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Abstract

Hard, nonthermal, persistent pulsed X-ray emission extending between 10 and ∼150 keV has been observed in
nearly 10 magnetars. For inner-magnetospheric models of such emission, resonant inverse Compton scattering of
soft thermal photons by ultrarelativistic charges is the most efficient production mechanism. We present angle-
dependent upscattering spectra and pulsed intensity maps for uncooled, relativistic electrons injected in inner
regions of magnetar magnetospheres, calculated using collisional integrals over field loops. Our computations
employ a new formulation of the QED Compton scattering cross section in strong magnetic fields that is physically
correct for treating important spin-dependent effects in the cyclotron resonance, thereby producing correct photon
spectra. The spectral cutoff energies are sensitive to the choices of observer viewing geometry, electron Lorentz
factor, and scattering kinematics. We find that electrons with energies 15 MeV will emit most of their radiation
below 250 keV, consistent with inferred turnovers for magnetar hard X-ray tails. More energetic electrons still emit
mostly below 1MeV, except for viewing perspectives sampling field-line tangents. Pulse profiles may be singly or
doubly peaked dependent on viewing geometry, emission locale, and observed energy band. Magnetic pair
production and photon splitting will attenuate spectra to hard X-ray energies, suppressing signals in the Fermi-LAT
band. The resonant Compton spectra are strongly polarized, suggesting that hard X-ray polarimetry instruments
such as X-Calibur, or a future Compton telescope, can prove central to constraining model geometry and physics.
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1. Introduction

It is now generally accepted that there exists a class of
young isolated neutron stars characterized by their strong
inferred dipolar magnetic field, typically up to three
orders of magnitude larger than for canonical radio pulsars
and above the quantum critical or Schwinger field Bcr =
m c e 4.41 10e

2 3 13 » ´ G, at which the cyclotron energy of
the electron equals its rest-mass energy. These magnetars,
which include nearly 30 soft gamma-ray repeaters (SGRs) and
anomalous X-ray pulsars (AXPs), evince long pulse periods
P 2 12~ – s and high period derivatives Ṗ for their persistent
X-ray pulsations, from which high surface polar fields
B 10 10p

13 15~ – G and short characteristic (i.e., magnetic dipole
spin-down) ages P P2EMt = ( ˙) are inferred (e.g., Vasisht &
Gotthelf 1997). The timing ephemerides permit estimates of

B PP6.4 10p
19~ ´ ˙ in the vacuum orthogonal rotator case

(Shapiro & Teukolsky 1983), though inferred field strengths
are also impacted by plasma loading of the magnetosphere,
where currents supply Poynting flux (see, e.g., Harding et al.
1999). Locally, fields higher than 1015 G are possible, as is
suggested by a proton cyclotron line interpretation of the
13 keV absorption feature in the NuSTAR spectrum of a burst
from 1E 1048.1–5937 (An et al. 2014). These high fields may
masquerade as substantial nondipolar (perhaps toroidal)
perturbations. A comprehensive list of associations, timing,
and spectral properties of magnetars may be found in the
McGill magnetar catalog (Olausen & Kaspi 2014) and its
contemporaneous online version.5

The bolometric luminosities of magnetars predominantly
come from the soft and hard X-ray bands, with mostly thermal
surface emission between 0.2 and 5 keV, and nonthermal
magnetospheric emission at higher energies that exhibits
approximately power-law spectra. Most magnetars are radio-
quiet or dim, but not all: ephemeral, transient radio activity has
now been observed from four such sources (see, e.g., Rea et al.
2012; Pennucci et al. 2015, and references therein). For the
majority of magnetars, their persistent X-ray emission is
extremely bright, being commensurate with a large equivalent
isotropic luminosity (i.e., that integrated over all solid angles)
L 10x

35~ erg s 1- (e.g., Tiengo et al. 2002; Viganò et al. 2013).
In most cases, this exceeds the rotational energy loss rate (spin-
down luminosity) E IP P4ROT

2 3p- =˙ ˙ by one or two orders of
magnitude, assuming that the equations of state and moments
of inertia I for magnetars are not substantially different
from those invoked for rotation-powered pulsars, i.e., I ~
10 g cm45 2. Accordingly, sources of power for magnetar
activity as alternatives to rotation were first proposed by
Duncan & Thompson (1992) for SGRs and later for AXPs by
Thompson & Duncan (1996); they envisaged structural
reconfigurations of magnetic fields in the crustal and surface
regions. The picture of dynamic structural evolution is
supported by the fact that many AXPs and SGRs exhibit
active episodes of transient flares followed by recovery phases
lasting months (e.g., Kaspi et al. 2003; Rea & Esposito 2011;
Lin et al. 2012). These are presumed to be associated with
violent rearrangements of currents and fields and subsequent
dissipation of magnetic energy from field lines threading the
neutron star crust. We remark that there are a handful of
prominent exceptions to this highly super-spin-down
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luminosity character, including SGR J1550–5408, SGR
1627–41, SGR J0501+4516, and SGR J1935+2154, all in
the range of L E3x ROT ∣ ˙ ∣. Understanding why some magnetars
are brighter in quiescence than others is clearly an important
issue.

Magnetars are complex objects and cannot be completely
isolated from the conventional pulsar population based on the
prescription of emission energetics, P P– ˙ derived dipole fields,
and EMt ages: a clean magnetar–pulsar dichotomy is not
sustainable. A classic exemplar is the “low-field” magnetar
SGR 0418+5729, with a field estimate of B 1.2 10p

13~ ´ G
(Rea et al. 2013) and sporadic outburst activity, which is the
hallmark of magnetars. Yet it too may present a challenge to
stereotypes in that there is suggestive evidence of a variable
proton cyclotron absorption feature (Tiengo et al. 2013),
implying that it possesses local magnetic field components of
10 1014 15– G. Then there are tens of rotation-powered high-field
pulsars such as PSR B1509–58 (Abdo et al. 2010) and PSR
J1846–0258 (Kuiper et al. 2017), whose polar fields approach
or exceed 1013 G, the latter of which has been shown to have
magnetar-like outbursts (Gavriil et al. 2008), as has PSR
J1119–6127 (Göğüş et al. 2016). Interestingly, following their
outbursts, the quiescent power-law spectrum of J1846–0258
developed a transient thermal-like component (Kuiper &
Hermsen 2009), while the quiescent thermal spectrum of
J1119–6127 at temperature 0.2~ keV heated to the higher
value of 1~ keV, with an additional transient power-law
component (Archibald et al. 2016), so that each had a transient
magnetar-like spectrum. Also, the radio pulsations of
J1119–6127 were observed to turn off during X-ray bursts
following the initial outburst activity (Archibald et al. 2017).
Some of the high-field pulsars are radio-loud and have GeV
pulsations, but many have no detected radio pulsations (Kuiper
& Hermsen 2015). Their rotation-powered spectra are distinctly
different from those of magnetars, possessing hard nonthermal
X-ray/gamma-ray components (with the exception of PSR
J1119–6127) with Fn n spectral peaks around 1–10MeV and
emission extending to 0.1–1 GeV (in the case of B1509–58 and
J1846–0258; Kuiper et al. 2017). It is not clear that the spectra
of magnetars and high-field rotation-powered pulsars have the
same origin. In fact, a model for high-field pulsar emission as
synchrotron radiation from the outer magnetosphere can
adequately account for their spectral properties and light curves
(Harding & Kalapotharakos 2017). It is possible that their
spectra only resemble those of magnetars following magnetar-
like outbursts. Yet, it should be noted that the hard X-ray pulse
profiles of PSRs B1509–58 and J1846–0258 are quite broad,
more reminiscent of those of magnetars than the narrow
profiles of young rotation-powered pulsars. Moreover, low
surface temperatures in high-B pulsars could be a significant
factor in suppressing resonant Compton upscattering signals in
hard X-rays and, conversely, facilitating them in heated or
activated magnetar-like phases. One concludes that the
boundary between pulsars and magnetars by various measures
is not crisp, but blurred. For a comprehensive list of young
high-field pulsars in proximity to the magnetar domain, the
reader is referred to the ATNF pulsar catalog (Manchester et al.
2005), and in particular its current online version.6

The persistent soft X-ray emission is typically fit with an
absorbed blackbody of temperature kT∼0.5 keV plus a

power-law component dN dE Eµ -G, at suprathermal
energies that are usually fairly steep, with index 1.5 4sG ~ –

(e.g., Perna et al. 2001 Viganò et al. 2013). Hard X-ray
(20–150 keV) tails have been observed for about nine
magnetars by INTEGRAL along with RXTE, XMM-Newton,
ASCA, and NuSTAR data in several AXPs (Kuiper et al. 2004,
2006; den Hartog et al. 2008a, 2008b; Vogel et al. 2014) and
SGRs (Mereghetti et al. 2005; Molkov et al. 2005; Götz et al.
2006; Enoto et al. 2010, 2017). For four magnetars, they have
also been detected by Fermi-GBM (ter Beek 2012). The spectra
from these high-energy tails extend up to 150 keV and are
typically much flatter than the soft X-ray nonthermal
components, possessing power-law indices in the range

0.7 1.5hG ~ – . Moreover, the pulsed portions of the hard
X-ray components, with indices 0.4 0.8h

pG ~ – , are typically
even flatter than the phase-averaged spectra, and the pulsed
fractions approach 100% at higher energies (e.g., den Hartog
et al. 2008a, 2008b). Pulse profiles for all magnetars are
ubiquitously broad with a shape that is single or double peaked
per cycle, contrasting the narrow peaks typically found in
canonical radio and gamma-ray pulsars. The hard tails are also
putatively constrained by upper limits from noncontempora-
neous observations by the COMPTEL instrument on the
Compton Gamma-Ray Observatory (e.g., Kuiper et al. 2006;
den Hartog et al. 2008a, 2008b), indicating sharp spectral
turnovers at energies 200–500 keV. This feature could be as
low as 130~ keV, as has been suggested (Wang et al. 2014) by
an analysis of 9 yr of INTEGRAL/IBIS data for the bright AXP
4U 0142+61. The need for such a spectral turnover is
reinforced above 100MeV by upper limits in Fermi-LAT data
for around 20 magnetars (Abdo et al. 2010; Li et al. 2017). We
mention that Wu et al. (2013) reported discovery of pulsed
gamma-ray emission above 200MeV from AXP 1E 2259+586
with a targeted search of the public 4 yr Fermi-LAT data
archive. This has not been confirmed by the analysis of Li et al.
(2017), which employs 6 yr of Fermi-LAT data and identifies a
contaminating extended gamma-ray source detected around 1E
2259+586 that is probably the GeV counterpart of supernova
remnant CTB 109.
Magnetic inverse Compton scattering of thermal atmospheric

soft X-ray seed photons by relativistic electrons is expected to be
extremely efficient in highly magnetized pulsars and thus is a
prime candidate for generating the hard X-ray tails. This is
because the scattering process is resonant at the electron
cyclotron frequency eB mcBw = and its harmonics, so that
there the cross section in the electron rest frame exceeds the
classical Thomson value of r8 3 6.65 10T 0

2 25s p= » ´ - cm2

by two or more orders of magnitude (e.g., Daugherty & Harding
1986; Gonthier et al. 2000). The nonthermal soft X-ray
components of many magnetars have also been modeled using
resonant Comptonization by mildly relativistic electrons to effect
the repeated upscattering of photons (Lyutikov & Gavriil 2006;
Nobili et al. 2008a, 2008b; Rea et al. 2008). The Lyutikov &
Gavriil model uses a nonrelativistic magnetic Thomson cross
section (Herold 1979), neglecting electron recoil, and the fits are
of comparable accuracy to empirical blackbody plus power-law
prescriptions. However, for the hard X-ray tails, such Comp-
tonization models of repeated scattering by mildly relativistic
electrons may have difficulties reproducing the flat spectra
owing to the ease of photon escape from the larger interaction
volumes. Provided that there is a source of ultrarelativistic
electrons with Lorentz factor 1eg  , single inverse Compton6 http://www.atnf.csiro.au/people/pulsar/psrcat/
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scattering events can readily produce the general character of
hard X-ray tails (Baring & Harding 2007; Fernández &
Thompson 2007).

Previous magnetic inverse Compton scattering studies in the
context of neutron star models of gamma-ray bursts (e.g.,
Dermer 1989, 1990; Baring 1994) computed upscattering
spectra and electron cooling rates and in the nonrelativistic
magnetic Thomson limit, extending collision integral formal-
ism for nonmagnetic Compton scattering that was developed
by Ho & Epstein (1989). In the context of magnetars,
Beloborodov (2013a) developed a resonant Thomson upscat-
tering model for their hard X-ray tails. Such analyses do not
suffice for modeling magnetars’ hard X-ray signals at low
altitudes, where supercritical fields arise, and thereby violate
energy conservation and generate too many high-energy
photons. In contrast, Baring & Harding (2007) computed
inverse Compton spectra fully in the QED domain, specifically
for uniform magnetic fields, producing output photon spectra
considerably flatter than are observed in the pertinent
magnetars, and violating Fermi-LAT and COMPTEL bounds
when 50e g . In particular, they discerned that kinematic
constraints correlating the directions and energies of upscat-
tered photons yielded Doppler boosting and blueshifting along
the local magnetic field direction. Therefore, the strong angular
dependence of spectra computed for the uniform field case
extends also to more complex magnetospheric field configura-
tions. Consequently, emergent inverse Compton spectra in
more complete models of hard X-ray tails will depend critically
on an observer’s perspective and the locale of resonant
scattering, both of which vary with the rotational phase of a
magnetar.

The principal task of this paper is to extend the analysis of
Baring & Harding (2007) to encapsulate nonuniform field
geometries and model the hard tails of high-field pulsars and
magnetars. Spectra are herein generated for an array of
observer perspectives and magnetic inclination angles a, and
they will serve as a basis for future calculations that will treat
Compton cooling of electrons self-consistently and will also
explore reheating of the surface due to bombardment by these
electrons. We presume that electrons with Lorentz factors

1eg  are confined to move along field lines, an approx-
imation that is generally accurate for high-field pulsars owing
to rapid cyclotron/synchrotron cooling of components of
electron momenta perpendicular to B on very short timescales
of10 20-

–10 16- s. We specialize to scatterings that also leave the
electron in the zeroth Landau level, as noted in Gonthier et al.
(2000) and adopted by Baring & Harding (2007) and Baring
et al. (2011, hereafter BWG11). This is appropriate when
resonant scattering at the cyclotron fundamental cools electrons
efficiently. The developments use a fully relativistic, spin-
dependent QED cross section that employs Sokolov & Ternov
(1968, hereafter ST) eigenstates of the Dirac equation in a
uniform magnetic field, the appropriate choice for incorporat-
ing spin-dependent cyclotron widths into scattering cross
sections. The full details of the ST cross-section formalism
are described in Gonthier et al. (2014), who supplant the spin-
averaged Johnson & Lippmann (1949, hereafter JL) cross-
section formalism found in previous treatments (e.g., Herold
1979; Bussard et al. 1986; Daugherty & Harding 1986).

Resonant Compton upscattering spectra are computed for
integrations over curved electron paths tied to closed magnetic
field lines. The observer perspective relative to the

instantaneous magnetic axis is fixed. For the present analyses,
we consider uncooled electrons, so as to isolate the principal
character of the spectral emissivities and facilitate basic
understanding. This restriction will be relinquished in future
work that will incorporate the electron cooling rate calculation
as a function of altitude and colatitude, as found in BWG11.
The photon production rate computations presented here will
thus serve as a foundation for future phase-resolved spectro-
scopic models of hard-tail emission in magnetars. Section 2
begins with the kinematic formulae central to resonant
Compton upscattering and then defines the photon production
rate formalism in general magnetic field morphologies.
Section 3 specializes the general formalism of Section 2 to
dipole field geometry, specific observer perspectives, and
explores the occultation of emission regions.
The results presented in Section 4 survey the parameter

space for emergent spectra for various observer perspectives
and upscattering regions of the magnetosphere. For scatterings
involving electrons transiting single field lines, resonant
emission is very hard, and the maximum resonant energy
varies substantially with pulse phase for different observing
perspectives. The spectrum resulting from such passages by
monoenergetic electrons along dipole field loops resembles an
1 2e form owing to contributions of emission at locales
proximate to field-line tangents that point to an observer. This
spectrum steepens somewhat when adding up over field-line
azimuthal angles, most of which preclude such select tangent
viewing geometry, and the resonant spectrum then assumes an

0e~ form, which is reminiscent of full solid-angle-integrated
emission results in uniform fields presented in Baring &
Harding (2007). These spectra from toroidal surfaces compris-
ing dipolar field lines are expected to steepen further when
integrations over maximum surface altitudes are performed and
entire emission volumes are treated. Pulse phase flux maps for
different observer perspectives are displayed for a variety of
angles a between the magnetic and rotation axes, highlighting
the prospect of using these to constrain a and the typical
altitude of hard X-ray tail emission. A brief illustration of
spectral results in the magnetic Thomson regime is also offered,
revealing how they are not suitable for emission regions very
near the star. Section 4 also touches on polarization of the
signals and establishes that polarization degrees in excess of
50% can be obtained for single field loop cases at the highest
resonant emission energies. The prospect of using polarization
information to more tightly constrain magnetar geometry
parameters, for example, the magnetic inclination angle a,
motivates the science case for developing hard X-ray
polarimeters. Section 5 draws together various interpretative
elements, including how resonant cooling can limit the Lorentz
factors of electrons accelerated in magnetospheric electric
fields, and the potential impact that attenuation mechanisms
could have on the emergent spectra.

2. Resonant Scattering Formalism

The inverse Compton scattering models here assume that the
ultrarelativistic electrons move along field lines, since magne-
tars are slow rotators and velocity drifts are small. The
detection of emission out to 150~ keV does not guarantee the
presence of 1eg  electrons. Yet, we have previously shown
in BWG11 that resonant Compton cooling does not operate
efficiently for mildly relativistic electrons except for subcritical
fields. In contrast, such resonant cooling does become
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extremely efficient in supercritical fields, for Lorentz factors as
high as 10 104– , and this serves as the basic impetus for
considering resonant Compton upscattering scenarios for the
generation of hard X-ray tails. Moreover, the electrons should
occupy the lowest Landau level (transverse quantum state)
owing to the rapid cyclotron/synchrotron cooling of compo-
nents of electron energy perpendicular to B. This restriction to
the zeroth Landau state simplifies the scattering cross section
profoundly. In addition, the assumption that 1eg  is also
highly expedient analytically, yielding a relatively simple form
of the relativistic differential cross section for Compton
scattering in strong fields, since the incoming photon angle in
the electron rest frame (ERF) is approximately zero for nearly
all incoming photon angles in the magnetospheric or observer
frame (OF). Then, the relativistic cross sections in either
Sokolov & Ternov (Gonthier et al. 2014) or Johnson &
Lippmann formalisms (Daugherty & Harding 1986; Gonthier
et al. 2000) for the eigenstates have only one resonance at the
cyclotron fundamental.

2.1. Upscattering Kinematics

To set the scene for the exposition on collision integral
calculations of photon spectra, it is instructive to first
summarize key kinematic definitions. Both the Lorentz
transformation from the observer’s or laboratory frame to the
electron rest frame and the scattering kinematics in the ERF are
central to determining the character of resonant Compton
upscattering spectra and the cooling rates. The conventions
adopted in this paper are now stated; they follow those used in
Baring & Harding (2007) and BWG11. The electron velocity
vector in the OF is eb , which is parallel or antiparallel to B
owing to the exclusive occupation of the ground Landau state.
The dimensionless photon energies (scaled by m ce

2) in the OF
are i f,e , where the subscripts i f, denote pre- and post-scattering
quantities, respectively. The OF angles i f,Q for these photons
are defined to possess zero angles antiparallel to the electron
velocity, eb- , along the field direction, corresponding to head-
on collisions. With this choice, for ki f, being the photon
momentum vectors, define the photon angle cosines:

k

k
cos . 1i f i f

e i j

e i j
, ,

,

,

b
b

m º Q = -
·

∣ ∣∣ ∣
( )

The relative sense of eb and B is irrelevant to the scattering but
is relevant later on when spectra directed along a given line of
sight to an observer are considered. Boosting by eb into the
ERF then yields pre- and post-scattering photon energies of iw
and fw (also scaled by m ce

2), respectively, with corresponding
angles with respect to eb- of iq and fq in the ERF. The
relations governing this Lorentz transformation and associated
angle aberration are

1 cos and

cos
cos

1 cos
2

i f e i f e i f

i f
i f e

e i f

, , ,

,
,

,

w g e b

q
b

b

= + Q

=
Q +

+ Q

( )

( )

and are illustrated in Figure 1 of BWG11. The inverse
transformation relations are obtained from Equation (2) by

e eb b - along with definitional substitutions i f i f, ,q « Q and

i f i f, ,w e« . It is evident from the angle aberration formula that
0iq » when 1eg  , except for the small fraction of the

scattering phase space when cos i ebQ » - . In such

circumstances, the magnetic Compton scattering cross section
exhibits just a prominent resonance at the cyclotron funda-
mental (e.g., Daugherty & Harding 1986; Gonthier et al. 2000),
i.e., when m c B BBi e

2
crw w =( ) . The origin of the

resonance is that the scattering process becomes essentially
first order in e cf

2 a = , being a cyclotron absorption event
promptly followed by cyclotronic decay of the virtual electron
from the first excited Landau level. For the rest of this paper,
the approximation that electrons occupy the zeroth Landau
state pre- and post-scattering is made.
The kinematic scattering relations, derived from energy-

momentum conservation, differ from the classic nonmagnetic
Compton scattering formula. Particle momenta perpendicular
to the local field direction are not conserved in QED processes
owing to the lack of invariance of the Dirac Hamiltonian under
spatial translations transverse to B. This departure from
symmetry modifies the kinematics of electron–photon interac-
tions. General formulae for the ERF relationships among i f,w
and i f,q in magnetic Compton scatterings are found in a
multitude of previous works, for example, Herold (1979) and
Daugherty & Harding (1986). In the expedient scenario of
ground-state-to-ground-state transitions and 0iq » cases that
are adopted in the paper, the pre- and post-scattering energies
are related by

,
2

1 1 2 sin
,

1

1 1 cos
, 3

f i f
i

i f

i f

2 2







w w w q
w

w q

w q

= ¢ º
+ -

=
+ -

( )

( )
( )

where  is the ratio f iw w that one would ascribe to the
nonmagnetic Compton scattering formula (which in fact does
result when sin 1i f

2 2w q  ). Algebraically rearranging
Equation (3) results in a useful alternative form:

sin 2 1 cos 2 0. 4f f i f f i f
2 2w q w w q w w- - + - =( ) ( ) ( ) ( )

A direct algebraic inversion of this yields

2 cos

2 1 cos
. 5i

f f f f

f f f

2

w
w w w q

w w q
=

- +

- +

( )

( )
( )

This particular version assists in identifying the geometric
observing conditions for the cyclotron resonance to be selected
in a scattering event: since both fw and fq in the ERF depend on
the final photon energy fe and angle fQ in the OF via
Equation (2), then so also does iw implicitly. Note that all three
of these identities are purely kinematic in nature and must be
satisfied by any spin-eigenstate formalism for the electron
wavefunction that is employed to determine the scattering cross
section. From the third form, by inspection of the denominator,
the positive energy 0iw > restriction yields the immediate
consequence

0 1 cos 1 for cos 1. 6f f fw q q< - <( ) ∣ ∣ ( )

However, as will shortly be seen, this is always satisfied. So
also is i fw w , which is simply deduced from Equation (5).
To connect the kinematics to the observer’s frame, one

convolves one of the above ERF identities with the boost
relations in Equation (2). The angle cosine limits m of the
incoming soft photon angles are governed by the
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magnetospheric geometric locale of a scattering and yield
constraints on the accessible ERF values for the incoming
photon energy via 1 1e s e i e s e g e b m w g e b m+ +- +( ) ( ).
This inequality helps define the range of soft photon energies
that permits access to the cyclotron resonance. At any
scattering locale, due to the collimation of soft photon
momenta within a cone with a radial vector as its axis, the
normalized angular distribution function f im( ) about the local
field vector B is anisotropic; forms for it can be found in
BWG11 but are redefined for the context of this paper (see
AppendixA.1). For the outgoing photons, an observer can
select a final photon energy fe and a local scattering angle fQ in
the OF for the instantaneous orientation of the magnetospheric
configuration. These then fix the value of fw in the ERF via the
Lorentz transformation 1 cosf e f e fw g e b= + Q( ) and the
value of the ERF scattering angle fq using the aberration
formula in Equation (2). Inserting these into Equation (5) yields
a relation that defines at what energies (if any) the observer can
detect upscattered photons that sample the cross-section
resonance. One also has 1 cosf f e e fw e g b q= -[ ( )], which
can be combined with the inequality in Equation (6) to yield the
bound cos f e f e e fq g e g b e< - -( ) ( ), which is always satis-
fied, provided that f e ee g b< . Energy conservation then
establishes the verity of this bound and therefore also that in
Equation (6).

2.2. Scattered Spectra and Directed Emission Formalism

To form upscattering spectra from the magnetosphere for
thermal soft photons, a collision integral calculation is
appropriate as a prelude to more sophisticated and complete
Monte Carlo simulations that will incorporate fully self-
consistent cooling and acceleration. Throughout this paper we
assume uncooled electrons at fixed Lorentz factor eg and fixed
number density ne, i.e., their distribution function is
ne ed g g-( ). Note that antisymmetric pulse profiles of most
AXPs/SGRs suggest distributed upscattering locales in the
magnetosphere and nonuniform spatial distributions of ne;
treatment of these will be deferred to future studies. A generic
formulation in the OF of the photon production rate in terms of
ERF quantities and kinematics may be found in Equations
(A7)–(A9) of Ho & Epstein (1989). This development is
readily applied to fully relativistic resonant Compton QED
cross sections and kinematics, as we have previously presented
in Baring & Harding (2007) and BWG11, and as was explored
much earlier in Dermer (1990). The differential photon
production rate dN dt d feg ( ), with cosi im = Q and

cosf fm = Q for compactness, is then

dN

dt d
n n c d d f

d

d
,

1

1 cos
.

7

f

e s f i i

f i f
e i

e e f f

l

u

ò òe
m m m

d w w w q
b m

g b m
s
q

=

´ - ¢
+
+

g

m

m

m

m

-

+
( )

[ ( )]
( ) ( )

( )

Herein, the angular distribution f im( ) of soft photons has a
normalization reflecting the decline of intensity with distance
from the stellar surface, details of which will be addressed
shortly. Note that the angle conventions of Ho & Epstein
(1989) differ by p (equivalent to e eb b - ) from those
presented here and in Equation (1). As in all scattering

collisional integrals, a relative velocity factor c 1 e ib m+( ) in
Equation (7) between the two species is present. This result
presents the spectrum integrated over all scattering angles, a
representative indication of the net spectral output. When the
resonant condition Biw = is imposed, this spectral form
exhibits an approximate one-to-one correspondence between
upscattered energy fe and scattering angle fQ relative to the
field (Dermer 1990; Baring & Harding 2007). A similar
formulation using the head-on scattering restriction is offered in
Appendix A of Dermer & Schlickeiser (1993), for the case of
the nonmagnetic inverse Compton process in blazars; it too
exhibits a strong (though different) coupling between final
energy fe and scattering angle fQ .
In general, to connect with observations, this is not the

optimal construction, since particular scattering angles are
selected by viewing perspectives and scattering locales.
The above formulation can be readily modified to derive the
spectrum of emitted radiation directed toward an observer.
Electrons are assumed to follow some path S in the
magnetosphere, which for a slow rotator will be presumed
parallel or antiparallel to B; eventually this will be
specialized to dipole geometry. Fixing the observer viewing
angle with respect to the neutron star dipolar axis, one can
represent the angles of the scattered photon in terms of the
polar angle Bq and azimuthal angle Bf about the magnetic
field direction at the point of scattering. Since the scattering
cross section employed here is independent of Bf when the
incident photons are parallel to B, the azimuthal angles can
be integrated trivially. The post-scattering solid-angle
element d df fm f is therefore restricted by delta functions in
two dimensions in order to just encompass the ray to the
observer at infinity. The spectral integrals therefore include
the factor

d d dcos
1

2
,

8

B B Bf f f f f fd m q d f f m f
p
d m m m- -  -( ) ( ) ( )

( )

where cosB Bm q= . We have introduced a factor of 1 2p( ), a
convention choice, for the azimuthal angle delta function,
to cancel the factor already integrated in the cross-section
definition d d cos fs q( ): the azimuthal independence of the
differential cross section yields the operational correspondence

d
d

d
d d
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d

d
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d cos
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Observe that the Jacobian for the solid-angle transformation
between coordinate angles defined with respect to the local B
direction and those oriented with respect to the line of sight to
an observer is unity.
We integrate over angles and energy of a separable soft

photon distribution, defined as the incoming differential photon
number density

n n f, , 10s i s ie m e m=g g( ) ( ) ( ) ( )

with 1i i e s em w g e b= -[ ( ) ] . For monoenergetic electrons,
n ne e eg d g g= -( ) ( ), the upscattered spectrum integrated
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along the electron path for an arbitrary soft photon distribution,
directed at some distant observer, is

dn

dt d

n c
ds d n d

d f

d

d
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,
1

1 cos
.
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This form can readily be adapted to treat nonuniform electron
distributions that are not monoenergetic, such as are needed for
more complete studies of radiation-reaction-limited resonant
Compton scattering in magnetars. The spectra are normalized
by the path length  , which for closed field-line loops in the
inner magnetosphere is specified in Equation (22) below. This
normalization convention will be relinquished below when
spectra evaluated for surface and volume integrations are
depicted. The path length variable s can be chosen to be
dimensionless (a convenience) as long as  possesses the same
dimensions. Hereafter, we will specialize this result to 1lm = -
and 1hm = corresponding to the maximal permitted range of
final OF scattering angles. There are two equivalent methods
for evaluating the delta functions appearing in Equation (11).
One protocol expresses the im and fm integrations as integrals
over iw and fw , respectively, and is the more illustrative in
making a connection with the previous work on the uniform
field case in Baring & Harding (2007). Here, we pursue another
development that is algebraically simpler and more useful for
directed emission spectra.

The angular im integration is rewritten as an integration over
iw , with d di e s e im g e b w= - . The limits on the iw integration are

readily obtained from the Lorentz transformations given by
Equation (2), i.e., 1 1e e s i e e s g b m e w g b m e+ +- +( ) ( ) .
This manipulation leads to the correspondence

d d1
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We now interchange the order of integration of iw and se and
use the identity 1 1 cose e f e e f

1g b m g b q+ = --[ ( )] ( ) to derive
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n c
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from Equation (11), where 1i i e s em w g e b= -[ ( ) ] . With this
step, we have exchanged finite limits on the iw integration for
finite limits e for the integral over soft photon energies, with

1
. 14
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Next, we transform the fw delta function to one for iw :

, , , 15f i f
i

f

i i f fd w w w q
w
w

d w w e m- ¢ =
¶
¶
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where ,i f fw e mˆ ( ) is the relation for iw in Equation (5) evaluated

at 1f e f e fw g e b m= +( ). The Jacobian factor can be evaluated
by taking a derivative of Equation (5), the result being

1

2
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where the angle aberration formula in Equation (2) can be used
to set cos 1f e f e fq b m b m= + +( ) ( ). Observe that for 1fm =
(i.e., forward scattering cos 1fq = in the ERF), this Jacobian
factor is unity, while for 1fm = - (backscattering cos 1fq = -
in the ERF), the derivative algebraically approaches
1 1 2 i

2w+( ˆ ) ; appreciable departures of the Jacobian from
unity arise only for large ERF recoil regimes. The second
evaluation in Equation (16) is included to highlight the fact that
its numerator conveniently cancels with an identical factor that
appears in the scattering cross section in Equation (23).
At this point the evaluations of the two delta functions are

trivial, and the spectrum collapses to a simpler double integral
over ds and d se . The factor 1 cose fb q- reduces to

1
e e f
2 1g b m+- -( ) . The resulting spectrum is

dn

dt d
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In this expression, we employ Equation (5) to represent iŵ , insert
cos 1B Bf e eq b m b m= + +( ) ( ) and 1 Bf e f ew g e b m= +( ),
and have set sBfm m ( ) throughout. Only Bm and the soft

photon distribution f im( ) are explicitly functions of the position
s along the electron path S; all other portions of the integrand
possess only implicit dependence through the variable Bfm m= .
This double integral serves as the basis for our computational
results in Section 5. For resonant regimes that are expected to be
the dominant contribution for much of the pertinent model
parameter space, an additional delta function approximation at
the peak of the resonance can be made (see, e.g., Dermer 1990).
This amounts to introducing an equivalent delta function over
the path length parameter s: for a given viewing angle and
scattered energy, only certain spatial points satisfy the resonance
criterion Biw = . This restriction results in a single integral over

se for the spectra. The resonance locales are discussed
explicitly in Section 4 for a dipole field geometry, an
expedient choice for the field morphology adopted in this
paper. The calculations can readily be adapted to arbitrary
field configurations, such as those that are encountered in
dynamic twisted field scenarios (e.g., Beloborodov 2013a)
that include toroidal components, highlighting the broad
utility of Equation (17). For future explorations of resonant
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Compton upscattering spectra from self-consistently cooled
electron populations, one can convolve Equation (17) with an
integration over a density distribution n s,e g( ) that is
dependent on the path locale parameter s.

Specializing this collisional integral for the upscattered
photon spectrum to the case of thermal soft photons that are
uniformly distributed over the neutron star surface, we express
the soft photon energy distribution as a Planck function in flat
spacetime, isotropic over a hemisphere at each surface locale.
Such a choice is appropriate here as a first approximation to
more sophisticated non-Planckian models that treat radiative
transfer, line formation, and vacuum polarization effects in
neutron star atmospheres. Such detailed atmosphere models
generate both nonblackbody spectral forms and anisotropic
zenith angle distributions for the emission (for normal pulsars,
see, e.g., Zavlin et al. 1996; for magnetar applications, see Özel
2002). It is anticipated that such anisotropies and departures
from Planck spectra will at most introduce only modest
influences on upscattering spectra: the value of the effective
temperature and associated soft photon flux will have far
greater impact on spectral results presented in this paper.
The Planck spectral form for the differential photon number
density is

n
e 1

, 18s
s s

2 3

2

s
e

p
e

=
W

-
g e Q
( ) ( )

so that the total distribution in both energy and angles is given
by n fs ie mg ( ) ( ). Here, kT m ce

2Q = is the dimensionless
temperature of the thermal surface photons, and =

m ce ( ) is the Compton wavelength over 2p. Also, sW
represents the solid angle of the blackbody photon population
at the stellar surface, divided by 4p. This fractional solid angle
is introduced to accommodate anisotropic soft photon cases, for
example, hemispherical populations ( 1 2sW = ) just above the
stellar atmosphere. The total number density of soft photons at
the surface is therefore 2 3s

3 2 3z pW Q ( ) ( ), for nz ( ) being the
Riemann z function. The angular portion of the soft photon
distribution depends on (i) the altitude, which controls the cone
of collimation of the soft X-rays, and (ii) the vector direction of
B at the scattering point. The form for f im( ) is essentially
adapted from BWG11 for the model and loop geometry
enunciated in Section 4.2, with a normalization that couples to
the altitude of the scattering locale:

f d
R

R

R R

1 cos 1 1 ,

, 19

i i
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1

C
NS

2

NS
ò m m q= - º - -
-
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⎛
⎝

⎞
⎠

( )

( )

which reproduces the inverse square law for R RNS . Here Cq
is the opening angle of the cone of soft photons at altitude R,
and the general shapes of the f im( ) function are illustrated in
Section5 of Baring et al. (2011). The particular distributions
that satisfy this normalization are posited in Equations (58)
and(59). The integration over the thermal soft photon energies
in Equation (17) involving both n seg ( ) and f im( ) is analytically
developed in Appendix A.2, where the se integration is distilled
into series of tractable integrals spanning different parameter
regimes. Note that this analytic development can also be
employed for nonmagnetic inverse Compton scattering pro-
cesses for other stellar systems, e.g., gamma-ray binaries.

Hereafter, we assume a dipole geometry for the magnetic
field in the spectral calculations of this paper. Electron paths are
defined by field loops parameterized by their footpoint
colatitude fpJ , or equivalently their maximum (equatorial)
altitude rmax in units of the neutron star radius RNS, the two
being related by

r
1

sin
. 20max 2

fpJ
= ( )

Essentially, here all radii are scaled to be dimensionless via
r R RNS= so that r 1max  . Then, the value of the polar cap
angle of the last open field line is just fpJ , for which
r R RLC NS= at the light cylinder radius RLC. Without loss of
generality, we specialize throughout to the case of electrons
moving antiparallel to B along field loops, transiting from one
pole to the other. The spectral production integrals are
normalized by the arc length  of such a loop, which is
hereafter scaled in units of RNS. This length is computed by
parameterizing a loop by its colatitude colq Jº , with
r r sinmax

2J J=( ) , and then forming a path length element ds
(also expressed in units of RNS) that satisfies the polar
coordinate geometry relation

ds

d
r

dr

d

ds r d
r r

r r
drsin 1 3 cos

4 3

2
.
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The total dimensionless arc length  of the loop between its
footpoints can then be found analytically via elementary
integration:

ds

dr
dr r r

r r

r

2 1 4 3

3
arctanh

3 1

4 3
. 22

r

1
max max

max max

max

max

 òº = - -

+
-
-

( )( )

( )
( )

The factor of two accounts for the identical contributions from
ascending and descending portions of a loop. The field loop
parameter rmax will be employed to label spectra in the
graphical depictions below; fpJ could serve as an alternate
choice.
The magnetic Compton differential cross sections that we

employ in the scattering integral of Equation (17) are full QED
forms for polarized photons developed in Gonthier et al. (2014;
see also Mushtukov et al. 2016). These incorporate Sokolov &
Ternov (ST) spinor formalism and spin-dependent cyclotron
decay widths and so go beyond magnetic Thomson cross
sections used in previous treatments of resonant upscattering.
Computed in the electron rest frame, they pertain to ground-
state-to-ground-state transitions for incident photons parallel to
B, corresponding to kinematic domains below the magnetic
pair creation threshold, sin 2i i w q . Away from the Biw =
cyclotron resonance, where the decay widths contribute
negligibly to the cross section, we use the cross sections given
in Equation (39) of Gonthier et al. (2014; see also Herold 1979;
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Bussard et al. 1986; Daugherty & Harding 1986):
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The subscripts ,^  denote the polarizations of the scattered
photon; since the incident photon propagates along the field,
the cross section is independent of its linear polarization. The
polarization-dependent factors (spin-averaged) are

T T, 2 2 24i i i i fw w z w w z w= - = + - -^ ( ) ( )( ) ( )

and do not depend on the choice of electron wavefunctions
(spinors). We adopt a standard linear polarization convention:
(O-mode) refers to the state with the photon’s electric field
vector parallel to the plane containing B and the photon’s
momentum vector, while ^ (X-mode) denotes the photon’s
electric field vector being normal to this plane. Our protocol is
to use Equation (23) away from the resonance, namely,
when B 1 0.05i w -∣ ∣ .

In the cyclotron resonance, we adopt an approximate form
for the spin-dependent differential cross section from Section
IIIE of Gonthier et al. (2014). This uses an expansion in terms
of the small parameter B2 id wº -( ), eliminating terms of
order O 2d( ) and higher. For a spin-averaged, cyclotron decay
width G, the approximation is

d

d

e

B s B

cos

3

16 2
,

4 1 . 25

f

f
B

i i f s

s

s

s i

,

res

T
2 sin 2

3
1

,

2 2 2
2

2

f f
2 2











ås
q

s w

w w w z

w

»
- -

= - + - +
G

w q^ -

^ =

^

^
^

 ⎛

⎝
⎜

⎞

⎠
⎟

( )

( ) ( ) ( ) ( )

Here B1 2 = +^ , and s is the spin quantum number label
for the intermediate state. The numerators are
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The spin-averaged, QED n 1 0=  cyclotron width G is
taken from Equation (13) of Baring et al, (2005; see also Latal
1986). Asymptotic limits are B2 3f

2aG » when B 1 and
e1 1faG » -( ) when B 1 . A useful empirical approx-

imation to the width G was posited in the Appendix of van
Putten et al. (2016); it reproduces the B 1 and B 1
asymptotic limits and possesses a precision of better than
around 2% when compared with the exact form. For each spin
case s 1=  , the approximation in Equation (25) is numeri-
cally accurate to a precision of better than 0.03% across the
resonance Lorentz profile, i.e., for B 1 0.05i w -∣ ∣ , when

fields are in the range B0.1 10  , and is still extremely good
for the range of field strengths B10 102 2< <- .

3. Model Geometry

We now give an idealized yet representative case study of
the formalism for emission directed to an observer for a
magnetar. A dipole field geometry for the star is assumed, with
dipole moment B R 2p NS

3 (e.g., Shapiro & Teukolsky 1983),
half the value conventionally used by observational collabora-
tions. Treatment of more complicated multipole field config-
urations, outer magnetospheric field geometry, twisted dipole,
and curved spacetime enhancements of the field is deferred to
future work; such added complexity will alter the beaming
characteristics significantly in a model-dependent way. The
lack of a fully self-consistent model for the global field
structure for magnetar magnetospheres presents an uncertainty,
with force-free MHD models sustaining complicated nondipo-
lar morphologies without significantly altering the spin-down
characteristics (e.g., Spitkovsky 2006; for dissipative MHD
models, see also Kalapotharakos et al. 2012, 2014; for particle-
in-cell plasma simulations, see Philippov & Spitkovsky 2014;
Chen & Beloborodov 2017). As the focus here is on low
altitudes r R20 NS in closed field regions, i.e., well inside the
light cylinder radius of R104 NS> for magnetars, we expect a
more thorough MHD treatment of the high-altitude magneto-
spheric field geometry not to profoundly modify the general
character of the results and conclusions presented in this paper,
motivating the restriction to dipolar morphology.
We define a right-handed Cartesian coordinate system

x y z, ,{ˆ ˆ ˆ} in the corotating frame of the neutron star, with a
star-centered origin, and the ẑ unit vector collinear with the
magnetic field axis. An observer at infinity’s instantaneous line
of sight in the corotating frame is defined by angle vq relative to
ẑ, i.e., z n cosv vqº·ˆ ˆ . Without loss of generality, we define the
vector field of observer lines of sight (directed away from the
star) to be in the x–z plane,

n z xcos sin . 27v v vq q= +ˆ ˆ ˆ ( )

Photons are assumed to propagate in straight lines, neglecting
general relativity and vacuum birefringence in the magneto-
sphere. Relativistic aberration is small for magnetars at the low
altitudes considered here, since they are slow rotators. Curved
spacetime will be important for photons beamed to the observer
from behind the star that then propagate through low altitudes,
or photons emitted at low altitudes. Such a treatment of photon
geodesics is deferred to a future Monte Carlo simulation but is
not expected to profoundly influence the results presented in
this paper since much of the spectral generation here arises
above two stellar radii.
The dipole magnetic field and its unit vector in spherical

polar coordinates are parameterized by a polar angle J,

B r B
rB

r2
2 cos sin

2 cos sin

1 3 cos
,

28

p

3 2
q q

J J
J J

J
= +  =

+

+
( ˆ ˆ ) ˆ ˆ ˆ

( )

where r R RNSº is the radius in units of neutron star radii.
The magnetic field is azimuthally symmetric in the definition
above, and thus we can parameterize individual field loops in
terms of an azimuthal angle

*
f , which is defined to be zero in
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the observer x–z meridional plane,

B x y zsin cos sin sin cos , 29
* *

z f z f z= + +ˆ ˆ ˆ ˆ ( )

where z is the angle between the local direction of B and the
ẑ-axis. It is easily found by consideration of transformations
between spherical polar and Cartesian coordinates, parameter-
ized in terms of J,

cos
3 cos 1

1 3 cos
or sin

3 cos sin

1 3 cos
. 30

2

2 2
z

J

J
z

J J

J
=

-

+
=

+
( )

The angle between the observer line of sight and local direction
of B for a particular loop is parameterized by

*
f , where 0

*
f =

and
*
f p= denote “meridional” and “anti-meridional” field

loops, respectively. The angle is routinely found:

n Bcos cos cos sin sin cos . 31n v v vB
*

q z q z fQ º = +·ˆ ˆ ( )

This relation will eventually forge the connection between the
final scattering angle in the corotating frame and the observer
direction. The direction of electron propagation is irrelevant to
these geometrical considerations, instead being germane to the
scattering kinematics.

3.1. Resonant Interaction Criteria

Since resonant contributions are generally dominant when
defining spectra of emission directed to an observer, the
energies and location along a field loop where the resonant
condition Biw = in the ERF is accessed are crucial to
understanding the predominant locale of resonant Compton
spectral generation. The essential connection is that the final
photon scattering angle in the OF is directed toward the
viewer, i.e., f nBQ = Q ( cosf nBm = Q ) at an interaction
point along a given field loop for electrons moving

antiparallel to B along a field loop. Given the inversion
relationship for the ERF scattering kinematics in Equation (5), at
each point along a field loop, the parameters that determine
whether resonant interactions are sampled are B r, ,p fmax e , and
eg . Using r r sinmax

2J J=( ) in the magnetic field forms in
Equation (28), inserting the Doppler boost relation

1f e f e fw g e b m= +( ) and the aberration formula in
Equation (2) into Equation (5) for the ERF kinematics then
yields

B
B

r

sin 2 1 cos

2 1 1 cos 1

1 3 cos

2 sin
. 32

f f n e e n

f e e n
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B B
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3 6

e e g b
e g b

w
J
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+
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Therein, for fixed eg , specifying fe and nBQ for the scattered
photon uniquely determines the value iw of the photon in the
ERF prior to scattering. Concomitantly, by virtue of
Equation (2), for photons emanating from a particular location
on the stellar surface, iQ is uniquely specified, and the value of
the soft photon energy is selected. Given the identity for
cos nBQ in Equation (31), Equation (32) defines an algebraic
equation for cosJ that identifies select points along a field loop
at which resonant scattering directs photons toward the
observer; in general, this equation has to be solved numerically.
This result is subject to the additional constraint in
Equation (6), which is satisfied whenever f e ee g b< , i.e.,
energy is conserved: this nuance is discussed at the end of the
first part of Section 2.
Numerical values for the ratio Biŵ ∣ ∣ along a magnetic field

line, as a function of colatitude J, are illustrated in Figure 1 for
a fixed Lorentz factor of 10e

2g = and an instantaneous
observer viewing angle 60vq = . They are obtained by taking
the ratio of the left- and right-hand expressions in Equation (32)
and are specifically for a meridional field loop, i.e., one
coplanar with the plane defined by the rotation axis and the line
of sight to the observer. They are color-coded for the final
photon energy and highlight the resonant interaction points,

Biw =ˆ ∣ ∣, for each curve specified by fe using the black dots.
Observe that for a given viewing angle, if fe is too high or low,
no resonant interactions are accessed. When they are, there are
generally two, three, or four such positions. The maximum
value of fe for resonant interactions, which serves as an
effective cutoff energy to the dominant portion of the emission
spectrum, occurs for backscattering events in the ERF, i.e.,
when cos 1fq = - , which corresponds to nB pQ = using the
aberration formula. Manipulating the left-hand identity in
Equation (32), this maximum is then defined by

B

B

1

1 2
, 33f

e emaxe
g b

=
+

+
∣ ∣ ( )

∣ ∣
( )

a result that is highlighted in Equation (15) of Baring &
Harding (2007). In highly supercritical fields, the resonant
scattering is deep in the Klein–Nishina domain and f e

maxe gµ ,
as expected. For subcritical fields B 1∣ ∣ , since the resonance
is accessed when B e ig e~∣ ∣ , the familiar Thomson dependence

f e i
max 2e g e~ emerges. Note that this beaming occurs only along

Figure 1. Curves representing the ratio of Biw as a function of colatitude J
along a meridional field line ( 0

*
f = ) with locus r r rsin , with 4max

2
maxJ = = .

The range of colatitudes displayed, 6 5 6 p J p , spans the complete
domain between the footpoint colatitudes fpJ for this rmax. The curves are color-
coded as listed in the inset according to the final photon energy fe , in units of
m ce

2, ranging from keV X-rays (red, bottom) to almost GeV energy gamma rays
(purple, top). The polar field strength is B 100p = , and the observer viewing angle
is 60vq = , while the electron Lorentz factor is 10e

2g = . Resonance interaction
points (black) where the curves intersect the horizontal Biw = line are marked;
these are solutions of Equation (32). Only a finite range of final energies have
access to resonant interactions. The colatitude 0J of the cusps is given by
Equation (34) and is discussed in the text.
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meridional ( 0
*
f = ) and anti-meridional field loops (

*
f p= )

or for azimuthal angles
*
f within 1 eg of these special cases.

This restriction thus represents a spatially small portion of the
emitting region along a field loop. Shadowing for certain
instantaneous observer angles, discussed in Section 4.2, can
curtail some beaming contributions significantly, particularly
for anti-meridional loops and when viewing angles are
moderately large.

A noticeable feature of the curves in Figure 1 is that they
all possess prominent cusps at the same colatitude 0J .
These features are deep local minima of the functional
expression for iŵ . If one takes the 1eg  limit of the left-
hand side of Equation (32), the Doppler shift formula

1 cosi e f nBw g e» + Qˆ ( ) is quickly reproduced, being equiva-
lent to Thomson kinematics i fw w» in the ERF. Thus, the
local minima can be approximately defined by the root
cos 1nBQ = - , which applies to all values of fe and eg . This
selection criterion is tantamount to requiring that the tangent to
the local field line coincides with the line of sight to the
observer. Using the identity in Equation (31), it is quickly
discerned that for meridional loops with 0

*
f = , vz q p=  is

established. This simple result can be inserted into either form
in Equation (30) and the result squared and then inverted to
define an equation for the approximate value of 0J :

cos
1

6
2 cos cos 8 cos

1 3 cos
1

2
8 cos cos .

34

v v v

v v

2
0

2 2

2
0

2

J q q q

J q q

» + - +

 + » + -

( )

( )

( )

The choice of sign in the solution of the quadratic is fixed by
the magnetic and viewing geometry. Further, when taking the
square root of this expression, the negative root is accessed by
this same geometry: the colatitudes of tangent lines directed to
an observer with a 0 2vq p< < viewing angle are generally
in the range 2 0p J p< < . Equation (34) applies to the

*
f p= case also, where vz q p- =  is established using
cos 1nBQ = - . In general, as

*
f changes from zero or p and

the plane of the field line rotates, the mathematical form for the
approximate root becomes more complicated. For the choice of

3vq p= in Figure 1, the negative square root of Equation (34)
yields 0.620J p» , in close agreement with the position of the
cusps in this figure.

Another prominent feature of Figure 1 is the concentration of
resonant interaction points (black dots) near the cusps for large
fe cases. This segues the discussion to the solution for the

Biw =ˆ ∣ ∣ resonance criterion. Focusing again on the 1eg 
domain, equating the left- and right-hand sides of Equation (32)
yields

K
r

Bsin 1 cos

1 3 cos
for

2
.

35

n p

f e

6
B

2
max
3

J
J

J e g
º

+ Q

+
=

Y
Y º( )

( )

( )

If either eg or fe is sufficiently large, then 1Y  and this
resonance condition solves via cos 1nBQ » - , i.e., 0J J» as
before. This explains the clustering of black dots in Figure 1 in

the vicinity of this colatitude. The same result is realized for
high-altitude loops with r 1max  . This circumstance is
illustrated in Figure 2, which exhibits solutions to
Equation (35) for a meridional configuration (i.e., the x z–

plane corresponding to 0*f = ) of field lines for 10e
3g =

(which differs from the value in Figure 1) and for two
contrasting viewing angles, 60vq =  and 120vq = . Even
though these two viewing angles are symmetrically placed
relative to the magnetic equator, the evident asymmetry is
incurred because electrons are flowing in only one direction
along field lines. The solutions define contours of constant Y
for the resonance condition, and a broad range of Y are
represented in each panel, color-coded by their values of fe ;
this implies that an infinite variety of Bp and eg choices
correspond to each fe contour, with the restriction that f ee g< .
For each value of fe there generally exist two contours of
resonance locales in distinct portions of the magnetosphere,
and these two curves intersect a given field line often at four
locations, a property that is evinced by the black dots in
Figure 1. The exception to this arises for high fe contours
whose footpoints usually lie at colatitudes more remote from
the poles than those of select field loops. The radial direction at
colatitude 0J defines a separatrix for each member of a pair of
resonance loci, and the contours asymptotically become almost
parallel to this radial line at high altitudes. Observe that the
contour/separatrix map for the

*
f p= case can be obtained by

a rotation through angle p in the x z– plane. Note also that for
nonmeridional viewing configurations, the contour morphology
changes significantly, and the separatrix can disappear, a
property that can be inferred from the orthographic projections
depicted in Figure 3.
Returning to the 0

*
f = case, for gamma-ray energies 1fe >

(green, blue, and purple), the proximity of the two resonance
points on each field-line loop is obvious and becomes more
marked as rmax increases. In this asymptotic domain, the
separation of the pairs of resonance points at J J=  can be
specified via a more refined analysis of the solutions of
Equation (35), noting that they lie in proximity to the local
minimum defined by 0J that gives K 00J =( ) . Expanding the
K J( ) function about this value to quadratic order in a Taylor
series, it is quickly inferred that K 00J¢ =( ) at the extremum 0J ,
so that K K 20

2
0J J J J» - ¢¢( ) ( ) ( ) to leading order. With this

construction, the colatitudes of the two resonance points on each
meridional field loop are approximately given by

K r
with

2
. 360

0 max
3

J J J J
J

=  D D =
Y




( )
( )

The expression for K 0J¢¢( ) can be routinely derived in closed
analytic form, but is rather involved in general. For the special
meridional and anti-meridional cases, one can determine after a
modicum of algebra that

K
9 sin 1 cos

1 3 cos
, 0, . 370

6
0

2
0

2

2
0

5 2 *
J

J J
J

f p »
+

+
=( )

( )

( )
( )

The construction leading to Equation (36) is generally robust as
long as K 0J¢¢( ) is not very small. Thus, one infers that it works
best when 0J is not too near 0 or p, i.e., that the viewing angle
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is not too close to the magnetic poles. Returning to general
*
f ,

clearly rmax
3 2JD µ - describes the asymptotic behavior of the

resonance loci at high altitudes. Moreover, since JD is often
small for a substantial range of energies fe above 10 keV,
photons scattering in the cyclotron resonance are then beamed
along a local field line that is aligned virtually toward the
observer. Note also that f

1 2J eD µ - corresponds approxi-

mately to 1 cosf fe q- =( ) const., which is a kinematic
coupling between viewing angle relative to B and photon
energy that was highlighted in Baring & Harding (2007) for the
case of uniform field geometry. This proportionality for the
approximate locales of resonance points has consequences
concerning the shape of the resonance spectrum that will be
detailed in Section 4.1.

To combine the two pieces of information encapsulated in
Figures 1 and 2, it is instructive to form three-dimensional
orthographic projections of the resonance interaction locales
that generate upscattered photons of a specified energy fe
directed to a particular observer line of sight. Six examples of
these are depicted in Figure 3, contrasting different viewing
angles spanning 0vq =  and 120vq = , mostly in 30
increments. These represent different rotational phases in
magnetars that are oblique rotators. As is evident in Figure 2,
many resonance points form two loci for a fixed azimuthal
angle

*
f for the field line. Summing over a complete range of

azimuths 0 2
*

 f p, the resonance locales form 2D
surfaces. The positioning of these surfaces depends on the
choice of the scattered photon energy fe . The higher this
energy, the closer the two resonance locales reside along a
given field line in Figure 1, a property also indicated by the
analytic solution in Equation (36). Thus, increasing fe will
bring cyclotron resonance surfaces corresponding to a
particular viewing perspective closer together. For some

energies fe , there are additional surfaces of resonance. To
capture this complexity of information, the 3D orthographic
projections in Figure 3 color-code fe surfaces to render it
relatively simple to discern the assemblage of resonance
interaction localities. For example, for the highest photon
energies 10f f

max 3e e~ ~ (blue/purple locales), for all instan-
taneous viewing angles vq , only small portions of the
magnetosphere generate scatterings sampling the cyclotron
resonance for this 10e

3g = example: usually a spot, but in the
symmetric case of 0vq = , a ring. This is because of the
extreme constraints of Doppler boosting and relativistic
aberration in the scattering interaction kinematics.
Much larger magnetospheric volumes can access resonant

interactions for photon energies 1fe < in the X-ray band as the
Doppler constraints become less restrictive. Black loci
demarcating 160fe = keV are included in each of the panels
to volumetrically divide these two fe energy domains (green to
purple above 160 keV, and yellow and red below), and at the
approximate centers of these “spherical ellipses” is a point
whose magnetic colatitude is 0J ; the vector to this point defines
the separatrix in the 0

*
f = plane. When 0vq > , as

*
f

increases from zero, the separation of the resonance contour
pairs is reduced, eventually shrinking to zero at moderately
small values of

*
f so as to close the 160f e keV ellipses. The

0J J= separatrix thus does not exist for most field-line
azimuthal angles, since the root cos 1nBQ = - cannot be
realized: the tangent to the local field line then cannot point
toward the observer. Note that the value of Bp for these
projections is lower than that in Figure 2 and does not lead to a
change in the value of 0J ; the orthographic projection
morphology for a B 100, 10p e

4g= = case should closely
resemble that in Figure 3. Observe also that there are large solid
angles that are uncolored or “white” in the projections,
particularly for viewing angles larger than around 60; these

Figure 2. Resonance interaction loci along meridional field loops ( 0
*
f = ) for observer viewing angles 60vq =  (left panel) and 120vq =  (right panel). Contours of

constant B 2p f ee gY º [ ] are depicted, with a range 10 4 104 3< Y < ´- , being color-coded according to the value of the dimensionless final photon energy fe , as
indicated in the legend on the right; the black loci constitute the value of 10 160f

0.5e = »- keV (i.e., 0.16Y » ). The colatitudes of these loci as functions of the
altitude are solutions of Equation (32). The field strength B 100p = and electron Lorentz factor 10e

3g = are kept fixed. As the magnetic field drops with increasing
altitude, the interaction points converge toward a radial dotted blue line with the colatitude 0J that satisfies Equation (34), which is here 0.62 111 .60J p» =  for the
left panel and 0.78 141 .60J p» =  for the right panel.
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correspond to very low energies, 2 keV, that would be
swamped by the surface and atmospheric emission signals (see,
e.g., Figure 10 below). The orthographic projections in
Figure 3 also clearly exhibit dark shadow regions where the
line of sight to an observer is occulted by the star. For some
observer viewing perspectives, the emission regions shadowed
can have a profound impact on the spectra observed since
emission is strongly sensitive to the final scattering angle. For
the dipole field morphology employed here for flat spacetime,
the boundaries of these zones can be computed using simple
geometric considerations.

To complement this three-dimensional illustration of the
resonant energy fe geometry, an alternative representation of
such information can be provided by projecting the spherical
surface onto the 2D polar angle/azimuth plane. This is done
using

*
J f– coordinates in Figure 4, again with the electrons

flowing outward from the upper hemisphere; bi-directional
flows, for example, of pairs accelerated in an electric field, will
generate different resonant interaction phase space plots. The
case exhibited therein is for somewhat different values of the
parameters, namely, B 100p = and 10e

2g = , and for a higher-
altitude surface, r 4max = . These choices lower the value of

f
maxe in Equation (33) by a factor of just over 10 relative to
those in Figure 3. Also, the 16 panels progress through a denser
sequence of viewing angles than in Figure 3. These span
perspectives over the pole, where the hardest resonant emission
comes from equatorial field lines and the system is azimuthally

symmetric (yielding unpulsed emission), to instantaneous lines
of sight in the magnetic equator where no low-altitude field-line
tangents point to the observer, so that then all resonant
emission is softer than around 1MeV. As with the orthographic
projections, displaying this 2D angular phase space clearly
illustrates that hard emission above 1MeV in resonant
Compton upscattering is confined to only a small solid angle
in the magnetosphere, the hallmark of strong Doppler boosting.
It is anticipated that, due to the field-line curvature, such
emission will likely be attenuated by magnetic pair creation or
photon splitting, a prospect addressed in the Discussion section
but not detailed numerically in this paper. Photons directed into
the remaining solid-angle phase space will suffer at most
modest or minimal such attenuation and are of energies
approximately consistent with those of the observed hard X-ray
tails.
To interpret this phase diagram further, since t

*
f = W

constitutes the rotational phase in a spinning magnetar, the time
evolution of the sampling of these resonant energy maps is a
sinusoidal trace for tvq ( ) that is dependent on the inclination
angle a between the magnetic and rotation axes, given specifically
in Equation (40). Since vq is fixed for each panel, this evolution
effectively amounts to a repetitive rastering in a sequence between
a subset of the panels. For most ,a z parameters, vq will not
exceed around 135 and meridional and anti-meridional config-
urations at select phases will access the blue/green “hot spots.”
Thus, one expects that the maximum energy of resonant emission

Figure 3. 3D orthographic projections (with a linear spatial scale) of resonant interaction points for a toroidal bubble of field loops of extent r 2max = , color-coded for
final scattering energy fe in the OF, plotted here for B 10p = and uncooled 10e

3g = . The six panels are for different viewing angles vq relative to the magnetic dipole
moment unit vector Bm̂ , ranging from 0 to 120, as labeled. The black curves bound emission that is greater than 160~ keV (green, blue, violet colors), separating
such from softer emission (yellow, orange, red colors), indicating that most of the COMPTEL-violating high-energy emission is confined to small surface locales. The
gray region denotes that of shadowing by the star with respect to the line of sight.
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should be quite sensitive to the pulse phase, as long as a exceeds
around 25. This variation, explored more in Figure 5 below,
serves to define a potentially useful observational diagnostic on the
magnetic inclination angle a for select magnetars; see also the
pulse phase properties presented in Section 4.2. Finally, observe
that the solid angle of shadowing (again depicted as gray regions)
is substantially diminished in this higher-altitude case relative to its
prevalence in Figure 3 for resonance zones nearer the star.

These two illustrations thus serve to outline two key
elements of the overall character of resonant Compton
upscattering spectra in inner magnetospheres: (i) that the flux
and spectral shape will be strongly dependent on pulse phase
for a magnetar, and (ii) adding up over substantial volumes
should generate a profusion of X-rays, as opposed to hard
gamma rays, in the emergent signal. The first of these will be
explored briefly in Section 3.2, the second in Section 4.

Figure 4. Suite of resonant interaction contour plots serving as a complement to the 3D orthographic projections in Figure 3. The viewing angle vq relative to Bm̂ for
each panel is fixed at the value indicated therein, and the other parameters B 100p = , 10e

2g = , and r 4max = are identical for all panels and present a slightly different
case from Figure 3. Again, the contours are for fixed final scattering energy fe in the OF and are color-coded as indicated by the legend in the upper left, plotted here
for B 100p = and uncooled 10e

2g = . The gray region again denotes that of shadowing by the star with respect to the line of sight to the viewer. The coupling between
instantaneous viewing angle vq and rotational phase t 2pW is discussed in Section 3.2.
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3.2. Modulation in Oblique Rotators

When the magnetic moment of the star is inclined with
respect to the rotation axis, the effective zenith angle of the line
of sight to an observer at any point in the magnetosphere
changes as a function of the rotational phase tW . A magnetic
field loop’s longitude or azimuthal angle

*
f then defines a

periodic sweep of an instantaneous viewing angle vq as the star
spins about its rotation axis. This is precisely analogous to the
path of the Sun in the sky to an observer at a specific longitude
and latitude on Earth. Thus, only twice a period does the line of
sight to a viewer lie coplanar with the field loop, and at low
altitudes often one of these is occulted by the star. In general, at
these instants this plane is not coincident with the contempora-
neous plane defined by the magnetic and rotation axes. The
exception to this arises for meridional field loops, those
specified by phase 0

*
f = and defined by being coplanar with

the magnetic dipole and rotation axes exactly twice a rotational
period. It is these meridional loops that are emphasized more in
the illustrations of this subsection, motivated by simplicity of
description and interpretation. Azimuthal symmetry about the
magnetic field axis is presumed for particle number density and
Lorentz factors, and consequently the emission energies/
spectra of the photons. In principle, such quantities can vary
with azimuth in the magnetosphere, and an example is provided
by localized field twists and current bundles that are a defining
feature of some models (e.g., Beloborodov & Thompson 2007;
Nobili et al. 2011). Here we adopt the simpler azimuthally
symmetric case to more clearly illustrate the general character
of resonant Compton upscattering signals.

We define a new coordinate system such that the axis of
rotation of the star is zvW =ˆ ˆ for an angular rotation vector
W W= W ˆ . The magnetic obliquity angle a then allows us to
specify the instantaneous magnetic dipole moment unit vector

Bm̂ such that cosBW m a=ˆ · ˆ ,

x y zt tsin cos sin sin cos , 38v v vBm a a a= W + W +ˆ ( ) ˆ ( ) ˆ ˆ ( )

where tW is an arbitrary time coordinate for rotation phase. In
this coordinate system (observe that subscripts v are employed
to distinguish these OF triad vectors from those in the magnetar
rest frame), we define the viewer direction as being at angle v0q
with respect to the magnetic axis Bm̂ at time t 0= . The
observer vector itself is fixed and independent of time,

n x zsin cos . 39v v v v0 0a q a q= + + +ˆ ( ) ˆ ( ) ˆ ( )

Note that trigonometric double-angle identities confirm that
nt 0 cos vB 0m q= =ˆ ( ) · ˆ . For general rotational phases, we

define the effective viewing angle 0,vq pÎ { } as the
instantaneous angle between the viewer and magnetic moment,

n tcos sin cos sin cos cos ,

, 40

v

v

B

0

mq a z a z
z a q

º = W +
= +

ˆ · ˆ ( )

( )

with sin 1 cosv v
2q q= - , since 0 v q p. At phase

t 0W = one has v v0q q= , and we note that z is the fixed angle
between the observer direction and the rotation axis, adopting
notation familiar to pulsar astronomers. The other extremum at
phase t pW = establishes cos cos 2v v0q a q= +( ), i.e., vq =
2 v0a q+ or 2v v0q p a q= - -( ) , whichever is the smaller.
This algebra defines cases applicable to meridional field loops,
and those with nonzero azimuthal angles

*
f (magnetic

longitudes) relative to the meridian will possess a mathematical
form for t,vq a( ) different from Equation (40). Varying vq with
rotational phase then yields fluctuating spectra. Analytic pulse
profiles as a function of energy can also be constructed in the
assumed azimuthally symmetric magnetosphere. This is most
expediently achieved if one neglects time-of-flight and light-
aberration effects induced by the rotation for different photon
interaction locales, good approximations in the inner magneto-
spheres of magnetars.
The phase dependence of the spectra is induced by the

rotational modulation of the nBQ value as vq changes. In

Figure 5.Maximum resonant cutoff energy f
maxe from Equation (33) as a function of rotation phase, for oblique rotators with different magnetic axis inclination angles

30 , 60 , 90a =    (panels as labeled) to the rotation axis. For each panel, profiles are depicted for several choices of the viewing angle at the zero-phase instant
( t 0W = ), with v0q z aº - values labeled. The cutoff energies are modulated by the stellar rotation and correspond to monoenergetic electrons with an azimuthally
symmetric density distribution about the magnetic axis. The electrons are presumed to populate meridional magnetic loops that extend to altitudes r 8max = ,
propagating from the south magnetic footpoint to its northern counterpart. The heavyweight solid portions of the curves are for the maximum soft photon energy being
constrained such that B 10e slocal

max 2g e< = - , i.e., sampling the bulk of the surface X-rays. In contrast, the dashed portions of the curves are unconstrained; see text
for a discussion. Also shown in the left and right panels are horizontal dot-dashed lines that represent the absolute magnetic pair creation threshold of m c2 e

2.

14

The Astrophysical Journal, 854:98 (33pp), 2018 February 20 Wadiasingh et al.



particular, the maximum observed scattered energy beamed
toward an observer varies with rotational phase when 0a ¹ .
This modulation signature is approximately represented by the
variations in the resonant interaction criterion in Equation (33),
mediated by the modulation of instantaneous viewing angles in
Equation (40) that select different resonant interaction locales
as portrayed in Figure 2. This variation of the characteristic
cutoff energy f

maxe in the OF is illustrated in the triptych of
Figure 5, for three different magnetic axis inclination angles a
and for a neutron star with B 10p = . In each a configuration,
these maximum energy oscillation profiles are computed for six
different viewing angles v0q and are applicable to the
meridional field loop. For nonmeridional field loops, the
modulation profiles generally possess different amplitudes and
normalizations, possess different distortions from purely
sinusoidal character, and have their extrema shifted in phase
relative to those in Figure 5. The curves presented are for
monoenergetic electrons of Lorentz factor 10eg = , streaming
along field lines from near the south magnetic pole to near the
north one (i.e., closer to the direction of Bm̂ ). For values where
sin 0v0a q+ =( ) , there is no variation of vq with rotation phase
(see Equation (40)), since the viewing direction is parallel to
the rotation axis ( 0z = ). Such a circumstance is not
specifically depicted in Figure 5 for the chosen v0q values,
though small-amplitude oscillations for v0q choices sampling
the neighborhood of v0a q p+ = are apparent in each of the
panels.

All the f
maxe traces exhibit the 2p periodicity in tW that is

manifested in Equation (40). Thus, it is evident that local
extrema in this energy are separated by p in rotational phase.
The dynamic range in f

maxe between these extrema is controlled
by the factor B B1 2+( ) in Equation (33), where B is the local
value such that the field line is tangent to the observer’s line of
sight, i.e., cos 1nBQ = - . Specifically, the range of the
modulation is fixed by the ratio B rp max

3 for a particular field
loop. When Bp is large or rmax is small, the factor B B1 2+( )

approaches 1 2 at low altitudes. In contrast, the minimum
cutoff energy is realized when resonant scattering occurs at a
high altitude, thereby sampling low local B. This range is
curtailed in several instances by a “capping” at large f

maxe ,
where the profiles possess flat portions. This feature is due to a
shadowing effect, where cos 1nBQ = - tangency cannot be
realized outside the star, and the maximum energy along a
magnetospheric field loop is established at the southern
magnetic footpoint.

Observe that the f
maxe normalization or y-axis domain is also

controlled by the 1e eg b+( ) factor in Equation (33). Therefore,
raising the value of eg to 100 would move the curves up in
energy by a factor of around 10, but no more. This then
provides insight into the modulation behavior that should arise
when electrons rapidly cool owing to resonant scatterings,
thereby precipitating spatially dependent values for eg . Such
variations of Lorentz factor with magnetic colatitude along field
loops should yield distortions to the traces like those exhibited
in Figure 5, essentially being a convolution of forms
representing different f

maxe domains and amplitudes at different
rotational phases. The result will be distinctly nonsinusoidal
phase profiles for f

maxe , perhaps more pronounced than those in
the figure. Note also that if there are electrons and/or positrons
moving in two directions along field loops, more complicated
modulation profiles will result, sometimes exhibiting additional
extrema and pronounced Fourier power at 2W frequencies.

Each f
maxe profile consists of two portions, encapsulated in

the solid (and heavyweight) and the dotted phase ranges in the
figure. The entire profile samples all possible ranges of soft
photon energies s ie e= that can contribute to resonant
interactions. However, for the spectra computed in Section 4
below, the se distribution is the narrow Planck spectrum that
approximates the signal emanating from a neutron star
atmosphere. Many ie values that generate the Biw = resonance
condition via the Lorentz boost in Equation (2) do not lie
anywhere near the peak of the Planck spectrum. Accordingly,
the sampling of the Planckian X-ray spectrum, or otherwise,
can profoundly influence the normalization of resonant
Compton upscattering spectra. Thus, it is informative to
introduce an additional restriction that ie not exceed a
maximum value, which we choose to be 10s

max 2e = - . This
chosen energy s

maxe is somewhat above that seen in thermal
components in magnetars, but comparable to the energies seen
in the steep, nonthermal, soft X-ray tails at a few keV. With this
division, the heavyweight portions of the modulation profiles
approximately correspond to B e slocal

max g e , so that the peak
of the Planck spectrum can be sampled, and the upscattered
spectrum is very luminous. The remaining lightweight dotted
portions are where the scattering is resonant, but the soft
photons participating are deep in the exponential tail of the
Planck form, and so the normalization of the hard X-ray signal
is much lower, generally by several orders of magnitude. For
the illustrated B 10p = , 10eg = case, these two domains are
partitioned by the lightweight horizontal line in Figure 5 at

2f e s
max 2 maxe g e~ . This value is controlled purely by the
resonant Compton kinematics and is therefore independent of
the observational and stellar configuration parameters, a and
v0q , and the pulse phase. In addition, the magnetic pair creation
threshold is marked in the two side panels, above which pair
opacity can act to significantly attenuate upscattered photons;
the potential for this is addressed in Section 5.2.
It is evident that for these modest uncooled Lorentz factors

10e g , this meridional case yields variations that mostly
violate COMPTEL upper bounds at a few hundred keV for
magnetars. The exception is the 30a =  example when

30v0 q , for which tangents to field lines point in the
direction of an observer only in equatorial zones at altitudes
near rmax. The local field is then subcritical and low enough to
reduce f

maxe below 300 keV. However, this meridional
specialization presents the hardest emission that can be beamed
along field lines toward an observer. For off-meridional loops,
even azimuths

*
f of a few degrees are sufficient to reduce f

maxe
values to be more or less consistent with the COMPTEL
constraints, as softer spectra result. For all field-line azimuths,
increasing eg will increase the domain of f

maxe values, and so
the conflict with COMPTEL data is exacerbated. It is clear that
future 3D Monte Carlo photon transport simulations replete
with Compton cooling and photon absorption due to magnetic
pair creation and photon splitting are necessary in order to
generate a more complete picture of the cutoff energy and
spectral shape as a function of rotation phase. With the advent
of such developments, it is anticipated that phase-resolved
spectroscopy, or equivalently energy-dependent pulse profiles,
imbued with a wealth of information embedded in amplitudes
and nonsinusoidal shapes for time traces, should provide
constraints on the magnetic inclination a of the rotating
magnetar and the altitude (i.e., rmax) of the scattering region
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(see Section 4.2), as well as the action of attenuation processes
at hard X-ray and soft gamma-ray energies.

4. Compton Upscattering Spectra

In this section computations of representative spectra from
individual field loops are illustrated, highlighting important
features while exploring the phase space of key parameters;
they serve as templates for future integrations over substantial
magnetospheric volumes with prescribed lepton injections. In
this resonant Compton upscattering exposition, which does not
treat electron cooling self-consistently, there are six parameters:
the electron Lorentz factor eg , the instantaneous viewing angle

vq , the stellar surface temperature T m c ke
2= Q (presumed

uniform across all colatitudes), the polar dipole field strength
Bp, the field loop extent rmax, and the azimuthal location with
respect to the line of sight, given by

*
f . The spectra are

computed using Equation (17) with the Planck form in
Equation (18) inserted, modeling a uniformly bright spherical
surface threaded by a dipole magnetic field. The spin-
dependent Sokolov & Ternov cross section and widths are
employed as described in Section 2, patched with the spin-
averaged cross section away from the resonance, using the
hybrid procedure adopted in BWG11. Analytic developments
and approximations for the integral over the soft photon
angular distribution f im( ) at the site of scattering are presented
in the Appendix; these facilitate efficient numerical computa-
tion of the spectra from the field loops. Portions of field-line
arcs that are shadowed are excluded from the integral
Equation (17); for magnetic dipoles in flat spacetime, the
boundary of such occulted regions can be determined in terms
of J via a root-solving protocol for a sixth-order polynomial
in sin2J.

In this paper, to streamline the information conveyance and
reduce the number of variables, we fix the stellar temperature to
be T 5 106= ´ K in all the spectra presented in this section,
corresponding to 0.43 keV. This is a typical temperature for
magnetar thermal X-ray emission. The actual local surface
temperature is probably around a factor of 1.4 higher, because
of redshifting during propagation in the general relativistic
metric. However, at the typical altitudes that the scattering
events are sampled in the figures of this section, gravitational
redshifting has mostly occurred, and so the local effective
temperature of the X-rays from the stellar surface is close to
that observed at infinity. Resonant Compton cooling calcula-
tions (see Figure 4 of BWG11) have exhibited a strong
temperature dependence for the electron cooling rates. Higher
temperatures are vastly more efficient for cooling, due to the
increased total number of photons, n T3µg , in the Planck
population. Moreover, the Lorentz factors eg where resonant
cooling is at a maximum decline with surface temperature as
T1 , a property dictated by resonant Compton kinematics,

namely, Beg Q ~ . Hence, it is expected that computations of
spectra with higher temperatures than employed here will yield
much higher fluxes and will correspond to slightly higher
altitudes on average for resonant interactions, where the fields
are lower. This can then yield substantial changes to the
detailed shape of spectra when all other parameters are kept
fixed. Notwithstanding, by varying a number of different
parameters in the ensuing figures, the breadth of spectral
character encompassed by surface temperature variations is
effectively captured in our presentation. We note that in future
work where electron cooling and upscattering emission are to

be treated coincidently, it will be important to include a
nonuniform temperature profile. A commonly invoked pre-
scription for the colatitudinal variation, underpinned by
consideration of anisotropic thermal conductivities in strong-
field environs, is that of Greenstein & Hartke (1983), which has
a pole hotter than the equator in neutron stars of moderate
magnetization. In the context of magnetars, coronal outflow
models (Hascoët et al. 2014) for the quiescent hard X-ray
emission have particles that radiate along closed field loops and
return to the neutron star surface, thereby producing a hot spot
at the footpoints of the active loops, which would also be
expected in our scenario here. Such return currents also
generate hotter surfaces away from the equator. We note that
NASA’s new NICER mission, recently deployed on the
International Space Station, will afford measurements of such
surface temperature nonuniformities, for millisecond pulsars in
particular.

4.1. Emission from Uncooled Electrons on Individual Field
Lines

A suite of results for the upscattering spectra that encompass
a substantial range in character is presented in Figures 6–9.
These spectra for uncooled electrons can qualitatively be
understood by a careful inspection of Figures 1–3, which depict
information concerning the resonant interaction points and the
relevant geometric and kinematic relations in Section 3.1. For
meridional field loops with viewing angles that readily sample
the Doppler boosting and beaming, the combination of eg and
local B B rp max

3~ essentially controls the onset of resonant
interactions in a manner similar to that for the cooling rates
in BWG11, in that Beg ~ Q is required to access the Wien
peak of the Planck spectrum. Moreover, for resonant interac-
tions, the f ee g specialization of Equation (32) indicates that
the scaling B r 1 cosi p e f nmax

3
Bw g e~ ~ + Qˆ ( ) operates.

Accordingly, increasing values of eg must compensate for
large B rp max

3 in defining similar spectral character. This
kinematic scaling for iŵ essentially controls the spectral index
of the resonant spectra for uncooled electrons, a core property
that will be discussed shortly. Not all spectra evince frequency
ranges where resonant interactions are accessible: for values of
local B that are large, resonant interactions in the Wien peak are
often not fully sampled, as is evident from computed spectra
presented in the right panel of Figure 6 and the left panels of
Figures 8 and 9 below. In particular, for the B 100p = example
in the right panel of Figure 6, since r 2max = , resonant
conditions Beg Q ~ are never sampled along the chosen field
loop for all 10e g , but they would be if rmax were increased
by a factor of a few. By the same token, in the left panel of
Figure 6, once eg drops below around 30, resonant interactions
at Beg Q ~ are not accessed in this r 4max = example. In this
domain, the upscattering kinematics are similar to those for the
nonmagnetic inverse Compton process, and so the maximum
energy scales roughly as

e
2g Q, a trend that is evident in the right

panel of Figure 6. Note that results are not depicted for eg
values lower than 10 because then the photons are no longer
roughly beamed along B in the ERF, and a more general,
complicated form for the scattering cross section that involves
multiple resonant harmonics of the cyclotron fundamental must
be employed instead of that outlined in Section 2.
A distinctive feature in these four figures is that the boundaries

for resonant interactions in spectra are characterized by the
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“horns” or cusps. These appear both at low values fe in the soft
X-rays/EUV, where they would be dominated by the surface
emission signal (depicted in Figure 10), and in the hard X-ray
and gamma-ray domains; see the left panel of Figure 6 and the
right panels of Figures 7–9. The cusps mark the kinematic
extremities of the range of fe energies for which resonant
scatterings arise: they correspond to the cos 1nBQ » - criterion.
At energies fe between the cusps, the spectra are quite smooth
due to the intrinsic spread in soft X-ray photon energies and
angle cosines im . In this window, the scattering mostly
corresponds approximately to Thomson kinematics, and there
is a one-to-one correspondence between the final scattering angle
along a field line beamed toward the observer, defined by nBQ ,
and the final scattering energy, fe . From Equation (32), this
coupling is B 1 cose f nBg e~ + Q( ), which is in concordance
with the uniform field case explored in Baring & Harding
(2007). The low fe cusps are realized for large nBp Q– , where the
angle of scattering in the ERF is modest or small. From Figure 1
one can discern that they correspond to interaction colatitudes
well removed from the 0J value, sampling two disparate J
values. Moreover, these two values correspond to two different
field strengths, so that the resonant kinematics embodied in
Equations (2) and(5) indicate that the two low-energy cusps
should appear at different fe , as is apparent in the spectral
figures. The hard X-ray/gamma-ray cusps are realized near 0J
when backscattering of the incoming photon in the ERF occurs,
and for meridional field loops this arises at a scattered energy of

f
maxe given by Equation (33). It follows that f e

maxe gµ , behavior
that is evident in the left panels of Figures 6 and 7. The
prominence of the horns at f

maxe is partly a consequence of
Klein–Nishina kinematics at the highest energies introducing a
peak to the Jacobian in Equation (16), which appears in
Equation (17). But mostly, their conspicuousness is significantly
enhanced by the integration over a comparatively long field-line
arc when the viewer line of sight is almost tangent to the field;
in contrast, such a circumstance is not evinced by the large

solid-angle integrations presented in Baring & Harding (2007).
The narrow peaks of the horns are weighted images of the
resonant differential cross section in Equation (25). The low flux
wings to these cusps outside the main resonant interaction range,
specifically the left wing in EUV/soft X-rays, and the high-
frequency wing in hard X-rays/gamma rays are imprints of a
convolution of the resonant cross section and the Planck
distribution of the soft X-ray surface photons. We also note a
nuance—for the cusp energy f

maxe , the pairs of resonance locales
illustrated in Figure 2 are approximately defined by symmetric
solutions 0J J J=  D to Equation (35) that represent two
sides of a Lorentz cone; thus, their cusp contributions coincide in
energy and the peaks are not two-pronged, contrasting the
situation for the low-energy cusps.
The quasi-power-law dependence between widely separated

horns/cusps is another essential characteristic of the spectra
presented in this section. For most of the range in fe , the spectra
that sample resonant interactions possess a characteristic scaling
dn dtd f f

1 2e e~( ) , i.e., are extremely flat. This approximate
power-law dependence is a consequence of kinematics and
magnetospheric geometry and can be simply derived by
considering the analytics associated with the description of
Figures 1 and 2. Specifically, 1 cosi e f nBw g e= + Qˆ ( ) defines
the tight coupling between the energy fe of the scattered photon
and the scattering angle nBQ . For near-meridional cases where

*
f is very small, i.e., 1 e*

f g , the high-energy cusp
corresponds to the Doppler-shifted cos 1nBQ » - solution
where the viewer’s line of sight aligns with the field line at
the point of scattering (tangent point). As the interaction points
move along a field loop away from this point (an extremum in
cos nBQ ), the correlation between arc length s and angle nBQ or
J is inherently quadratic, i.e., s nB

2pD µ - Q( ) . The pairs of
resonant interaction points defined by J J=  then diverge in a
one-to-one correspondence with declining energy fe , a property
that is evident in Figure 2. Specifically, inspection of
Equation (32), and in particular Equation (35), reveals the

Figure 6. Spectra I: meridional field loops. Both the left and right panels illustrate spectra computed for meridional 0
*
f = field loops for a viewing angle of 30vq = 

with fixed Lorentz factors in the range of 10 10e
1 3g = – . Solid curves represent spectra computed with the full ST cross section in QED, i.e., Equation (25); lighter-

weight dot-dashed curves define spectra determined using elastic kinematics and the magnetic Thomson cross section instead (see text). The left panel illustrates
higher-altitude and lower-field directed spectra computed for B 10p = and r 4max = , where the resonant interactions are readily sampled for Lorentz factors 102> . The
right panel’s local B is much higher, by a factor of ∼80, with r 2max = and B 100p = , so resonant interactions near equatorial regions for the given stellar temperature
are not realized unless Lorentz factors are much higher. Overlaid on the computed spectra, with arbitrary normalization, are observational data points for AXP 4U
0142+61 (den Hartog et al. 2008b) along with a schematic f

1 2e- power law with a 250 keV exponential cutoff (gray dashed curve).
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approximate correlation n f0
2

B
2 1J J p e- µ - Q µ -( ) ( ) as the

scattering locales move away from the tangent point along a field
arc. It then follows from Equation (32) that i f 0

2w e J Jµ -ˆ ( ) so

that i f f0
1 2w J e J J e¶ ¶ µ - µˆ ( ) for J J . Now the fe

dependence in the spectrum in Equation (17) appears almost
totally due to two factors, namely, iŵ and the differential cross
section:

dn

dt d
ds

d

d
d B
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In this manipulation sequence, the extremely narrow resonant
differential cross section (polarization averaged and spin summed)
in Equation (25) is replaced by the delta function Bid w -( ˆ ), a
common protocol (see, e.g., Baring & Harding 2007); this is then
recast as a delta function in terms of the resonant interaction
colatitudes J. Also, ds dJµ is a proportionality that possesses
only weak dependence on fe . The f

1 2e spectral dependence then
quickly follows. The remaining factors in Equation (17) are
largely immaterial to this determination. First, the Jacobian

i fw w¶ ¶∣ ∣ is approximately unity in this fe range because it
corresponds mostly to forward scatterings in the ERF, which
inherently access Thomson scattering kinematics. Second, the
integration over the soft photon spectrum is only weakly
dependent on fe , since generally the bulk of the Planck
distribution is accessed for upscattered photon energies between
the cusps; this is no longer the case outside the resonant
interaction domain, as well as in the neighborhood of the cusps.
Furthermore, near the high-energy cusp, when B 1 , the
scattering kinematics depart from the true Thomson domain, as
was observed by Baring & Harding (2007). This is also true for
the 30e g examples in these figures, where Klein–Nishina
reductions are more prevalent and lead to a general steepening of
spectra in several curves.

To provide a benchmark for how important relativistic
quantum influences are, it is insightful to provide spectral
computations using just magnetic Thomson scattering formal-
ism. These inherently nonrelativistic cross sections are often
invoked for expediency in studies of inverse Compton
scattering in neutron star contexts; see, for example, Dermer
(1990) for old gamma-ray burst models and Beloborodov
(2013a) for application to magnetar X-ray tail emission. The
magnetic Thomson physics can be derived using QED
techniques in the 1i fw w»  regime (see, e.g., Herold
1979) but remain an essentially classical electrodynamics
result derivable using dipole radiation formalism (Canuto et al.
1971), possessing a single fundamental resonance at the
cyclotron energy. Hard X-ray tail spectra are also presented in
Figure 6 for runs where the magnetic Thomson differential
cross section was employed; these are the dot-dashed curves.
These magnetic Thomson spectra were determined using
Equation (23) of BWG11 for the polarization-averaged cross
section that neglects spin dependence in the cyclotron
resonance. In both panels, the nonrelativistic, spin-averaged
cyclotron decay width B2 3f

2aG = was used to cap the
resonance by forming a Lorentz profile. In addition, elasticity
f iw w= in the scatterings was presumed in the ERF, so that

electron recoil energies were neglected, following normal
Thomson scattering protocols.
Comparison with the QED-originating curves clearly

reveals that the magnetic Thomson spectra do not cut off at
f ee g< in cases where kT m c 1e e

2g > , and therefore violate
energy conservation, as expected. The cutoffs are generally
around Bf e

maxe g~ , for a local field strength B, and so this
problem becomes worse at low altitudes and for higher
magnetar Bp values. These violations are particularly obvious
when 10e

2g . Observe that the results for lower Lorentz
factors in the right panel are quite close to those in the left
panel of Figure 6; this is because at the resonant scattering
locale along the r 4max = loop the field strength is
substantially subcritical, and scattering is approximately in
the magnetic Thomson domain. The Thomson illustrations
often overestimate the resonant spectrum relative to the

Figure 7. Spectra II: off-meridional field loops. Adopting most of the parameters of the left panel of Figure 6, with B 10p = and r 4max = , both the left and right panels
here illustrate spectra computed for off-meridional field loops 5

*
f =  and 90

*
f = , respectively, for a viewing angle of 30vq =  with fixed Lorentz factors in the

range of 10 10e
1 3g = – . For loops somewhat away from the meridian (or anti-meridian), the hardest emission is never beamed toward the observer. In these off-

meridional examples, resonant interactions are realized only for low final scattering energies fe and in polar regions of the loop.
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QED-computed emission, for example, in the left panel. The
relative normalizations of the Thomson and full QED spectra
are subject to two main influences that compete against each
other in opposite senses. The first is that the magnetic
Thomson cross section does not incorporate magnetic Klein–
Nishina reductions as does the exact QED form (see, e.g.,
Figure 2 of Gonthier et al. 2000), and thereby it tends to
increase the emissivity. The second is that the nonrelativistic
cyclotron decay width B2 3f

2aG = is substantially larger
than the full QED value when B B0.3 cr , and since the
resonant spectra scale as the equivalent width 1 G,
the Thomson approximation can yield underestimates of
the spectra—see the 10e

3g = example in the right panel.
Thus, in summation, the normalization and cutoff energies
may be significantly inaccurate in the magnetic Thomson
case; these quantities control the yield of any pair creation
that might be precipitated (see Section 5.2) by super-MeV
emission. Yet, the resonant spectral index for the magnetic
Thomson invocation is fairly similar to that realized in
correct QED computations.

Figure 7 illustrates the spectral character of emission from
off-meridional field loops. Increasing

*
f reduces the max-

imum resonant fe and the minimum upscattered energy
produced by the cyclotron resonance, a trend that is evident
in the 3D orthographic projections of Figure 3. In essence, for
large

*
f , i.e., far off the meridian, the only resonant

interactions sampled are those corresponding to the black
dots on the red curves in Figure 1 in quasi-polar regions of a
field loop. For such circumstances, the value of nBQ sampled
by the resonant interactions is generally well removed from
p, so that the quasi-Thomson scattering kinematics generates
resonant fe ranges much restricted relative to those for
meridional cases: as

*
f increases, the cusps move closer to

each other in energy. To detail this variation a little, observe
that as the azimuthal angle of a loop increases from the
meridional case of zero, in the vicinity of the nB pQ =
resonance locale, the line-of-sight direction establishes a
correlation 1 cos 1 cosnB

*
f+ Q ~ - with the field loop

longitude. This applies once the viewer direction nvˆ lies
outside the Lorentz cone for the scattering, i.e.,

*
f

1 eg . Then the approximate kinematic coupling B ~
1 cose f nBg e + Q( ) at resonance, deduced from Equation (32),

translates to an approximate correlation

42
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Thus, f
max 2

*
e f~ - declines as

*
f increases and the local field-

line tangent tilts with respect to the line of sight. The
illustration in the right panel of Figure 7 clearly portrays that
off-meridional loops, which are the most common arcs
encountered in the magnetosphere, generate upscattering
spectra at lower frequencies when 5

*
f  that do not violate

the COMPTEL upper limits for magnetar hard X-ray tails.
The effect of the variation of viewing angles vq is illustrated

in Figures 8 and 9 and is important when considering phase-
resolved spectroscopy in oblique rotators. The general pattern
is an almost monotonic decline in both the overall flux and the
maximum resonant energy f

maxe as vq increases from zero to
around 150. This is because the electrons were launched from
near the lower “south” pole in Figures 2 and 3, so that Doppler
boosting and beaming are preferentially sampled for smaller
viewing angles 60v q . Specifically, observer viewing angles
that never sample field lines that are directed approximately
toward the observer never attain the highest fe . For the
meridional specialization exhibited in Figures 8 and 9, this
distinction depends on the colatitude of the field-line footpoint,
or equivalently rmax. The value of the polar magnetic field
controls whether visual alignment with field lines can be
coincident with resonant collisions. For those systems that do
attain visual alignment geometry at particular pulse phases, the
modest differences in the curves (see right panels of Figures 8
and 9) essentially come about owing to the different locations

Figure 8. Spectra III: spectra as a function of viewing angle for meridional field loops. Both the left and right panels present seven curves of varied viewing angle
0 , 30 , 60 ... 180vq =     with respect to the magnetic axis, for meridional 0

*
f = with r 4max = and B 10p = . The left panel is fixed at 10eg = , while the right panel

is for 10e
3g = . The relatively low Lorentz factor for the left panel is insufficient to fully sample resonant interactions in the peak of the Planckian incoming soft

photon distribution, while the Lorentz factor of 103 for the right panel violates COMPTEL bounds for most viewing angles.
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for which the alignment is realized, thereby sampling different
values of the local magnetic field. An additional influence is
that different angles im for the incoming soft photons are then
sampled at these emission points. Both these elements also
impact the cases where resonant scatterings are never sampled,
depicted in the left panels of Figures 8 and 9. The variation of
spectra with vq that is highlighted in these two figures informs
the claim in Section 3.2 that phase-resolved observations of
magnetars will exhibit not just flux variations but also hardness
or f

maxe modulations. Such signatures will be realized not only
for magnetars but perhaps also for the tens of rotation-powered
high-field pulsars following magnetar-like outbursts. Note that
for these inner-magnetospheric emission regions the viewing
angle dependence of the fluxes that is illustrated here is
consistent with the broad pulse profiles observed in magnetars.
These figures also clearly confirm that with the modulational
variation of viewing angle, modest Lorentz factors of 30 must
be realized in a (subsequent) self-consistent cooling analysis, so
as to not violate the COMPTEL upper bounds on emission at

any pulse phase.
Another dimension to the results that are illustrated in

Figure 9 is provided by the polarization dependence of the
inverse Compton spectra. For all viewing angles, the resonant
upscattering signal is highly polarized above around 0.03 f

maxe ,
with the result that the ^ mode exceeds the  one. The
polarization degree is only significant at higher energies
because then the scatterings are of large angles in the ERF.
When forward scatterings in the ERF are sampled at lower fe
energies, a quasi-Thomson domain, the polarization drops to
zero. This character is in general concurrence with the previous
uniform field results of Baring & Harding (2007) and can be
inferred primarily from the Biw » contributions of the T^ and
T factors appearing in Equation (24). Such energy-dependent
polarization signatures that are also sensitive to electron
Lorentz factor, field loop altitude and azimuth afford the
prospect of powerful pulsar geometry diagnostics in the age of
X-ray polarimetry, particularly if phase-resolved measurements

are attainable. Future hard X-ray polarimeters such as
X-Calibur (Guo et al. 2013) and soft gamma-ray Compton
telescopes with polarimetric capability such as e-ASTROGAM
(see De Angelis et al. 2017) and AMEGO7 will therefore be
critical to constraining the rotator geometry, activation locales,
and radiative dissipation physics in magnetars. Determining
phase-resolved polarization degrees and position angles will be
an important inclusion in future resonant upscattering studies of
hard X-ray tail emission. Finally, observe the examples of
spectra computed in the magnetic Thomson approximation (see
the discussion for Figure 6), which are also depicted in the left
panel. These illustrate not only energy nonconservation but
also the overestimates obtained for polarization degrees that are
obtained when using magnetic Thomson cross formalism—this
follows from the somewhat weaker polarization dependence in
full QED magnetic scattering cross sections.
The final dimension of the suite of spectral figures addresses

the variation in altitude for field loops. In Figure 10, spectra are
displayed for an array of meridional field loops with different
rmax values. The illustration is for a viewing angle of 30vq = 
and for two different electron Lorentz factors, 10, 100eg = .
Note that these spectra are now not normalized by the field-line
arc length  , as before, so that the relative contributions of
different rmax values can easily be assessed. The various curves
clearly evince a trend of the upper cusp photon (“cutoff”)
energy declining with increasing rmax, i.e., dropping when the
loop field is lower, on average. This is amply described by
Equation (33), i.e., B B2 1 2f e

maxe g~ +( ), noting that this
cusp energy is generally realized for quasi-equatorial locales
and for quasi-polar viewing perspectives. Accordingly, it is
readily ascertained from Figure 10 that contributions from
resonant Compton upscattering to hard X-ray tail emission
above 10 keV can only come from regions where

r4 15max  for 10eg = (left panel), or r2.5 30max 
for 10e

2g = (right panel). At altitudes above these values, the

Figure 9. Spectra IV: meridional field loops at 10e
2g = (left) and 10e

1.5g = (right) as a function of viewing angle, both with r 4max = but differing in local B. Solid
curves represent spectra computed with the full Sokolov & Ternov (ST) cross section in QED, i.e., Equation (25); dashed (̂ mode) and dot-dashed (mode) curves in
the left panel define spectra determined using the magnetic Thomson cross section instead (see text). The left panel has relatively high local field at the resonant
interaction point, since B 100p = , while the right panel illustrates the same parameters as those in Figure 8 but with 10e

1.5g = . It is apparent that polarization^ (solid
curves) exceeds  (dotted curves) in the 0.05–1 MeV hard X-ray band for most viewing angles where head-on resonant interactions are sampled.

7 Seehttps://asd.gsfc.nasa.gov/amego/index.html.
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weaker fields move the resonant emission to energies below
10 keV, where it is swamped by the surface thermal signal. At
very low altitudes r 2 4max  – , the field is high enough that
resonant interactions only sample soft photons deep in the
exponential portion of the Planck distribution, and the
upscattering signal is far less luminous. The restriction of
altitude domains where bright 10> keV upscattering emission
is probable would suggest that a reason the majority of
magnetars do not exhibit hard X-ray tail emission might be that
these constrained resonant upscattering zones are not activated
in many sources.

The envelope of the spectra in Figure 10 provides a visual
indication of what would be expected when one integrates over
a magnetic toroidal section. This superposition would be
approximately flat for 100e g : the dependence of the cutoff
energy on altitude then yields an approximate steepening by
index 1 3. For higher Lorentz factors (not shown), this
flattening is muted somewhat. Given the results of azimuthal
integrations addressed in Section 4.2, one may anticipate a
further steepening when summing spectra over quasi-toroidal
volumes. This will naturally be modified when electron cooling
is treated and when some dependence of field-line activation on
footpoint colatitude and azimuth is introduced. Yet, it is clear
that unless 10 30e g – , the upscattering spectra will extend
beyond 500 keV and violate the COMPTEL upper bounds for
magnetars unless the expected soft gamma-ray attenuation is
operational. In the context of high-field pulsars such as PSRs
B1509–58 and J1846–0258, detailed consideration of spectral
modeling via this inner magnetosphere scenario, perhaps
focusing on their states after magnetar-like outbursts, is
deferred to future studies. Yet it is clear that Lorentz factors

10e
2g will probably be needed in order to generate the

spectral turnovers that match those observed in the 1–10MeV
range (see, e.g., Kuiper et al. 2017), modulo attenuation
mechanisms as discussed in Section 5.2 and in Harding
et al. (1997).

4.2. Upscattering Emission from Toroidal Surfaces of Field
Lines

We now address the overarching character of the spectral
results presented here. On face value, compared with observa-
tions of magnetars as listed in the McGill magnetar catalog
(Olausen & Kaspi 2014), the f

1 2e spectrum from individual
field loops is too flat. Shown in each of Figures 6–9 is a
representative hard X-ray spectrum of AXP 4U 0142+61 (from
den Hartog et al. 2008b) with COMPTEL upper bounds; this
spectrum is normalized to roughly match the rate of the model
spectra, which include a scaling by the electron number
density. In addition, a power law of f

1 2e- with an exponential
cutoff at 250 keV is also shown as a guide to these data points.
This mismatch in spectral slopes is not a major concern because
the analysis thus far is restricted to uncooled electrons moving
along individual field lines. In reality, simultaneous electron
cooling by the resonant scattering process will modify the
shapes of these spectral forms, generally leading to a
steepening from the f

1 2e nature. Moreover, total magnetar
spectra are convolutions of the forms presented here, summed
over different field loops represented by ranges of rmax and

*
f .

Such emission volume integrations, akin to the magnetic
Thomson study of Beloborodov (2013a), will in part smear out
the cusp and edge structures and will yield a net steepening of
the spectra. Note that the activation of the magnetosphere is
unlikely to be uniform, with examples provided by the current
“j” bundle of field loops invoked in twisted magnetosphere
models of magnetars (e.g., Beloborodov & Thompson 2007;
Nobili et al. 2011; Beloborodov 2013a). Therefore, the
weighting of azimuths

*
f in the volume integrations is quite

model dependent.
The character of such summations will be ascertained in

detail in a future stage of this program, specifically with the
inclusion of self-consistent electron cooling. In the interim, a
rough guide can be ascertained for uniformly activated surfaces
in the magnetosphere. Since most of the hardest emission is
realized for a relatively small spatial portion of the

Figure 10. Spectra V: upscattering spectra for meridional field loops ( 0*f = ) depicting nine choices of the maximum loop altitude parameter r 2 , , 2max
0.5 4.5= ¼{ }.

The two panels are for two different Lorentz factors, and spectra are realized for a viewing angle of 30vq = . Clear variation in the cutoff energies and normalization
are evident, as well as a transition from weakly resonant to fully resonant from low to moderate and higher altitudes. Other parameters are similar to those in the
previous four spectral figures: B 10p = and T 5 106= ´ K. The superposition of these curves gives an indication of spectra that might result from toroidal volumes;
see text. As with Figures 5–9, observational data points for AXP 4U 0142+61 are overlaid, along with a schematic f

1 2e- power law with a 250 keV exponential cutoff
(gray dashed curve). In addition, the Planck spectrum matching the soft X-ray data for this magnetar is indicated by the brown dashed curve in each panel.
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magnetosphere, the highest energies of a spectrum integrated
over field-line longitudes are dominated by 1

*
f  regions.

The sharp fall-off in f
maxe in Equation (42) away from the

meridional loops results in a steepening of the spectrum; the
dependence f

1 2

*
f eµ - thus serves as an energy scaling in an

integration over magnetic longitudes. Therefore, for a field-line
toroidal surface corresponding to a fixed rmax, the integrated
spectrum an observer would discern between the horns would
scale as

dn

dtd
d , 43

f
f f f

0

2
1 2 1 2 0

*ò e
f k e e e~ µ

p
- ( )

for some , ,f ek e g Q( ) that is only weakly dependent on fe . Here
it is understood that the spectrum in Equation (17) is
differential in

*
f . Thus, the differential spectrum from the

toroid is flat, a result that is evident in the computation
presented in Figure 11, which is an integration over an entire
toroidal surface with r 4max = . Due to the small spatially
confined region of azimuthal angular extent 1 eg around the
meridional field loop, such spectra should also be realized for
bundles of field loops around the meridional line, i.e., for
incomplete toroidal geometries. Note that these spectra are
again normalized by the field-line arc length  , as for the
spectral figures of Figures 6–9.

This f
0e form is reminiscent of the flat solid-angle-integrated

spectra for uniform B that were presented in Baring & Harding
(2007). Such resemblance is not merely coincidental, since
integrations over longitudes for fixed viewing perspectives are
geometrically similar to integrations over observational solid
angles in uniform field scenarios. The f

1 2e dependence emerges
only in the azimuthally symmetric example with 0vq = , where
the value of

*
f is immaterial. Observe also that the high-energy

cusp is still present in the 0vq = spectra exhibited in Figure 11,
though its prominence in 0vq > cases is curtailed somewhat
for the  polarization, and substantially for the ^ mode, due to
smearing caused by the

*
f integration. One anticipates that

while this spectral form is representative of what an entire
toroidal surface contributes, the superposition of various such
surfaces with different rmax values, and furthermore the
introduction of electron cooling, should further steepen the
cumulative spectrum from an active magnetosphere. The
spectral properties that have been identified so far suggest that
there is only a weak dependence of the spectral index hG on the
strength of the magnetic field, though the maximum energy

f
maxe of resonant emission is indeed sensitive to the value of B∣ ∣.
Interesting correlations between magnetar spectral and spin
parameters have been highlighted in the papers by Kaspi &
Boydstun (2010) and Enoto et al. (2010), the most salient for
the work here being a steepening of the hard-tail spectrum
(increase of hG ) when the magnetar polar field Bp is higher. At
present it is not possible to assess whether our resonant
Compton model generates such a correlation, principally
because the spectral slope above 10 keV will depend on
(i) details of the volumetric integration over rmax ranges, (ii)
how self-consistent resonant cooling of electrons limits their
Lorentz factors in different magnetospheric regions, and (iii)
the significance of attenuation processes such as photon
splitting and pair creation that seed cascading. Exploring such
correlations defines an objective for future stages of our
program. A particular nuance of interest will be to assess how
spectral variations associated with burst storms and following

giant flares might provide insights into the ranges of rmax

sampled and therefore probe variations in activation volumes
during dynamic epochs of a magnetar’s history.
The focus of the azimuthal integrations now progresses from

spectral elements to pulsation properties. Figure 5 provides an
assessment of how the cutoff energy of the resonant spectrum
varies with pulse phase. Since this is not precisely what is
measured by a telescope in a narrow energy window, to
augment such it is incisive to present phase-resolved variations
for toroidal surface integrations. The coupling between the
instantaneous viewing angle vq and pulse phase t 2pW is
addressed in Section 3.2. Thus, with a fixed magnetic
inclination a, since the spectral dependence ties intimately to
the value of vq , inversion of Equation (40) yields a periodic (but
asinusoidal) modulation of the flux at any given upscattered
energy fe with time t , the character of which is controlled by
the value of z . To represent these pulse profile variations, in
Figure 12 we illustrate 12 z f– phase space diagrams (where

t 2f p= W ) for an array of a and rmax values, and for fe =
16 keV (top two rows) and 100fe = keV (bottom row). This is
a common representation in gamma-ray pulsar studies (see,
e.g., Harding et al. 2008, for the Crab pulsar; Johnson et al.
2014, for Fermi-LAT millisecond pulsars). The various panels
depict the intensity on a base-10 logarithmic scale, and one
value of z can be chosen so as to select the pulsing flux profile
for a particular observer. The intensity values are azimuthally
integrated over toroidal surfaces, as in Figure 11. The uncooled
electrons of Lorentz factor 10e

2g = propagate from the south
to north magnetic footpoint, as always. The spectra are
computed omitting the arc length normalization factor

r1 max( ), so that surfaces with different rmax values can be
compared on an equal footing. We also note that because the
density of information in each panel corresponds to
91 91 8231´ = pixels, to reduce the computational time,
the resonant cross section in the Lorentz profile was

Figure 11. Shown here are special
*
f -integrated spectra, with shadowing, for

instantaneous 30vq = , B 10p = , r 4max = and fixed and uncooled 10e
2g = .

For all 0vq > examples, the flat spectrum is reminiscent of uniform field
spectra presented in Baring & Harding (2007) that accessed all final scattering
angles. Compared to meridional spectra shown in Figures 6, 8, and 9, here the
spectrum is steeper by a factor of f

1 2e~ - owing to the strong beaming of the
hardest emission observed only near meridional field loops. The 0vq = 
example is a symmetric case where the spectrum is independent of the azimuth,
and so it is flatter, resembling those in earlier figures. The two vertical dashed
lines mark the energies 16 and 100 keV that correspond to the pulse phase
maps in Figure 12.
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approximated by a d function form via a standard prescription.
This serves to evaluate one of the integrals in Equation (17) and
thereby reduce the *f integration to a manageable two
integrals; this introduces differences in the color coding in
Figure 12 for the flux scale that are imperceptible. The red
portions mark the peaks of the pulsation, while the white
space corresponds to flux levels below the blue/purple level
(i.e., 10 3< - ) that are essentially unobservable. The scaled
intensities for each row of panels possess a single normal-
ization factor, chosen so that the maximum flux for a row and
all t 2pW phases and z choices is set to unity.

The maps in Figure 12 are phase symmetric, a property that
is dictated by our uniform activation assumption for the
toroidal surface, and should not be considered sacrosanct.
Asymmetries may naturally be imposed by a variety of
influences, including twisted fields and nonuniform electron
phase space densities perhaps resulting from spatially depen-
dent cooling. For most values of ,a z{ }, there is generally a

single broad pulse that is typically of phase width 0.5~ . Such
moderate pulse fraction examples are approximately commen-
surate with the majority of hard X-ray tail data in the magnetar
population. In contrast to this, there are also cases of sharply
peaked fluxes that manifest themselves only for fairly narrow
ranges of z proximate to a. These arise when the observer line
of sight cuts across the magnetic pole at some phases, thereby
sampling instantaneous viewing angles 0vq » . Inspection of
the orthographic projections in Figure 3 reveals that in such
cases a large portion of the magnetosphere can then emit
toward the observer in resonant interactions that generate
16~ keV photons (of red color), thereby bolstering the flux.

For other ,a z{ } combinations, vq is much larger on average,
and much of the magnetosphere emits at lower energies,
obscured by the dominant surface emission contribution. When
z a~ , the pulse profiles obtained from horizontal z slices are
double peaked, corresponding to two samplings of the
minimum vq during a rotation period.

Figure 12. Normalized photon flux t 2z p- W phase space maps for resonant Compton upscattering. These represent the logarithmically scaled (base-10) intensity at
energies 16 keV (top two rows) and 100 keV (bottom row), color-coded as in the legend, as a function of spin phase t 2pW for each value of z on the ordinate. The
intensity maps are for uncooled electrons with 10e

2g = and a uniform surface temperature T 5 106= ´ K. The maps are obtained for azimuthally integrated bundles
of field lines, i.e., a toroidal surface, with B 10p = and r 4max = . The panels in the top row sequentially sample magnetic inclinations 10 , 30 , 60 , 90a =    , clearly
presenting the trend with rotator obliquity. The bottom two rows are for a single magnetic inclination angle of 15a =  and depict maps for maximum loop altitudes
r 2, 4, 6, 8max = , as indicated, for the two different emergent photon energies. Pulse profiles for a particular observer z are represented by horizontal cuts of the maps.
Accordingly, symmetric double-peak structure of pulse profiles in domains z a» is readily apparent, being manifested as sections of the red rings: these are realized
when quasi-polar viewing is possible at select phases. The phase separation of the double-peak structure of pulse profiles in domains a z» shrinks at higher rmax and
larger fe . The normalization across all panels in a row is relative to the brightest flux realized in that row.
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Such double-peaked pulse profiles are occasionally seen in
the hard X-ray tails of magnetars for certain energy bands—
see, for example, Kuiper et al. (2004) for RXTE/HEXTE data
above 50 keV for 1E 1841–045, den Hartog et al. (2008a) for
4U 0142+61 in the window 20–50 keV, and An et al.
(2013, 2015) for NuSTAR data between 24 and 35 keV on 1E
1841–045. Generally, such bifurcated peaks are either poorly
resolved or completely absent in magnetar pulse profiles above
10 keV. For cases where two peaks are well distinguished, an
important observational diagnostic on the resonant Compton
upscattering model is suggested: matching the peak separation
will constrain the ,a z( ) space. This is directly analogous to
protocols adopted for caustic descriptions of gamma-ray
pulsars (e.g., Watters et al. 2009; Pierbattista et al. 2015). For
example, given the phase separation of 0.4 between the peaks
in 1E 1841–045 of An et al. (2013) at an energy of 20–35 keV,
taking Figure 12 at face value suggests that 20a . This is
quite similar to the value of 15a ~  inferred in the analysis of
An et al. (2015) that was based on the modeling of Hascoët
et al. (2014) that invoked twisted fields. One naturally expects
that the different inferences of ,a z( ) values might arise for the
dipole geometries considered here and twisted field models.
Yet, the scattering locales that dominate the spectral signal in
the 20–100 keV band in almost aligned rotators are generally
quasi-equatorial since the viewing angle 30v q  for all pulse
phases; see the orange/yellow regions in Figure 3. In the
detailed MHD simulations of closed field line untwisting in
Chen & Beloborodov (2017), while twist angles 1fD ~ can
be realized near the quasi-polar footpoints, values substantially
smaller than unity are found at colatitudes 60J >  nearer rmax

as the dissipative untwisting progresses and the field tends
toward its relaxed dipolar configuration. Accordingly, the hard-
tail pulse profiles for twisted field scenarios should resemble
those presented here for dipolar geometries.

The array of panels in the bottom two rows evinces two clear
trends: the separation of peaks in double-peak z a~ domains
declines as rmax is increased, or as fe becomes larger. Both these
circumstances correspond to the resonant locales converging
toward the separatrix that is illustrated in Figure 2. The
coupling with photon energy is again a hallmark of the
kinematics of the resonant upscattering process and signals a
useful observational diagnostic. From this figure, one again
infers that for 15a =  the r 4max = example could accom-
modate the NuSTAR pulse profile data for 1E 1841–045 in An
et al. (2013) when 5 20 z . Yet other values of rmax could
not, suggesting a fairly restricted range of footpoint colatitudes
for the active field lines. At other energies for this magnetar,
and indeed for other magnetars at all hard X-ray tail energies,
prevalent single-peaked structure would indicate convolutions
of rmax surfaces being required, perhaps with r 5max  , in order
to match the pulse profiles. Other pulse broadening mechan-
isms can be surmised, for example, distribution of electron
Lorentz factors, such as would be realized in cooling
treatments, thereby blurring the upscattering kinematics. Also,
twists to the field structure distribute the resonant locale
geometry and the Compton kinematics, and so would act to
broaden intrinsic pulse structure. Furthermore, mechanisms
such as photon splitting that can be operational above 50 keV
can lead to phase-dependent attenuation of the pulse profile,
thereby modifying its shape. As a competing influence,
reducing the surface emission locales from a complete sphere
to a hot spot will alter the resonant scattering kinematics and

perhaps narrow the pulse width slightly. It is evident that even
with the action of broadening and attenuation processes, for a
given uncooled Lorentz factor, the maximum pulse width or
double-peak phase separation at a given energy provides a
lower bound to the lower altitude of emission. Thus, we see
that energy-dependent pulse profile modeling augurs the
potential to significantly constrain the values of a, z , and
rmax, a task that will be undertaken in the future using self-
consistent cooling/emission models. Another apparent prop-
erty is that when the viewing angle is well removed from the
magnetic axis, specifically, z is not close to a, not only is the
pulse prominence quite limited, but the relative brightness of
the upscattered emission is low as well. This circumstance
applies because of our uniformly hot surface assumption, and
one might expect that if the soft photon supply is constrained to
a hot spot centered near the footpoints of an equatorial field
bundle, the z–a coupling will be profoundly different. For our
uniform surface illumination case, one could surmise that a
geometrical reason for a magnetar not possessing a detectable
hard X-ray tail is that z a∣ – ∣ is sufficiently large, perhaps around
45 or more. Comparing with inferences of these geometry
parameters from surface emission is a potentially productive
path. Güver et al. (2015) offer an analysis of the strong
pulsation of surface X-rays below 10 keV observed by XMM-
Newton in 1E 1048.1–5937, concluding that hot spots from an
orthogonal rotator ( 90a ~ ) can account for the observed
pulse fraction of 75~ % with a viewing angle of 45z ~ . This
magnetar does not exhibit a prominent hard X-ray tail, and so
the top right panel of Figure 12 would indicate that 45z 
would be favored when 90a ~  in light of the resonant
upscattering model, consistent with the inference of Güver
et al. (2015). Yet, obviously, complete lack of activation of the
magnetosphere could be the explanation for the paucity of
steady hard X-ray emission in 1E 1048.1–5937.
To extend the surface spectral results to complete volumes

that span a range of rmax values requires detailed numerical
computations that should nominally include treatment of
electron cooling. The total cooling rate scales as the integral
of dn dtd nf f f fe e e e g ( ), which for flat spectra like those in
Figure 11 approximately expresses f

max 2e( ) times the normal-
ization n f

maxeg ( ) at the maximum energy of emission. For the
spectral integration over azimuths, which at each colatitude
represents the total emission from a particular point along a
field line, one can then equate nf f

max 2 maxe eg( ) ( ) to computed
cooling rates. These can be found in Figure 10 of BWG11,
which displays eġ for different altitudes and an array of
magnetic colatitudes. From such depictions the following
general inferences can be made. If eg exceeds the Lorentz factor
B Q at the peak cooling rate, then eġ approximately scales as
rmax
l- with 6 7l ~ – , i.e., roughly as B2. Cooling is in the B 1

domain at modest to high altitudes. This is then approximately
proportional to f

max 2e( ) , deduced using Equation (33) in the
magnetic Thomson domain where B2f e

maxe g» . This then sets
n f

maxeg ( ) to be approximately independent of f
maxe , so that flat

spectra should result from volume integrations at relatively
high altitudes and for 10e

3g > . For lower Lorentz factors, the
opposite trend in cooling is observed when Beg < Q, so that eġ
scales as rmax

l- with 3l ~ - , or perhaps with more negative l
values. Then n f f

max max 3e e~g
-( ) ( ) , a very steep power law. The

reality will probably lie somewhere in between these two
extreme cases and be influenced by the choice of eg and
contributions from low altitudes, where QED modifications to
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the cooling rate and emission are strong. To assess this more
incisively, more detailed numerical determinations are needed,
the subject of future work.

The dipolar field configuration is clearly a convenient
idealization for magnetars. Field-line twists offer more
complicated morphologies, and naïvely one might anticipate
that tangled field-line geometries might evince spectral
character somewhat reminiscent of that for the toroidal surfaces
generated by integrations over dipolar field-line longitudes.
This can only be truly assessed via detailed geometric modeling
of twisted field scenarios. Yet it can be surmised that the
spectral signatures of nondipolar systems will be modulated by
stellar rotation in ways quite different from the pure dipolar
case. To excogitate this, consider a simple toroidal field loop
such as would be precipitated by current bundles tracking along
poloidal field lines. For energetic charges moving along the
toroidal loop, the plane of Doppler beaming of upscattered
radiation is orthogonal to the planes of dipole field-line loops of
any longitude

*
f . Therefore, the array of local viewing

perspective angles nBQ sampled at any rotational phase will
be quite different for the poloidal and toroidal field-line paths.
Thus, the phase modulation of spectra and f

maxe for the case of
toroidal trajectories will differ from that for poloidal electron
paths. This will constitute not just a general phase offset of the
peaks of f

maxe as displayed in Figure 5, but distortion of
symmetric sinusoidal modulations and of the onset and egress
of shadowing. Accordingly, detailed measurement of energy-
dependent pulse morphologies should afford diagnostics on the
magnetic field geometry. In addition, the general polarization
character of phase-resolved emission from toroidal field paths
should differ from the poloidal loop case, both in degree of
polarization and in the position angle sweep. Thus, hard X-ray
polarimetry should serve to help discriminate between these
two emission loop geometry cases, as it should do also for
more tangled twisted field morphologies.

5. Discussion

A number of the resonant Compton spectra presented in this
paper violate COMPTEL upper bounds imposed on soft
gamma-ray emission from several magnetars, particularly for
Lorentz factors 30e g . For higher Lorentz factors, they can
even violate constraining upper limits from the Fermi-LAT
experiment for magnetars (Abdo et al. 2010; Li et al. 2017).
The significance of such violations as a potential issue for the
resonant Compton upscattering model for hard X-ray tails
depends on two elements that are discussed here: (i) how high
are the Lorentz factors generated for electrons in the activation
zones, and (ii) how much are hard X-rays and gamma rays
attenuated in magnetospheres.

5.1. Radiation-reaction-limited Acceleration

In a complete resonant Compton upscattering model, the
spectral templates exhibited in Section 4 need to be convolved
with the spatially dependent cooling of electrons due to the
scattering process. While a full exploration of such is beyond
the scope of this paper, here we offer a flavor of what might be
expected when cooling is incorporated. From the detailed
resonant Compton cooling analysis in BWG11, it is apparent
that cooling rates eġ due to resonant scattering in locally
uniform fields typically peak at Beg ~ Q, where Q =
kT m ce

2 defines the temperature of the thermal soft photons.

This is dictated by the kinematic criterion for resonant
scatterings, yielding optimal sampling of the peak of the
Planck spectrum for the soft X-rays. At this most efficient
cooling point, the corresponding cooling rate length scale,

cc e el g gº ˙ , realizes minimal values commensurate with

B
1

2
max

1

2
, 2 . 44c B

f

c,min 3e
l l

a
º ~

Q
g ~ Q

 { }∣ ( )

This is an approximate evaluation that encapsulates the
subcritical and supercritical field domains and can be deduced
from Equation (55) of BWG11. For B 10= and T 5~ ´
10 106 7– K, the corresponding cooling length scale at the stellar
surface is of the order of 1–30 cm RNS . As this estimate is
only modestly dependent on the field strength when B 1 , it
is quickly discerned that resonant Compton cooling of
relativistic electrons should generally be prolific throughout
the inner regions of magnetar magnetospheres.
If sufficiently rapid, resonant cooling could ultimately

quench any acceleration process operating above the surface.
If not, or if the cooling subsequently renders the charge unable
to access the resonance, then it can still act after the charges
have emerged from the electric potential zone or gap. In both
cases, cooling will substantially impact spectral formation. The
mechanisms of particle acceleration operating in magnetars are
not fully understood and probably differ between the two
source classes. The acceleration may be precipitated by
electrostatic potential gaps, or by dynamic, nonpotential
twisted fields close to the surface. These are each considered
in the ensuing discourse. The component E B BE = · ∣ ∣ of the
electric field E that is parallel to B within a potential gap in a
pulsar-like mode putatively scales with the corotating electric
field, BE E r crot~ = W ∣ ∣ , the Goldreich–Julian value (GJ;
Goldreich & Julian 1969), and thus is independent of eg . Note
that for the purposes of this discussion, we omit the nontrivial
dependence of this spin-down estimate on the inclination angle
a of the rotator. If the efficiency of electron acceleration
relative to this familiar GJ benchmark Erot is represented by a
dimensionless scaling parameter h, then the rate of increase of
the Lorentz factor of an ultrarelativistic electron can be written
as R Pc BR P2 2Bacc NS NSg phw ph~ = ˙ ( ) ( ), where B is the
field strength, now in units of Bcr, and Be m cB ew = ∣ ∣ is the
electron cyclotron frequency. Thus, the length scale for such
electrostatic acceleration is

c Pc

BR B

c

R2
, 45

e e e
acc

acc NS NS

l
g
g

g
ph

g
h

º ~ º
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˙
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again for BB Bcr= ∣ ∣ , as noted in Equation (57) of BWG11.
When 10e

3g ~ and the acceleration is fast, i.e., 1h ~ , this

length scale is of the order of 10 105 3- -– cm for B 1 102~ –

and typical magnetar periods; it is therefore significantly
inferior to the resonant Compton cooling lengths. There is no
mandate that h be as large as unity, and in fact it could be quite
small, since RNSh represents the product of the physical extent
of the electrostatic gap and E Erot . In the context of magnetars,
since their emission cannot be powered by stellar rotation
alone, this GJ evaluation is a general guide, but it should not be
overinterpreted.
The importance of resonant Compton cooling for limiting the

acceleration depends critically on the locale of the electric
potential and the value of h. For gamma-ray pulsars, the
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acceleration length scale becomes larger in the outer magneto-
sphere, where the magnetic field is much lower, more than
offsetting the increase in R R cNS LCh = W. This establishes

Racc LCl in both outer gap and slot gap models. While
resonant Compton cooling can have a partial impact in slowing
down acceleration in pulsars (see, e.g., Sturner 1995;
Daugherty & Harding 1996, for the magnetic Thomson
regime), it usually does not shut it down completely. Mostly,
the dominant mode of cooling of primary electrons in models
of many energetic young pulsars (e.g., excepting the Crab) and
old millisecond pulsars is through the emission of curvature
radiation. In the case of millisecond pulsars, radiation reaction
mediated by curvature emission actually forces the cessation of
acceleration (Timokhin & Harding 2015) generally at Lorentz
factors of 10 10e

6 7g ~ – before a pair-formation front can be
established.

For the magnetar case, provided that 10 105 3h -- - , the
estimates from Equations (44) and(45) yield c,min accl l , and
the acceleration will be radiation reaction limited (RRLA) once
the resonance is encountered. The opposite circumstance,
namely, when 10 105 3h - -– , will generate prompt and
unhindered acceleration out to Lorentz factors that sample the
full electric potential. Outside the “gap” the electrons will then
quickly cool until cl exceeds around (10–30)RNS and eg is
below the cooling peak at B Q. The main material difference
between this unimpeded acceleration case and the RRLA
domain is that the maximum Lorentz factor injected into the
system will be higher. In both cases, the progressive cooling of
electrons outside the potential “gap/zone” will generate a
convolution of spectra like those exhibited in Section 4.1. For
meridional planes, inspection of the left panel of Figure 6
indicates that lower eg yield spectra with lower f

maxe but higher
normalization, so that this superposition would yield a
substantial overall steepening of the resonant spectrum. Off-
meridional viewing perspectives may present different con-
volutions, possibly leading to pulse-phase-dependent spectral
index variations. Whether these are approximately commensu-
rate with the observed spectral indices will require a complete,
self-consistent computation of emission and electron cooling.

Moving on from static potentials, the paradigm of dynamic,
twisted magnetospheres that generate electric fields and
currents is currently popular as a model of magnetar activation
and dissipation. First put forward as a possibility to power
magnetar hard X-ray emission by Thompson et al. (2002), it
has been developed in a number of papers, including more
recent expositions in Nobili et al. (2011), Parfrey et al. (2013),
and Chen & Beloborodov (2017). In perturbed force-free
magnetic dipole configurations, the current density j above the
atmosphere is approximately parallel to the magnetic field,
j B 0´ » . Then, for small twists with an angle jD deviating
from the pure dipole geometry at colatitude J and altitude r , the
current can be found in Equation (1) of Beloborodov &
Thompson (2007), from which the transient electric field
scaling from electrodynamics can be inferred according to the
prescription in Equations (13)–(17) of Beloborodov &
Thompson (2007):
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Here E refers to the component of the electric field parallel to
the local dipole B direction, and in this equation, B is expressed

in Gaussian units. Thus, small departures from ideal MHD
conditions exist, and these are ephemeral, leading to dynamic
untwisting of a magnetosphere with hot spot formation at the
footpoints of the B ´ “j-bundle” (Beloborodov 2009). Since
electrostatics determines the dynamic charge separation poten-
tials, the electron plasma frequency pw appears, and this is
evaluated using jn ece = ∣ ∣ for ultrarelativistic electrons.
Observe that this estimate of E is explicitly independent of
the magnetic inclination a, contrasting the situation for gap
fields in rotation-powered pulsars. The acceleration rate

eE m cetwg  ˙ for magnetospheric twists can then be computed
using the rate of work done in this E field, and the coupling of
the acceleration length scale twl from dynamic magnetic field
perturbations to the twist angle jD in the linear domain then
quickly follows (for r RNS ):
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Here B is now in units of Bcr, and as throughout, m ce= .
When 10e

3g ~ , this length scale is of the order of 3–30 cm for

B 1 102~ – and 0.1jD = . It is several orders of magnitude
larger than the GJ comparison in Equation (45), by a factor of
the order of R R BRNS LC NS ( ) . Yet, interestingly, this
acceleration length is quite comparable to the minimum
cooling length c,minl in Equation (44) for resonant Compton
scatterings, so that upscattering spectral details might be
sensitive to the choice of the twist angle. Accordingly, detailed
considerations of resonant cooling in combination with
magnetospheric twist acceleration models offer the prospect
that useful probes of the values of jD and other twist
parameters may result; this task is deferred to future studies.

5.2. Hard X-Ray and Gamma-ray Attenuation Mechanisms

In all likelihood, the most energetic photons produced by
resonant Compton interactions by ultrarelativistic electrons do
not actually escape the magnetosphere, but rather are
attenuated. Two main physical processes can effect such
attenuation. The first of these is single-photon magnetic pair
creation, e eg  + -, which becomes permissible in strong
fields because momentum conservation perpendicular to B is
not required; it is absorbed by the global field. Then energy
conservation yields a formal threshold of 2 sin kBe q=g , in
units of m ce

2, where kBq is the angle between the photon
direction and the local magnetic field. The threshold is actually
polarization dependent: the threshold energy for ^ photons at

B1 1 2 sin kBq+ +( ) is greater the 2 sin kBq value for .
Above these thresholds, pair creation can proceed prolifically.
For energies below the pair production threshold, magnetic
photon splitting, a third-order QED process, is also expected to
significantly attenuate the emergent spectra, particularly if all
three polarization splitting modes allowed by CP symmetry in
QED operate: ^ , ^ , and ^ ^^. Although
photon splitting is of higher order than e eg  + -, it can
kinematically operate below the pair creation threshold and thereby
reprocess hard X-rays and soft gamma rays into lower-energy
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photons. Vacuum polarization/dispersion due to the intense
magnetic field (e.g., Adler 1971) introduces significant complexity
into the calculation of attenuation coefficients for photon splitting
—in the weakly dispersive regime, only the ^  is
kinematically allowed. For details concerning the physics proper-
ties, consult Harding et al. (1997) and Baring & Harding (2001).

One can best assess the pair attenuation situation for
magnetars using the escape energies plotted in Figure 1 of
Baring & Harding (2001). These are the critical energies above
which the magnetosphere is opaque for light. In that figure,
photons were emitted from the surface, parallel to field lines, or
approximately so, the situation appropriate to light generated
above around 100 keV via the inverse Compton scattering
process. Yet, the geometry can apply to any dipolar field loops
at any altitude, merely with a corresponding adjustment to the
field strength. From this depiction in Baring & Harding (2001),
one can infer that for magnetic loops with r 4max  in our
upscattering picture, photons with energies above around
15MeV will generally not escape equatorial regions, though
this pair opacity boundary can move up to around 100MeV for
polar zones. A similar picture is presented in Figure 13 of Story
& Baring (2014). For lower altitudes r 4max < , the field is
higher, and the opacity rapidly rises, so that one anticipates that
even photons with energies around 3–5MeV will be attenuated
in zones away from the poles. This character is determined
primarily because field-line curvature rapidly establishes
significant photon angles kBq to the field during propagation,
even when these angles are very small at the point of scattering.
None of these escape energies fit what is needed to explain the
constraining upper limits imposed by the COMPTEL observa-
tions of magnetars, but they do provide an explanation for why
no photons are detected above 100MeV in magnetars by the
Fermi-LAT telescope. Obviously, any ensuing pair creation
and cascading will provide feedback for the formation of
spectra and also the acceleration process via the partial
screening of electric potentials.

Escape energies for photon splittings^  have also been
plotted in Figure 1 of Baring & Harding (2001) with numbers
similar to those for pair creation: when r 10max  , photons
above 10–15MeV will not generally escape equatorial zones.
At lower altitudes nearer the surface, i.e., for r 4max  , ^
photons can be attenuated by splitting at all energies down to as
low as 50 keV (e.g., Baring & Harding 1998, 2001), so that this
process can potentially aid in reducing the signal well above
150 keV, particularly since the ^ mode is the dominant
polarization in upscattered photons with 0.1 f

maxe (see Figure 9).
This property affords the prospect of polarization diagnostics on
the emission altitude and colatitude using future hard X-ray
polarimeters. Notwithstanding, if  photons do not split, then
there will be visible fluxes in this polarization mode extending
up to the pair creation threshold somewhere above 1MeV, and
these signals should vary strongly with pulse phase. This
underlines the importance of developing hard X-ray/soft
gamma-ray telescopes with substantially improved sensitivities
and polarimetric capabilities that can probe this spectral cutoff
domain.

6. Conclusions

In this paper, we have constructed an analytical framework
of resonant Compton upscattering and spectral generation in
the context of magnetars and high-field pulsars that experience

transient magnetar-like activity. We incorporate full QED cross
sections and kinematics appropriate for high fields and
relativistic charges expected in the inner magnetosphere of
magnetars. The collisional integrals for spectral generation
employ state-of-the-art spin-dependent ST cross sections for
treating the cyclotron resonance, surpassing other studies that
approximate scattering in the Thomson limit. Specializing our
formalism to monoenergetic electrons propagating along
individual dipole field lines, and ensembles thereof, we develop
a directed emission formalism for emergent spectra along
arbitrary observer lines of sight. These are sensitive to both the
Lorentz factor of an electron and the values of the magnetic
moment inclination angle a and the viewing angle z relative to
the rotation axis. Consequently, for magnetic axis obliquities

0a > , the emergent spectra vary as a function of pulse phase,
both in flux level at given energies and in the maximum energy
resulting from resonant interactions. Geometric shadowing by
the star is also an important consideration for certain portions
of the phase space of viewing angles and field loop radial
extent. Resonant interactions are almost always realized in the
emergent spectra. Yet they are generally exponentially
suppressed for lower Lorentz factors and also substantially
reduced for fields that permit resonant interactions only with
soft X-ray photons deep in the Wien portion of the Planck
spectrum.
The kinematics for resonant interactions yields a one-to-one

correspondence between the final scattering angle and
observer-frame scattered energy for a given electron Lorentz
factor. Consequently, the resonant Compton scattering spec-
trum is highly anisotropic, beamed within a relatively narrow
solid angle of angular extent 1 egµ surrounding field-line
tangents from select locales that point toward an observer.
Most magnetospheric emission is beamed in other directions,
so that for most pulse phases the observer only detects a much
softer spectrum, nominally below 1~ MeV if the Lorentz factor
is not too high. Such a narrow beaming of emission may also
be important for inner-magnetospheric models of high-field
rotation-powered pulsars such as PSR 1846–0258 that show
magnetar-like activity but no high-energy emission following
outbursts. For pulse phases that correspond to viewing angles
coplanar with a field loop (meridional viewing geometry), it is
found that Lorentz factors must be limited to 30e g , in order
that the hardest inverse Compton emission will accommodate
the constraining 200–500 keV COMPTEL bounds on magnetar
emission. This constraint applies for a wide range of viewing
angles. Such low eg may be the product of intense radiation
reaction in the resonant scattering process. Yet, if such low
Lorentz factors are not realized, super-MeV emission generated
at low altitudes is likely to be reprocessed by the QED
processes of magnetic photon splitting and pair creation,
particularly because the upscattered photons are produced
remotely from polar locales. The constraint on 30e g is also
generally consistent with the simplified numerical experiments
of the pair corona model in Beloborodov (2013a, 2013b).
Therein, particle cooling limits Lorentz factors to below

25e g in equatorial zones with lower fields B 1 4 . This
general consistency between our work here and those two
expositions is simply a result of resonant scattering kinematics.
Angular and polarization dependencies of resonant Compton
scattering are highlighted in this presentation, but not in the
simplified approach of Beloborodov (2013a, 2013b), with the
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potential utility of our work to considerations of hard X-ray
attenuation being apparent. We also remark that our illustration
of spectra obtained when using the magnetic Thomson
approximation portrays hardening of the emission and
substantial violation of energy conservation for low-altitude
scattering locales r 4max  .

For meridional field lines, the spectral index of emergent
spectra for electrons of fixed eg transiting single field lines is
found to be harder than is observed for the magnetar tails. This
softens somewhat to approximately f

0eµ ( ) forms when integrat-
ing over field-line azimuths, essentially assessing cumulative
emission from toroidal field surfaces of fixed radial extent rmax.
The need for further steepening to match the source data may be
satisfied by introducing summations over rmax to model complete
emission volumes; the steepening apparent from the envelope of
the array of rmax-dependent spectra illustrated in Figure 10
supports such a contention. Yet it is also evident that a self-
consistent simulation of acceleration and cooling is necessary,
treating the resulting distribution of Lorentz factors. This is
perhaps best done using a 3D Monte Carlo photon transport code
that includes other QED processes such as photon splitting and
magnetic photon pair production that may operate in the inner
magnetosphere of magnetars. Such an advance should also
promote the possibility of using pulse profiles at different
energies to constrain the values of a and z—the sky maps in
Figure 12 suggest that the double-peaked profiles seen in some of
the NuSTAR data for 1E 1841–045 are best matched by 15a ~ 
in the resonant Compton upscattering model.

Finally, an important deliverable of our calculations consists
of examples of polarization-dependent spectra, primarily in
Figure 9. Therein, the ^ polarization mode exceeds the  state,
reflecting the character of the magnetic Compton differential
cross section. The associated polarization degrees can range as
high as 100%. This feature appears mostly for energies
0.1 f

max e , corresponding to small angles 15  of emission
relative to the direction of the field line local to the resonant
interaction. Such high polarization levels should emerge at
infinity after propagation through the birefringent magneto-
sphere. The polarized spectra suggest that future phase-
resolved, energy-dependent X-ray polarization observations
will afford discrimination of magnetar geometry and upscatter-
ing model parameters, as well as probing the attenuation action
of magnetic photon splitting and pair creation. Magnetars and
high-field pulsars thus form a key science goal for any future
hard X-ray or Compton polarimetry mission. This identification
looks forward to an era for which the IXPE initiative at lower
X-ray energies will help pave the way.
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Appendix
The Integration over the Soft Photon Angular Distribution

In this appendix, analytic development of the soft photon
integral
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that appears in the photon production rate in Equation (17) is
detailed. This integral also appears in the calculation of electron
cooling rates at arbitrary interaction points in BWG11. Such
reductions are expedient for numerical computations, particu-
larly because there is considerable sensitivity to the exponential
in the integrand. In addition, it should be noted that
developments here do not involve the cross-section physics
and so are applicable to a variety of inverse Compton scattering
problems in proximity to stars, for example, gamma-ray
binaries. For uniform hemispherical thermal soft photons as
described by Equation (18), with dimensionless temperature
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Here m represent the bounds of the angle cosines of the soft
photons relative to the field direction. The analytical approxima-
tions and series developed in this appendix for this integral speed
up numerical computations of the spectral rates considerably.
Central to these developments is the recognition that the Planck
spectrum is a perfect derivative of a logarithmic form:
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Observe that the minus sign at the front appears because of the
change of the differentiation from the se Q variable to im . This
form suggests an integration by parts, a protocol that proves
expedient because the forms for the derivatives of f im( ) are
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relatively compact. Numerical evaluations of the ensuing
integrals are then more stable.

A.1. Altitudinal and Colatitudinal Dependence of f im( )

The functional form of m and f im( ) on location in the
magnetosphere also depends on the sense of motion of the
charge carriers relative to the magnetic field at an interaction
point. Throughout this paper we adopt dipole field geometry
r r sinmax

2J= for simplicity and assume that electrons are
propagating along field loops from a southern to a northern
magnetic footpoint located at colatitudes minq and maxq ,
respectively. The definitions of m also depend on the
hemisphere, and for the present case of downward electrons
for min max q J q they are defined as

and

Here, for the branch x0 arccos  p, we have defined
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see also Equation (19). These represent the opening angle Cq of
the cone of collimation of the soft photons at altitude R and the
polar angle Brq of the local field vector with respect to the radial
direction. For polar locales, the definition given by Equation (55)
can also be interpreted as defining a new Br Brq p q¢ º - , where
0 2Br q p¢ , while Cq remains unchanged, since along a
field line r r rsin sinmax

2
max

2J p J= = -( ). This is equivalent
to defining Brq¢ in the first quadrant via
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This form is convenient at polar locales when Br Cq q¢ for
2J p and Br Cq q for 2J p . The definitions of m

above then transform to those in BWG11.
Within the angle cosine range ,m m- +[ ], the angular

distribution along a field line for electrons moving from the
south pole outward is given by modifying the definition of
f im( ) given in Equation (71) of BWG11:
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where “downward” electrons correspond to 2min  q J p
and “upward” electrons are for 2 max p J q . At high

altitudes and equatorial locales along a field line, when

Br Cq q> , the form of f im( ) in BWG11 is
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for cos Br Cm q q ( ). This form is also valid when
2J p , i.e., when 2Br q p as long as Br Cp q q- .

The form of f im( ) at polar locales along the field line has three
pieces, adapting the branches of the arcsin function defined in
BWG11 to our geometry. For the case 2J p , the electrons

are moving downward, and we can write the f im( ) distribution as
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Note that the m limits are readily identifiable in this result and
also in Equation (58). Similarly, for 2J p> , the prescription
for “upward electrons” applies using the substitutions

i i im m m ¢ = - and Br Br Brq q p q ¢ = - in Equation (59).
Graphical depictions of these angular distributions for
colatitudes 30 and 60 are given in Figure 9 of BWG11.

A.2. Manipulating the Soft Photon Energy/Angle Integration

As indicated above, integration by parts is a logical path to
expediting the evaluation of Equation (52). The exact details of
this step depend on the mathematical nature of the soft photon
angular distribution, and as has just been expounded, there are
two general forms for f im( ), appropriate for equatorial and
polar zones; we treat these sequentially.

A.2.1. Equatorial Locales

For the case of equatorial locales at moderate altitudes, the
magnetic field vector lies outside the soft photon collimation
cone, and so Br Cp q q> . Then Equation (58) presents a
simple form for f fi iEm m( ) ( ). The bounds i m m m- +
to the angle integration suggest a change of variables to f

cos if 2 or 2 and

1 if 2 and .
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defined by

2 2
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Given the forms cos Br Cm q q= ( ) apparent in
Equations (53) and(54), it follows that
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These define the angular quantities  and  that will appear in
the algebra below, with  m =  . If one then transforms
the arcsin to an arctan function with the aid of the standard
trigonometric identity arcsin arctan 1 2c c c= -( ), one
arrives at an alternative form for the angular distribution:
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At this juncture, since the relationship between im and f defines
a cosine rule for a spherical triangle, it is evident that f
represents an azimuthal angle about the radial vector that serves
as the axis of the spherical cap defined by the soft photon
propagation collimation cone. From the form in Equation (62),
using the identity d d cosi m f= ( ), one quickly obtains the
derivative (valid for Br Cq q> )
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after some algebraic simplification. Since Br Cq q> , the
numerators of both terms on the right are positive, and it can
be quickly demonstrated that the f 0i iE m m¶ ¶ <( ) . Clearly

0 > and 1 1 + >( ) . Also, as 1  - - =
1 cos 0Br Cq q- - >( ) for Br Cq q> , it follows that

1 1 - < -( ) applies to the denominator of the second
term on the right. Hence, no singularities arise in the integrand
resulting from the integration-by-parts step, which introduces
no residual boundary terms because these are zero at im m= .
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d
, ,

2

cos cos

1 cos

cos cos

1 cos

cos
.

64

e i

s

E
0

C Br

C Br


 

 
 

òg w
f
p

q q
f

q q
f

e f

Q =Q
+

+ +

+
-

- +
¡

+
Q

p ⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣⎢
⎤

⎦⎥

( )

( )

( )

Both factors in the integrand are negative when Br Cq q> . The
pieces of this integral take the form of that in Equation (69),
and protocols for computing such integrations are outlined in
Appendix A.3.

A.2.2. Polar Locales

Without loss of generality, we specialize to 2J p . The
operational definition of polar locales is for Brq small enough
for the magnetic field vector to lie inside the soft photon
collimation cone. This amounts to Br Cq q< , with Equation (59)
being the appropriate angular distribution. The ensuing
integration by parts proceeds much as for the equatorial case,
except for the fact that there are three pieces to the integration,
as inferred from Equation (59), and the boundary evaluations
are different. The total integration is
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The equatorial angular distribution f iE m( ) of Equation (58) is
introduced not only to render the algebra more compact but
also to identify mathematical similarities to the developments
in Appendix A.2.1. Adapting the equivalent form in
Equation (62), we recast it and analytically continue it here via
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Since 0 Br Cq q< < , it is evident that 0 1< < , so that
two different branches to this arctan function must be
sampled on the interval 0  f p. These are separated by the
singular point cos f = , which is equivalent to

cos cosi mC Brm q q m= º , the ratio of the two pertinent cosines.
This discontinuity imposes itself on the integration by parts, and
the explicit appearance of the Sign function factor in
Equation (66) compactly accommodates the two branches. The
integral evaluation progresses by isolating the terms not dependent
on f iE m( ), which contain perfect derivatives in the integrand. For
the two other terms, we integrate by parts to yield
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for cos cosm C Brm q q= . For the nonintegral terms, we
observe that for m i m m m< + one has cos 1 f< , so
that the negative branch of Equation (66) is applicable. Then
f 0E m =+( ) since then 0f = , and also f 1 2mE m  -( ) at the
singular point. Next, when i mm m m< <- , the positive branch
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of Equation (66) applies as 0 cos  f < , so f 0E m =-( ) ,
since then f p= , and f 1 2mE m ( ) for the other singular
point. Thus, the constant terms contribute a total of

1se¡ Q[ ( ) ], with substantial cancellation arising in the
associated sum. For the remaining integrals, observe that
the derivatives of f iE m( ) select the negative branch on

,mm m+[ ] and the positive one on , mm m-[ ], so that they can be
blended into a single integral on the interval ,m m- +[ ]. Then
using the change of variables in Equation (60), this integral
can be cast in a form similar to that in Equation (64),
remembering the concatenation of minus signs. Thus, the
final polar result for 2J p< is
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Observe that now the integral is not always positive, as can
be discerned by selecting the 0Brq = polar axis case, so this
serves to reduce the value of the positive constant term. The
corresponding 2p J p< < result can be obtained in similar
fashion, generating the same integral contribution, but with
the constant residual term being instead 1se+Q¡ - Q[ ( ) ].

A.3. Analytic Approximations to the Angular Integral

In the previous two sections of this appendix, the end point
of the integration by parts involves integrals of the form
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for the domains 1a >∣ ∣ and s 1>∣ ∣ . While a takes on various
forms, the other two variables are fixed for all the integrals:
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For all magnetospheric locales, s 1> . To facilitate numerical
calculations of spectra, we now develop some analytic
approximations to  in the limits of A small and large. We
note that the integral requires numerical computation only in a
small gap of the parameter space where A is neither small nor
large, where the accuracy of the two protocols described
hereafter rises above 0.1% precision. Taylor series expansion of
the logarithm is an obvious path, and this is preferable when
A 1 and exponential contributions come into play.

A.3.1. Small A

The series expansion of the logarithm for A 1 is not
particularly practical, since the radius of convergence for
A s cosf+( ) is only 2p. Term-by-term integration would then

yield integrals expressible in terms of Legendre polynomials. We
seek a more expedient path, and it starts by employing Euler’s
infinite product representation of the sinh function. Using
identity 1.431.2 of Gradshteyn & Ryzhik (1980), the infinite
product identity for the xsinh function, then for all complex c a
quick manipulation of the logarithmic form yields

e
k

log 1
2

log log 1
4

.

71

e e

k

e

1

2

2 2åc
c

c
p

- = - + + +c-

=

¥ ⎡

⎣
⎢

⎤

⎦
⎥( )

( )

For A s cosc f= +( ) this series must be carried to
k A s2 1p - ( ( )). Defining x A k2k pº ( ), the logarithm
portion of the integrand in Equations (64) and(68) can be
expressed as
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Term-by-term integration of the series requires several integral
identities; these we shall not prove in detail here. The first is
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which is easily established by contour integration on the unit
circle with z z1 2 cosf+ = for poles that lie outside, i.e.,

1a >∣ ∣ . Using a partial fraction decomposition, one can then
easily establish the second integral identity,
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The third integral identity can be established by recasting 2 as
the perfect derivative of an integral with integrand proportional
to slog cose f+( ), or using identity 4.397.16 of Gradshteyn &
Ryzhik (1980). If one defines a parameter s such that

1 2a s s= +( ) ,

1 if 1,

1 if 1,
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The fourth integral identity is harder to establish, but it can
be found by analytically continuing s to the complex plane via
s s s ixk =  . Then, summing over the factorization of
the logarithm yields a sum of integrals in the form of

3 . Defining s x s x2 1 1k k
2 2 2 2t = + + + - +( ) ( ) and
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12k t t= - - , the fourth identity is found to be
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Note that in this form it is easily apparent that as x 0k  ,
st  , so that k m , and s x s, , 2 ,k4 3 a a( ) ( ). The

original integral is now cast in terms of the four integrals,
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Numerical evaluation of the sum is carried to some
k A s2 1max p - ( ( )) bounded above such that the computa-
tion speed is superior to numerical integration, generally by
factors up to 10 101 2– for a modest amount of terms. If kmax

becomes very large, it is possible to replace the sum by an
integration over k for contributions in the x 1k  range.
Alternatively, a remainder term to the summation can be
identified and approximated by considering the leading-order
term in expansion of the sum’s argument for x 1k  , which is
quadratic in Axk owing to the form of t , and expressible in
terms of the polygamma function. This protocol was adopted
for the summation whenever large numbers of terms were
required, for which small values of xk would eventually be
encountered.

A.3.2. Large A

The analytics developed for small A in the previous section,
although valid for arbitrarily large values of A, quickly become
numerically inefficient and prohibitive for a given accuracy
when A is large owing to the high number of terms required for
convergence. As an alternative protocol, here we develop
asymptotic approximations for large A, by first forming the
series of logarithm,
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Changing variables to y s u s1 1 1 22= - - +( )[ ( )] with
u s cos 1f= + -( ) transforms the integral in the sum to
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with 0 1< < when a s a, 1a = > > . This integral is
given by a double sum in identity 3.385 of Gradshteyn &
Ryzhik (1980), but it proves not to be an efficient path for
computation.

For large An, the exponential dominates the integrand,
suppressing all contributions to the integral except those for
small y. Thus, the method of steepest descents is appropriate,
concomitant with the approximation of extending the upper
limit to infinity. For the case 1a > where 0 1< < , we form
a Maclaurin series of the nonsingular algebraic part in the
integrand about y 0= ,
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For each term in the k series, the upper limit of the integral in
Equation (80) can be set to infinity, and one can then
analytically express the integral using the definition of the
gamma function
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From the duplication formula for the gamma function, one can
reduce k k k1 2 2 2 1 1k1 2 pG + = - --( ) ( )! ( )! in the
usual manner. Thus, to second order in k for large A and

1a > , we obtain the asymptotic approximation
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For the regime 1a < - a better approximation is found by
keeping the y1 -( ) denominator intact, since 0 < and
  ¥∣ ∣ as 1a  - . We note again that the dominant
contribution to the integral comes from y 0» . As such, we
employ the first few terms in Taylor series of the y1 1 2- -( )

portion about y 0= ,
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As for the 1a > case, we send the upper limit of the integral to
infinity for expediency, and we note the identity
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for c 0> and 0 < . Here the incomplete gamma function
simplifies to linear combinations of complementary error
functions by the identity x x1 2, erfcpG =[ ] ( ) when
combined with recurrence relations of the gamma function.
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Thus, for 1a < - to second order
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where Equation (81) has been used to simplify the algebra for
the argument of the exponential and other factors. Numerically,
for large An, only two or three terms of the binomial series in
Equation (85) are required for either case outlined above when
summing over n. For a minimal gap region, these asymptotic
approximations are accurate when A s2 1 12 - ( )

and A s Aexp 1 5- +[ ( )] . The sum over n is taken
to n n s A s A s AMax 1 2 , 1 ,cmax

2 a~ - + -[( ) ( ) ( ) ( ) ],
where n 1c  with the value chosen such that it is no slower
than numerical integration as one approaches the gap where the
accuracy threshold is not satisfied.
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