its energy to the 9.8-Hz subharmonic; Benjamin­
Feir instabilities were dominant. Perlin & Hammack ( 1 991)  used remote 
sensing techniques (described in more detail below) to measure the two­
dimensional wavenumber spectrum when a 9.8-Hz wavetrain was gen­
erated in a channel. They observed the proliferation of spectral peaks at 
superharmonic wavenumbers and significant growth of transverse side­
band wavenumbers for the 9.8- and 1 9.6-Hz wavetrains. The absence of 
sideband growth in frequency spectra indicated that the presence of side­
band growth in the wavenumber spectra resulted from rhombus-quartet 
interactions. 

McGoldrick ( 1972) revisited the second-harmonic resonance for gravity­
capillary waves and extended the analysis to the third-harmonic resonance. 
The analytical features of these two cases were then generalized to fourth-, 
fifth-, and higher-harmonic resonances. McGoldrick performed experi­
ments on these higher-order internal resonances using apparatus and tech­
niques similar to those of McGoldrick ( 1970b) except that the water surface 
was renewed every 20 min by flushing it over a weir so that the surface 
tension was the clean-surface value. He measured amplitude response 
curves in the vicinity of the predicted resonant frequencies for third-, 
fourth-, and sixth-harmonic4 resonances, and observed strong responses 
in the vicinity of all of these higher-order resonances. As is common in 
externally forced systems, the maximum responses occurred at different 
frequencies (slightly lower) from those predicted by (22). McGoldrick's 

4 McGoldrick's Figure 8 and his corresponding discussion refer to sixth-harmonic res­
onance throughout; however, the period of 0. 144 s labeled in his Figure 8 more closely 
corresponds to fifth-harmonic resonance. 
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SURFACE-WAVE INTERACTIONS 8 1  

results also showed that resonance persisted even when there was sub­
stantial detuning, so much in fact that the response curves for third- and 
fourth-harmonic resonance nearly joined. Third-harmonic resonance was 
excited down to 8.06 Hz while fourth-harmonic resonance was excited up 
to 7.94 Hz. Perlin & Hammack (1991)  explored the small intervening 
frequency band, and found that third-harmonic resonance occurred for 
an 8.00-Hz wavetrain. Therefore, internal resonance occurs everywhere 
within the frequency band between the (discrete) theoretical frequencies 
of third- and fourth-harmonic resonance. (This behavior is indicated in 
Figure 1 by the shaded bands about each internal-resonance.) Moreover, 
both McGoldrick ( 1972) and Perlin & Hammack (1991) observed that 
these internal resonances were easily excited by waves with surprisingly 
small steepnesses. McGoldrick excited sixth-harmonic resonances using a 
wave train with 8 = O. l 5-although the nonlinear terms responsible for 
this interaction in the theory are 0(86) .  The finite width and joining of the 
internal-resonance response curves and their excitation by exceedingly 
small wave steepnesses make the stability of wavetrains in the frequency 
band of 6.4-9.8 Hz to modulations (Hogan 1 985) of little practical conse­
quence. These experimental results are testimony to the robustness of 
internal resonances, but are somewhat disturbing from the perturbative 
point of view of RIT. 

Banerjee & Korpel ( 1 982) generated capillary wavetrains in the fre­
quency range of 30-100 Hz by horizontally oscillating a vertical plate im­
mersed just below the surface of tap water which nearly filled a 30 em x 
30 cm x 5 cm basin. They used an electromagnetic mechanism to drive 
the paddle, which did not span the basin width. They measured the tem­
poral motion of the water surface with an in situ gauge and its spatial 
motion by setting the basin on the Fresnel lens of an overhead projector 
which was modified with a Schlieren system and strobe lamp. This appa­
ratus illuminated the wavefield, forming images with a contrast in light 
intensities related to the local water depth. The strobe light rendered the 
images stationary so that photographs could be made. Banerjee & Korpel 
found that sub harmonic wavetrains occurred in all of their experiments 
when the paddle stroke exceeded a threshold value. These subharmonic 
waves formed a standing-wave pattern which was readily observed at the 
wavemaker and to its side. They attributed these results to a resonant 
triad between the generated wavetrain and two oblique, subharmonic 
wavetrains. Henderson & Hammack (1 987) performed similar experi­
ments, but did not observe the subharmonic behavior reported by Banerjee 
& Korpel. Based on Hogan's ( 1984) reinterpretation of Banerjee's & Kor­
pel's data, which indicated that strongly nonlinear waves were being gen­
erated, and their own experiments, Henderson & Hammack (1 987) cited 
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a list of circumstantial evidence indicating that subharmonic cross waves­
which are a strongly nonlinear, trapped wave phenomenon and outside 
the purview of weakly nonlinear RIT -were generated by Banerjee & 
Karpel. 

Banerjee et al ( 1983) used the experimental apparatus described above 
to examine the weakly nonlinear phenomenon of focusing, which occurs 
in ( 17) and is discussed in the context of water waves by Ablowitz & Segur 
( 1979) and Peregrine ( 1 983). According to ( 1 7), a localized packet of short­
crested waves with frequencies greater than that of Wilton ripples will 
evolve a singularity in finite time as a conseque_nce of focusing. The 
phenomenon of focusing is easily understood using the nonlinear dis­
persion relations given by Wilton ( 1 9 1 5), i .e.  

(gT)1/4( 1 ) 
c(k � ko; e) = 3  2(2 1 + 4 e ,  (23) 

and using the analysis of Pierson & Fife ( 196 1 )  for wave trains with wave­
numbers near k = ko. In (23) the upper ( - ) sign is chosen for waves with 
k > ko and the lower (+ ) sign is chosen for waves with k < ko. When a 
short-crested wave train is generated with k > ko, large-amplitude regions 
of crests propagate more slowly than low-amplitude regions so that the 
crests turn on themselves, i .e.  they focus when ac/ae < O. When a short­
crested wavetrain is generated with k < ko, the wave crests bend in opposite 
directions, i.e. they defocus when oC/Of, > O. Banerjee et al ( 1983) used a 
wave paddle with a length of 3 em to generate localized packets of short­
crested wave trains with frequencies of 20, 30, and 50 Hz; focusing was 
expected for all of these wavetrains. They observed focusing for the 30-
and 50-Hz wavetrains, but not for the 20-Hz wavetrain. They gave no 
explanation for the absence of focusing by the 20-Hz wavetrain. 

Perlin & Hammack ( 1 991)  performed experiments on gravity-capillary 
and capillary wave trains with frequencies of 8 .0-25.0 Hz and moderate 
steepnesses (e < 0.3). They conducted experiments in a wave channel meas­
uring 9 1  em x 30.5 em with a water depth of 4.9 cm. They generated 
wavetrains using a wedge-shaped paddle which spanned the channel width 
and was oscillated vertically in the water surface by an electromagnetic 
servomechanism. They cleaned all of the materials contacting the water 
with ethyl alcohol before each experiment and used doubly distilled water 
which was filtered of organic material, minerals, and particles with nominal 
sizes greater than 0.2 J1,m. They measured water surface motion at different 
positions along the channel using an in situ wave gauge. Continuous time 
signals were band-pass filtered, amplified, and sampled at 250 Hz to obtain 
discrete time signals. They used these data to compute amplitude-fre-
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quency spectra-with a frequency resolution of 0.0 1 5  Hz. In addition, they 
measured two-dimensional wavenumber spectra of wave fields using a high­
speed imaging system with an imager looking down on the water surface 
from above the channel: The imager comprised a 1 28 x 1 28 pixel array 
that mea'sured discrete-space gray-levels in a 22 cm x 22 cm surface area, 
which began 23 cm from the wavemaker; the wavenumber resolution was 
0.284 rad/cm. An image calibration showed that the correlation coefficient 
between these gray levels and measurements of a nearby in situ wave gauge 
was 0.89. All of the frequency and wavenumber spectra for wavetrains in 
the frequency range 9.8-19.6 Hz, in which resonant quartets are the first 
to occur, showed the following results: (a) Frequency spectra showed 
distinct spectral peaks at frequencies of the generated wavetrain and its 
superharmonics with no indication of sideband growth. (b) Wavenumber 
spectra showed spectral amplitudes spreading outward from the peak of 
the generated wavetrain in a circular arc with a radius equal to the mag­
nitude of the generated wavetrain's wavevector. In other words, rhombus­
quartet sideband instabilities were dominant. (The latter result is apparent 
in Figure 3, which is taken from Perlin et al (1 990) and is discussed below.) 
Perlin & Hammack ( 199 1 )  compared their measurements to predictions of 
the NLS Equations ( 19) and (20) for longitudinal and transverse sideband 
growth, respectively. There was some evidence of longitudinal sideband 
growth in the wavenumber spectra, but much less than predicted by ( 19) .  
On the other hand, there was much more growth of transverse sideband 
amplitudes (at the frequency of the generated wavetrain) than predicted 
by (20). This dominance of sideband rhombus-quartet instabilities was not 
predicted by the numerical calculations of Zhang & Melville (1 987) using 
the unapproximated (Euler) equations. Perlin & Hammack also found that 
sideband rhombus-quartet instabilities remained dominant for wavetrains 
with f >  1 9.6 Hz where resonant triads are possible-when the phenom­
enon of selective amplification (Henderson & Hammack 1 987, Perlin et al 
1 990) does not occur. 

Henderson & Hammack ( 1 987) reported experiments on the stability of 
capillary wavetrains with frequencies of 22-46 Hz where resonant triad 
interactions are expected to occur. They used the experimental facilities 
and procedures described in Perlin & Hammack ( 1991) .  Their experiments 
were designed specifically to test the stability of wavetrains for which 
resonant triads are possible, as predicted by Simmons ( 1969) for an elemen­
tary resonant triad of capillary waves. Simmons showed that a generated 
wavetrain, say (kl, W I), can form resonant triads with two waves (summed) 
from a continuum of waves in a lower-frequency (closed) band BI and with 
two waves (differenced) from a higher-frequency (open-ended) band Bh• 
Simmons also showed that waves in Bb could not amplify when their 
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Figure 2 Spatial evo\uti(m of the amplitude-frequency �gectrum for a 2S-[h. wavettain in 
the 1>resence of a 5'J-H7. backg<ound wavetrain; h = 5 cm, T = 73 dynfcm (from Perlin "t al 
1990; courtesy of Cambridge Univer;ity Pres\;). 
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amplitudes were infinitesimal relative to that of the generated wavetrain. 
[This result is generally true for resonant triads according to a theorem 
by Hasselmann (1967b).] Waves in B, can amplify; however, since the 
interaction coefficients of ( 1 3) vary smoothly across B" Simmons con­
jectured that selective amplification is unlikely. Instead, all of the back­
ground waves in B, are expected to amplify and destabilize the generated 
wavetrain. Henderson's & Hammack's experiments showed that wave­
trains with I >  19.6 Hz were unstable to background waves with fre­
quencies in B,; however, in most experiments a single triad with two 
waves from B, was selectively amplified. In some experiments, the spectral 
amplitude(s) of the wave(s) in B, grew, decayed, and grew again during 
propagation down the channel, i .e. energy cycled, as the exact solutions 
of the three-wave equations suggest. Henderson & Hammack did not 
measure wavenumber spectra in their experiments; however, this cyclic 
behavior, which cannot occur in nonresonant interactions, led them to 
conjecture that the waves in B, formed a resonant triad with the generated 
wavetrain. In their experiments the selected triad varied with the frequency 
of the generated wavetrain. However, the same triad amplified repeatably, 
regardless of the generated wavetrain's amplitude, which was increased 
from its viscous threshold value until subharmonic cross waves evolved at 
the wavemaker paddle. They gave no explanation for either the presence 
of selective amplification in some experiments or its absence in others. 

A surprising and serendipitous answer to the riddle of selective ampli­
fication described above was found by Perlin et al ( 1 990). When a new 
computer system was installed in the laboratory, Perlin et al conducted 
the experiments of Henderson & Hammack ( 1987), and found no triads 
selectively amplified. When they repeated the experiments with the older 
computer system, selective amplification returned. They traced the differ­
ent results to the computers' analog output systems, which provided com­
mand signals to the wavemaker. Both devices were comparable in speci­
fication; however, the inadvertent noise level at the electrical power 
frequency of 60 Hz was about 1/5 lower in the newer device. This small 
difference, which was represented by signal-to-noise ratios of about 100 in 
the older device and 200 in the newer device, was sufficient to alter radically 
the outcome of an experiment. Perlin et al ( 1990) conjectured the following 
explanation of and algorithm for predicting selective amplification of 
two wavetrains in B, by a wavetrain I, of moderate amplitude and an 
infinitesimal background wavetrain/o in Bh• First, both!, and/o become 
directionally unstable by sideband rhombus-quartet instabilities described 
by Perlin & Hammack (1991). This instability is crucial since I, and 10 
are initially collinear and generally cannot satisfy ( l Oa) with any other 
wavetrain. The directional instability allows wavetrains to amplify with the 
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proper wavevector configurations to satisfy ( l Oa). Thereby the generated 
wavetrains form a resonant triad with the difference wavetrain (fo -II) '  
The difference wavetrain cannot amplify in accordance with Hasselmann's 
( l967b) theorem; however, Perlin et al used numerical calculations of the 
three-wave equations to show that (fo-II) does exchange energy withio. 
Second, (fo -II) becomes directionally unstable and a new resonant triad 
forms with frequencies (II > 10 -II > 211 -10)' Again, the new difference 
wave train cannot amplify but it does exchange energy with the previous 
difference wavetrain. This process continues until a difference wave train 
with a frequency in Bb say 12, is excited and becomes directionally unstable; 
since 12 is in Bj, it can and does amplify. Thereby a resonant triad with 
frequencies (fIJ2JI -12) is seeded by 10 and is selectively amplified. This 
algorithm can be continued to determine if more than one triad with 
two waves in BI can be selectively amplified. The algorithm comprises 
exceedingly weak nonlinear interactions that are normally ignored; yet, 
when they occurred, they determined the outcome of an experiment. Perlin 
et al used this algorithm and correctly predicted the presence and absence 
of selective amplification in all of the experiments in. Henderson & Ham­
mack (1987). Since the 60-Hz noise level of the newer computer system 
was below the threshold to cause selective amplification, Perlin et al ( 1 990) 
added artificial noise at discrete frequencies in Bh and tested their algorithm 
further. Results from one of their experiments is shown in Figure 2, which 
presents amplitude-frequency spectra computed from the discrete time 
signals (sampled at 250 Hz) of a wave gauge at various distances (x) from 
the wavemaker. They programmed the wavemaker to generate a 25-Hz 
wave train with steepness e � 0.20 and a 57-Hz wavetrain with steepness 
e � 0.04. According to their selection algorithm, two triads with waves in 
Bb which has the range of about 5.0-20.0 Hz, were possible: The first triad 
to occur comprised wavetrains with frequencies of 25, 7, and 1 8  Hz; the 
second triad comprised wavetrains with frequencies of 25, 1 1 , and 1 4  Hz. 
At the first station of measurement in Figure 2 (x = 7 cm), which is seven 
wavelengths of the 25-Hz wave train from the wavemaker, superharmonics 
and sum-and-difference wavetrains proliferate; the 57-Hz wavetrain is 
barely discernible. At the last measurement station (x = 24 cm), five dis­
tinct wavetrains dominate, and they correspond to those expected in the 
two, coupled resonant triads. The spectral amplitudes of the 7- and I 8-Hz 
wave train at x = 24 cm are larger than those of the 25-Hz wavetrain. 
The spectral amplitudes of the 25-Hz wavetrain gradually diminish during 
propagation while those of the 7-Hz wavetrain, which is already large by 
x = 7 em, remain about constant. The spectral amplitudes of the I 8-Hz 
wavetrain, which is already large by x = 7 cm, decrease slightly, then 
increase slightly, and then decrease again during propagation. The spectral 
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amplitudes of the 1 1 - and 14-Hz wavetrains grow, diminish, disappear, 
reemerge, grow, and diminish again during propagation. This behavior 
strongly suggests that two, coupled triads are evolving in the wave channel. 
Perlin et al also measured two-dimensional wavenumber spectra using the 
apparatus described in Perlin & Hammack (1991) .  The result for one image 
is shown in Figure 3, which shows ten equally spaced contour levc1s of the 
spectral amplitudes in the positive quadrant of wavenumber space. The 
wavenumber axes (I, m) are rotated so that the wavevector of the 25-Hz 
wave train generated by the wavemaker bisects this quadrant. The circles 
drawn in Figure 3 correspond to the isotropic dispersion relation (22) at 
frequencies of 25, 1 8, 14, 1 1 , and 7 Hz. Wave energy is concentrated in arcs 
at wave numbers corresponding to the aforementioned wave frequencies; 
hence, they are free waves resulting from resonant interactions. Moreover, 
the directional spread of the wave energy about these circular arcs is 
a manifestation of sideband rhombus-quartet instabilities-necessary in 
order for the wavetrains to have the proper wavevector configurations 
satisfying ( lOa). 

12 

m' (rad/em) 

8 -1  I I 

I 

8 12  16  
I '  (rad/em) 

Figure 3 Contour map of amplitude-wavevector spectrum for a 25-Hz wavetrain in the 
presence of a 57-Hz background wavetrain; h = 5 cm, T = 73 dyn/cm (from Perlin et al 
1990; courtesy of Cambridge University Press). 
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The sensitivity of triadic resonances among capillary wave trains to 
discrete components in ubiquitous background noise led Perlin et al ( 1990) 
to an experimental investigation in which they added artificial "white" 
noise at the wavemaker to the dominant wavetrain and, in some experi­
ments, a discrete noise component which seeded selective amplification. 
They characterized the broad-spectrum background noise by a signal-to­
noise ratio (SNR) defined as 

SNR = 
rms of wavetrain signa�

_ 
rms of white noise signal ' 

in which rms is the root-mean-square of deviations in the command signal 
voltages from their mean value. (The relationship between voltage and 
stroke of the wavemaker was nearly linear.) They found that selective 
amplification was reduced when the broad-spectrum background noise 
was amplified; it disappeared completely when the SNR of the discrete 
noise component was about 1/ 10 .  They then examined the effect of (only) 
broad-spectrum random noise on the evolution of a dominant wavctrain 
by conducting experiments in the following manner. First, they obtained 
1 6  discrete time series of wave gauge data and computed frequency spectra 
for the natural background noise in the tank when the wavemaker was 
powered, but not moving. These 1 6  frequency spectra were ensemble 
averaged to obtain a representative spectrum for the natural background 
noise, <�>, in the tank. Then they conducted 1 6  experiments using white­
noise command signals to the wavemaker. Wave gauge data were obtained 
and analyzed for each experiment and an ensemble-averaged frequency 
spectrum for the random waves in the presence of the tank's natural 
background noise, < 91 + �>, was found. Using only a 25-Hz wavetrain, 
an additional 1 6  experiments were performed to find an ensemble-averaged 
frequency spectrum for the dominant wavetrain in the presence of the 
tank's natural background noise, (:1: + � >. Then they added the dominant­
wavetrain signal (SNR = 1 0) to the 16 command signals of white noise and 
conducted 16 more experiments to find an ensemble-averaged frequency 
spectrum for the dominant wave train with random waves and the tank's 
background noise, <:1: + 91 + �>.  They combined these four ensembled­
averaged spectra linearly to obtain the average frequency spectrum for the 
random waves alone, i.e. (91) = <91 + �) - <�) and the dominant 
wavetrain alone, i .e. <:1:) = <:1: + � )  - <�). To display the effects of non­
linear interactions they calculated 

<9l) := <�+91+�) - <�> - <91 ) - <�); (24) 

hence, <9l) is null if nonlinear interactions are insignificant. (They tacitly 
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assumed that the natural background noise in the tank was sufficiently 
small to interact linearly with the random and dominant wavetrains.) They 
performed this series of experiments at three gauge sites downstream of 
the wavemaker. Their main results are presented in Figure 4 where the 
ensemble-averaged spectra (91) are shown at three downstream measure­
ment stations. Note that (91) is not null, indicating that significant non-

(dB) 

4O r----,.-...---.---.-..,..---..----.----,.-,..--, 
30 (a) 
20 

2 5 10 
f(Hz) 

30 

x = 7 cm  

70 

Figure 4 Evolution of the ensemble-averaged spectrum <91), which shows the effects of 
nonlinear wave-wave interactions, down the channel; h = 5 cm, T = 73 dyn/cm. Inset shows 
the theoretical interaction coefficients y, for triadic interactions across B, (from Perlin et al 
1 990; courtesy of Cambridge University Press). 
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linear interactions occurred. At x = 7 cm, spectral amplitudes between 16  
and 22  Hz increased with a maximum amplification at  1 9  Hz. Note that 
this frequency band is in and near the low-frequency continuum B) (5 .0-
20.0 Hz) of the 25-Hz wavetrain. Spectral amplitudes in the high-frequency 
continuum Bh ( � 30.0 Hz) decreased. At x = 14 cm spectral amplitudes 
between 1 and 7 Hz decreased while those between 7 and 22 Hz increased 
in a bimodal manner with maxima near 12 and 19 Hz and a minimum 
near 1 5  Hz. Beyond 22 Hz, spectral amplitudes at x = 14 em show no 
amplification or attenuation; hence, the waves in Bh have actually gained 
energy while propagating from x = 7 cm. At x = 2 1  cm spectral amplitudes 
from 1-6 Hz remained lowered while amplitudes in Bh decreased again. The 
spectral amplitudes in B, remain amplified with the bimodal distribution 
observed at the previous measurement station. This spectral distribution 
is similar to the form of the dynamical interaction coefficient Y I in ( 13) 
over B) for the 25-Hz wavetrain, which is shown superposed in Figure 4. 
Perlin et al concluded that, when the background noise spectrum is broad­
banded, all of the wavetrains in the low-frequency continuum arc amplified 
by a dominant wavctrain in accordance with predictions ofRIT for elemen­
tary resonant triads. 

CONCLUDING REMARKS 

We have reviewed a variety of theoretical investigations (RIT) that were 
founded on Phillips' ( 1960) view that resonant wave-wave interactions play 
a special role. These theoretical investigations branched in two directions. 
Deterministic investigations included studies of wavefields comprised of 
resonant interactions among a single triad or a single quartet of waves, a 
small number of coupled triads or quartets, or a narrow spectrum of 
waves. Stochastic investigations included studies of wavefields comprised 
of resonant interactions among either a broad or a narrow spectrum of 
waves. We have also reviewed a variety of experimental investigations 
(RIE) that enabled some aspects of RIT to be tested. These experimental 
investigations branched in four directions. There are numerous experi­
mental investigations that studied the validity of Kelvin's linear dispersion 
and the stability of a single wave train to artificial and naturally occurring 
background perturbations. We have found only two experimental inves­
tigations that have studied the interactions among more than one 
wavetrain of comparable (initial) amplitudes and only one experimental 
investigation that addressed the relative roles of nonlinearity and ran­
domness for a broad spectrum of waves. 

Many meticulous laboratory experiments showed that Kelvin's dis­
persion relation for infinitesimal waves (22), which is crucial to all appli-
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SURFACE-WAVE INTERACTIONS 9 1  

cations o f  resonant interaction theory, i s  accurate over a wide range of 
frequencies, even for wavetrains with moderate steepnesses. Good quan­
titative agreement between theoretical and experimental investigations 
of wavetrain stability was found for the celebrated Benjamin-Feir (B-F) 
instability, which is a degenerate resonant four-wave interaction between 
two wavetrains (each counted twice) that are collinear or nearly collinear 
and have nearly the same frequencies and wavevector magnitudes. Good 
qualitative agreement persisted for wavetrains with near-breaking steep­
nesses in experiments that used narrow (relative to wavelength) channels, 
which inhibited oblique B-F instabilities. Results differed dramatically 
between gravity and gravity-capillary wave trains in experiments that used 
wide channels, which allowed for the possibility of oblique instabilities. 
For gravity waves with initially moderate steepnesses, evolution comprised 
a sequence of two- and three-dimensional instabilities, which included the 
collinear B-F instability. However, these instabilities occurred too rapidly 
for a straightforward application of RIT, which supposes a rank ordering 
of disparate time scales for resonant triads, quartets, quintets, etc. For 
gravity-capil lary and capillary wavetrains with initially moderate steep­
nesses, evolution was dominated by degenerate rhombus-quartet insta­
bilities; this dominance is not predicted by existing RIT. In the absence of 
the phenomenon of selective amplification, rhombus-quartet instabilities 
were also dominant for capillary wavetrains, even though resonant-triad 
interactions are possible. 

Selective amplification is an experimentally observed phenomenon in 
which a discrete background wave with exceedingly small steepness seeds 
the destabilization of a capillary wavetrain by one or more (coupled) 
resonant triads. Seeding appears to occur through a sequence of weak, 
dynamically nonresonant interactions that are normally neglected; yet, 
when they occur, they determine the outcome of an experiment. Whether 
selection occurs depends on the nature of the ubiquitous high-frequency 
background noise-present in any water-wave system. If the high­
frequency spectrum of background noise is narrow-banded so that it con­
tains a discrete component, selection occurs. If the spectrum is broad­
banded, selection does not occur. In the latter case, experiments suggest 
that the entire continuum of dynamically possible low-frequency triads 
evolve according to RIT for single resonant triads. 

The important role of degenerate resonances was also shown by the 
internal resonances known as Wilton ripples. These resonances, which 
were observed to 0(e6), are excited by wavetrains with exceedingly small 
steepnesses and with significant frequency detuning. In fact, these internal 
resonances effectively fill the band of modulationally stable wavetrains 
(6.4-9.8  Hz). Internal resonant interactions, like the sequence of inter-
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actions that lead to selective amplification, evolve quickly so that the rank 
ordering of evolution time scales supposed by RIT is violated. 

Experimental investigations have focused on the degenerate resonances 
that play an especially important role for studying the stability of a single 
wavetrain, almost to the exclusion of studies on nondegenerate resonances, 
i .e. resonant interactions among wavetrains which satisfy (10) and (1 1 )  
with arbitrary frequencies and wavevector configurations. The absence of 
controlled experiments to test RIT in this general, deterministic setting is 
striking; in fact, we found only one controlled experiment in which two 
different wavetrains were generated by two wavemakers and their inter­
action studied-and this was the first experiment reported in the com­
panion papers by Longuet-Higgins & Smith ( 1 966) and McGoldrick et al 
( 1966) which established the special role of resonant interactions. The 
absence of controlled experiments to test RIT in its general stochastic 
settings is even more striking. We found only one experimental inves­
tigation that attempted to establish the validity of stochastic models that 
use the random phase approximation, which requires randomness to domi­
nate nonlinear wave-wave interactions. That experiment used wind to 
generate nearly collinear wavetrains in a laboratory channel. While wind 
generation resembles the oceanic application of the stochastic models, it 
does not allow definitive conclusions about the relative roles of nonlinearity 
and randomness because of poorly understood contributions from wind 
and wave-breaking processes. 

Phillips (198 1 a) noted that perhaps the simple ideas of resonant inter­
action theory have reached their natural limits and that further progress 
would depend on new mathematics, new physics, and new intuition. Per­
haps this new intuition and new physics may be found in the richness of 
behavior observed in resonant interaction experiments. 
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